Skip to main content

Advertisement

Log in

Biological functions and potential therapeutic applications of huntingtin-associated protein 1: progress and prospects

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Huntington disease (HD) is a single-gene autosomal dominant inherited neurodegenerative disease caused by a polyglutamine expansion of the protein huntingtin (HTT). Huntingtin-associated protein 1 (HAP1) is the first protein identified as an interacting partner of huntingtin, which is directly associated with HD. HAP1 is mainly expressed in the nervous system and is also found in the endocrine system and digestive system, and then involves in the occurrence of the related endocrine diseases, digestive system diseases, and cancer. Understanding the function of HAP1 could help elucidate the pathogenesis that HTT plays in the disease process. Therefore, this article attempts to summarize the latest research progress of the role of HAP1 and its application for diseases in recent years, aiming to clarify the functions of HAP1 and its interacting proteins, and provide new research ideas and new therapeutic targets for the treatment of cancer and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors declare that all data and materials as well as software application or custom code support their published claims and comply with field standards.

Code availability

Not applicable.

References

  1. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83. https://doi.org/10.1016/0092-8674(93)90585-e.

    Article  Google Scholar 

  2. Haddad MS, Cummings JL. Huntington’s disease. Psychiatr Clin North Am. 1997;20:791–807. https://doi.org/10.1016/s0193-953x(05)70345-2.

    Article  CAS  PubMed  Google Scholar 

  3. Semaka A, Kay C, Doty CN, Collins JA, Tam N, Hayden MR. High frequency of intermediate alleles on Huntington disease-associated haplotypes in British Columbia’s general population. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:864–71. https://doi.org/10.1002/ajmg.b.32193.

    Article  CAS  PubMed  Google Scholar 

  4. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387–92. https://doi.org/10.1038/ng0893-387.

    Article  CAS  PubMed  Google Scholar 

  5. Li XJ, Li SH, Sharp AH, Nucifora FC Jr, Schilling G, Lanahan A, et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 1995;378:398–402. https://doi.org/10.1038/378398a0.

    Article  CAS  PubMed  Google Scholar 

  6. Poirier MA, Jiang H, Ross CA. A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum Mol Genet. 2005;14:765–74. https://doi.org/10.1093/hmg/ddi071.

    Article  CAS  PubMed  Google Scholar 

  7. Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, et al. Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci. 2003;23:6956–64. https://doi.org/10.1523/JNEUROSCI.23-17-06956.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li SH, Gutekunst CA, Hersch SM, Li XJ. Association of HAP1 isoforms with a unique cytoplasmic structure. J Neurochem. 1998;71:2178–85. https://doi.org/10.1046/j.1471-4159.1998.71052178.x.

    Article  CAS  PubMed  Google Scholar 

  9. Li SH, Hosseini SH, Gutekunst CA, Hersch SM, Ferrante RJ, Li XJ. A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. J Biol Chem. 1998; 273:19220–19227. https://doi.org/10.1074/jbc.273.30.19220.

  10. Li XJ, Sharp AH, Li SH, Dawson TM, Snyder SH, Ross CA. Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93:4839–44. https://doi.org/10.1073/pnas.93.10.4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li SH, Li H, Torre ER, Li XJ. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol Cell Neurosci. 2000;16:168–83. https://doi.org/10.1006/mcne.2000.0858.

    Article  CAS  PubMed  Google Scholar 

  12. Liao M, Shen J, Zhang Y, Li SH, Li XJ, Li H. Immunohistochemical localization of huntingtin-associated protein 1 in endocrine system of the rat. J Histochem Cytochem. 2005;53:1517–24. https://doi.org/10.1369/jhc.5A6662.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Peng T, Wu H, He J, Li H. HAP1 helps to regulate actin-based transport of insulin-containing granules in pancreatic β cells. Histochem Cell Biol. 2015;144(1):39–48. https://doi.org/10.1007/s00418-015-1311-9.

    Article  CAS  PubMed  Google Scholar 

  14. Liao M, Chen X, Han J, Yang S, Peng T, Li H. Selective expression of Huntingtin-associated protein 1 in β-cells of the rat pancreatic islets. J Histochem Cytochem. 2010;58:255–63. https://doi.org/10.1369/jhc.2009.954479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med. 2006;12:526–33. https://doi.org/10.1038/nm1382.

    Article  CAS  PubMed  Google Scholar 

  16. Lumsden AL, Young RL, Pezos N, Keating DJ. Huntingtin-associated protein 1: Eutherian adaptation from a TRAK-like protein, conserved gene promoter elements, and localization in the human intestine. BMC Evol Biol. 2016;16(1):214. https://doi.org/10.1186/s12862-016-0780-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li T, Li S, Gao X, Cai Q, Li XJ. Expression and Localization of Huntingtin-Associated Protein 1 (HAP1) in the Human Digestive System. Dig Dis Sci. 2019;64:1486–92. https://doi.org/10.1007/s10620-018-5425-5.

    Article  CAS  PubMed  Google Scholar 

  18. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 1997;11:2323–34. https://doi.org/10.1101/gad.11.18.2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128:417–26. https://doi.org/10.1007/s004290000148.

    Article  CAS  PubMed  Google Scholar 

  20. Morrow EM, Furukawa T, Lee JE, Cepko CL. NeuroD regulates multiple functions in the developing neural retina in rodent. Development. 1999;126:23–36. https://doi.org/10.1016/S0070-2153(08)60381-6.

    Article  CAS  PubMed  Google Scholar 

  21. Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci U S A. 2003;100:9578–83. https://doi.org/10.1073/pnas.1133382100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pennesi ME, Cho JH, Yang Z, Wu SH, Zhang J, Wu SM, et al. BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J Neurosci. 2003;23:453–61. https://doi.org/10.1523/JNEUROSCI.23-02-00453.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002;3:663–72. https://doi.org/10.1038/nrm906.

    Article  CAS  PubMed  Google Scholar 

  24. Liu YF, Dorow D, Marshall J. Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. J Biol Chem. 2000;275:19035–40. https://doi.org/10.1074/jbc.C000180200.

    Article  CAS  PubMed  Google Scholar 

  25. Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev. 1993;7:1291–308. https://doi.org/10.1101/gad.7.7b.1291.

    Article  CAS  PubMed  Google Scholar 

  26. Burley SK. The TATA box binding protein. Curr Opin Struct Biol. 1996;6:69–75. https://doi.org/10.1016/s0959-440x(96)80097-2.

    Article  CAS  PubMed  Google Scholar 

  27. Cormack BP, Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell. 1992;69:685–96. https://doi.org/10.1016/0092-8674(92)90232-2.

    Article  CAS  PubMed  Google Scholar 

  28. Prigge JR, Schmidt EE. HAP1 can sequester a subset of TBP in cytoplasmic inclusions via specific interaction with the conserved TBP(CORE). BMC Mol Biol. 2007;8:76. https://doi.org/10.1186/1471-2199-8-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P, et al. Huntingtin-associated protein 1 (HAP1) interacts with the P150Glued subunit of dynactin. Hum Mol Genet. 1997;6:2205–12. https://doi.org/10.1093/hmg/6.13.2205.

    Article  CAS  PubMed  Google Scholar 

  30. Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol. 1991;115:1639–50. https://doi.org/10.1083/jcb.115.6.1639.

    Article  CAS  PubMed  Google Scholar 

  31. Waterman-Storer CM, Karki S, Holzbaur EL. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci U S A. 1995;92:1634–8. https://doi.org/10.1073/pnas.92.5.1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaughan PS, Miura P, Henderson M, Byrne B, Vaughan KT. A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J Cell Biol. 2002;158:305–19. https://doi.org/10.1083/jcb.200201029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan EY, Nasir J, Gutekunst CA, Coleman S, Maclean A, Maas A, et al. Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet. 2002;11:945–59. https://doi.org/10.1093/hmg/11.8.945.

    Article  CAS  PubMed  Google Scholar 

  34. Colomer V, Engelender S, Sharp AH, Duan K, Cooper JK, Lanahan A, et al. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum Mol Genet. 1997;6:1519–25. https://doi.org/10.1093/hmg/6.9.1519.

    Article  CAS  PubMed  Google Scholar 

  35. Gusella JF, MacDonald ME. Huntingtin: a single bait hooks many species. Curr OpinNeurobiol. 1998;8:425–30. https://doi.org/10.1016/s0959-4388(98)80071-8.

    Article  CAS  Google Scholar 

  36. Mackay DJ, Nobes CD, Hall A. The Rho’s progress: a potential role during neuritogenesis for the Rho family of GTPases. Trends Neurosci. 1995;18:496–501. https://doi.org/10.1016/0166-2236(95)92773-j.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. GenesDev. 2002;16:1587–609. https://doi.org/10.1101/gad.1003302.

    Article  CAS  Google Scholar 

  38. Komada M, Masaki R, Yamamoto A, Kitamura N. Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. J Biol Chem. 1997;272:20538–44. https://doi.org/10.1074/jbc.272.33.20538.

    Article  CAS  PubMed  Google Scholar 

  39. Chin LS, Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem. 2001;276:7069–78. https://doi.org/10.1074/jbc.M004129200.

    Article  CAS  PubMed  Google Scholar 

  40. Urbé S, Mills IG, Stenmark H, Kitamura N, Clague MJ. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol Cell Biol. 2000;20:7685–92. https://doi.org/10.1128/mcb.20.20.7685-7692.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yu Z, Zeng J, Wang J, Cui Y, Song X, Zhang Y, et al. Hepatocyte growth factor-regulated tyrosine kinase substrate is essential for endothelial cell polarity and cerebrovascular stability. Cardiovasc Res. 2020;117:533–46. https://doi.org/10.1093/cvr/cvaa016.

    Article  CAS  PubMed Central  Google Scholar 

  42. Hasdemir B, Bunnett NW, Cottrell GS. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) mediates post-endocytic trafficking of protease-activated receptor 2 and calcitonin receptor-like receptor. J Biol Chem. 2007;282:29646–57. https://doi.org/10.1074/jbc.M702974200.

    Article  CAS  PubMed  Google Scholar 

  43. Kwong J, Roundabush FL, Hutton Moore P, Montague M, Oldham W, Li Y, et al. Hrs interacts with SNAP-25 and regulates Ca2+-dependent exocytosis. J Cell Sci. 2000;113:2273–84. https://doi.org/10.1023/A:1005501432684.

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Chin LS, Levey AI, Li L. Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J Biol Chem. 2002;277:28212–28. https://doi.org/10.1074/jbc.M111612200.

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Cao L, Wang C, Gigant B, Knossow M. Kinesin, 30 years later: Recent insights from structural studies. Protein Sci. 2015;24:1047–56. https://doi.org/10.1002/pro.2697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stenoien DL, Brady ST. Immunochemical analysis of kinesin light chain function. Mol Biol Cell. 1997;8:675–89. https://doi.org/10.1091/mbc.8.4.675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin-associated protein-1 with kinesin light chain implications in intracellular trafficking in neurons. J Biol Chem. 2006;281:3552–9. https://doi.org/10.1074/jbc.M509806200.

    Article  CAS  PubMed  Google Scholar 

  48. Fu H, Subramanian RR, Masters SC. 14–3–3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–47. https://doi.org/10.1146/annurev.pharmtox.40.1.617.

    Article  CAS  PubMed  Google Scholar 

  49. Rong J, Li S, Sheng G, Wu M, Coblitz B, Li M, et al. 14–3–3 protein interacts with Huntingtin-associated protein 1 and regulates its trafficking. J Biol Chem. 2007;282:4748–56. https://doi.org/10.1074/jbc.M609057200.

    Article  CAS  PubMed  Google Scholar 

  50. Ringrose A, Zhou Y, Pang E, Zhou L, Lin AE, Sheng G, et al. Evidence for an oncogenic role of AHI-1 in Sezary syndrome, a leukemic variant of human cutaneous T-cell lymphomas. Leukemia. 2006;20:1593–601. https://doi.org/10.1038/sj.leu.2404321.

    Article  CAS  PubMed  Google Scholar 

  51. Poirier Y, Jolicoeur P. Distinct helper virus requirements for Abelson murine leukemiavirus-induced pre-B- and T-cell lymphomas. J Virol. 1989;63:2088–98. https://doi.org/10.1128/JVI.63.5.2088-2098.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheng G, Xu X, Lin YF, Wang CE, Rong J, Cheng D, et al. Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice. J Clin Invest. 2008;118:2785–95. https://doi.org/10.1172/JCI35339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. 1993;75:113–22. https://doi.org/10.1016/S0092-8674(05)80088-1.

    Article  CAS  PubMed  Google Scholar 

  54. Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays. 2004;26:1185–94. https://doi.org/10.1002/bies.20118.

    Article  CAS  PubMed  Google Scholar 

  55. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005;25:5455–63. https://doi.org/10.1523/JNEUROSCI.5123-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu LL, Fan Y, Li S, Li XJ, Zhou XF. Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem. 2010;285:5614–23. https://doi.org/10.1074/jbc.M109.073197.

    Article  CAS  PubMed  Google Scholar 

  57. Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 2010;91:313–48. https://doi.org/10.1016/j.pneurobio.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto H, Matsumoto K, Araki E, Miyamoto E. New aspects of neurotransmitter release and exocytosis: involvement of Ca2+/calmodulin-dependent phosphorylation of synapsin I in insulin exocytosis. J Pharmacol Sci. 2003;93:30–4. https://doi.org/10.1254/jphs.93.30.

    Article  CAS  PubMed  Google Scholar 

  59. Mackenzie KD, Lumsden AL, Guo F, Duffield MD, Chataway T, Lim Y, et al. Huntingtin-associated protein-1 is a synapsin I-binding protein regulating synaptic vesicle exocytosis and synapsin I trafficking. J Neurochem. 2016;138:710–21. https://doi.org/10.1111/jnc.13703.

    Article  CAS  PubMed  Google Scholar 

  60. Mackenzie KD, Lim Y, Duffield MD, Chataway T, Zhou XF, Keating DJ. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins. Cell Signal. 2017;35:176–87. https://doi.org/10.1016/j.cellsig.2017.02.023.

    Article  CAS  PubMed  Google Scholar 

  61. Kirchhausen T, Harrison SC. Protein organization in clathrin trimers. Cell. 1981;23:755–61. https://doi.org/10.1016/0092-8674(81)90439-6.

    Article  CAS  PubMed  Google Scholar 

  62. Amodio G, Margarucci L, Moltedo O, Casapullo A, Remondelli P. Identification of Cysteine Ubiquitylation Sites on the Sec23A Protein of the COPII Complex Required for Vesicle Formation from the ER. Open Biochem J. 2017;11:36–46. https://doi.org/10.2174/1874091X01711010036.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maddox FN, Valeyev AY, Poth K, Holohean AM, Wood PM, Davidoff RA, et al. GABAA receptor subunit mRNA expression in cultured embryonic and adult human dorsal root ganglion neurons. Brain Res Dev Brain Res. 2004;149:143–51. https://doi.org/10.1016/j.devbrainres.2004.01.001.

    Article  CAS  PubMed  Google Scholar 

  64. Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Brain Res Rev. 1999;29:196–217. https://doi.org/10.1016/s0165-0173(98)00052-6.

    Article  CAS  PubMed  Google Scholar 

  65. Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, et al. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A. 2004;101:12736–41. https://doi.org/10.1073/pnas.0401860101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42. https://doi.org/10.1146/annurev.biochem.72.121801.161629.

    Article  CAS  PubMed  Google Scholar 

  67. Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci. 2018;91:25–33. https://doi.org/10.1016/j.mcn.2018.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rong J, McGuire JR, Fang ZH, Sheng G, Shin JY, Li SH, et al. Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J Neurosci. 2006;26:6019–30. https://doi.org/10.1523/JNEUROSCI.1251-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takeshita Y, Fujinaga R, Zhao C, Yanai A, Shinoda K. Huntingtin-associated protein 1 (HAP1) interacts with androgen receptor (AR) and suppresses SBMA-mutant-AR-induced apoptosis. Hum Mol Genet. 2006;15:2298–312. https://doi.org/10.1093/hmg/ddl156.

    Article  CAS  PubMed  Google Scholar 

  70. Fard SS, Saliminejad K, Sotoudeh M, Soleimanifard N, Kouchaki S, Yazdanbod M, et al. The Correlation between EGFR and Androgen Receptor Pathways: A Novel Potential Prognostic Marker in Gastric Cancer. Anticancer Agents Med Chem. 2019;19:2097–107. https://doi.org/10.2174/1871520619666190930142820.

    Article  CAS  PubMed  Google Scholar 

  71. Fujinaga R, Takeshita Y, Yoshioka K, Nakamura H, Shinoda S, Islam MN, et al. Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor. Exp Cell Res. 2011;317:1689–700. https://doi.org/10.1016/j.yexcr.2011.05.004.

    Article  CAS  PubMed  Google Scholar 

  72. Singh D, Attri BK, Gill RK, Bariwal J. Review on EGFR Inhibitors: Critical Updates. Mini Rev Med Chem. 2016;16:1134–66. https://doi.org/10.2174/1389557516666160321114917.

    Article  CAS  PubMed  Google Scholar 

  73. Rajaram P, Chandra P, Ticku S, Pallavi BK, Rudresh KB, Mansabdar P. Epidermal growth factor receptor: Role in human cancer. Indian J Dent Res. 2017; 28:687–694. https://doi:https://doi.org/10.4103/ijdr.IJDR_534_16.

  74. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol. 2015;13:294–303. https://doi.org/10.2174/1570159x13666150403231920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, Li H. Regulation of L-type Ca2+ channel activity and insulin secretion by huntingtin-associated protein 1. J Biol Chem. 2016;291(51):26352–63. https://doi.org/10.1074/jbc.M116.727990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, et al. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature. 2002;420:696–700. https://doi.org/10.1038/nature01268.

    Article  CAS  PubMed  Google Scholar 

  77. Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol. 2016;594:2849–66. https://doi.org/10.1113/JP271139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39:227–39. https://doi.org/10.1016/s0896-6273(03)00366-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sørensen SA, Fenger K. Causes of death in patients with Huntington’s disease and in unaffected first degree relatives. J Med Genet. 1992;29:911–4. https://doi.org/10.1136/jmg.29.12.911.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sørensen SA, Fenger K, Olsen JH. Significantly lower incidence of cancer among patients with Huntington disease: an apoptotic effect of an expanded polyglutamine tract? Cancer. 1999;86:1342–6. https://doi.org/10.1002/(SICI)1097-0142(19991001).

    Article  PubMed  Google Scholar 

  81. Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, et al. In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. NeuroReport. 1995;6:1053–7. https://doi.org/10.1097/00001756-199505090-00026.

    Article  CAS  PubMed  Google Scholar 

  82. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci. 1995;15:3775–87. https://doi.org/10.1523/JNEUROSCI.15-05-03775.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. Sci World J. 2012;2012:491737. https://doi.org/10.1100/2012/491737.

    Article  CAS  Google Scholar 

  84. Zhou M, Liu X, Li Z, Huang Q, Li F, Li CY. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer. 2018;143:921–30. https://doi.org/10.1002/ijc.31374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu L, Song X, Tang J, Wu J, Ma R, Cao H, et al. Huntingtin-associated protein 1: a potential biomarker of breast cancer. Oncol Rep. 2013;29:1881–7. https://doi.org/10.3892/or.2013.2303.

    Article  CAS  PubMed  Google Scholar 

  86. Abdoul-Azize S, Buquet C, Li H, Picquenot JM, Vannier JP. Integration of Ca2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin. Oncogene. 2018;37:4979–93. https://doi.org/10.1038/s41388-018-0329-6.

    Article  CAS  PubMed  Google Scholar 

  87. Higashigawa M, Komada Y. Role of Ca2+ in the intracellular signaling pathway of anti-IgM-induced apoptosis in the human B-cell line, MBC-1, established from Burkitt lymphom;a. Int J Hematol. 2002;76:44–9. https://doi.org/10.1007/BF02982717.

    Article  CAS  PubMed  Google Scholar 

  88. Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, et al. Induction of ROS mediated cell death and activation of the JNK pathway by a sulfonamide derivative. Int J Mol Med. 2019;44:1552–62. https://doi.org/10.3892/ijmm.2019.4284.

    Article  CAS  PubMed  Google Scholar 

  89. Akl H, Bultynck G. Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta. 2013;1835:180–93. https://doi.org/10.1016/j.bbcan.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  90. Win S, Than TA, Kaplowitz N. The regulation of JNK signaling pathways in cell death through the interplay with mitochondrial sab and upstream post-translational effects. Int J Mol Sci. 2018;19(3657):2018. https://doi.org/10.3390/ijms19113657.

    Article  CAS  Google Scholar 

  91. Wu J, Zhang JY, Yin L, Wu JZ, Guo WJ, Wu JF, et al. HAP1 gene expression is associated with radiosensitivity in breast cancer cells. Biochem Biophys Res Commun. 2015;456:162–6. https://doi.org/10.1016/j.bbrc.2014.11.052.

    Article  CAS  PubMed  Google Scholar 

  92. Zaman S, Wang R, Gandhi V. Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma. 2014;55:1980–92. https://doi.org/10.3109/10428194.2013.855307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee JK, Kang S, Wang X, Rosales JL, Gao X, Byun HG, et al. HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood. 2019;133:2222–32. https://doi.org/10.1182/blood-2018-12-890236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YT and AC: established the original concept and design. AC, XZ, ZW, and XX: conducted literature retrieval and data analysis. XZ and AC: wrote the manuscript, designed the figures, and made critical revisions to the manuscript. ZW and XX: helped with the discussion and corrected the text. All authors read and approved the final draft.

Corresponding author

Correspondence to Y. Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The manuscript does not contain clinical studies or patient data.

Informed consent

For this type of study, formal consent is not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, A., Wang, Z. et al. Biological functions and potential therapeutic applications of huntingtin-associated protein 1: progress and prospects. Clin Transl Oncol 24, 203–214 (2022). https://doi.org/10.1007/s12094-021-02702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02702-w

Keywords

Navigation