Skip to main content

The Rhizobiaceae Bacteria Transferring Genes to Higher Plants

  • Chapter
  • First Online:
Horizontal Gene Transfer

Abstract

The family Rhizobiaceae includes several bacterial genera able to induce root or stem nodules, which can be beneficial for the plant, or hypertrophies, such as tumours, which cause plant damage. The members from genus Agrobacterium are well known by their ability to transfer genes to different plants originating tumours, and this feature has been biotechnologically exploited to produce transgenic plants. Nevertheless, the taxonomy and phylogeny of this genus has been confusing in the last decades after its reclassification into the genus Rhizobium. The presence of the telomerase-coding gene telA is a unique characteristic of the Agrobacterium clade, and it has been recently recovered as a separate genus. However, some tumour-inducing strains remain classified within genus Rhizobium, and some other species have been reclassified into genus Allorhizobium. The phylogenies of the virulence genes harboured by pTi plasmids inside or outside T-DNA are different as well as the symptoms induced in plants. In this chapter we revise the evolution of the taxonomy of tumorigenic species from family Rhizobiaceae over time, their interactions with different plants, the implications of horizontal gene transfer (HGT) in plant evolution and their use to obtain transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZN, Atabaki N, Talei D (2016) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42

    PubMed  Google Scholar 

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175:7869–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes (Basel) 9:E321

    Article  CAS  Google Scholar 

  • Banerjee S (2018) Voyaging through chromosomal studies in hairy root cultures towards unravelling their relevance to medicinal plant research: an updated review. Nucleus 61:3–18

    Article  Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750

    Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:357–384

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Barnes WM, Chilton MD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. Microbiology 120:413–420

    Article  Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480

    Article  CAS  PubMed  Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149

    Article  CAS  PubMed  Google Scholar 

  • Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2(5):529–534

    Article  CAS  PubMed  Google Scholar 

  • Cavara F (1897a) Eziologia di alcune malattie di piante cultivate. Le Stazioni Sperimentale Agraric Itliana 30:482–509

    Google Scholar 

  • Cavara F (1897b) Tuberculosi del la vite. In torno alla eziologia di alcune malattie di piante cultivate. Le Stazioni Sperimentale Agraric Itliana 30:483–487

    Google Scholar 

  • Chaconas G, Stewart PE, Tilly K, Bono JL, Rosa P (2001) Telomere resolution in the Lyme disease spirochete. EMBO J 20:3229–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682

    Article  CAS  PubMed  Google Scholar 

  • Chen K, de Borne FD, Julio E, Obszynski J, Pale P, Otten L (2016) Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. Plant J 87:258–269

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    Article  CAS  PubMed  Google Scholar 

  • Clive J (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43. ISAAA: Ithaca, NY

    Google Scholar 

  • Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321

    Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176

    Article  CAS  PubMed  Google Scholar 

  • De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    Article  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depicker A, De Wilde M, De Vos G, De Vos R, Van Montagu M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3:193–211

    Article  CAS  PubMed  Google Scholar 

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1:561–573

    CAS  PubMed  Google Scholar 

  • Domingo JL (2016) Safety assessment of GM plants: an updated review of the scientific literature. Food Chem Toxicol 95:12–18

    Article  CAS  PubMed  Google Scholar 

  • Dunican LK, Cannon FC (1971) The genetic control of symbiotic properties in Rhizobium: evidence for plasmid control. Plant Soil 35:73–79

    Article  Google Scholar 

  • Fangman WL (1978) Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res 5(3):653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Ferdows MS, Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc Natl Acad Sci USA 86:5969–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournes F, Val ME, Skovgaard O, Mazel D (2018) Replicate once per cell cycle: replication control of secondary chromosomes. Front Microbiol 9(Aug):1833

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffmann NL, Sanders PR (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technol 3:629–635

    CAS  Google Scholar 

  • Frank B (1889) Ueber die pilzsymbiose der leguminosen. Bet Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217

    Article  CAS  PubMed  Google Scholar 

  • Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265:561–563

    Article  CAS  PubMed  Google Scholar 

  • Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10(7):866–875

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RH, Chopan MN (1975) Transfer of the tumor induction factor in Agrobacterium tumefaciens. Biochem Biophys Res Commun 63:349–354

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Exp Dermatol 27:229–230

    CAS  Google Scholar 

  • Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Iwata K, Suzuki K, Uraji M, Ohta N, Katoh A, Yoshida K (2001) Sequence characterization of the vir region of a nopaline type Ti plasmid, pTi-SAKURA. Genes Genet Syst 76:121–130

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand EM (1940) Cane gall of brambles caused by Phytomonas n. sp. J Agric Res 61:685–696

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Higashi S (1967) Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor. J Gen Appl Microbiol 13:391–403

    Article  Google Scholar 

  • Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188:8222–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges LD, Lee LY, McNett H, Gelvin SB, Ream W (2009) The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. J Bacteriol 191:355–364

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJJ, van Brussel AAN, den Dulk-Ras H, van Slogteren GMS, Schilperoort RA (1981) Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291:351–353

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Huang WM, DaGloria J, Fox H, Ruan Q, Tillou J, Shi K, Aihara H, Aron J, Casjens S (2012) Linear chromosome generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem 287:25551–25563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. Brief 53

    Google Scholar 

  • James C (2003) Global review of commercialized transgenic crops. Curr Sci 84:303–309

    Google Scholar 

  • Joos H, Inzé D, Caplan A, Sormann M, Van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC (1984) Family III Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 234–242

    Google Scholar 

  • Jordan DC, Allen ON (1974) Family 111. Rhizobiaceae Conn, 1938. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 261–264

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    Article  CAS  PubMed  Google Scholar 

  • Kado CI (2009) Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol Plant Pathol 10:143–150

    Article  CAS  PubMed  Google Scholar 

  • Kado CI (2010) Plant bacteriology. APS Press, St. Paul, MN

    Google Scholar 

  • Kado CI (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol 5:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr A (1969) Transfer of virulence between isolates of Agrobacterium. Nature (Lond) 223:1175–1176

    Article  Google Scholar 

  • Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1:241–246

    Article  Google Scholar 

  • Kersters K, De Ley J (1984) Genus III. Agrobacterium Conn 1942. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1, 1st edn. Williams and Wilkins, Baltimore, MD, pp 244–254

    Google Scholar 

  • Kirby R (2011) Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol Lett 319(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Koekman BP, Ooms G, Klapwijk PM, Schilperoort RA (1979) Genetic map of an octopine TI-plasmid. Plasmid 2:347–357

    Article  CAS  PubMed  Google Scholar 

  • Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N, Jones JB, Obradović A (2015) Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 38:373–378

    Article  PubMed  CAS  Google Scholar 

  • Kuzmanović N, Smalla K, Gronow S, Puławska J (2018a) Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 8:9051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuzmanović N, Puławska J, Smalla K, Nesme X (2018b) Agrobacterium rosae sp. nov., isolated from galls on different agricultural crops. Syst Appl Microbiol 41:191–197

    Article  PubMed  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7:e00863-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C, Hommais F, Guéguen L, Daubin V, Muller D, Nesme X (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerman LS, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21(5):995–997

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Aoyama T, Oka A (1998) Structural characterization of the virB operon on the hairy-root-inducing plasmid A4. DNA Res 5:87–93

    Article  CAS  PubMed  Google Scholar 

  • Lin BC, Kado CI (1977) Studies on Agrobacterium tumefaciens. VII. A virulence induced by temperature and ethidium bromide. Can J Microbiol 23:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Lin YS, Kieser HM, Hopwood DA, Chen CW (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10(5):923–933

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin OJ, Zimm BH (1982) Mobility of DNA in gel electrophoresis. Biopolymers 21(11):2315–2316

    Article  CAS  PubMed  Google Scholar 

  • Lytsy B, Engstrand L, Gustafsson Å, Kaden R (2017) Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013–2015. Infect Genet Evol 54:74–80

    Article  CAS  PubMed  Google Scholar 

  • Malpighi M (1679) On Galls. In: Grew N (ed) Anatomia Plantarum. Royal Society London, London

    Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant linaria in nature. Mol Plant-Microbe Interact 25:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Merlo DJ, Nester EW (1977) Plasmids in a virulent strains of Agrobacterium. J Bacteriol 129:76–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikus DM, Petes TD (1982) Recombination between genes located on nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics 101:369–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784

    Article  CAS  PubMed  Google Scholar 

  • Mougel C, Thioulouse J, Perrière G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov, and 13 new species combinations. Syst Appl Microbiol 38:84–90

    Article  PubMed  Google Scholar 

  • Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482

    Article  CAS  PubMed  Google Scholar 

  • Nuti MP, Ledeboer AM, lepidi AA, schilperoort RA (1977) Large plasmids in different rhizobium species. Microbiology 100:241–248

    CAS  Google Scholar 

  • Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Evol Microbiol 40:236–241

    CAS  Google Scholar 

  • Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 61:2632–2639

    Article  PubMed  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214

    Article  CAS  Google Scholar 

  • Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790

    Article  CAS  PubMed  Google Scholar 

  • Puławska J, Willems A, De Meyer SE, Süle S (2012a) Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Syst Appl Microbiol 35:215–220

    Article  PubMed  Google Scholar 

  • Puławska J, Willems A, Sobiczewski P (2012b) Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int J Syst Evol Microbiol 62:895–899

    Article  PubMed  CAS  Google Scholar 

  • Puławska J, Kuzmanović N, Willems A, Pothier JF (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169

    Article  PubMed  Google Scholar 

  • Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front Plant Sci 8:2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Bahena MH, Nesme X, Muller D (2012) Rapid and simultaneous detection of linear chromosome and large plasmids in Proteobacteria. J Basic Microbiol 52(6):36–739

    Article  CAS  Google Scholar 

  • Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D (2014) Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 73:202–307

    Article  PubMed  CAS  Google Scholar 

  • Ravin NV (2003) Mechanisms of replication and telomere resolution of the linear plasmid prophage N15. FEMS Microbiol Ecol 221:1–6

    Article  CAS  Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy-root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Rogowsky PM, Powell BS, Shirasu K, Lin TS, Morel P, Zyprian EM, Steck TR, Kado CI (1990) Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23:85–106

    Article  CAS  PubMed  Google Scholar 

  • Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG (2002) Oxidation of Arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19:53–66

    Article  CAS  Google Scholar 

  • Schrammeijer B, Beijersbergen A, Idler KB, Melchers LS, Thompson DV, Hooykaas PJ (2000) Sequence analysis of the vir-region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. J Exp Bot 51:1167–1169

    Article  CAS  PubMed  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57

    Article  CAS  PubMed  Google Scholar 

  • Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S, Ruohonen-Lehto M, Saucy AW, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Sheerman S, Bevan MW (1988) A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Rep 7:13–16

    Article  CAS  PubMed  Google Scholar 

  • Sheikholeslam S, Okubara PA, Lin BC, Dutra JC, Kado CI (1978) Large and small plasmids in tumorigenic and cured non tumorigenic Agrobacterium tumefaciens and in Agrobacterium radiobacter. Microbiology 1978:132–135

    Google Scholar 

  • Siefert JL (2009) Defining the Mobilome. In: Gogarten MB, Gogarten JP, Olendzenski LC (eds) Horizontal gene transfer. Methods in molecular biology, vol 532. Humana Press, pp 13–27

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    Article  CAS  PubMed  Google Scholar 

  • Snow AA, Morán-Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. BioSci 47:86–96

    Article  Google Scholar 

  • Spano L, Pomponi M, Costantino P, Van Slogteren GM, Tempé J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300

    Article  CAS  PubMed  Google Scholar 

  • Starr MP, Weiss JE (1943) Growth of phytopathogenic bacteria in a synthetic asparagin medium. Phytopathology 33:314–318

    CAS  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ (2014) Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942 has priority over Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority and Rule 23a, Note 1 as applied to the corresponding specific epithets. Opinion 94. Int J Syst Evol Microbiol 64:3590–3592

    Article  CAS  PubMed  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    Article  PubMed  Google Scholar 

  • Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Van Montagu M, Hernalsteens JP (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255:742–743

    Article  PubMed  Google Scholar 

  • Van Onckelen H, Prinsen E, Inzé D, Rüdeisheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Article  Google Scholar 

  • Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME, García-Benavides P, Mateos PF, Wabiko H, Martínez-Molina E (2010) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol 33:247–251

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E, Carro L, Flores-Félix JD, Martínez-Hidalgo P, Menéndez E, Ramírez-Bahena MH, Mulas R, González-Andrés F, Martínez-Molina E, Peix A (2017) The legume nodule microbiome: a source of plant growth-promoting bacteria. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 41–70

    Chapter  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    Article  CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455e62

    Article  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Article  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav NS, Van der Leyden J, Bennett DR, Barnes WM, Chilton MD (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322e6

    Article  Google Scholar 

  • Yan J, Li Y, Han XZ, Chen WF, Zou WX, Xie Z, Li M (2017a) Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina. Arch Microbiol 199:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Li Y, Yan H, Chen WF, Zhang X, Wang ET, Han XZ, Xie ZH (2017b) Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Int J Syst Evol Microbiol 67:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Young JM (2004) Renaming of Agrobacterium larrymoorei Bouzar and Jones 2001 as Rhizobium larrymoorei (Bouzar and Jones 2001) comb. nov. Int J Syst Evol Microbiol 54:149

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium – a reply to Farrand et al. Int J Syst Evol Microbiol 53:1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–116

    Article  CAS  PubMed  Google Scholar 

  • Zahradník J, Nunvar J, Pařízková H, Kolářová L, Palyzová A, Marešová H, Grulich M, Kyslíková E, Kyslík P (2018) Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol 41:184–190

    Article  PubMed  Google Scholar 

  • Zechner EL, Lang S, Schildbach JF (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond Ser B Biol Sci 367:1073–1087

    Article  CAS  Google Scholar 

  • Żurkowski W, Lorkiewicz Z (1979) Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch Microbiol 123:195–201

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our numerous collaborators and students involved in this research over the years. Funding was provided by “Ministerio de Economía, Ciencia, Industria y Competitividad (MINECO)” and “Junta de Castilla y León”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarna Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez-Bahena, MH., Peix, A., Velázquez, E. (2019). The Rhizobiaceae Bacteria Transferring Genes to Higher Plants. In: Villa, T., Viñas, M. (eds) Horizontal Gene Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-21862-1_11

Download citation

Publish with us

Policies and ethics