Skip to main content

Advertisement

Log in

Lifestyle predictors of oxidant and antioxidant enzyme activities and total antioxidant capacity in healthy women: a cross-sectional study

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to identify demographic and modifiable lifestyle factors that may be related to endogenous oxidant and antioxidant activity measured in blood specimens from putatively healthy women recruited at the Roswell Park Cancer Institute (Buffalo, NY, USA). Total glutathione (TGSH), catalase (CAT), CuZn–superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and myeloperoxidase (MPO) activity, and total antioxidant capacity (TAC) were measured in 124 healthy women, and associations with epidemiological factors were tested using general linear models. There were significant differences in oxidant and antioxidant enzyme activities according to lifestyle factors, after adjusting for duration of blood storage and season of blood draw. Compared to women who consumed ≤2.8 servings of fruits and vegetables daily, those consuming >5.3 servings had on average 31 % lower MPO activity (p-trend = 0.02), as a marker of oxidative stress, 16 % higher antioxidant GPx activity (p-trend = 0.08), and 9 % higher TAC (p-trend = 0.05). Obese women (body mass index, BMI ≥ 30) in contrast showed 17 % lower antioxidant GPx activity, 44 % higher MPO activity (p-trend = 0.03), and 10 % higher TAC (p-trend = 0.03) compared to women with normal BMI < 25. Smoking was associated with higher TGSH activity (p-trend = 0.01) and lower TAC (p-trend = 0.05). Higher TAC levels were most strongly associated with increasing age (standardized β = 0.40, p < 0.0001), BMI (standardized β = 0.17, p = 0.03), and GPx activity (standardized β = 0.23, p = 0.005), and inversely associated with CuZn-SOD activity (standardized β = −0.14, p = 0.07). Physical activity levels, multivitamin use, and alcohol intake were not associated with TAC. Our data indicate that endogenous oxidant and antioxidant enzyme activities are associated with lifestyle factors and, therefore, may be potentially modifiable, with implications for risk reduction of chronic conditions related to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2:903–917

    Article  CAS  PubMed  Google Scholar 

  2. Ambrosone CB, Nesline MK, Davis W (2006) Establishing a cancer center data bank and biorepository for multidisciplinary research. Cancer Epidemiol Biomark Prev 15:1575–1577

    Article  Google Scholar 

  3. Andersen HR, Nielsen JB, Nielsen F, Grandjean P (1997) Antioxidative enzyme activities in human erythrocytes. Clin Chem 43:562–568

    CAS  PubMed  Google Scholar 

  4. Balog T, Sobocanec S, Sverko V, Krolo I, Rocic B, et al. (2006) The influence of season on oxidant-antioxidant status in trained and sedentary subjects. Life Sci 78:1441–1447

    Article  CAS  PubMed  Google Scholar 

  5. Bednarek-Tupikowska G, Tworowska U, Jedrychowska I, Radomska B, Tupikowski K, et al. (2006) Effects of oestradiol and oestroprogestin on erythrocyte antioxidative enzyme system activity in postmenopausal women. Clin Endocrinol 64:463–468

    CAS  Google Scholar 

  6. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826

    Article  CAS  PubMed  Google Scholar 

  7. Ceballos-Picot I, Trivier JM, Nicole A, Sinet PM, Thevenin M (1992) Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin Chem 38:66–70

    CAS  PubMed  Google Scholar 

  8. Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548

    Article  CAS  PubMed  Google Scholar 

  9. Chen JT, Kotani K (2012) Oral contraceptive therapy increases oxidative stress in pre-menopausal women. Int J Prev Med 3:893–896

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas I, Papademetriou L, et al. (2007) The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis 17:590–597

    Article  PubMed  Google Scholar 

  11. Codoner-Franch P, Bataller Alberola A, Domingo Camarasa JV, Escribano Moya MC, Valls Belles V (2009) Influence of dietary lipids on the erythrocyte antioxidant status of hypercholesterolaemic children. Eur J Pediatr 168:321–327

    Article  CAS  PubMed  Google Scholar 

  12. Costa D, Moutinho L, Lima JL, Fernandes E (2006) Antioxidant activity and inhibition of human neutrophil oxidative burst mediated by arylpropionic acid non-steroidal anti-inflammatory drugs. Biol Pharm Bull 29:1659–1670

    Article  CAS  PubMed  Google Scholar 

  13. Covas MI, Coca L, Ricos C, Marrugat J (1997) Biological variation of superoxide dismutase in erythrocytes and glutathione peroxidase in whole blood. Clin Chem 43:1991–1993

    CAS  PubMed  Google Scholar 

  14. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  CAS  PubMed  Google Scholar 

  15. De Groote D, Perrier d’Hauterive S, Pintiaux A, Balteau B, Gerday C, et al. (2009) Effects of oral contraception with ethinylestradiol and drospirenone on oxidative stress in women 18-35 years old. Contraception 80:187–193

    Article  CAS  PubMed  Google Scholar 

  16. Dragsted LO, Pedersen A, Hermetter A, Basu S, Hansen M, et al. (2004) The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am J Clin Nutr 79:1060–1072

    CAS  PubMed  Google Scholar 

  17. Escalante Gomez C, Quesada MS (2013) HRT decreases DNA and lipid oxidation in postmenopausal women. Climacteric 16:104–110

    Article  CAS  PubMed  Google Scholar 

  18. Fabian E, Bogner M, Elmadfa I (2012) Age-related modification of antioxidant enzyme activities in relation to cardiovascular risk factors. Eur J Clin Investig 42:42–48

    Article  CAS  Google Scholar 

  19. Fahey MT, Sasaki S, Kobayashi M, Akabane M, Tsugane S (2003) Seasonal misclassification error and magnitude of true between-person variation in dietary nutrient intake: a random coefficients analysis and implications for the Japan public health center (JPHC) cohort study. Public Health Nutr 6:385–391

    Article  PubMed  Google Scholar 

  20. Fallah S, Valinejad Sani F, Firoozrai M (2011) Effect of contraceptive pills on the activity status of the antioxidant enzymes glutathione peroxidase and superoxide dismutase in healthy subjects. Contraception 83:385–389

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes E, Costa D, Toste SA, Lima JL, Reis S (2004) In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 37:1895–1905

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Pachon MS, Berna G, Otaolaurruchi E, Troncoso AM, Martin F, et al. (2009) Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. J Agric Food Chem 57:6578–6583

    Article  CAS  PubMed  Google Scholar 

  23. Finco A, Belcaro G, Cesarone MR (2011) Assessment of the activity of an oral contraceptive on the levels of oxidative stress and changes in oxidative stress after co-treatment with two different types of physiological modulators with antioxidant action. Contraception 84:418–422

    Article  CAS  PubMed  Google Scholar 

  24. Finco A, Belcaro G, Cesarone MR (2012) Evaluation of oxidative stress after treatment with low estrogen contraceptive either alone or associated with specific antioxidant therapy. Contraception 85:503–508

    Article  CAS  PubMed  Google Scholar 

  25. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  26. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  CAS  PubMed  Google Scholar 

  27. Giergiel M, Lopucki M, Stachowicz N, Kankofer M (2012) The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals. Aging Clin Exp Res 24:561–569

    CAS  PubMed  Google Scholar 

  28. Gokkusu C, Tata G, Ademoglu E, Tamer S (2010) The benefits of hormone replacement therapy on plasma and platelet antioxidant status and fatty acid composition in healthy postmenopausal women. Platelets 21:439–444

    Article  CAS  PubMed  Google Scholar 

  29. Goraca A (2004) Assessment of total antioxidant capacity in human plasma. Folia Med (Plovdiv) 46:16–21

    Google Scholar 

  30. Guemouri L, Artur Y, Herbeth B, Jeandel C, Cuny G, et al. (1991) Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin Chem 37:1932–1937

    CAS  PubMed  Google Scholar 

  31. Hakim IA, Harris R, Garland L, Cordova CA, Mikhael DM, et al. (2012) Gender difference in systemic oxidative stress and antioxidant capacity in current and former heavy smokers. Cancer Epidemiol Biomark Prev 21:2193–2200

    Article  CAS  Google Scholar 

  32. Hardeland R, Coto-Montes A, Poeggeler B (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20:921–962

    Article  CAS  PubMed  Google Scholar 

  33. Hermsdorff HH, Barbosa KB, Volp AC, Puchau B, Bressan J, et al. (2012) Vitamin C and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults. Br J Nutr 107:1119–1127

    Article  CAS  PubMed  Google Scholar 

  34. Hong CC, Ambrosone CB, Ahn J, Choi JY, McCullough ML, et al. (2007) Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev 16:1784–1794

    Article  CAS  Google Scholar 

  35. Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20:72–77

    Article  CAS  PubMed  Google Scholar 

  36. Hulea SA, Olinescu R, Nita S, Crocnan D, Kummerow FA (1995) Cigarette smoking causes biochemical changes in blood that are suggestive of oxidative stress: a case-control study. J Environ Pathol Toxicol Oncol 14:173–180

    CAS  PubMed  Google Scholar 

  37. Karakas M, Koenig W (2012) Myeloperoxidase production by macrophage and risk of atherosclerosis. Curr Atheroscler Rep 14:277–283

    Article  CAS  PubMed  Google Scholar 

  38. Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, et al. (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol 23:434–439

    Article  CAS  PubMed  Google Scholar 

  39. Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, et al. (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323

    Article  PubMed  Google Scholar 

  40. Knight JA (2000) The biochemistry of aging. Adv Clin Chem 35:1–62

    Article  CAS  PubMed  Google Scholar 

  41. Kocyigit A, Erel O, Gur S (2001) Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clin Biochem 34:629–633

    Article  CAS  PubMed  Google Scholar 

  42. Leelarungrayub D, Saidee K, Pothongsunun P, Pratanaphon S, YanKai A, et al. (2011) Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women. J Bodyw Mov Ther 15:355–362

    Article  PubMed  Google Scholar 

  43. Lesgards JF, Durand P, Lassarre M, Stocker P, Lesgards G, et al. (2002) Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Perspect 110:479–486

    Article  PubMed  PubMed Central  Google Scholar 

  44. Malle E, Buch T, Grone HJ (2003) Myeloperoxidase in kidney disease. Kidney Int 64:1956–1967

    Article  CAS  PubMed  Google Scholar 

  45. Massafra C, Buonocore G, Berni S, Gioia D, Giuliani A, et al. (1993) Antioxidant erythrocyte enzyme activities during oral contraception. Contraception 47:590–596

    Article  CAS  PubMed  Google Scholar 

  46. Maurya PK, Kumar P, Siddiqui N, Tripathi P, Rizvi SI (2010) Age-associated changes in erythrocyte glutathione peroxidase activity: correlation with total antioxidant potential. Indian J Biochem Biophys 47:319–321

    CAS  PubMed  Google Scholar 

  47. Misra R, Mangi S, Joshi S, Mittal S, Gupta SK, et al. (2006) LycoRed as an alternative to hormone replacement therapy in lowering serum lipids and oxidative stress markers: a randomized controlled clinical trial. J Obstet Gynaecol Res 32:299–304

    Article  CAS  PubMed  Google Scholar 

  48. Montano M, Cisneros J, Ramirez-Venegas A, Pedraza-Chaverri J, Mercado D, et al. (2010) Malondialdehyde and superoxide dismutase correlate with FEV(1) in patients with COPD associated with wood smoke exposure and tobacco smoking. Inhal Toxicol 22:868–874

    Article  CAS  PubMed  Google Scholar 

  49. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Niki E (2008) Lipid peroxidation products as oxidative stress biomarkers. Biofactors 34:171–180

    Article  CAS  PubMed  Google Scholar 

  51. Noguer MA, Cerezo AB, Donoso Navarro E, Garcia-Parrilla MC (2012) Intake of alcohol-free red wine modulates antioxidant enzyme activities in a human intervention study. Pharmacol Res 65:609–614

    Article  CAS  PubMed  Google Scholar 

  52. Orhan H, Evelo CT, Sahin G (2005) Erythrocyte antioxidant defense response against cigarette smoking in humans--the glutathione S-transferase vulnerability. J Biochem Mol Toxicol 19:226–233

    Article  CAS  PubMed  Google Scholar 

  53. Ozbay B, Dulger H (2002) Lipid peroxidation and antioxidant enzymes in turkish population: relation to age, gender, exercise, and smoking. Tohoku J Exp Med 197:119–124

    Article  CAS  PubMed  Google Scholar 

  54. Ozguner F, Koyu A, Cesur G (2005) Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 21:21–26

    Article  CAS  PubMed  Google Scholar 

  55. Palasuwan A, Margaritis I, Soogarun S, Rousseau AS (2011) Dietary intakes and antioxidant status in mind-body exercising pre- and postmenopausal women. J Nutr Health Aging 15:577–584

    Article  CAS  PubMed  Google Scholar 

  56. Pannuru P, Vaddi DR, Kindinti RR, Varadacharyulu N (2011) Increased erythrocyte antioxidant status protects against smoking induced hemolysis in moderate smokers. Hum Exp Toxicol 30:1475–1481

    Article  CAS  PubMed  Google Scholar 

  57. Pejic SA, Kasapovic JD, Todorovic AU, Stojiljkovic VR, Gavrilovic LV, et al. (2013) Antioxidant enzymes in women with endometrial polyps: relation with sex hormones. Eur J Obstet Gynecol Reprod Biol 170:241–246

    Article  CAS  PubMed  Google Scholar 

  58. Pérez-Matute P, Zulet MA, Martínez JA (2009) Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol 9:771–779

    Article  CAS  PubMed  Google Scholar 

  59. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al. (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  60. Polac I, Borowiecka M, Wilamowska A, Nowak P (2012) Oxidative stress measured by carbonyl groups level in postmenopausal women after oral and transdermal hormone therapy. J Obstet Gynaecol Res 38:1177–1181

    Article  CAS  PubMed  Google Scholar 

  61. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  CAS  PubMed  Google Scholar 

  62. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rahnama N, Gaeini AA, Hamedinia MR (2007) Oxidative stress responses in physical education students during 8 weeks aerobic training. J Sports Med Phys Fitness 47:119–123

    CAS  PubMed  Google Scholar 

  64. Ravn-Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexo BA, et al. (2006) Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27:820–825

    Article  CAS  PubMed  Google Scholar 

  65. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rink SM, Mendola P, Mumford SL, Poudrier JK, Browne RW, et al. (2013) Self-report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women. J Acad Nutr Diet 113:776–785

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rizvi SI, Maurya PK (2007) Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci 1100:373–382

    Article  CAS  PubMed  Google Scholar 

  68. Rizvi SI, Jha R, Maurya PK (2006) Erythrocyte plasma membrane redox system in human aging. Rejuvenation Res 9:470–474

    Article  CAS  PubMed  Google Scholar 

  69. Rybka J, Kupczyk D, Kedziora-Kornatowska K, Pawluk H, Czuczejko J, et al. (2011) Age-related changes in an antioxidant defense system in elderly patients with essential hypertension compared with healthy controls. Redox Rep 16:71–77

    Article  CAS  PubMed  Google Scholar 

  70. Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  CAS  PubMed  Google Scholar 

  71. Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8:582–599

    Article  CAS  PubMed  Google Scholar 

  72. Schindhelm RK, van der Zwan LP, Teerlink T, Scheffer PG (2009) Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification? Clin Chem 55:1462–1470

    Article  CAS  PubMed  Google Scholar 

  73. Smith DT, Carr LJ, Dorozynski C, Gomashe C (2009) Internet-delivered lifestyle physical activity intervention: limited inflammation and antioxidant capacity efficacy in overweight adults. J Appl Physiol 106:49–56

    Article  PubMed  Google Scholar 

  74. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, et al. (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  PubMed  Google Scholar 

  75. Telci A, Cakatay U, Akhan SE, Bilgin ME, Turfanda A, et al. (2002) Postmenopausal hormone replacement therapy use decreases oxidative protein damage. Gynecol Obstet Investig 54:88–93 67718

    Article  CAS  Google Scholar 

  76. Toth KM, Berger EM, Beehler CJ, Repine JE (1986) Erythrocytes from cigarette smokers contain more glutathione and catalase and protect endothelial cells from hydrogen peroxide better than do erythrocytes from nonsmokers. Am Rev Respir Dis 134:281–284

    CAS  PubMed  Google Scholar 

  77. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  78. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  79. Van der Veen BS, de Winther MP, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937

    Article  CAS  PubMed  Google Scholar 

  80. Wilking M, Ndiaye M, Mukhtar H, Ahmad N (2013) Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal 19:192–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 29:403–409

    Article  CAS  PubMed  Google Scholar 

  82. Zal F, Mostafavi-Pour Z, Amini F, Heidari A (2012) Effect of vitamin E and C supplements on lipid peroxidation and GSH-dependent antioxidant enzyme status in the blood of women consuming oral contraceptives. Contraception 86:62–66

    Article  CAS  PubMed  Google Scholar 

  83. Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 23:722–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng J, Rautiainen S, Morgenstern R, Wolk A (2011) Relationship between plasma carotenoids, fruit and vegetable intake, and plasma extracellular superoxide dismutase activity in women: different in health and disease? Antioxid Redox Signal 14:9–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jordan University of Science and Technology, Avon Foundation and the American Association of Cancer Research for their generous support. The Roswell Park Cancer Institute Databank and Biorepository is a CCSG Shared Resources (NIH P30 CA016056-27). Funding bodies for this study did not play any role in the collection, analysis, interpretation of data, in the writing of the manuscript, and in the decision to submit the manuscript for publication.

Authors’ contributions

AAM participated in the study design, carried out the biochemical and laboratory procedures, participated in data analysis, and drafted the manuscript. YZ participated in data analysis. CCH led the data analysis and participated in writing and finalizing the manuscript. CBA participated in the study design and HZ provided reagents and materials for laboratory procedures. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad A. Mahasneh.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahasneh, A.A., Zhang, Y., Zhao, H. et al. Lifestyle predictors of oxidant and antioxidant enzyme activities and total antioxidant capacity in healthy women: a cross-sectional study. J Physiol Biochem 72, 745–762 (2016). https://doi.org/10.1007/s13105-016-0513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0513-5

Keywords

Navigation