Skip to main content
Log in

Diabetes-induced perturbations are subject to intergenerational transmission through maternal line

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The hypothesis of fetal origins of adult disease states that early life events program the occurrence of significant adult diseases, including diabetes and obesity. Maternal diabetes is associated with general stress environment for developing fetus, and gestational diabetes is an independent risk factor for type 2 diabetes and metabolic syndrome in offspring. Intra-uterine fetal programming of fetal tissues exposes the offspring to increased risk of impaired glucose tolerance, type 2 diabetes, and cardiovascular disease. Here, we examined the transmission of maternal diabetes-induced fetal programming in second generation and compared maternal and paternal routes of intergenerational effects. We organized 40 Wistar rats into three groups, male offspring of diabetic mothers, female offspring of diabetic mothers, and offspring of control mothers. These groups were mated with normal healthy rats to assess the effect of grand-maternal diabetes on pregnancy outcome in F2 rats, as well as glucose-sensing parameters, insulin resistance, and glucose tolerance prenatally and postnatally. We found that F2 offspring of diabetic mothers had impaired glucose sensing, increased oxidative stress, insulin resistance, and impaired glucose tolerance, and these effects were more prominent in the F2 offspring of F1 female rats (F2-DF1F). We deduce that fetal programming of maternal diabetes is mostly transmitted through maternal line across two generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 diabetes mellitus

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S transferase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

8-oxo-dG:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

TBARS:

Thiobarbituric acid reactive substances

CRL:

Crown-rump length

CD:

Control diet

HCD:

High caloric diet

CF1/CD:

F1 offspring of control mother under CD

CF1/HCD:

F1 offspring of control mother under HCD

OF1/CD:

F1 offspring of obese mother under CD

OF1/HCD:

F1 offspring of obese mother under HCD

MF1/CD:

F1 offspring of malnourished mother under CD

MF1/HCD:

F1 offspring of malnourished mother under HCD

References

  1. American Diabetes Association (2004) Gestational diabetes mellitus. Diabetes Care 27 Suppl 1:S88–90.

  2. Aerts L, Van Assche FA (2003) Intra-uterine transmission of disease. Placenta 24:905–911

    Article  CAS  PubMed  Google Scholar 

  3. Alemzadeh R, Kichler J (2014) Gender differences in the association of insulin resistance and high-sensitivity c-reactive protein in obese adolescents. J Diabetes Metab Disord 13:35. doi:10.1186/2251-6581-13-35

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amoli MM, Moosavizadeh R, Larijani B (2005) Optimizing conditions for rat pancreatic islets isolation. Cytotechnology 48:75–78

    Article  PubMed  PubMed Central  Google Scholar 

  5. Antonetti DA, Reynet C, Kahn CR (1995) Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes mellitus. J Clin Invest 95:1383–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aref A-BM, Ahmed OM, Ali LA, Semmler M (2013) Maternal rat diabetes mellitus deleteriously affects insulin sensitivity and beta-cell function in the offspring. J Diabetes Res 2013:429154. doi:10.1155/2013/429154

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301:1111–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berraondo B, Marti A, Duncan JS et al (2000) Up-regulation of muscle UCP2 gene expression by a new beta3-adrenoceptor agonist, trecadrine, in obese (cafeteria) rodents, but down-regulation in lean animals. Int J Obes Relat Metab Disord 24:156–163

    Article  CAS  PubMed  Google Scholar 

  9. Boloker J, Gertz SJ, Simmons RA (2002) Gestational diabetes leads to the development of diabetes in adulthood in the rat. Diabetes 51:1499–1506

    Article  CAS  PubMed  Google Scholar 

  10. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115:e290–e296

    Article  PubMed  Google Scholar 

  11. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  CAS  PubMed  Google Scholar 

  12. Chan CB, De Leo D, Joseph JW et al (2001) Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50:1302–1310

    Article  CAS  PubMed  Google Scholar 

  13. Choi YS, Kim S, Pak YK (2001) Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract 54(Suppl 2):S3–S9

    Article  CAS  PubMed  Google Scholar 

  14. Ciapaite J, Bakker SJL, Van Eikenhorst G et al (2007) Functioning of oxidative phosphorylation in liver mitochondria of high-fat diet fed rats. Biochim Biophys Acta 1772:307–316

    Article  CAS  PubMed  Google Scholar 

  15. Fowden AL (1992) The role of insulin in fetal growth. Early Hum Dev 29:177–181

    Article  CAS  PubMed  Google Scholar 

  16. Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX et al (2011) Insulin resistance index (HOMA-IR) levels in a general adult population: curves percentile by gender and age. The EPIRCE study. Diabetes Res Clin Pract 94:146–155

    Article  CAS  PubMed  Google Scholar 

  17. Guariguata L, Linnenkamp U, Beagley J et al (2014) Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103:176–185

    Article  CAS  PubMed  Google Scholar 

  18. Haghdoost S, Czene S, Näslund I et al (2005) Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res 39:153–162

    Article  CAS  PubMed  Google Scholar 

  19. Herbert M, Kalleas D, Cooney D et al (2015) Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births. Cold Spring Harb Perspect Biol 7:a017970. doi:10.1101/cshperspect.a017970

    Article  PubMed  Google Scholar 

  20. Im S-S, Kang S-Y, Kim S-Y et al (2005) Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes 54:1684–1691

    Article  CAS  PubMed  Google Scholar 

  21. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  PubMed  Google Scholar 

  22. Kamel MA, Helmy MH, Hanafi MY et al (2014) Effect of maternal diabetes on pre-and post-natal redox status of F1 rat offspring. Open J Endocr Metab Dis 2014:111–127

    Article  Google Scholar 

  23. Kamel MA, Helmy MH, Hanafi MY et al (2014) Impaired peripheral glucose sensing in F1 offspring of diabetic pregnancy. J Physiol Biochem 70:685–699

    Article  CAS  PubMed  Google Scholar 

  24. Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes a systematic review. Diabetes Care 25:1862–1868

    Article  PubMed  Google Scholar 

  25. Krishnaveni GV, Veena SR, Hill JC et al (2010) Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care 33:402–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lappas M, Hiden U, Desoye G et al (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15:3061–3100

    Article  CAS  PubMed  Google Scholar 

  27. Larsson NG, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  CAS  PubMed  Google Scholar 

  28. Lee HK, Song JH, Shin CS et al (1998) Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 42:161–167

    Article  CAS  PubMed  Google Scholar 

  29. López-Tinoco C, Roca M, García-Valero A et al (2013) Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. Acta Diabetol 50:201–208

    Article  PubMed  Google Scholar 

  30. MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 360:2211–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parton LE, Diraison F, Neill SE et al (2004) Impact of PPAR$\gamma$ overexpression and activation on pancreatic islet gene expression profile analyzed with oligonucleotide microarrays. Am J Physiol Endocrinol Metab 287:E390–E404

    Article  CAS  PubMed  Google Scholar 

  32. Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281:324–333

    Article  CAS  PubMed  Google Scholar 

  33. Pribylová H, Dvoráková L (1996) Long-term prognosis of infants of diabetic mothers. Relationship between metabolic disorders in newborns and adult offspring. Acta Diabetol 33:30–34

    Article  PubMed  Google Scholar 

  34. Purrello F, Rabuazzo AM, Anello M, Patanè G (1996) Effects of prolonged glucose stimulation on pancreatic beta cells: from increased sensitivity to desensitization. Acta Diabetol 33:253–256

    Article  CAS  PubMed  Google Scholar 

  35. Rattarasarn C, Leelawattana R, Soonthornpun S et al (2004) Gender differences of regional abdominal fat distribution and their relationships with insulin sensitivity in healthy and glucose-intolerant Thais. J Clin Endocrinol Metab 89:6266–6270

    Article  CAS  PubMed  Google Scholar 

  36. Rencurel F, Waeber G, Antoine B et al (1996) Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J 314(Pt 3):903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savona-Ventura C, Chircop M (2003) Birth weight influence on the subsequent development of gestational diabetes mellitus. Acta Diabetol 40:101–104

    Article  CAS  PubMed  Google Scholar 

  38. Schuit FC, Huypens P, Heimberg H, Pipeleers DG (2001) Glucose sensing in pancreatic $\beta$-cells a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50:1–11

    Article  CAS  PubMed  Google Scholar 

  39. Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers: relationship to fetal hyperinsulinism. Diabetes Care 18:611–617

    Article  CAS  PubMed  Google Scholar 

  40. Su R, Yan J, Yang H (2016) Transgenerational glucose intolerance of tumor necrosis factor with epigenetic alteration in rat perirenal adipose tissue induced by intrauterine hyperglycemia. J Diabetes Res 2016:4952801. doi:10.1155/2016/4952801

    Article  PubMed  PubMed Central  Google Scholar 

  41. Szuhai K, Ouweland J, Dirks R et al (2001) Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in myoclonus epilepsy and ragged-red fibers (MERRF) syndrome by a multiplex molecular beacon based real-time fluorescence PCR. Nucleic Acids Res 29, E13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Q, Moley KH (2010) Maternal diabetes and oocyte quality. Mitochondrion 10:403–410

    Article  PubMed  Google Scholar 

  43. Wu KK, Huan Y (2008) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. doi:10.1002/0471141755.ph0547s40

    PubMed  Google Scholar 

Download references

Acknowledgments

This study is a part of project entitled “Intra-Uterine programming of adult diabetes: an experimental study” supported by the Science and Technology Development Fund (STDF)—Egypt.

Author’s contribution

Maher A. Kamel has conceived and designed the study, contributed to the analysis of the data, and to the writing and revising the manuscript. Mervat Y. Hanafi, Taha M. Abdelkhalek, Mohamed I. Saad, Maha M. Haiba and Moustafa M. Saleh have conducted most of the laboratory investigations and contributed to the writing and revising of the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Saad.

Ethics declarations

This article does not contain any studies with human subjects performed by any of the authors. The animal protocol was approved by the Institutional Animal Care and Use Committee at the Medical Research Institute—Alexandria University, Egypt.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanafi, M.Y., Abdelkhalek, T.M., Saad, M.I. et al. Diabetes-induced perturbations are subject to intergenerational transmission through maternal line. J Physiol Biochem 72, 315–326 (2016). https://doi.org/10.1007/s13105-016-0483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0483-7

Keywords

Navigation