Skip to main content

Advertisement

Log in

High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70 ± 5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n = 15) and control (n = 15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85–90% of heart rate reserve [HRR] and 2 min active phase at 50–55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P = 0.021, P = 0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P = 0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r = 0. 771, P = 0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r = − 0.595, P = 0.019), and variation of NOx (r = − 0.572, P = 0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akcılar R, Turgut S, Caner V, Akcılar A, Ayada C, Elmas L, Özcan TO (2013) Apelin effects on blood pressure and RAS in DOCA-salt-induced hypertensive rats. Clin Exp Hypertens 35(7):550–557. https://doi.org/10.3109/10641963.2013.764889

    Article  PubMed  Google Scholar 

  2. American College of Sports Medicine (1993) Position Stand. Physical activity, physical fitness, and hypertension. Medicine and science in sports and exercise. 25(10):i-x

  3. Andersen CU, Hilberg O, Mellemkjœr S, Nielsen-Kudsk JE, Simonsen U (2011) Apelin and pulmonary hypertension. Pulm Circ 1(3):334–346. https://doi.org/10.4103/2045-8932.87299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Besse-Patin A, Montastier E, Vinel C, Castan-Laurell I, Louche K, Dray C, Daviaud D, Mir L, Marques MA, Thalamas C, Valet P, Langin D, Moro C, Viguerie N (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes 38(5):707–713. https://doi.org/10.1038/ijo.2013.158

    Article  CAS  Google Scholar 

  5. Carnethon MR, Gidding SS, Nehgme R, Sidney S, Jacobs Jr DR, Liu K (2003) Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA 290(23):3092–3100. https://doi.org/10.1001/jama.290.23.3092

    Article  CAS  PubMed  Google Scholar 

  6. Chase NL, Sui X, Lee DC, Blair SN (2009) The association of cardiorespiratory fitness and physical activity with incidence of hypertension in men. Am J Hypertens 22(4):417–424. https://doi.org/10.1038/ajh.2009.6

    Article  PubMed  Google Scholar 

  7. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, Guimaraes GV (2010) Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res 33(8):836–843. https://doi.org/10.1038/hr.2010.72

    Article  CAS  PubMed  Google Scholar 

  8. Collaboration PS (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    Article  Google Scholar 

  9. Cornelissen V, Verheyden B, Aubert A, Fagard R, editors (2009) Effects of endurance training intensity on resting, exercise and post exercise blood pressure, heart rate and heart rate variability. J Hypertens

  10. Faselis C, Doumas M, Kokkinos JP, Panagiotakos D, Kheirbek R, Sheriff HM, Hare K, Papademetriou V, Fletcher R, Kokkinos P (2012) Exercise capacity and progression from prehypertension to hypertension. Hypertension 60(2):333–338. https://doi.org/10.1161/HYPERTENSIONAHA.112.196493

    Article  CAS  PubMed  Google Scholar 

  11. Faselis C, Doumas M, Pittaras A, Narayan P, Myers J, Tsimploulis A, Kokkinos P (2014) Exercise capacity and all-cause mortality in male veterans with hypertension aged≥ 70 years. Hypertension 64(1):30–35. https://doi.org/10.1161/HYPERTENSIONAHA.114.03510

    Article  CAS  PubMed  Google Scholar 

  12. Franklin SS (2006) Hypertension in older people: part 1. J Clin Hypertens (Greenwich, Conn) 8(6):444–449

    Article  Google Scholar 

  13. Fujie S, Sato K, Miyamoto-Mikami E, Hasegawa N, Fujita S, Sanada K, Hamaoka T, Iemitsu M (2014) Reduction of arterial stiffness by exercise training is associated with increasing plasma apelin level in middle-aged and older adults. PLoS One 9(4):e93545. https://doi.org/10.1371/journal.pone.0093545

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guimaraes GV, Ciolac EG, Carvalho VO, D'Avila VM, Bortolotto LA, Bocchi EA (2010) Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res 33(6):627–632. https://doi.org/10.1038/hr.2010.42

    Article  CAS  PubMed  Google Scholar 

  15. Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107(25):3152–3158. https://doi.org/10.1161/01.CIR.0000074229.93804.5C

    Article  CAS  PubMed  Google Scholar 

  16. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279. https://doi.org/10.1074/jbc.M404149200

    Article  CAS  PubMed  Google Scholar 

  17. Jia YX, ZF L, Zhang J, Pan CS, Yang JH, Zhao J et al (2007) Apelin activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides 28(10):2023–2029. https://doi.org/10.1016/j.peptides.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  18. Kadoglou NP, Vrabas IS, Kapelouzou A, Angelopoulou N (2012) The association of physical activity with novel adipokines in patients with type 2 diabetes. Eur J Intern Med 23(2):137–142. https://doi.org/10.1016/j.ejim.2011.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Kadoglou N, Fotiadis G, Kapelouzou A, Kostakis A, Liapis C, Vrabas I (2013) The differential anti-inflammatory effects of exercise modalities and their association with early carotid atherosclerosis progression in patients with type 2 diabetes. Diabet Med 30(2):e41–e50. https://doi.org/10.1111/dme.12055

    Article  CAS  PubMed  Google Scholar 

  20. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365(9455):217–223. https://doi.org/10.1016/S0140-6736(05)70151-3

    Article  PubMed  Google Scholar 

  21. Kokkinos P, Manolis A, Pittaras A, Doumas M, Giannelou A, Panagiotakos DB, Faselis C, Narayan P, Singh S, Myers J (2009) Exercise capacity and mortality in hypertensive men with and without additional risk factors. Hypertension 53(3):494–499. https://doi.org/10.1161/HYPERTENSIONAHA.108.127027

    Article  CAS  PubMed  Google Scholar 

  22. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37(5):1236–1241. https://doi.org/10.1161/01.HYP.37.5.1236

    Article  CAS  PubMed  Google Scholar 

  23. Lawes CM, Vander Hoorn S, Rodgers A (2008) Global burden of blood-pressure-related disease, 2001. Lancet (London, England) 371(9623):1513–1518. https://doi.org/10.1016/S0140-6736(08)60655-8

    Article  Google Scholar 

  24. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O'Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41

    Article  CAS  PubMed  Google Scholar 

  25. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T et al (2004) Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 27(12):947–953. https://doi.org/10.1291/hypres.27.947

    Article  CAS  PubMed  Google Scholar 

  26. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1] Apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54(3):598–604. https://doi.org/10.1161/HYPERTENSIONAHA.109.134619

    Article  CAS  PubMed  Google Scholar 

  27. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801. https://doi.org/10.1056/NEJMoa011858

    Article  PubMed  Google Scholar 

  28. O’Carroll A-M, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta (BBA) Gene Struct Exp 1492(1):72–80

    Article  Google Scholar 

  29. Pan X, Zhang Y, Tao S (2015) Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension. Clin Exp Hypertens 37(1):8–14. https://doi.org/10.3109/10641963.2014.881838

    Article  CAS  PubMed  Google Scholar 

  30. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553. https://doi.org/10.1249/01.MSS.0000115224.88514.3A

    Article  PubMed  Google Scholar 

  31. Przewlocka-Kosmala M, Kotwica T, Mysiak A, Kosmala W (2011) Reduced circulating apelin in essential hypertension and its association with cardiac dysfunction. J Hypertens 29(5):971–979. https://doi.org/10.1097/HJH.0b013e328344da76

    Article  CAS  PubMed  Google Scholar 

  32. Röckl KS, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60(3):145–153. https://doi.org/10.1002/iub.21

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rognmo Ø, Hetland E, Helgerud J, Hoff J, Slørdahl SA (2004) High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 11(3):216–222. https://doi.org/10.1097/01.hjr.0000131677.96762.0c

    Article  PubMed  Google Scholar 

  34. Santana HA, Moreira SR, Asano RY, Sales MM, Córdova C, Campbell CS et al (2013) Exercise intensity modulates nitric oxide and blood pressure responses in hypertensive older women. Aging Clin Exp Res 25(1):43–48. https://doi.org/10.1007/s40520-013-0017-x

    Article  PubMed  Google Scholar 

  35. Sparks LM, Moro C, Ukropcova B, Bajpeyi S, Civitarese AE, Hulver MW, Thoresen GH, Rustan AC, Smith SR (2011) Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes. PLoS One 6(7):e21068. https://doi.org/10.1371/journal.pone.0021068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440. https://doi.org/10.1161/01.RES.0000033522.37861.69

    Article  CAS  PubMed  Google Scholar 

  37. Tanabe T, Maeda S, Miyauchi T, Iemitsu M, Takanashi M, Irukayama-Tomobe Y, Yokota T, Ohmori H, Matsuda M (2003) Exercise training improves ageing-induced decrease in eNOS expression of the aorta. Acta Physiol Scand 178(1):3–10. https://doi.org/10.1046/j.1365-201X.2003.01100.x

    Article  CAS  PubMed  Google Scholar 

  38. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM et al (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome a pilot study. Circulation 118(4):346–354. https://doi.org/10.1161/CIRCULATIONAHA.108.772822

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D'Agostino RB, Levy D (2002) Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA 287(8):1003–1010

    Article  PubMed  Google Scholar 

  40. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients a randomized study. Circulation 115(24):3086–3094. https://doi.org/10.1161/CIRCULATIONAHA.106.675041

    Article  PubMed  Google Scholar 

  41. Zhang J, Ren CX, Qi YF, Lou LX, Chen L, Zhang LK, Wang X, Tang C (2006) Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci 79(12):1153–1159. https://doi.org/10.1016/j.lfs.2006.03.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Mohsen Fathzadeh (University of Stanford, Division of Cardiovascular Medicine 300 Pasteur Drive, Falk CVRC Stanford, CA 94305-5406, the USA) for his fruitful comments during the preparation of the paper.

Funding

This research received no specific grant from any funding agency in the public and commercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ghardashi Afousi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, M.R., Ghardashi Afousi, A., Asvadi Fard, M. et al. High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. J Physiol Biochem 74, 47–55 (2018). https://doi.org/10.1007/s13105-017-0602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0602-0

Keywords

Navigation