Skip to main content

Advertisement

Log in

The roles and therapeutic approaches of MSC-derived exosomes in colorectal cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common cancer in both men and women, accounting for 8% of all new cancer cases in both. CRC is typically diagnosed at advanced stages, which leads to a higher mortality rate. The 5-year survival rate for CRC is 64% in all cases and just 12% in metastatic cases. Mesenchymal stem cells (MSCs) are one of the most recent approaches for therapeutic interventions in cancer. MSCs have multiple properties, including paracrine signaling, immunologic functions, and the ability to migrate to the targeted tissue. MSCs can produce and secrete exosomes in tumor microenvironments. These exosomes can transfer compounds across tumor cells, stromal cells, fibroblasts, endothelial cells, and immune cells. Studies showed that modified MCS-derived exosomes have enhanced specificity, reduced immunogenicity, and better targeting capabilities in comparison to other frequently used delivery systems such as liposomes. Therefore, this study aimed to provide a comprehensive view of the role of natural MSC-derived exosomes in CRC, as well as the most current and prospective advancements in MSC-derived exosome therapeutic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

It is not applicable.

References

  1. Tomé-Amat J, Olombrada M, Ruiz-de-la-Herrán J, Pérez-Gómez E, Andradas C, Sánchez C, et al. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. Springerplus. 2015;4(1):1–10.

    Article  CAS  Google Scholar 

  2. Brünker P, Wartha K, Friess T, Grau-Richards S, Waldhauer I, Koller CF, et al. RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol Cancer Ther. 2016;15(5):946–57.

    Article  PubMed  CAS  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  4. Lei G, Xu M, Xu Z, Lu C, Tan S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed Pharmacother. 2018;98:271–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu F-R, Bai S, Feng Q, Pan X-Y, Song S-L, Fang H, et al. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer. 2018;18(1):1–10.

    Article  Google Scholar 

  6. Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012;64(8):739–48.

    Article  CAS  PubMed  Google Scholar 

  7. Hass R. Role of MSC in the tumor microenvironment. Cancers. 2020;12(8):2107.

    Article  CAS  PubMed Central  Google Scholar 

  8. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med. 2017;6(12):2115–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108(10):1939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajabinejad M, Salari F, Gorgin Karaji A, Rezaiemanesh A. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti-or pro-inflammatory cells? Artif Cells Nanomed Biotechnol. 2019;47(1):4149–58.

    Article  CAS  PubMed  Google Scholar 

  11. Rajabinejad M, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: a clinical and preclinical systematic review. J Cell Physiol. 2020;235(6):5030–40.

    Article  CAS  PubMed  Google Scholar 

  12. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23(11):1233–44.

    Article  CAS  PubMed  Google Scholar 

  14. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. Journal of Extracell Vesicles. 2018;7(1):1522236.

    Article  CAS  Google Scholar 

  15. Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta (BBA)-Biomembr. 2014;1838(11):2954–65.

    Article  CAS  Google Scholar 

  16. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olsson L, Lindblom A. Family history of colorectal cancer in a Sweden county. Fam Cancer. 2003;2(2):87–93.

    Article  PubMed  Google Scholar 

  19. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  20. Khuhaprema T, Srivatanakul P. Colon and rectum cancer in Thailand: an overview. Jpn J Clin Oncol. 2008;38(4):237–43.

    Article  PubMed  Google Scholar 

  21. Dolatkhah R, Somi MH, Bonyadi MJ, Asvadi Kermani I, Farassati F, Dastgiri S. Colorectal cancer in iran: molecular epidemiology and screening strategies. J Cancer Epidemiol. 2015; p. 643020.

  22. Ibrahim EM, Zeeneldin AA, El-Khodary TR, Al-Gahmi AM, Bin Sadiq BM. Past, present and future of colorectal cancer in the Kingdom of Saudi Arabia. Saudi J Gastroenterol. 2008;14(4):178–82.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wynder EL, Kajitani T, Ishikawa S, Dodo H, Takano A. Environmental factors of cancer of the colon and rectum II Japanese epidemiological data. Cancer. 1969;23(5):1210–20.

    Article  CAS  PubMed  Google Scholar 

  24. Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20(20):6055–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pelucchi C, Tramacere I, Boffetta P, Negri E, La Vecchia C. Alcohol consumption and cancer risk. Nutr Cancer. 2011;63(7):983–90.

    Article  CAS  PubMed  Google Scholar 

  26. Bodmer WF, Bailey CJ, Bodmer J, Bussey H, Ellis A, Gorman P, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328(6131):614–6.

    Article  CAS  PubMed  Google Scholar 

  27. De la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4(10):769–80.

    Article  PubMed  CAS  Google Scholar 

  28. Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403.

    Article  CAS  Google Scholar 

  29. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine. Regen Med. 2019;14(6):595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  32. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis A. The origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer. 2005;5(11):899–904.

    Article  CAS  PubMed  Google Scholar 

  34. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discovery. 2013;12(5):347–57.

    Article  CAS  Google Scholar 

  35. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.

    Article  CAS  PubMed  Google Scholar 

  36. Kao C-Y, Papoutsakis ET. Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr Opin Biotechnol. 2019;60:89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Kalluri R. The biology and function of exosomes in cancer. J Clin Investig. 2016;126(4):1208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem cell Res. 2010;4(3):214–22.

    Article  CAS  PubMed  Google Scholar 

  39. Sun L, Li D, Song K, Wei J, Yao S, Li Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep. 2017;7(1):1–13.

    CAS  Google Scholar 

  40. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015;589(11):1257–65.

    Article  CAS  PubMed  Google Scholar 

  41. Ramos TL, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal. 2016;14(1):1–14.

    Article  CAS  Google Scholar 

  42. de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17(11):685–97.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478).

  44. Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9(26):8001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.

    Article  CAS  PubMed  Google Scholar 

  46. Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis. 2021;24(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  47. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013;14(1):1–14.

    Article  CAS  Google Scholar 

  48. Asadi G, Varmaziar FR, Karimi M, Rajabinejad M, Ranjbar S, Karaji AG, et al. Determination of the transcriptional level of long non-coding RNA NEAT-1, downstream target microRNAs, and genes targeted by microRNAs in diabetic neuropathy patients. Immunol Lett. 2021;232:20–6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8(1):1–13.

    Article  PubMed Central  CAS  Google Scholar 

  50. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):1–18.

    Article  Google Scholar 

  52. D’Alimonte I, Lannutti A, Pipino C, Di Tomo P, Pierdomenico L, Cianci E, et al. Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells. Stem Cell Rev Rep. 2013;9(5):642–54.

    Article  PubMed  CAS  Google Scholar 

  53. Van Niel G, d’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article  PubMed  CAS  Google Scholar 

  54. McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer. 2019;18(1):1–11.

    Article  Google Scholar 

  55. Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128(17):3171–6.

    CAS  PubMed  Google Scholar 

  56. Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, et al. Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol. 2019;7:292.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor progression versus tumor suppression. J Cell Physiol. 2019;234(4):3394–409.

    Article  CAS  PubMed  Google Scholar 

  58. Wu S, Ju G-Q, Du T, Zhu Y-J, Liu G-H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE. 2013;8(4):e61366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  60. Kalimuthu S, Gangadaran P, Li XJ, Oh JM, Lee HW, Jeong SY, et al. In vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Sci Rep. 2016;6(1):1–11.

    Article  CAS  Google Scholar 

  61. Huang Y, Liu W, He B, Wang L, Zhang F, Shu H, et al. Exosomes derived from bone marrow mesenchymal stem cells promote osteosarcoma development by activating oncogenic autophagy. Journal of bone oncology. 2020;21:100280.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gu H, Ji R, Zhang X, Wang M, Zhu W, Qian H, et al. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol Med Rep. 2016;14(4):3452–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sandiford OA, Donnelly RJ, Markos H, Burgmeyer LM, Sinha G, Pamarthi SH, et al. Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Can Res. 2021;81(6):1567–82.

    Article  CAS  Google Scholar 

  64. Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y. Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget. 2016;7(19):27033.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lugini L, Valtieri M, Federici C, Cecchetti S, Meschini S, Condello M, et al. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget. 2016;7(31):50086.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact. 2020;20:100261.

    Article  Google Scholar 

  67. Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, et al. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep. 2021;11(1):1–18.

    Article  CAS  Google Scholar 

  68. Hu M, Yang J, Teng H, Jia Y, Wang R, Zhang X, et al. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. BMC Cancer. 2008;8(1):1–10.

    Article  CAS  Google Scholar 

  69. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem cells. 2007;25(7):1618–26.

    Article  CAS  PubMed  Google Scholar 

  70. Park J-H, Ryu CH, Kim MJ, Jeun S-S. Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. J Korean Neurosurg Soc. 2015;57(5):323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered mesenchymal stem cells as an anti-cancer trojan horse. Stem Cells Dev. 2016;25(20):1513–31.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang L, Xu C, Xu P, Qin Y, Chen M, Feng Q, et al. Intelligent photosensitive mesenchymal stem cells and cell-derived microvesicles for photothermal therapy of prostate cancer. Nanotheranostics. 2019;3(1):41.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Luo M, Zhou Y, Gao N, Cheng W, Wang X, Cao J, et al. Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: Active trojan horse for enhanced photothermal cancer therapy. Chem Eng J. 2020;385:123942.

    Article  CAS  Google Scholar 

  74. Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther. 2015;23(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  75. Bonomi A, Silini A, Vertua E, Signoroni PB, Coccè V, Cavicchini L, et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Res Ther. 2015;6(1):1–10.

    Article  CAS  Google Scholar 

  76. Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14(10):683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taves MD, Ashwell JD. Using chromatin-nuclear receptor interactions to quantitate endocrine, paracrine, and autocrine signaling. Nucl Recept Signal. 2020;17:1550762919899643.

    Article  Google Scholar 

  78. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70.

    Article  CAS  PubMed  Google Scholar 

  79. O’brien K, Khan S, Gilligan K, Zafar H, Lalor P, Glynn C, et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene. 2018;37(16):2137–49.

    Article  PubMed  CAS  Google Scholar 

  80. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335(1):201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles. 2015;4(1):27066.

    Article  PubMed  Google Scholar 

  82. Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Therapy-Nucleic Acids. 2012;1:e10.

    Article  CAS  Google Scholar 

  83. Lu M, Xing H, Xun Z, Yang T, Ding P, Cai C, et al. Exosome-based small RNA delivery: progress and prospects. Asian J Pharm Sci. 2018;13(1):1–11.

    Article  PubMed  Google Scholar 

  84. Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomed. 2019;14:2847.

    Article  CAS  Google Scholar 

  85. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yim N, Ryu S-W, Choi K, Lee KR, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun. 2016;7(1):1–9.

    Article  CAS  Google Scholar 

  87. Li T, Wan Y, Su Z, Li J, Han M, Zhou C. Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Dig Dis Sci. 2021;66(6):1916–27.

    Article  CAS  PubMed  Google Scholar 

  88. Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234(11):21380–94.

    Article  CAS  PubMed  Google Scholar 

  89. Chen H-L, Li J-J, Jiang F, Shi W-J, Chang G-Y. MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer. Biosci Biotechnol Biochem. 2020;84(2):338–46.

    Article  CAS  PubMed  Google Scholar 

  90. Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261:118369.

    Article  CAS  PubMed  Google Scholar 

  91. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int, p 9628536

  92. Wang Y, Huang J, Gong L, Yu D, An C, Bunpetch V, et al. The plasticity of mesenchymal stem cells in regulating surface HLA-I. iScience. 2019;15:66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee H-J, Kang K-S, Kang S-Y, Kim H-S, Park S-J, Lee S-Y, et al. Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood. J Vet Sci. 2016;17(3):289–97.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research is supported by: Scientific research project of Hebei administration of traditional Chinese Medicine: Clinical observation on the treatment of left hemicolon active ulcerative colitis by removing blood stasis and clearing intestines (No. 2021242).

Author information

Authors and Affiliations

Authors

Contributions

JY: Contributed to the idea design, literature search, writing and editing. LZ: wrote parts of the manuscript and contributed to designing the figures.

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Conflict of interest

None.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, L. The roles and therapeutic approaches of MSC-derived exosomes in colorectal cancer. Clin Transl Oncol 24, 959–967 (2022). https://doi.org/10.1007/s12094-021-02750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02750-2

Keywords

Navigation