Skip to main content

Advertisement

Log in

Long non-coding RNAs involved in different steps of cancer metastasis

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Non-proteincoding transcripts bearing 200 base pairs known as long non-coding RNAs (lncRNAs) play a role in a variety of molecular mechanisms, including cell differentiation, apoptosis and metastasis. Previous studies have suggested that frequently dysregulated lncRNAs play a crucial role in various aspects of cancer metastasis. Metastasis is the main leading cause of death in cancer. The role of lncRNAs in different stages of metastasis is the subject of this review. Based on in vitro and in vivo investigations on metastasis, we categorized lncRNAs into distinct stages of metastasis including angiogenesis, invasion, intravasation, survival in circulation, and extravasation. The involvement of lncRNAs in angiogenesis and invasion has been extensively studied. Here, we comprehensively discuss the role and functions of these lncRNAs with a particular focus on the molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clinicians. 2021;71(3):209–49.

    Article  Google Scholar 

  2. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  PubMed  Google Scholar 

  3. Fares J, et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Langley RR, Fidler IJ. The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Irani S. Emerging insights into the biology of metastasis: a review article. Iran J Basic Med Sci. 2019;22(8):833–47.

    PubMed  PubMed Central  Google Scholar 

  8. Yan J, Huang Q. Genomics screens for metastasis genes. Cancer Metastasis Rev. 2012;31(3):419–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Obenauf AC, Massagué J. Surviving at a distance: organ-specific metastasis. Trends Cancer. 2015;1(1):76–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chhichholiya Y, et al. The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol. 2021;38(8):1–23.

    Article  Google Scholar 

  11. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanharanta S, Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol. 2013;15(6):546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diaz-Lagares A, et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci. 2016;113(47):E7535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandes JC, et al. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA. 2019;5(1):17.

    Article  CAS  PubMed Central  Google Scholar 

  16. Mishra S, et al. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci. 2019;76(10):1947–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahariya S, et al. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92.

    Article  CAS  PubMed  Google Scholar 

  18. Palazzo AF, Koonin EV. Functional long non-coding RNAs evolve from junk transcripts. Cell. 2020;183(5):1151-1161

  19. Spizzo R, et al. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhat SA, et al. Long non-coding RNAs: mechanism of action and functional utility. Non-coding RNA Res. 2016;1(1):43–50.

    Article  Google Scholar 

  21. Zhang Y, et al. Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNA-96. Cancer Sci. 2019;110(9):2760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan X, et al. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell. 2015;28(4):529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front Med. 2020;7:612393–612393.

    Article  Google Scholar 

  26. Akhtar M, et al. Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol. 2019;26(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  27. Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harbor Perspect Biol. 2011;3(1):a003228.

    Article  CAS  Google Scholar 

  28. Hapach LA, et al. Engineered models to parse apart the metastatic cascade. npj Precis Oncol. 2019;3(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pachmayr E, Treese C, Stein U. Underlying mechanisms for distant metastasis—molecular biology. Visc Med. 2017;33(1):11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thiery JP, et al. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  31. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84(3):359–69.

    Article  CAS  PubMed  Google Scholar 

  32. Chiang SP, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol. 2016;311(1):C1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(23):5591–6.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, et al. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13.

    Article  PubMed  CAS  Google Scholar 

  35. Wang W, et al. LncRNA MEG3 acts a biomarker and regulates cell functions by targeting ADAR1 in colorectal cancer. World J Gastroenterol. 2019;25(29):3972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasudeva K, Dutta A, Munshi A. Role of lncRNAs in the development of ischemic stroke and their therapeutic potential. Mol Neurobiol. 2021;58:1–17.

  37. Kong H, et al. Long non-coding RNAs: novel prognostic biomarkers for liver metastases in patients with early stage colorectal cancer. Oncotarget. 2016;7(31):50428.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, et al. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. EBioMedicine. 2018;30:148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang C, et al. Long non-coding RNA MEG3 suppresses migration and invasion of thyroid carcinoma by targeting of Rac1. Neoplasma. 2015;62(4):541–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, et al. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem. 2019;120(4):6789–97.

    Article  CAS  PubMed  Google Scholar 

  41. Yu S, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010;70(14):6015–25.

    Article  CAS  PubMed  Google Scholar 

  42. Takei Y, et al. Isolation of a novel TP53 target gene from a colon cancer cell line carrying a highly regulated wild-type TP53 expression system. Genes Chromosomes Cancer. 1998;23(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kabacik S, et al. Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding RNA expression after ionizing radiation exposure. Radiat Res. 2015;183(3):325–37.

    Article  CAS  PubMed  Google Scholar 

  44. Kosnopfel C, Sinnberg T, Schittek B. Y-box binding protein 1—a prognostic marker and target in tumour therapy. Eur J Cell Biol. 2014;93(1–2):61–70.

    Article  CAS  PubMed  Google Scholar 

  45. Jürchott K, et al. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet. 2010;6(12):e1001231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goodarzi H, et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell. 2015;161(4):790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evdokimova V, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. 2009;15(5):402–15.

    Article  CAS  PubMed  Google Scholar 

  48. El-Naggar AM, et al. Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell. 2015;27(5):682–97.

    Article  CAS  PubMed  Google Scholar 

  49. Bargou RC, et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med. 1997;3(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  50. Ongen H, et al. Putative cis-regulatory drivers in colorectal cancer. Nature. 2014;512(7512):87–90.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang B, et al. Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer. Biomed Pharmacother. 2018;97:1311–8.

    Article  CAS  PubMed  Google Scholar 

  52. Hu P, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6(32):32410.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yan C, et al. Long noncoding RNA NBAT-1 suppresses tumorigenesis and predicts favorable prognosis in ovarian cancer. Onco Targets Ther. 2017;10:1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prensner JR, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stelloo S, et al. mTOR pathway activation is a favorable prognostic factor in human prostate adenocarcinoma. Oncotarget. 2016;7(22):32916.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moro L, et al. Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2 corrigendum in/10.3892/ijo. 2016.3487. Int J Oncol. 2007;30(1):217–24.

    CAS  PubMed  Google Scholar 

  57. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chun J, Kim YS. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem Biol Interact. 2013;205(3):212–21.

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, et al. Long noncoding RNA SChLAP1 accelerates the proliferation and metastasis of prostate cancer via targeting miR-198 and promoting the MAPK1 pathway. Oncol Res. 2018;26(1):131.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gupta RA, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim K, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32(13):1616–25.

    Article  CAS  PubMed  Google Scholar 

  62. Luo Z-F, et al. Clinical significance of HOTAIR expression in colon cancer. World J Gastroenterol. 2016;22(22):5254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang LP, Wang JP, Wang XP. HOTAIR contributes to the growth of liver cancer via targeting miR-217. Oncol Lett. 2018;15(5):7963–72.

    PubMed  PubMed Central  Google Scholar 

  64. Tao D, et al. LncRNA HOTAIR promotes the invasion and metastasis of oral squamous cell carcinoma through metastasis-associated gene 2. Mol Carcinog. 2020;59(4):353–64.

    Article  CAS  PubMed  Google Scholar 

  65. Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20(11):2767.

    Article  CAS  PubMed Central  Google Scholar 

  66. Bhan A, Mandal SS. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta (BBA) Rev Cancer. 2015;1856(1):151–64.

    Article  CAS  Google Scholar 

  67. Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117(6):1279–87.

    Article  CAS  PubMed  Google Scholar 

  68. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.

    Article  CAS  PubMed  Google Scholar 

  69. Mani SA, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA. 2007;104(24):10069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. David CJ, et al. TGF-β tumor suppression through a lethal EMT. Cell. 2016;164(5):1015–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fu WM, et al. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget. 2016;7(4):4712–23.

    Article  PubMed  Google Scholar 

  72. Burger RA. Role of vascular endothelial growth factor inhibitors in the treatment of gynecologic malignancies. J Gynecol Oncol. 2010;21(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geng YJ, et al. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39(6):2119–28.

    Article  CAS  PubMed  Google Scholar 

  74. Sakurai K, et al. The lncRNA DRAIC/PCAT29 locus constitutes a tumor-suppressive nexus. Mol Cancer Res MCR. 2015;13(5):828–38.

    Article  CAS  PubMed  Google Scholar 

  75. Carpenter RL, Lo H-W. STAT3 target genes relevant to human cancers. Cancers. 2014;6(2):897–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Al Aameri RF, et al. Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: reversal by resveratrol. PLoS ONE. 2017;12(5):e0177198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Prensner JR, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ge X, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013;30(2):588.

    Article  PubMed  CAS  Google Scholar 

  79. Yan T-H, et al. Prognostic significance of long non-coding RNA PCAT-1 expression in human hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8(4):4126.

    PubMed  PubMed Central  Google Scholar 

  80. Shi W-H, et al. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumor Biol. 2015;36(4):2501–7.

    Article  CAS  Google Scholar 

  81. Zhao B, Hou X, Zhan H. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells. Int J Clin Exp Med. 2015;8(10):18482–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu J, et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS ONE. 2015;10(5):e0114586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Prensner JR, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 2014;16(11):900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prensner JR, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74(6):1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78.

    Article  CAS  Google Scholar 

  86. Xu W, et al. Long non-coding RNA PCAT-1 contributes to tumorigenesis by regulating FSCN1 via miR-145-5p in prostate cancer. Biomed Pharmacother. 2017;95:1112–8.

    Article  CAS  PubMed  Google Scholar 

  87. Li T, et al. Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene. 2016;35(12):1575–84.

    Article  CAS  PubMed  Google Scholar 

  88. Lan T, et al. Downregulation of ZEB2-AS1 decreased tumor growth and metastasis in hepatocellular carcinoma. Mol Med Rep. 2016;14(5):4606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Su W, et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol Cancer. 2017;16(1):1–10.

    Article  Google Scholar 

  90. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71.

    Article  CAS  PubMed  Google Scholar 

  91. Xu J, et al. Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p. Cancer Res. 2019;79(19):4882–95.

    Article  CAS  PubMed  Google Scholar 

  92. Ma T, et al. Downregulation of lncRNA ZEB1-AS1 represses cell proliferation, migration, and invasion through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis in prostate cancer. Cancer Biother Radiopharm. 2020;35(9):661–72.

    Article  CAS  PubMed  Google Scholar 

  93. Tang J, et al. A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis. 2014;5(12):e1549–e1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang W, et al. Expression of LINC00312, a long intergenic non-coding RNA, is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J Mol Histol. 2013;44(5):545–54.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang X, Hamblin MH, Yin K-J. The long noncoding RNA Malat 1: its physiological and pathophysiological functions. RNA Biol. 2017;14(12):1705–14.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hutchinson JN, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genom. 2007;8:39.

    Article  CAS  Google Scholar 

  97. Guo F, et al. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai). 2010;42(3):224–9.

    Article  CAS  Google Scholar 

  98. Chen Y, et al. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K–Akt signaling pathway. Cell Physiol Biochem. 2018;51(3):1313–26.

    Article  CAS  PubMed  Google Scholar 

  99. Krawczyk M, Emerson BM. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. Elife. 2014;3:e01776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sun P, et al. lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proliferation and invasion of colorectal-cancer cells. Gastroenterol Rep. 2021;9(3):257–68.

    Article  Google Scholar 

  101. Qian M, et al. P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene. Tumor Biol. 2016;37(3):3879–86.

    Article  CAS  Google Scholar 

  102. Liu B, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27(3):370–81.

    Article  CAS  PubMed  Google Scholar 

  103. Chaturvedi M, et al. NF-κB addiction and its role in cancer:‘one size does not fit all.’ Oncogene. 2011;30(14):1615–30.

    Article  CAS  PubMed  Google Scholar 

  104. Huber MA, et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig. 2004;114(4):569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xie M, et al. Decreased long noncoding RNA SPRY4-IT1 contributing to gastric cancer cell metastasis partly via affecting epithelial–mesenchymal transition. J Transl Med. 2015;13(1):250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Khaitan D, et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Can Res. 2011;71(11):3852–62.

    Article  CAS  Google Scholar 

  107. Mazar J, et al. The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget. 2014;5(19):8959.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang H-M, et al. High expression of long non-coding RNA SPRY4-IT1 predicts poor prognosis of clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2014;7(9):5801.

    PubMed  PubMed Central  Google Scholar 

  109. Xie H-W, et al. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumor Biol. 2014;35(8):7743–54.

    Article  CAS  Google Scholar 

  110. Sun M, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promote s NSCLC cell proliferation and metastasis by affecting the epithelial–mesenchymal transition. Cell Death Dis. 2014;5(6):e1298–e1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen J, et al. Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am J Transl Res. 2016;8(11):4932.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Guo M-M, et al. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med Oncol. 2013;30(2):542.

    Article  PubMed  CAS  Google Scholar 

  113. Li Z, Tang X, Duan S. Interference from LncRNA SPRY4-IT1 restrains the proliferation, migration, and invasion of melanoma cells through inactivating MAPK pathway by up-regulating miR-22-3p. Int J Clin Exp Pathol. 2019;12(2):477.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu PW, et al. Effects of long non-coding RNA HOST2 on cell migration and invasion by regulating MicroRNA let-7b in breast cancer. J Cell Biochem. 2018;119(6):4570–80.

    Article  CAS  PubMed  Google Scholar 

  115. Liu R-T, et al. Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721. Biosci Rep. 2017. 37(2):20160532.

  116. Song R, et al. Long non-coding RNA GHET1 promotes human breast cancer cell proliferation, invasion and migration via affecting epithelial mesenchymal transition. Cancer Biomark. 2018;22(3):565–73.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou J, et al. Knockdown of long noncoding RNA GHET1 inhibits cell proliferation and invasion of colorectal cancer. Oncol Res. 2016;23(6):303.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang X, et al. Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 2017;92:580–5.

    Article  CAS  PubMed  Google Scholar 

  119. Liu Z, et al. LncRNA GHET1 promotes cervical cancer progression through regulating AKT/mTOR and Wnt/β-catenin signaling pathways. Biosci Rep. 2020;40(1):BSR20191265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  121. Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. Cancer J (Sudbury, Mass). 2015;21(4):267–73.

    Article  CAS  Google Scholar 

  122. Zhao J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37(30):4094–109.

    Article  CAS  PubMed  Google Scholar 

  123. Pichler M, Rodriguez-Aguayo C. Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut. 2020;69(10):1818–31.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Y, et al. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEG,FA signaling pathway. Aging (Albany NY). 2020;12(7):6191–205.

    Article  CAS  Google Scholar 

  125. Tang L, et al. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Teppan J, et al. Involvement of long non-coding RNAs (lncRNAs) in tumor angiogenesis. Non-coding RNA. 2020;6(4):42.

    Article  CAS  PubMed Central  Google Scholar 

  127. Wang Y, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. 2019;217(3):jem.20190950.

    Article  PubMed Central  Google Scholar 

  128. Wang Y, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. 2020. 217(3):e20190950.

  129. Muise AM, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61(7):1028–35.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang JX, et al. LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene. 2018;37(20):2660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, et al. The positive feedback between lncRNA TNK2-AS1 and STAT3 enhances angiogenesis in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;507(1–4):185–92.

    Article  CAS  PubMed  Google Scholar 

  133. Ding G, et al. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate. 2015;75(9):957–68.

    Article  CAS  PubMed  Google Scholar 

  134. Mo C, et al. Reduced N-acetylglucosaminyltransferase III expression via Smad3 and Erk signaling in TGF-β1-induced HCC EMT model. Discov Med. 2017;23(124):7–17.

    PubMed  Google Scholar 

  135. Jeong JH, et al. Ascochlorin inhibits growth factor-induced HIF-1α activation and tumor-angiogenesis through the suppression of EGFR/ERK/p70S6K signaling pathway in human cervical carcinoma cells. J Cell Biochem. 2012;113(4):1302–13.

    Article  CAS  PubMed  Google Scholar 

  136. Lin J, et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zhu Y, et al. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas. Oncotarget. 2016;7(12):14429–40.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lu Z, et al. Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget. 2016;7(1):241–54.

    Article  PubMed  Google Scholar 

  139. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Paizal JP, Au SH, Bakal C. Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis. Br J Cancer. 2021;124(1):58–65.

    Article  Google Scholar 

  141. Follain G, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell. 2018;45(1):33 e12-52 e12.

    Article  CAS  Google Scholar 

  142. Huang X, et al. RhoA-stimulated intra-capillary morphology switch facilitates the arrest of individual circulating tumor cells. Int J Cancer. 2018;142(10):2094–105.

    Article  CAS  PubMed  Google Scholar 

  143. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mondal P, Meeran SM. Long non-coding RNAs in breast cancer metastasis. Non-coding RNA Res. 2020;5(4):208–18.

    Article  CAS  Google Scholar 

  145. Rankin EB, Erler J, Giaccia AJ, et al. 3—The cellular microenvironment and metastases. In: Niederhuber JE, et al., editors. Abeloff’s clinical oncology. 5th ed. Philadelphia: Churchill Livingstone; 2014. p. 40- 51.e4.

    Chapter  Google Scholar 

  146. Wang S, et al. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Investig. 2017;127(12):4498–515.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Valiente M, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156(5):1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li H, et al. Long noncoding RNA lncGALM increases risk of liver metastasis in gallbladder cancer through facilitating N-cadherin and IL-1β-dependent liver arrest and tumor extravasation. Clin Transl Med. 2020;10(7):e201–e201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.

    Article  Google Scholar 

  150. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  151. Folkman J, Kalluri R. Cancer without disease. Nature. 2004;427(6977):787–787.

    Article  CAS  PubMed  Google Scholar 

  152. Shackleton M, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.

    Article  CAS  PubMed  Google Scholar 

  153. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  154. Rinn JL, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kogo R, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6.

    Article  CAS  PubMed  Google Scholar 

  156. Tsai MC, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ren Y, et al. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion. Mol Cancer. 2018;17(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Yuan JH, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5):666–81.

    Article  CAS  PubMed  Google Scholar 

  159. Shi SJ, et al. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6(13):11652–63.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Liang Y, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer. 2020;19(1):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Central University of Punjab for providing infrastructure and facilities. Indian Council of Medical Research (ICMR), New Delhi, is acknowledged for Research Associateship 2019-4834/CMB-BMS to P.S. Council of Scientific and Industrial Research (CSIR), New Delhi, IS acknowledged for Senior Research Fellowship (SRF) to Y. C. and P. K. for PhD. Declarations. DST-FIST grant (SR/FST/LS-I/2017/49) to the Department of Human Genetics and Molecular Medicine, Central University of Punjab, is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Contributions

PS, YC, PK, and AM conceptualized the idea of the review. PS, YC and PK curated the data. PS, YC, PK and SG prepared and created the draft. AM critically revised and edited the manuscript.

Corresponding author

Correspondence to A. Munshi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No Human participants and/or animals were recruited in the study, therefore no ethical approval has been taken.

Informed consent

No Human participants and/or animals were recruited in the study, therefore no informed consents has been taken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, P., Chhichholiya, Y., Kaur, P. et al. Long non-coding RNAs involved in different steps of cancer metastasis. Clin Transl Oncol 24, 997–1013 (2022). https://doi.org/10.1007/s12094-021-02761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02761-z

Keywords

Navigation