Skip to main content

Advertisement

Log in

PEPCK-C reexpression in the liver counters neonatal hypoglycemia in Pck1 del/del mice, unmasking role in non-gluconeogenic tissues

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Whole body cytosolic phosphoenolpyruvate carboxykinase knockout (PEPCK-C KO) mice die early after birth with profound hypoglycemia therefore masking the role of PEPCK-C in adult, non-gluconeogenic tissues where it is expressed. To investigate whether PEPCK-C deletion in the liver was critically responsible for the hypoglycemic phenotype, we reexpress this enzyme in the liver of PEPCK-C KO pups by early postnatal administration of PEPCK-C-expressing adenovirus. This maneuver was sufficient to partially rescue hypoglycemia and allow the pups to survive and identifies the liver as a critical organ, and hypoglycemia as the critical pathomechanism, leading to early postnatal death in the whole-body PEPCK-C knockout mice. Pathology assessment of survivors also suggest a possible role for PEPCK-C in lung maturation and muscle metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvarez Z, Hyrossova P, Perales JC & Alcantara S (2014) Neuronal progenitor maintenance requires lactate metabolism and pepck-m-directed cataplerosis. Cerebral cortex

  2. Anderson JM, Milner RD, Strich SJ (1967) Effects of neonatal hypoglycaemia on the nervous system: a pathological study. J Neurol Neurosurg Psychiatry 30:295–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR et al (2004) Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279:48941–48949

    Article  CAS  PubMed  Google Scholar 

  4. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, Browning JD, Magnuson MA (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engle MJ, Dooley M, Brown DJ (1987) Evidence for lactate utilization for fetal lung glycogen synthesis. Biochem Biophys Res Commun 145:397–401

    Article  CAS  PubMed  Google Scholar 

  6. Engle MJ, Brown DJ, Dehring AF, Dooley M (1988) Effect of lactate on glucose incorporation into fetal lung phospholipids. Exp Lung Res 14:121–129

    Article  CAS  PubMed  Google Scholar 

  7. Hakimi P, Johnson MT, Yang J, Lepage DF, Conlon RA, Kalhan SC, Reshef L, Tilghman SM, Hanson RW (2005) Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr Metab (Lond) 2:33

    Article  Google Scholar 

  8. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y et al (2007) Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282:32844–32855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanson RW, Hakimi P (2008) Born to run; the story of the PEPCK-Cmus mouse. Biochimie 90:838–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jerebtsova M, Ye X, Ray PE (2009) A simple technique to establish a long-term adenovirus mediated gene transfer to the heart of newborn mice. Cardiovascular & hematological disorders drug targets 9:136–140

    Article  CAS  Google Scholar 

  11. King JH, Moyle RD, Haupt WC (1912) Studies in glycosuria : second paper: glycosuria following anesthesia produced by the intravenous injection of ether. J Exp Med 16:178–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei KJ, Chen H, Pan CJ, Ward JM, Mosinger B Jr, Lee EJ, Westphal H, Mansfield BC, Chou JY (1996) Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat Genet 13:203–209

  13. Mendez-Lucas A, Duarte JA, Sunny NE, Satapati S, He T, Fu X, Bermudez J, Burgess SC, Perales JC (2013) PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J Hepatol 59:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendez-Lucas A, Hyrossova P, Novellasdemunt L, Vinals F, Perales JC (2014) Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem 289:22090–22102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P, Tilghman SM, Hanson RW, Reshef L (2002) A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci U S A 99:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Postic C, Magnuson MA (2000) DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26:149–150

    Article  CAS  PubMed  Google Scholar 

  17. She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA (2000) Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20:6508–6517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torday J, Rehan V (2011) Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression. Exp Lung Res 37:376–386

    Article  CAS  PubMed  Google Scholar 

  19. Yabaluri N, Bashyam MD (2010) Hormonal regulation of gluconeogenic gene transcription in the liver. J Biosci 35:473–484

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Croniger CM, Lekstrom-Himes J, Zhang P, Fenyus M, Tenen DG, Darlington GJ, Hanson RW (2005) Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha. J Biol Chem 280:38689–38699

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Kalhan SC, Hanson RW (2009) What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 284:27025–27029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmer DB, Magnuson MA (1990) Immunohistochemical localization of phosphoenolpyruvate carboxykinase in adult and developing mouse tissues. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 38:171–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Research Support Services from the Biology Unit of Bellvitge (University of Barcelona) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Perales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by a grant from the Ministerio de Economia y Competitividad and by FEDER (BFU2012-37177 and BFU2015-66030-R) awarded to J.C.P. J.S., A.M.L., and P.H. have received fellowships from Ministerio de Educación y Ciencia or Ministerio de Economia y Competitividad.

Electronic supplementary material

Supplementary Figure 1

Brain histology (H&E). Cerebral cortex of Control P2 sibling (a), PEPCK-C KO Stage I (b) and Stage III (c). Hippocampus of Control P2 sibling (d), PEPCK-C KO in Stage I (e) and Stage III (f). Arrows indicate pyknotic nuclei. (DOCX 219 kb)

Supplementary Figure 2

Histology of ocular bulbs and retina (H&E) in Control P0.5 sibling (a) and Stage I PEPCK-C KO pup (b). No difference was observed between genotypes. (DOCX 68 kb)

Supplementary Figure 3

Stage III PEPCK-C histology (H&E). Renal cortex (a), pancreatic islet (b1), pancreatic acini (b2), urinary bladder (c), ureter (d), testis (e), stomach (f), duodenum (g), thyroid gland (h), cartilage (i) and esophagus (j). No abnormality was observed. (DOCX 226 kb)

Supplementary Figure 4

As a control of transduction, AdGFP was injected intraperitoneally to P0.5 pups. GFP expression (green) and nuclear marker TO-PRO3 (blue) can be observed in overlapping transmission and confocal fluorescence micrographs. Lung (10×) ( a ), WAT (40×) ( b ), Cerebellum (10×) ( c ), Kidney cortex (10×) ( d ), Liver (40×) ( e ), Pancreas (10×) ( f ), Spleen (10×) ( g ), Small intestine (10×) ( h ). (DOCX 7125 kb)

Supplementary Figure 5

Histology of hypothalamus of AdPck1 + KO and AdPck1 + Control animals, P8.5. Coronal sections of basal parts of prepeduncular hypothalamus, nuclear staining YOYO-1 in green, GFAP in red. GFAP: Glial fibrillary acidic protein. (DOCX 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semakova, J., Hyroššová, P., Méndez-Lucas, A. et al. PEPCK-C reexpression in the liver counters neonatal hypoglycemia in Pck1 del/del mice, unmasking role in non-gluconeogenic tissues. J Physiol Biochem 73, 89–98 (2017). https://doi.org/10.1007/s13105-016-0528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0528-y

Keywords

Navigation