Skip to main content

Advertisement

Log in

IFN-γ affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Metastasis-related in colon cancer 1 (MACC1) is highly expressed in a variety of solid tumours, but its role in pancreatic cancer (PC) remains unknown. Interferon gamma (IFN-γ) affecting MACC1 expression was explored as the potential mechanism following its intervention.

Methods

Expressions of MACC1 treated with IFN-γ gradient were confirmed by quantitative real-time PCR (qRT-PCR) and western blot (WB). Proliferation, migration, and invasion abilities of PC cells treated with IFN-γ were analysed by CCK8, EDU, colony formation, Transwell (with or without matrix gel) and wound-healing assays. Expression of antisense long non-coding RNA of MACC1, MACC1-AS1, and proteins of AKT/mTOR pathway, (pho-)AKT, and (pho-)mTOR was also assessed by qRT-PCR and WB. SiRNA kit and lentiviral fluid were conducted for transient expression of MACC1 and stable expression of MACC1-AS1, respectively. Rescue assays of cells overexpressing MACC1-AS1 and of cells silencing MACC1 were performed and cellular properties and proteins were assessed by the above-mentioned assays as well.

Results

IFN-γ inhibited MACC1 expression in a time- and dose-dependent manner; 100 ng/mL IFN-γ generally caused downregulation of most significant (p ≤ 0.05). In vitro experiments revealed that IFN-γ decreased cellular proliferation, migration, and invasion abilities and downregulated the expression of pho-AKT and pho-mTOR (p ≤ 0.05). Conversely, overexpression of MACC1-AS1 upregulated pho-AKT and pho-mTOR proteins, and reversed cellular properties (p ≤ 0.05). Rescue assays alleviated the above changes of pho-AKT/ mTOR and cellular properties.

Conclusion

IFN-γ affected PC properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway, which provides novel insight for candidate targets for treating PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Pai RK, Pai RK. Pathologic assessment of gastrointestinal tract and pancreatic carcinoma after neoadjuvant therapy. Mod Pathol. 2018;31(1):4–23. https://doi.org/10.1038/modpathol.2017.87.

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Montejo Gañán I, Ángel Ríos LF, Sarría Octavio de Toledo L, Martínez Mombila ME, Ros Mendoza LH. Staging pancreatic carcinoma by computed tomography. Radiologia (Engl Ed). 2018;60(1):10–23.https://doi.org/10.1016/j.rx.2017.08.004.

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  5. Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6–7):884–93. https://doi.org/10.1016/j.biochi.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  6. Ni C, Wu P, Zhu X, Ye J, Zhang Z, Chen Z, et al. IFN-γ selectively exerts pro-apoptotic effects on tumor-initiating label-retaining colon cancer cells. Cancer Lett. 2013;336(1):174–84. https://doi.org/10.1016/j.canlet.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  7. Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182(6):2345–54. https://doi.org/10.1016/j.ajpath.2013.02.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017;545(7652):98–102. https://doi.org/10.1038/nature22311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J. 2019;17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  10. Tau GZ, Cowan SN, Weisburg J, Braunstein NS, Rothman PB. Regulation of IFN-gamma signaling is essential for the cytotoxic activity of CD8(+) T cells. J Immunol. 2001;167(10):5574–82. https://doi.org/10.4049/jimmunol.167.10.5574.

    Article  CAS  PubMed  Google Scholar 

  11. Mojic M, Takeda K, Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci. 2017;19(1). https://doi.org/10.3390/ijms19010089.

  12. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16(1):64. https://doi.org/10.1186/s13059-015-0620-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature. 2011;469(7331):548–53. https://doi.org/10.1038/nature09666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11:23. https://doi.org/10.1186/1476-4598-11-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Y, Zhang H, Cai J, Fang L, Wu J, Ye C, et al. Overexpression of MACC1 and Its significance in human Breast Cancer Progression. Cell Biosci. 2013;3(1):16. https://doi.org/10.1186/2045-3701-3-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;15(1):59–67. https://doi.org/10.1038/nm.1889.

    Article  CAS  PubMed  Google Scholar 

  17. Lemos C, Hardt MS, Juneja M, Voss C, Förster S, Jerchow B, et al. MACC1 induces tumor progression in transgenic mice and colorectal cancer patients via increased pluripotency markers nanog and Oct4. Clin Cancer Res. 2016;22(11):2812–24. https://doi.org/10.1158/1078-0432.Ccr-15-1425.

    Article  CAS  PubMed  Google Scholar 

  18. Galimi F, Torti D, Sassi F, Isella C, Corà D, Gastaldi S, et al. Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res. 2011;17(10):3146–56. https://doi.org/10.1158/1078-0432.Ccr-10-3377.

    Article  CAS  PubMed  Google Scholar 

  19. Stein U. MACC1 - a novel target for solid cancers. Expert Opin Ther Targets. 2013;17(9):1039–52. https://doi.org/10.1517/14728222.2013.815727.

    Article  CAS  PubMed  Google Scholar 

  20. Hagemann C, Fuchs S, Monoranu CM, Herrmann P, Smith J, Hohmann T, et al. Impact of MACC1 on human malignant glioma progression and patients’ unfavorable prognosis. Neuro Oncol. 2013;15(12):1696–709. https://doi.org/10.1093/neuonc/not136.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shimokawa H, Uramoto H, Onitsuka T, Chundong G, Hanagiri T, Oyama T, et al. Overexpression of MACC1 mRNA in lung adenocarcinoma is associated with postoperative recurrence. J Thorac Cardiovasc Surg. 2011;141(4):895–8. https://doi.org/10.1016/j.jtcvs.2010.09.044.

    Article  CAS  PubMed  Google Scholar 

  22. Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. Clin Cancer Res. 2011;17(19):6118–24. https://doi.org/10.1158/1078-0432.Ccr-11-0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobelt D, Zhang C, Clayton-Lucey IA, Glauben R, Voss C, Siegmund B, et al. Pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via Induction of MACC1. Front Immunol. 2020;11:980. https://doi.org/10.3389/fimmu.2020.00980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan-Cancer Analysis Pinpoints Targets in PI3K Pathway. Cancer Discov. 2017;7(8):Of6.https://doi.org/10.1158/2159-8290.Cd-nb2017-092.

  25. Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, et al. A Pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31(6):820-32.e3. https://doi.org/10.1016/j.ccell.2017.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng D, Che D, Lin F, Wang X, Lu L, Chen J, et al. LncRNA MACC1-AS1/MACC1 enhances the progression of glioma via regulating metabolic plasticity. Cell Cycle. 2020;19(18):2286–97. https://doi.org/10.1080/15384101.2020.1795595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong G, Cheng B, Li J, Wu X, Nong Q, He L, et al. MACC1 regulates PDL1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med. 2019;8(16):7044–54. https://doi.org/10.1002/cam4.2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang YM, Wu QM, Chang LY, Liu JC. miR-34a and miR-125a-5p inhibit proliferation and metastasis but induce apoptosis in hepatocellular carcinoma cells via repressing the MACC1-mediated PI3K/AKT/mTOR pathway. Neoplasma. 2020;67(5):1042–53. https://doi.org/10.4149/neo_2020_191019N1062.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou W, Liu L, Xue Y, Zheng J, Liu X, Ma J, et al. Combination of endothelial-monocyte-activating polypeptide-II with temozolomide suppress malignant biological behaviors of human glioblastoma stem cells via miR-590–3p/MACC1 Inhibiting PI3K/AKT/mTOR signal pathway. Front Mol Neurosci. 2017;10:68. https://doi.org/10.3389/fnmol.2017.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, et al. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev. 2018;37(4):805–20. https://doi.org/10.1007/s10555-018-9771-8.

    Article  CAS  PubMed  Google Scholar 

  31. Muendlein A, Hubalek M, Geller-Rhomberg S, Gasser K, Winder T, Drexel H, et al. Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients. Eur J Cancer. 2014;50(12):2134–41. https://doi.org/10.1016/j.ejca.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  32. Guo L, Ou S, Ma X, Zhang S, Lai Y. MACC1 silencing inhibits cell proliferation and induces cell apoptosis of lung adenocarcinoma cells through the β-catenin pathway. Neoplasma. 2018;65(4):552–60. https://doi.org/10.4149/neo_2018_170918N595.

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 2018;432:237–50. https://doi.org/10.1016/j.canlet.2018.04.035.

    Article  CAS  PubMed  Google Scholar 

  34. Yu L, Mao X, Jiao Y, Song W, Wang D. Expression of vasohibin-1, MACC1 and KA11 proteins in serous ovarian cancer and their clinical significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(12):1344–52. https://doi.org/10.11817/j.issn.1672-7347.2019.180391.

    Article  PubMed  Google Scholar 

  35. Chen XP, Ren XP, Lan JY, Chen YG, Shen ZJ. Analysis of HGF, MACC1, C-met and apoptosis-related genes in cervical carcinoma mice. Mol Biol Rep. 2014;41(3):1247–56. https://doi.org/10.1007/s11033-013-2969-5.

    Article  CAS  PubMed  Google Scholar 

  36. Yao Y, Dou C, Lu Z, Zheng X, Liu Q. MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell Physiol Biochem. 2015;35(3):983–96. https://doi.org/10.1159/000369754.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Pan C, Guo L, Wu M, Guo J, Peng S, et al. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J Hematol Oncol. 2016;9(1):76. https://doi.org/10.1186/s13045-016-0302-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhen T, Dai S, Li H, Yang Y, Kang L, Shi H, et al. MACC1 promotes carcinogenesis of colorectal cancer via β-catenin signaling pathway. Oncotarget. 2014;5(11):3756–69. https://doi.org/10.18632/oncotarget.1993.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang G, Kang MX, Lu WJ, Chen Y, Zhang B, Wu YL. MACC1: a potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol Lett. 2012;4(4):783–91. https://doi.org/10.3892/ol.2012.784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Zhou R, Zhao Y, Dong S, Zhang J, Luo Y, et al. MACC-1 promotes endothelium-dependent angiogenesis in gastric cancer by activating TWIST1/VEGF-a signal pathway. PLoS ONE. 2016;11(6):e0157137. https://doi.org/10.1371/journal.pone.0157137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dijkmans R, Billiau A. Interferon gamma: a master key in the immune system. Curr Opin Immunol. 1988;1(2):269–74. https://doi.org/10.1016/0952-7915(88)90013-1.

    Article  CAS  PubMed  Google Scholar 

  42. Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1(6):447–56. https://doi.org/10.1016/1074-7613(94)90087-6.

    Article  CAS  PubMed  Google Scholar 

  43. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11. https://doi.org/10.1038/35074122.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Wang Y, Song Z, Chu J, Qu X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interferon Cytokine Res. 2015;35(4):273–80. https://doi.org/10.1089/jir.2014.0132.

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998;95(13):7556–61. https://doi.org/10.1073/pnas.95.13.7556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. George J, Banik NL, Ray SK. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol. 2010;42(7):1164–73. https://doi.org/10.1016/j.biocel.2010.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao YH, Wang T, Yu GF, Zhuang DM, Zhang Z, Zhang HX, et al. Anti-proliferation effects of interferon-gamma on gastric cancer cells. Asian Pac J Cancer Prev. 2013;14(9):5513–8. https://doi.org/10.7314/apjcp.2013.14.9.5513.

    Article  PubMed  Google Scholar 

  48. Wang XY, Crowston JG, White AJ, Zoellner H, Healey PR. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon’s fibroblasts. Clin Exp Ophthalmol. 2014;42(6):529–38. https://doi.org/10.1111/ceo.12268.

    Article  PubMed  Google Scholar 

  49. Yuan L, Zhou C, Lu Y, Hong M, Zhang Z, Zhang Z, et al. IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1. Cancer Lett. 2015;359(1):136–47. https://doi.org/10.1016/j.canlet.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  50. Street SE, Cretney E, Smyth MJ. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood. 2001;97(1):192–7. https://doi.org/10.1182/blood.v97.1.192.

    Article  CAS  PubMed  Google Scholar 

  51. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K, et al. IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med. 2006;203(6):1391–7. https://doi.org/10.1084/jem.20060436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsuda M, Nakamoto Y, Suzuki S, Kurata T, Kaneko S. Interferon-gamma-mediated hepatocarcinogenesis in mice treated with diethylnitrosamine. Lab Invest. 2005;85(5):655–63. https://doi.org/10.1038/labinvest.3700257.

    Article  CAS  PubMed  Google Scholar 

  53. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res. 2009;69(5):2010–7. https://doi.org/10.1158/0008-5472.Can-08-3479.

    Article  CAS  PubMed  Google Scholar 

  54. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87. https://doi.org/10.1038/onc.2011.621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46. https://doi.org/10.1016/j.cell.2013.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi C, Xiaofeng C, Dongen L, Liang Y, Liping X, Yue H, et al. Long non-coding RNA MACC1-AS1 promoted pancreatic carcinoma progression through activation of PAX8/NOTCH1 signaling pathway. J Exp Clin Cancer Res. 2019;38(1):344. https://doi.org/10.1186/s13046-019-1332-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38(23):4637–54. https://doi.org/10.1038/s41388-019-0747-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 2018;17(1):69. https://doi.org/10.1186/s12943-018-0820-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hung CM, Kuo DH, Chou CH, Su YC, Ho CT, Way TD. Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J Agric Food Chem. 2011;59(17):9683–90. https://doi.org/10.1021/jf2021489.

    Article  CAS  PubMed  Google Scholar 

  60. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005. https://doi.org/10.1038/onc.2010.236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank for the help of Key laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University) and Research Institute of Innovative Think-tank in Guangxi Medical University (The gene–environment interaction in hepatocarcinogenesis in Guangxi HCCs and its translational applications in the HCC prevention).

Funding

This work has been financially supported by the National Natural Science Foundation of China (Grant Nos. 31560257 and 81960439), the “139” Plan for Training High Level Cadre Talents in Guangxi Medicine (G201903004).

Author information

Authors and Affiliations

Authors

Contributions

X-YS, and S-Y Qin designed this study. X-YS wrote this manuscript and S-Y Qin guided the revision of the manuscript and submitted for publication. All of the authors conducted the study, and approved the final report.

Corresponding author

Correspondence to S.-Y. Qin.

Ethics declarations

Conflict of interest

The authors report there is no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XY., Zhang, XL., Shi, QY. et al. IFN-γ affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway. Clin Transl Oncol 24, 1073–1085 (2022). https://doi.org/10.1007/s12094-021-02748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02748-w

Keywords

Navigation