Skip to main content
Log in

Human cholesteryl ester transport protein transgene promotes macrophage reverse cholesterol transport in C57BL/6 mice and phospholipid transfer protein gene knockout mice

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) belong to the same gene family. Liver-specific expression of CETP improves reverse cholesterol transport (RCT) and PLTP knockout (KO) decreases RCT in mice. In this study, we investigate the effect of CETP transgene (CETP-tg) on RCT and whether CETP-tg can partially restore RCT efficiency in PLTP KO mice. Several rounds of crossing were carried out to produce colonies of wild type (WT), CETP-tg, PLTP KO, and CETP-tg × PLTP KO mice were obtained after several generations of reproduction. The efficiency of RCT was detected using [3H]-cholesterol-laden macrophages, and the underlying mechanisms were investigated by multiple techniques. Our data demonstrated that CETP-tg significantly increased the transport rate of [3H]-cholesterol from macrophages to plasma and liver, and finally the excretion through feces compared to the WT littermates. The RCT improving effect of CETP-tg was similar in PLTPKO mice. Furthermore, CETP-tg did not affect the expression of RCT-related proteins, such as low-density lipoprotein receptor. The mechanisms of improving RCT may be attributed to the low level of oxidized lipids in CETP-tg mouse and CETP-mediated lipid transport. Collectively, CETP-tg improves RCT in mice, and CETP can not compensate for PLTP deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agellon LB, Walsh A, Hayek T, Moulin P, Jiang XC, Shelanski SA, Breslow JL, Tall AR (1991) Reduced high density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J Biol Chem 266(17):10796–10801

    Article  CAS  Google Scholar 

  2. Atger V, de la Llera MM, Bamberger M, Francone O, Cosgrove P, Tall A, Walsh A, Moatti N, Rothblat G (1995) Cholesterol efflux potential of sera from mice expressing human cholesteryl ester transfer protein and/or human apolipoprotein AI. J Clin Invest 96(6):2613–2622. https://doi.org/10.1172/JCI118326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barter P (2009) Lessons learned from the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Am J Cardiol 104(10 Suppl):10E-E15. https://doi.org/10.1016/j.amjcard.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  4. Bell TA 3rd, Graham MJ, Lee RG, Mullick AE, Fu WX, Norris D, Crooke RM (2013) Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances reverse cholesterol transport in hyperlipidemic CETP transgenic LDL-/- mice. J Lipid Res 54(10):2647–2657. https://doi.org/10.1194/jlr.M036509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bighetti EJB, Patrício PR, Casquero AC, Berti JA, Oliveira HCF (2009) Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to liver. Lipids Health Dis 8:50. https://doi.org/10.1186/1476-511X-8-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  7. Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME, Marcel YL, Milne RW, Koizumi J, Mabuchi H (1989) Molecular basis of loipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342(6248):448–451. https://doi.org/10.1038/342448a0

    Article  CAS  PubMed  Google Scholar 

  8. Bruce C, Chouinard RA, Tall AR (1998) Plasma lipid transfer protein, high-density lipoproteins, and reverse cholesterol transport. Annu Rev Nutr 18:297–330. https://doi.org/10.1146/annurev.nutr.18.1.297

    Article  CAS  PubMed  Google Scholar 

  9. Chirasani VR, Revanasiddappa PD, Senapati S (2016) Structural plasticity of cholesteryl ester transfer protein assists the lipid transfer activity. J Biol Chem 291(37):19462–19473. https://doi.org/10.1074/jbc.M116.744623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Francone OL, Royer L, Haghpassand M (1996) Increased preβ-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (apoA-I) transgenes. J Lipid Res 37(6):1268–1277

    Article  CAS  Google Scholar 

  11. Gordon DJ, Rifkind BM (1989) High density lipoprotein: the clinical implications of recent studies. N Engl J Med 321(19):1311–1316. https://doi.org/10.1056/NEJM198911093211907

    Article  CAS  PubMed  Google Scholar 

  12. Harder C, Lau P, Meng A, Whitman SC, McPherson R (2007) Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol 27(4):858–864. https://doi.org/10.1161/01.ATV.0000259357.42089.dc

    Article  CAS  PubMed  Google Scholar 

  13. Hayek T, Chajek-Shaul T, Walsh A, Agellon LB, Moulin P, Tall AR, Breslow JL (1992) An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels. J Clin Invest 90(2):505–510. https://doi.org/10.1172/JCI115887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayek T, Masucci-Magoulas L, Jiang X, Walsh A, Rubin E, Breslow JL, Tall AR (1995) Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest 96(4):2071–2074. https://doi.org/10.1172/JCI118255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, Mabuchi H, Tall AR (1990) Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 323(18):1234–1238. https://doi.org/10.1056/NEJM199011013231803

    Article  CAS  PubMed  Google Scholar 

  16. Jiang XC, Beyer TP, Li ZQ, Liu J, Quan W, Schmidt RJ, Zhang YY, Bensch WR, Eacho PI, Cao GQ (2003) Enlargement of high density lipoprotein in mice via liver X receptor activation requires apolipoprotein E and is abolished by cholesteryl ester transfer protein expression. J Biol Chem 278(49):49072–49078. https://doi.org/10.1074/jbc.M304274200

    Article  CAS  PubMed  Google Scholar 

  17. Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, Tall AR (1999) Targeted mutation of plasma phospholipid transfer protein gene markedly reduced high-density lipoprotein levels. J Clin Invest 103(6):907–914. https://doi.org/10.1172/JCI5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang XC, Masucci-Magoulas L, Mar J, Lin M, Walsh A, Breslow JL, Tall A (1993) Down-regulation of mRNA for the low density lipoprotein receptor in transgenic mice containing the gene for human cholesteryl ester transfer protein Mechanism to explain accumulation of lipoprotein B particles. J Biol Chem 268(36):27406–12

    Article  CAS  Google Scholar 

  19. Jiang XC, Zhou HW (2006) Plasma lipid transfer proteins. Curr Opin Lipidol 17(3):302–308. https://doi.org/10.1097/01.mol.0000226124.94757.ee

    Article  CAS  PubMed  Google Scholar 

  20. Kawano K, Qin SC, Lin M, Tall AR, Jiang XC (2000) Cholesteryl ester transfer protein and phospholipid transfer protein have nonoverlapping functions in vivo. J Biol Chem 275(38):29477–29481. https://doi.org/10.1074/jbc.M003523200

    Article  CAS  PubMed  Google Scholar 

  21. Lagrost L, Athias A, Gambert P, Lallemant C (1994) Comparative study of phospholipid transfer activities mediated by cholesteryl ester transfer protein and phospholipid transfer protein. J Lipid Res 35(5):825–835

    Article  CAS  Google Scholar 

  22. Li J, Pijut SS, Wang Y, Ji A, Kaur R, Temel RE, van der Westhuyzen DR, Graf GA (2019) Simultaneous determination of biliary and intestinal cholesterol secretion reveals that CETP (cholesteryl ester transfer protein) alters elimination route in mice. Arterioscler Thromb Vasc Biol 39(10):1986–1995. https://doi.org/10.1161/ATVBAHA.119.312952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li T, Yin JY, Ji YB, Lin P, Li YJ, Yang ZX, Hu SM, Wang J, Zhang BH, Koshti S, Wang JF, Ji CF, Guo SD (2020) Setosphapyrone C and D accelerate macrophages cholesterol efflux by promoting LXRα/ABCA1 pathway. Arch Pharm Res 43(8):788–797. https://doi.org/10.1007/s12272-020-01255-w

    Article  CAS  PubMed  Google Scholar 

  24. Low H, Hoang A, Sviridov D (2012) Cholesterol efflux assay. J Vis Exp 61:e3810. https://doi.org/10.3791/3810

    Article  CAS  Google Scholar 

  25. Marotti KR, Castle CK, Murray RW, Rehberg EF, Polites HG, Melchior GW (1992) The role of cholesteryl ester transfer protein in primate apolipoprotein A-I metabolism. Insights from studies with transgenic mice. Arterioscler Thromb Vasc Biol 12(6):736–44. https://doi.org/10.1161/01.atv.12.6.736

    Article  CAS  Google Scholar 

  26. Masson D, Staels B, Gautier T, Desrumaux C, Athias A, Le Guern N, Schneider M, Zak Z, Dumont L, Deckert V, Tall A, Jiang XC, Lagrost L (2004) Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res 45(3):543–550. https://doi.org/10.1194/jlr.M300432-JLR200

    Article  CAS  PubMed  Google Scholar 

  27. Masucci-Magoulas L, Plump A, Jiang XC, Walsh A, Breslow JL, Tall AR (1996) Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. J Clin Invest 97(1):154–61. https://doi.org/10.1172/JCI118384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliveira HC, Ma L, Milne R, Marcovina SM, Inazu A, Mabuchi H, Tall AR (1997) Cholesteryl ester transfer protein activity enhances plasma cholesteryl ester formation. Studies in CETP transgenic mice and human genetic CETP deficiency. Arterioscler Thromb Vasc Biol. 17(6):1045–52. https://doi.org/10.1161/01.atv.17.6.1045

    Article  CAS  PubMed  Google Scholar 

  29. Ouimet M, Barrett TJ, Fisher EA (2019) HDL and reverse cholesterol transport. Circ Res 124(10):1505–1518. https://doi.org/10.1161/CIRCRESAHA.119.312617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR (1999) Increased atherosclerosis in apoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 19(4):1105–1110. https://doi.org/10.1161/01.atv.19.4.1105

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz CC, Vanden Broek JM, Cooper PS (2004) Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res 45(9):1594–1607. https://doi.org/10.1194/jlr.M300511-JLR200

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS, dal-OUTCOMES Investigators, (2012) Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 367(22):2089–2099. https://doi.org/10.1056/NEJMoa1206797 (Epub 2012 Nov 5)

    Article  CAS  PubMed  Google Scholar 

  33. Si YH, Zhang Y, Chen XF, Zhai L, Zhou GH, Yu AL, Cao HJ, Shucun Q (2016) Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo. Exp Biol Med (Maywood) 241(13):1466–1472. https://doi.org/10.1177/1535370216641218

    Article  CAS  Google Scholar 

  34. Siggins S, Bykov I, Hermansson M, Somerharju P, Lindros K, Miettinen TA, Jauhiainen M, Olkkonen VM, Ehnholm C (2007) Altered hepatic lipid status and apolipoprotein A-I metabolism in mice lacking phospholipid transfer protein. Atherosclerosis 190(1):114–123. https://doi.org/10.1016/j.atherosclerosis.2006.02.037

    Article  CAS  PubMed  Google Scholar 

  35. Tanigawa H, Billheimer JT, Tohyama J, Fuki IV, Ng DS, Rothblat GH, Rader DJ (2009) Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation 120(2):160–169. https://doi.org/10.1161/CIRCULATIONAHA.108.825109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanigawa H, Billheimer JT, Tohyama J, Zhang YZ, Rothblat G, Rader DJ (2007) Expression of cholesterol ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116(11):1267–1273. https://doi.org/10.1161/CIRCULATIONAHA.107.704254

    Article  CAS  PubMed  Google Scholar 

  37. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, Keavney B, Ye Z, Danesh J (2008) Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299(23):2777–2788. https://doi.org/10.1001/jama.299.23.2777

    Article  CAS  PubMed  Google Scholar 

  38. Tian H, Liu QC, Qin SC, Zong CL, Zhang Y, Yao ST, Yang NN, Guan T, Guo SD (2017) Synthesis and cardiovascular protective effects of quercetin 7-O-sialic acid. J Cell Mol Med 21(1):107–120. https://doi.org/10.1111/jcmm.12943

    Article  CAS  PubMed  Google Scholar 

  39. Van Capelleveen JC, Kastelein JJ, Zwinderman AH, van Deventer SJ, Collins HL, Adelman SJ, Round P, Ford J, Rader DJ, Hovingh GK (2016) Effects of the cholesteryl ester transfer protein inhibitor, TA-8995, on cholesterol efflux capacity and high-density lipoprotein particle subclasses. J clin Lipidol 10(5):1137-1144.e3. https://doi.org/10.1016/j.jacl.2016.06.006

    Article  PubMed  Google Scholar 

  40. Westerterp M, van der Hoogt CC, de Haan W, Offerman EH, Dallinga-Thie GM, Jukema JW, Havekes LM, Rensen PC (2006) Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in apoE*3-leiden mice. Arterioscler Thromb Vasc Biol 26(11):2552–2559. https://doi.org/10.1161/01.ATV.0000243925.65265.3c

    Article  CAS  PubMed  Google Scholar 

  41. Yang ZX, Liu GJ, Wang YF, Yin JY, Wang J, Xia B, Li T, Yang XQ, Hou PB, Hu SM, Song WG, Guo SD (2019) Fucoidan A2 from the brown seaweed Ascophyllum nodosum lowers lipid by improving reverse cholesterol transport in C57BL/6J mice fed a high-fat diet. J Agric Food Chem 67:5782–5791. https://doi.org/10.1021/acs.jafc.9b01321

    Article  CAS  PubMed  Google Scholar 

  42. Yao ST, Tian H, Zhao L, Li JG, Yang LB, Yue F, Li YY, Jiao P, Yang NN, Wang YW, Zhang XJ, Qin SC (2017) Oxidized high density lipoprotein induces macrophage apoptosis via toll-like receptor 4-dependent CHOP pathway. J Lipd Res 58(1):164–177. https://doi.org/10.1194/jlr.M071142

    Article  CAS  Google Scholar 

  43. Zhang M, Charles R, Tong HM, Zhang L, Patel M, Wang F, Rames MJ, Ren A, Rye KA, Qiu XY, Johns DG, Charles MA, Ren G (2015) HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation. Sci Rep 5:8741. https://doi.org/10.1038/srep08741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong S, Sharp DS, Grove JS, Bruce C, Yano K, Curb JD, Tall AR (1996) Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 97(12):2917–2923. https://doi.org/10.1172/JCI118751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xian-cheng Jiang at SUNY Downstate Medical Center (USA) for providing PLTP knockout and CETP transgenic mice. We also thank Guang-hai Zhou at Shandong First Medical University & Shandong Academy of Medical Sciences for providing help in detection of [3H]-cholesterol.

Funding

This work was supported by Natural Science Foundation of China (81770463, 82070469 and 81600681) and Taishan Scholars Foundation of Shandong Province (ts201511057).

Author information

Authors and Affiliations

Authors

Contributions

Na Liu performed the Western Blotting experiment; Yanhong Si and Ying Zhang carried out the animal treatment, data acquirement, and analysis; Shoudong Guo performed the LC–MS/MS analysis, funding, and writing of this manuscript; Shucun Qin provided funding and animal for this study. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Shoudong Guo or Shucun Qin.

Ethics declarations

Informed consent

This study was approved by the laboratory animals’ ethical committee of Taishan Medical University and followed national guidelines for the care and use of animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• CETP transgene improves macropahge reverse cholesterol transport in C57/BL/6 J mice.

• CETP improves macropahge reverse cholesterol transport in PLTP knockout mice.

• CETP transgene has no effect on RCT-related proteins expression.

• CETP transgene changes the lipid profiles of the mice plasma and lipoproteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Si, Y., Zhang, Y. et al. Human cholesteryl ester transport protein transgene promotes macrophage reverse cholesterol transport in C57BL/6 mice and phospholipid transfer protein gene knockout mice. J Physiol Biochem 77, 683–694 (2021). https://doi.org/10.1007/s13105-021-00834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00834-9

Keywords

Navigation