Skip to main content

Advertisement

Log in

Hydrocarbon seeps from the unconventional petroleum system of the South Portuguese Zone, Portugal

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The presence of natural hydrocarbon seepage in the surface (soil–water) system can provide strong evidence (pathfinder) of an active petroleum system, as well as critical information on source, maturity and migration pathways. The South Portuguese Zone (SPZ) is located in the southernmost sector of the pre-Mesozoic Iberian Variscan Chain, which is composed of Carboniferous interbedded shales and greywackes, commonly displaying low-grade metamorphism. For this study, the sampling area was selected based on geological features such as alignments, faults, thrust zones, and major fold structures. Twenty-seven soil samples and 31 water samples from artesian wells, boreholes and springs were collected using specific headspace containers (Isojar®). From the geological prospecting point of view, the presence of thermogenic hydrocarbon gases in SPZ formations is clear and evident. They are present in both soil and water in significantly high levels, especially in the fault/fracture zones, with light hydrocarbon (C1–C5) values reaching more than 1500 mg/L in soil samples. Anomalous presence of some gasoline-range hydrocarbons (such as toluene) was also detected. The integration with total organic carbon, vitrinite reflectance, Rock-Eval pyrolysis and GC-IRMS data from Paleozoic rocks suggests the presence of a senile unconventional petroleum system.

Resumen

La presencia de indicios de hidrocarburos naturales en superficie, tanto en suelos como en aguas, puede ser una evidencia clara de la existencia de un sistema petrolero, así como proporcionar información sobre origen, madurez y vías de migración. La Zona Sur Portuguesa (ZSP) está situada en el sector más meridional de la Cadena Ibérica Varisca pre-Mesozoica, formada por la intercalación de esquistos y grauvacas del Carbonífero de bajo grado metamórfico. El área de muestreo para el presente estudio se seleccionó en base a características geológicas tales como alineamiento, fallas, cabalgamientos y pliegues principales. Veinte y siete muestras de suelos y treinta y una de aguas procedentes de pozos artesanos, sondeos y fuentes naturales se recolectaron usando viales tipo ”headspace” (Isojar®). La presencia de hidrocarburos gaseosos termogénicos en la ZSP tanto en suelos como en aguas es significadamente alta, en especial en las zonas de fallas y fracturas, donde los hidrocarburos ligeros (C1-C5) alcanzan valores mayores a 1.500mg/L en muestras de suelos. Así mismo, también se ha detectado la presencia anómala de algunos hidrocarburos en el rango de las gasolinas, tales como el tolueno. La integración con el conjunto de valores de carbono orgánico total, reflectancia de vitrinita, pirolisis Rock-Eval y GC-IRMS de rocas paleozoicas sugiere la existencia de un sistema petrolero no convencional senil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Oliveira (1983a)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abad, I., Mata, M. P., Nieto, F., & Velilla, N. (2001). The phyllosilicates in diagenetic-metamorphic rocks of the South Portuguese Zone, southwestern Portugal. The Canadian Mineralogist,39, 1571–1589. https://doi.org/10.2113/gscanmin.39.6.1571.

    Article  Google Scholar 

  • Abrams, M. A. (2005). Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Marine and Petroleum Geology,22, 457–477. https://doi.org/10.1016/j.marpetgeo.2004.08.003.

    Article  Google Scholar 

  • Abrams, M. A. (2013). Best practices for the collection, analysis, and interpretation of seabed geochemical samples to evaluate subsurface hydrocarbon generation and entrapment. In: Offshore technology conference. 24219. https://doi.org/10.4043/24219-ms.

  • Abrams, M. A., & Dahdah, N. (2011). Surface sediment hydrocarbons as indicators of subsurface hydrocarbons—Field calibration of existing and new surface geochemistry methods in the Marco Polo Area Gulf of Mexico. AAPG Bulletin,95(11), 1907–1935. https://doi.org/10.1306/03211110130.

    Article  Google Scholar 

  • Alpers, C. N., Dettman, D. L., Lohmann, K. C., & Brabec, D. (1990). Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin. Journal of Geochemical Exploration,38(1–2), 69–86. https://doi.org/10.1016/0375-6742(90)90093-p.

    Article  Google Scholar 

  • ARH Alentejo. (2011). Planos de Gestão das Bacias Hidrográficas Integradas nas Regiões Hidrográficas 6 e 7—Região Hidrográfica 6, Volume I (Relatório), Parte 2 (Caracterização e Diagnóstico). Ministério da Agricultura, Mar, Ambiente e Ordenamento do Território, Portugal.

  • Bandeira de Mello, C. S., Françolin, J. B. L., Miller, D. J., Gonçalves, R. C. S., Capilla, R., Lopes, J. P., et al. (2007). Principais metodologias de prospecção geoquímica de hidrocarbonetos em superfície. In O. A. B. Licht, C. S. Bandeira de Mello, & C. R. Silva (Eds.), Prospecção Geoquímica de Depósitos Minerais Metálicos, Não-Metálicos, Óleo e Gás (pp. 489–534). Rio de Janeiro: SBGq, CPRM.

    Google Scholar 

  • Barberes, G. A., Fonseca, P. E., Pena dos Reis, R., Pimentel, N., & Azevedo, M. (2014). Preliminary assessment of potential for Shale Gas in South Portuguese Zone carboniferous units. Comunicações Geológicas.,101(II), 737–741.

    Google Scholar 

  • Barberes, G. A., Karcz, P., Pena dos Reis, R., Pimentel, N., Fonseca, P. E., & Azevedo, M. (2015). Organic geochemical results from the shales of the South Portuguese Zone, southern Portugal. AAPG Datapages/Search and Discovery, article #90226.

  • Barberes, G. A., Pena dos Reis, R., Spigolon, A. L. D., Fonseca, P. E., Bandeira de Mello, C., & Barata, M. T. (2018). Groundwater natural contamination by toluene in Beja and Faro Districts, Portugal. Geosciences,8(1), 9. https://doi.org/10.3390/geosciences8010009.

    Article  Google Scholar 

  • Berge, T. B. (2011). Recognition and meaning of hydrocarbon seeps. AAPG Datapages/Search and Discovery, Article #40759.

  • Chafin, D. T., Swanson, D. M., & Grey, D. W. (1996). Methane-concentration and methane-isotope data for ground water and soil gas in the Animas River Valley, Colorado and New Mexico, 1990–91. U.S. Geological Survey. Water Resources Investigation Report. 93 (4007).

  • Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews,60(4), 609–640.

    Article  Google Scholar 

  • Días-del-Río, V., Somoza, L., Martínez-Frias, J., Mata, M. P., Delgado, A., Hernandez-Molina, F. J., et al. (2003). Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cádiz. Marine Geology,195, 177–200. https://doi.org/10.1016/s0025-3227(02)00687-4.

    Article  Google Scholar 

  • Etiope, G. (2004). New directions: GEM—Geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment,38, 3099–3100. https://doi.org/10.1016/j.atmosenv.2004.04.002.

    Article  Google Scholar 

  • Fernandes, P., Musgrave, J. A., Clayton, G., Pereira, Z., Oliveira, J. T., Goodhue, R., et al. (2012). New evidence concerning the thermal history of Devonian and Carboniferous rocks in the South Portuguese Zone. Journal of the Geological Society of London,169, 647–654. https://doi.org/10.1144/jgs2011-156.

    Article  Google Scholar 

  • Gülensoy, N., & Alvarez, P. J. J. (1999). Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities. Biodegradation,10, 331–340. https://doi.org/10.1023/a:1008318405882.

    Article  Google Scholar 

  • Hale, M. (2000). Genesis, behaviour and detection of gases in the crust. In G. J. S. Govett (Ed.), Handbook of exploration geochemistry (Vol. 7, pp. 3–16)., Geochemical remote sensing of the sub-surface Amsterdam: Elsevier.

    Google Scholar 

  • Han, W., Ma, W., Tao, S., Huang, S., Hou, L., & Yao, J. (2018). Carbon isotope reversal and its relationship with natural gas origins in the Jingbian gas field, Ordos Basin, China. International Journal of Coal Geology,196, 260–273. https://doi.org/10.1016/j.coal.2018.06.024.

    Article  Google Scholar 

  • Jones, V. T., & Drozd, R. J. (1983). Prediction of oil or gas potential by near-surface geochemistry. AAPG Bulletin,67, 932–952. https://doi.org/10.1306/03B59AA8-16D1-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Kappel, W. M., & Nystrom, E. A. (2012). Dissolved methane in New York groundwater. U.S. Geological Survey, Open-file Report 2012-1162. USGS, New York.

  • Kolb, B., & Ettre, L. S. (2006). Static headspace-gas chromatography—Theory and practice. New York: Wiley-Interscience. https://doi.org/10.1002/0471914584.

    Book  Google Scholar 

  • Li, H., & Carlson, K. H. (2014). Distribution and origin of groundwater methane in the wattenberg oil and gas field of Northern Colorado. Environmental Science & Technology,48, 1484–1491. https://doi.org/10.1021/es404668b.

    Article  Google Scholar 

  • Link, W. K. (1952). Significance of oil and gas seeps in world oil exploration. AAPG Bulletin,36, 1505–1540. https://doi.org/10.1306/5CEADB3F-16BB-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Maldonado, A., Somoza, L., & Pallarés, L. (1999). The Betic orogen and the Iberian–African boundary in the Gulf of Cadiz: geological evolution (central North Atlantic). Marine Geology,155, 9–43. https://doi.org/10.1016/S0025-3227(98)00139-X.

    Article  Google Scholar 

  • McCormack, N., Clayton, G., & Fernandes, P. (2007). The thermal history of the Upper Palaeozoic rocks of southern Portugal. Marine and Petroleum Geology,24, 145–150. https://doi.org/10.1016/j.marpetgeo.2007.01.002.

    Article  Google Scholar 

  • Molofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T., & Farhat, S. K. (2013). Evaluation of methane sources in Groundwater in Northeastern Pennsylvania. Groundwater,51(3), 333–349. https://doi.org/10.1111/gwat.12056.

    Article  Google Scholar 

  • Molofsky, L. J., Richardson, S. D., Gorody, A. W., Baldassare, F., Black, J. A., McHugh, T. E., et al. (2016). Effect of different sampling methodologies on measured methane concentrations in groundwater samples. Groundwater.,54(5), 669–680. https://doi.org/10.1111/gwat.12415.

    Article  Google Scholar 

  • Naftz, D. L., Hadley, H. K., & Hunt, G. L. (1998). Determination of methane concentrations in shallow ground water and soil gas near Price, Utah. USGS, Utah. ES-191-97.

  • Oliveira, J. T. (1983a). Carta Geológica de Portugal à escala 1/200000, Folha 7. Serviços Geológicos de Portugal.

  • Oliveira, J. T. (1983b). The marine Carboniferous of South Portugal: a stratigraphic and sedimentological approach. In M. J. Lemos de Sousa & J. T. Oliveira (Eds.), The carboniferous of Portugal (Vol. 29, pp. 3–37). Lisbon: Serv. Geol. Portugal.

    Google Scholar 

  • Oliveira, J. T., Horn, M., & Paproth, E. (1979). Preliminary note on the stratigraphy of the Baixo Alentejo Flysch Group, Carboniferous of Portugal and on the paleogeographic development compared to corresponding units in Northwest Germany. Comunicações dos Serviços Geológicos de Portugal,65, 151–168.

    Google Scholar 

  • Oliveira, J. T., Relvas, J., Pereira, Z., Matos, J. X., Rosa, C., Rosa, D., et al. (2013). Geologia da Zona Sul Portuguesa, com ênfase na estratigrafia e na vulcanologia física, geoquímica e mineralizações da Faixa Piritosa. In R. Dias, A. Araújo, P. Terrinha, & J. C. Kullberg (Eds.), Geologia de Portugal (Vol. I, pp. 673–767). Lisbon: Escolar Editora.

    Google Scholar 

  • Parker, L., & Britt, S. (2012). The effect of bottle fill rate and pour technique on the recovery of volatile organics. Groundwater Monitoring & Remediation,32(4), 78–86. https://doi.org/10.1111/j1745-6592.2012.01401.x.

    Article  Google Scholar 

  • Prince, R. C., & Suflita, J. M. (2007). Anaerobic biodegradation of natural gas condensate can be stimulated by the addition of gasoline. Biodegradation,18, 515–523. https://doi.org/10.1007/s10532-006-9084-4.

    Article  Google Scholar 

  • Prince, R. C., & Walters, C. C. (2016). Biodegradation of oil hydrocarbons and its implications for source identification. In S. A. Stout & Z. Wang (Eds.), Standard handbook oil spill environmental forensics (pp. 869–916). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Ramos, A., Fernández, O., Terrinha, P., Muñoz, J. A., & Arnaiz, A. (2014). Mesozoic tectonic and paleogeographic evolution of the Gulf of Cadiz and Algarve Basins, and implications for hydrocarbon exploration. AAPG Datapages/Search and Discovery, Article #10621.

  • Restek (2000). A technical guide for static headspace analysis using GC. Lit. Cat.# 59895B. Restek Technical Guide, Restek Corporation, USA.

  • Santos Neto, E. V. (2004). Gas geochemistry: a new technology to evaluate petroleum systems. Boletim de Geociências da Petrobras,12(2), 357–383 (in portuguese).

    Google Scholar 

  • Saunders, D. F., Burson, K. R., & Thompson, C. K. (1999). Model for hydrocarbon microseepage and related near-surface alterations. AAPG Bulletin,83(1), 170–184. https://doi.org/10.1306/00AA9A34-1730-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Schumacher, D. (2012). Hydrocarbon microseepage—A significant but underutilized geologic principle with broad applications for oil/gas exploration and production. AAPG Datapages/Search and Discovery, Article #40943.

  • Schumacher, D., & Abrams, M. A. (1996). Hydrocarbon migration and its near surface expression (Vol. 66)., AAPG memoir Tulsa: AAPG.

    Google Scholar 

  • Seneshen, D. M., Chidsey, T. C., Morgan, C. D., & Vanden Berg, M. D. (2010). New techniques for new hydrocarbon discoveries—Surface geochemical surveys in the lisbon and lightning draw southeast field areas, San Juan County, Utah. Utah: Miscellaneous Publication, Utah Geological Survey.

    Google Scholar 

  • Stadnitskaia, A., Ivanov, M. K., Blinova, V., Kreulen, R., & van Weering, T. C. E. (2006). Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Marine and Petroleum Geology,23, 281–296. https://doi.org/10.1016/j.marpetgeo.2005.11.001.

    Article  Google Scholar 

  • Tedesco, S. A. (1995). Surface geochemistry in petroleum exploration. London: Chapman and Hall.

    Book  Google Scholar 

  • Tipler, A. (2013). An introduction to headspace sampling in gas chromatography—Fundamentals and Theory. Waltham: PerkinHelmer Inc.

    Google Scholar 

  • USGS. (2006). Methane in West Virginia ground water. Fact Sheet 2006-3011, USGS, West Virginia.

  • Van der Meer, F., Yang, H., Kroonenberg, S., Lang, H., Van Gijk, P., Scholte, K., et al. (2002). Imaging Spectrometry and Petroleum Geology. In F. D. Van der Meer & S. M. Jong (Eds.), Imaging spectrometry basic principles and prospective application (pp. 219–241). Berlin: Springer.

    Google Scholar 

  • Whiticar, M. J., Faber, E., Whelan, J. K., & Simoneit, B. R. T. (1994). Thermogenic and bacterial hydrocarbon gases (free and sorbed) in Middle Valley, Juan de Fuca Ridge, Leg 1391. In M. J. Mottl, E. E. Davis, A. T. Fisher, & J. F. Slack (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 139, pp. 467–477). http://doi.org/10.2973/odp.proc.sr.139.241.1994

Download references

Acknowledgement

This study was financed by CNPq (Brazil), Equinor (Norway–Brazil) and FCT (Portugal). The authors would like to thank Isolab b.v. (The Netherlands) and Isotech (USA) for all analytical support. Special thanks to reviewers for the valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Barberes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Geochemical composition of headspace gases recovered from soil samples collected in Isojars® (1 ppm = 1 mg/L)

Sample

mole % in total gas

Gas composition (mole %) (total hydrocarbons = 100%)

Wetness

Carbon isotope ratios (d13C vs. vPDB)

Number

Type

CO2

C1

C2

C2H4

C3

C3H6

i-C4

n-C4

i-C5

n-C5

C1/C2

C1

C2

C2H4

C3

C3H6

SPZ-00

Soil

4.2

57.8

29.6

4

3

1.5

4.1

SPZ-01

Soil

1.1

95.9

4.1

SPZ-02

Soil

1.2

100

SPZ-03

Soil

1.3

100

SPZ-04

Soil

3.1

75.3

19.3

5.4

SPZ-05

Soil

0.34

100

SPZ-06

Soil

6.6

48.7

26

8.7

11.4

5.1

SPZ-07

Soil

1.3

100

SPZ-08

Soil

4

65.2

28.3

2.5

1.7

2.4

SPZ-09

Soil

2.6

86.7

8.3

1.8

3.1

SPZ-10

Soil

5.3

61.7

30.5

2.2

2.2

3.4

SPZ-11

Soil

0.87

100

SPZ-12

Soil

3.1

82.1

14

3.9

SPZ-13

Soil

0.58

100

SPZ-14

Soil

0.71

100

SPZ-15

Soil

3.2

67.6

21.3

3.4

1.7

1.9

4

SPZ-16

Soil

0.87

100

SPZ-17

Soil

2.1

100

SPZ-18

Soil

0.46

100

SPZ-19

Soil

0.89

100

F081

Soil

4.2

49

23.8

4.5

10.2

5.8

0.58

3.9

0.66

1.6

2.06

− 27.4

F08

Soil

3.1

47.6

26.9

1.2

12.8

3.7

0.63

4.7

0.78

1.7

1.77

− 31

F09

Soil

3.2

54

17.3

9.1

7.5

7.1

0.55

2.7

0.6

1.1

3.12

− 26

− 31.2

− 28

− 32

− 31

F10

Soil

0.62

53.6

17.4

10.2

7.2

7.7

0.51

2.4

0.55

0.52

3.08

− 24.8

F11

Soil

0.7

80.8

6.9

6.9

2.7

2.7

11.71

Too small

F12

Soil

0.56

62.5

11

11

6.5

6.5

2.4

5.68

Too small

P03

Soil

1.1

63

10.1

10.5

5.3

7

0.36

1.8

1.1

0.83

6.24

Sample

Carbon isotope ratios (d13C vs. vPDB)

Gas composition (mole ppm)

Number

Type

i-C4

n-C4

i-C5

n-C5

C1

C2

C2H4

C3

C3H6

i-C4

n-C4

i-C5

n-C5

Toluene

C6+

SPZ-00

Soil

2

1

0.1

0.1

0.1

0.1

< 1 ppm

2

SPZ-01

Soil

2

0.1

< 1 ppm

2

SPZ-02

Soil

2

< 1 ppm

1

SPZ-03

Soil

2

< 1 ppm

2

SPZ-04

Soil

< 1 ppm

< 1 ppm

SPZ-05

Soil

2

< 1 ppm

2

SPZ-06

Soil

2

1

0.4

0.5

0.2

< 1 ppm

3

SPZ-07

Soil

2

< 1 ppm

5

SPZ-08

Soil

2

0.9

0.1

0.1

0.1

< 1 ppm

17

SPZ-09

Soil

2

0.2

0.1

< 1 ppm

< 1 ppm

SPZ-10

Soil

3

1

0.1

0.1

0.2

< 1 ppm

2

SPZ-11

Soil

2

< 1 ppm

6

SPZ-12

Soil

2

0.3

0.1

< 1 ppm

< 1 ppm

SPZ-13

Soil

2

< 1 ppm

2

SPZ-14

Soil

2

< 1 ppm

< 1 ppm

SPZ-15

Soil

2

0.6

0.1

0.1

 

0.1

 

0.1

< 1 ppm

4

SPZ-16

Soil

2

< 1 ppm

5

SPZ-17

Soil

1

< 1 ppm

2

SPZ-18

Soil

2

< 1 ppm

1

SPZ-19

Soil

1

< 1 ppm

< 1 ppm

F081

Soil

96

47

9

20

11

1

8

1

3

2

10

F08

Soil

1000

565

25

269

78

13

99

16

36

5

117

F09

Soil

− 31

− 32

− 31

− 33

160

51

27

22

21

2

8

2

3

5

17

F10

Soil

31

10

6

4

4

0.3

1

0.3

0.3

< 1 ppm

2

F11

Soil

3

0.3

0.3

0.1

0.1

< 1 ppm

< 1 ppm

F12

Soil

3

0.5

0.5

0.3

0.3

0.1

< 1 ppm

< 1 ppm

P03

Soil

8

1

1

0.7

0.9

0.2

0.1

0.1

< 1 ppm

< 1 ppm

Appendix 2: Geochemical composition of headspace gases recovered from water samples collected in Isojars® (1 ppm = 1 mg/L)

Sample

mol% in total gas

Gas composition (mol%) (total hydrocarbons = 100%)

Wetness

Carbon isotope ratios (d13C vs. vPDB)

Number

Type

CO2

C1

C2

C2H4

C3

C3H6

i-C4

n-C4

i-C5

n-C5

C1/C2

C1

C2

C2H4

C3

C3H6

W02

Water

0.85

94.5

2.9

1.9

0.75

W03

Water

2.1

82.7

7.4

1.3

5.1

3.4

W06

Water

3.2

82.3

3.7

8.2

5.8

W07

Water

1.4

92.5

1.8

3.3

2.5

W09

Water

0.094

83.9

0.98

2.4

1.3

3

4.4

4

85.61

W10

Water

2.9

89.5

1.5

5.1

4

W11

Water

0.02

95.7

0.67

1.8

1.8

W12

Water

2.8

87.7

3

4.7

4.7

W13

Water

0.59

86.4

1.7

6

6

W14

Water

1.1

89.9

1.3

5.2

3.5

W15

Water

0.47

79

5.3

2.5

5.9

7.2

W16

Water

2.4

78.9

3.6

10.5

7

W17

Water

3.8

82.4

3.1

2.2

5.8

6.4

W18

Water

4.1

80.3

7.2

2.8

5.7

4

W19

Water

3.9

86.8

0.92

6.5

5.8

W20

Water

3.7

86.4

6.9

4.7

2

W21

Water

2.7

80.3

11.2

4.8

2.3

1.4

W22

Water

1.1

86.7

6.2

4.2

3

W23

Water

0.19

85.3

2.8

3.6

4

2.1

2.1

W24

Water

0.16

83.5

7.4

3.6

3.5

2.1

W25

Water

1.8

88.1

4.9

2.9

2.7

1.4

W26

Water

1.8

87.2

4

5.6

3.1

W27

Water

2.5

93.8

2.1

0.68

1.8

1.6

W28

Water

1.3

93.7

2.9

3.4

 

W29

Water

0.25

88.1

3.1

5.6

3.2

W30

Water

0.54

95.2

4.8

W31

Water

2

95.3

1.9

2.8

W32

Water

0.21

100

W33

Water

2.7

96

2.7

0.56

0.43

0.29

W33-1

Water

1.4

63.3

5.5

23

8.2

11.51

Too small

W34

Water

3

97.1

1.3

0.99

0.42

0.2

74.69

− 32.7

Sample

Carbon isotope ratios (d13C vs. vPDB)

Gas composition (mole ppm)

Number

Type

i-C4

n-C4

i-C5

n-C5

C1

C2

C2H4

C3

C3H6

i-C4

n-C4

i-C5

n-C5

Toluene

C6+

W02

Water

5

0.2

0.1

3

4

W03

Water

4

0.4

0.1

0.2

0.2

3

3

W06

Water

3

0.1

0.3

0.2

5

6

W07

Water

6

0.1

0.2

0.2

4

5

W09

Water

8

0.1

0.2

0.1

0.3

0.4

0.4

3

4

W10

Water

5

0.1

0.3

0.2

2

3

W11

Water

7

0.1

0.1

4

5

W12

Water

3

0.1

0.2

0.2

< 1 ppm

< 1 ppm

W13

Water

2

0.1

0.1

3

3

W14

Water

4

0.1

0.2

0.2

3

4

W15

Water

2

0.1

0.1

0.1

0.2

3

4

W16

Water

2

0.1

0.3

0.2

2

3

W17

Water

3

0.1

0.1

0.2

0.2

5

6

W18

Water

3

0.3

0.1

0.2

0.1

4

4

W19

Water

2

0.1

0.1

2

3

W20

Water

2

0.2

0.1

5

5

W21

Water

3

0.4

0.2

0.1

0.1

< 1 ppm

< 1 ppm

W22

Water

2

0.1

0.1

0.1

5

5

W23

Water

3

0.1

0.1

0.1

0.1

0.1

6

7

W24

Water

2

0.2

0.1

0.1

0.1

1

2

W25

Water

3

0.2

0.1

0.1

5

5

W26

Water

2

0.1

0.1

0.1

2

2

W27

Water

6

0.1

0.1

0.1

1

2

W28

Water

3

0.1

0.1

2

2

W29

Water

2

0.1

0.1

0.1

3

3

W30

Water

3

0.2

5

5

W31

Water

2

0.1

2

2

W32

Water

3

2

2

W33

Water

12

0.3

0.1

0.1

2

2

W33-1

Water

4

0.3

1

0.5

2

2

W34

Water

70

0.9

0.7

0.3

0.1

2

2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barberes, G.A., Spigolon, A.L.D., dos Reis, R.P. et al. Hydrocarbon seeps from the unconventional petroleum system of the South Portuguese Zone, Portugal. J Iber Geol 46, 1–19 (2020). https://doi.org/10.1007/s41513-019-00115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-019-00115-x

Keywords

Palabras clave

Navigation