Skip to main content

Advertisement

Log in

The inhibitory effect of LINC00261 upregulation on the pancreatic cancer EMT process is mediated by KLF13 via the mTOR signaling pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The long noncoding RNA LINC00261 was reported to be involved in carcinogenesis and has been validated as a tumor suppressor in pancreatic cancer (PC); however, how LINC00261 is regulated has not been fully examined. Here, we attempted to investigate the upstream and downstream targets of LINC00261 in PC.

Methods

LINC00261 expression in PC tissues was examined by the Gene Expression Omnibus (GEO) datasets and the Gene Expression Profiling Interactive Analysis (GEPIA) database. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were performed to detect the expression level of LINC00261 in PC cells. The location of LINC00261 in PC cells was identified by RNA fluorescence in situ hybridization (RNA-FISH). Cell Counting Kit-8 (CCK-8), cell apoptosis assay, transwell invasion and migration assays testified the critical role of LINC00261 in PC. The luciferase reporter assay was applied to confirm the binding of LINC00261 to its upstream transcription factor KLF13. The changes in LINC00261 related target protein levels were analyzed by Western blotting assay.

Results

LINC00261 was significantly lower in PC tissues and was mainly concentrated in the nucleus. Overexpression of LINC00261 inhibited the invasion and migration of PC cells. Mechanistically, transcription factor KLF13 was confirmed to inhibit the epithelial-mesenchymal transition (EMT) process of PC cells by promoting the transcription of LINC00261 and suppressing the expression of metastasis-associated proteins, such as matrix metalloproteinase MMP2 and vimentin, thus inhibiting the metastasis of PC.

Conclusion

LINC00261 regulates PC cell metastasis through the “KLF13-LINC00261-mTOR-P70S6K1-S6” signaling pathway, which provides a significant set of potential PC therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data and materials are available from the corresponding author on request.

References

  1. Statello L, Guo CJ, Chen LL, Huarte M. Author Correction: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):159.

    Article  CAS  Google Scholar 

  2. Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao Q, Ding M, Liu Y, Huang W, Cai Z. LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression. 2019. Biosci Rep. https://doi.org/10.1042/BSR20182372.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jin Y, Wu P, Zhao W, Wang X, Yang J, Huo X, Chen J, De W, Yang F. Long noncoding RNA LINC00165-induced by STAT3 exerts oncogenic properties via interaction with polycomb repressive complex 2 to promote EMT in gastric cancer. Biochem Biophys Res Commun. 2018;507(1–4):223–30.

    Article  CAS  Google Scholar 

  4. Sahu A, Singhal U, Chinnaiyan AM. Long noncoding RNAs in cancer: from function to translation. Trends Cancer. 2015;1(2):93–109.

    Article  Google Scholar 

  5. Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res. 2019;25(3):859–74.

    Article  CAS  Google Scholar 

  6. Soudyab M, Iranpour M, Ghafouri-Fard S. The role of long non-coding rnas in breast cancer. Arch Iran Med. 2016;19(7):508–17.

    PubMed  Google Scholar 

  7. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–51.

    Article  CAS  Google Scholar 

  8. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33.

    Article  Google Scholar 

  9. Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids. 2018;133:93–5.

    Article  CAS  Google Scholar 

  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  11. Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M, Andersson R. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol. 2016;12(16):1929–46.

    Article  CAS  Google Scholar 

  12. Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188461.

    Article  CAS  Google Scholar 

  13. Ozkan H, Kaya M, Cengiz A. Comparison of tumor marker CA 242 with CA 19–9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology. 2003;50(53):1669–74.

    PubMed  Google Scholar 

  14. Xia Y, Hu X, Di K, Liu C, Tan T, Lin Y, Xu H, Xie H, Wang S, Yang Z, et al. Combined detection of exosome concentration and tumor markers in gastric cancer. J Biomed Nanotechnol. 2020;16(2):252–8.

    Article  CAS  Google Scholar 

  15. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, Wei L, Han Y, Wang C, Che X, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48(7):747–57.

    Article  CAS  Google Scholar 

  16. Meng LD, Shi GD, Ge WL, Huang XM, Chen Q, Yuan H, Wu PF, Lu YC, Shen P, Zhang YH, et al. Linc01232 promotes the metastasis of pancreatic cancer by suppressing the ubiquitin-mediated degradation of HNRNPA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway. Cancer Lett. 2020;494:107–20.

    Article  CAS  Google Scholar 

  17. Shi J, Ma H, Wang H, Zhu W, Jiang S, Dou R, Yan B. Overexpression of LINC00261 inhibits non-small cell lung cancer cells progression by interacting with miR-522-3p and suppressing Wnt signaling. J Cell Biochem. 2019;120(10):18378–87.

    Article  CAS  Google Scholar 

  18. Shahabi S, Kumaran V, Castillo J, Cong Z, Nandagopal G, Mullen DJ, Alvarado A, Correa MR, Saizan A, Goel R, et al. LINC00261 is an epigenetically regulated tumor suppressor essential for activation of the DNA damage response. Cancer Res. 2019;79(12):3050–62.

    Article  CAS  Google Scholar 

  19. Yu Y, Li L, Zheng Z, Chen S, Chen E, Hu Y. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med. 2017;21(5):955–67.

    Article  CAS  Google Scholar 

  20. Fang Q, Sang L, Du S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem Funct. 2018;36(6):323–30.

    Article  CAS  Google Scholar 

  21. Wang X, Gao X, Tian J, Zhang R, Qiao Y, Hua X, Shi G. LINC00261 inhibits progression of pancreatic cancer by down-regulating miR-23a-3p. Arch Biochem Biophys. 2020;689:108469.

    Article  CAS  Google Scholar 

  22. Zhang HF, Li W, Han YD. LINC00261 suppresses cell proliferation, invasion and Notch signaling pathway in hepatocellular carcinoma. Cancer Biomark. 2018;21(3):575–82.

    Article  CAS  Google Scholar 

  23. Lu K, Dong JL, Fan WJ. Twist1/2 activates MMP2 expression via binding to its promoter in colorectal cancer. Eur Rev Med Pharmacol Sci. 2018;22(23):8210–9.

    CAS  PubMed  Google Scholar 

  24. Murugan AK. mTOR: role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111.

    Article  CAS  Google Scholar 

  25. Zhou H, Huang S. mTOR signaling in cancer cell motility and tumor metastasis. Crit Rev Eukaryot Gene Expr. 2010;20(1):1–16.

    Article  Google Scholar 

  26. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.

    Article  CAS  Google Scholar 

  27. Dorn A, Glaß M, Neu CT, Heydel B, Hüttelmaier S, Gutschner T, Haemmerle M. LINC00261 is differentially expressed in pancreatic cancer subtypes and regulates a pro-epithelial cell identity. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12051227.

    Article  Google Scholar 

  28. Zhang B, Li C, Sun Z. Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res. 2018;10(8):2648–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8.

    Article  Google Scholar 

  30. Gurzu S, Kobori L, Fodor D, Jung I. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. Biomed Res Int. 2019;2019:2962580.

    Article  Google Scholar 

  31. Hu XT, Xing W, Zhao RS, Tan Y, Wu XF, Ao LQ, Li Z, Yao MW, Yuan M, Guo W, et al. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res. 2020;39(1):270.

    Article  CAS  Google Scholar 

  32. Gao Y, Zhang Z, Li K, Gong L, Yang Q, Huang X, Hong C, Ding M, Yang H. Linc-DYNC2H1–4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells. Cell Death Dis. 2017;8(7):e2924.

    Article  CAS  Google Scholar 

  33. Hu Y, Zhang M, Tian N, Li D, Wu F, Hu P, Wang Z, Wang L, Hao W, Kang J, et al. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest. 2019;129(8):3072–85.

    Article  Google Scholar 

  34. Kwon SJ, Crespo-Barreto J, Zhang W, Wang T, Kim DS, Krensky A, Clayberger C. KLF13 cooperates with c-Maf to regulate IL-4 expression in CD4+ T cells. J Immunol. 2014;192(12):5703–9.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (2018YFA0902000); the fellowship of China postdoctoral science foundation (2020T130723); the Basic Scientific Research Business Expense Project of China Pharmaceutical University (No. 2632021ZD07); a Project Funded by the Priority Academic Program Development (PADP) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

BPL, SYP and YRZ initiated the study, and conceived and performed the experiments. JD contributed to the data analysis. CLZ and BYS contributed to the conception of the study and assisted with data interpretation. All authors approved the final manuscript.

Corresponding authors

Correspondence to B. Shen or Y. Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Pang, S., Dou, J. et al. The inhibitory effect of LINC00261 upregulation on the pancreatic cancer EMT process is mediated by KLF13 via the mTOR signaling pathway. Clin Transl Oncol 24, 1059–1072 (2022). https://doi.org/10.1007/s12094-021-02747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02747-x

Keywords

Navigation