Skip to main content
Log in

Maternal and neonatal FTO rs9939609 polymorphism affect insulin sensitivity markers and lipoprotein profile at birth in appropriate-for-gestational-age term neonates

  • Original paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The influence of maternal fat mass and obesity (FTO) gene polymorphism on neonatal insulin sensitivity/resistance biomarkers and lipoprotein profile has not been tested. The study aimed to assess the association between the FTO rs9939609 polymorphism in mother-neonate couples and neonatal anthropometrical measurements, insulin sensitivity/resistance, and lipid and lipoprotein concentrations at birth. Fifty-three term, appropriate-for-gestational-age, Caucasian newborns together with their respective mothers participated in a cross-sectional study. Sixty-six percent of mothers and neonates carried the A allele (being AA or AT). TT mothers gained less weight during pregnancy, but non-significant maternal gene influence was found for neonatal bodyweight, body mass index, or ponderal index. Neonates from AA + AT mothers showed lower glucose, insulin, and homeostatic model assessment insulin resistance (HOMA-IR) but higher homeostatic model assessment insulin sensitivity (HOMA-IS) and homocysteine than neonates whose mothers were TT. AA + AT neonates had higher insulin and HOMA-IR than TT. The genotype neonatal × maternal association was tested in the following four groups of neonates: TT neonates × TT mothers (nTT × mTT), TT neonates × AA + AT mothers (nTT × mAA + AT), AA + AT neonates × TT mothers (nAA + AT × mTT), and AA + AT neonates × AA + AT mothers (nAA + AT × mAA + AT). Non-significant interactions between neonatal and maternal alleles were found for any parameter tested. However, maternal alleles affected significantly glucose, insulin, HOMA-IR, and homocysteine while neonatal alleles the arylesterase activity. Most significant differences were found between nATT + AA × mTT and nATT + AA × mAA + AT. Glycemia, insulinemia, and HOMA-IR were lower, while the Mediterranean diet adherence (MDA) was higher in the mAA + AT vs. mTT whose children were AA + AT. This dietary fact seems to counterbalance the potential negative effect on glucose homeostasis of the obesogenic A allele in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AE:

Arylesterase

AGA:

Appropriate for gestational age

Apo:

Apolipoprotein

BMI:

Body mass index

CVD:

Cardiovascular disease

FTO :

Fat mass and obesity-associated gene

GDM:

Gestational diabetes

HDLc:

Cholesterol transported by high-density lipoproteins

HEI:

Healthy eating index

HOMA-IR:

Homeostatic model assessment insulin resistance

HOMA-IS:

Homeostatic model assessment insulin sensitivity

IR:

Insulin resistance

LDLc:

Cholesterol transported by low-density lipoproteins

oxLDL:

Oxidized LDL

mAA + AT:

Mothers carrying the FTO rs9939609 A allele

MDA:

Mediterranean diet adherence

MS:

Metabolic syndrome

mTT:

Mothers homozygous for the FTO rs9939609 T allele

nAA + AT:

Neonates carrying the FTO rs9939609 A allele

nTT:

Neonates homozygous for the FTO rs9939609 T allele

PI:

Ponderal index

QUICKI:

Quantitative insulin sensitivity check index

SNP:

Single-nucleotide polymorphism

T2DM:

Type 2 diabetes mellitus

TC:

Total cholesterol

tHcys:

Homocysteine

TG:

Triglycerides

References

  1. Abbas S, Raza ST, Ahmed F, Ahmad A, Rizvi S, Mahdi F (2013) Association of genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of T2DM. J Biomed Sci 20:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Attar SA, Pollex RL, Ban MR, Young TK, Bjerregaard P, Anand SS et al (2008) Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample. Cardiovasc Diabetol 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arrizabalaga M, Larrarte E, Margareto J, Maldonado-Martín S, Barrenechea L, Labayen I (2014) Preliminary findings on the influence of FTO rs9939609 and MC4R rs17782313 polymorphisms on resting energy expenditure, leptin and thyrotropin levels in obese non-morbid premenopausal women. J Physiol Biochem 70:255–262

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJP (1998) In utero programming of chronic disease. Clin Sci 95:115–128

    Article  CAS  PubMed  Google Scholar 

  5. Corella D, Carrasco P, Sorlí JV, Coltell O, Ortega-Azorín C, Guillén M et al (2012) Education modulates the association of the FTO rs9939609 polymorphism with body mass index and obesity risk in the Mediterranean population. Nutr Metab Cardiovasc Dis 22:651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cruz M, Valladares-Salgado A, García-Mena J, Ross K, Edwards M, Ángeles-Martínez J et al (2010) Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes Metab Res Rev 26:261–270

    Article  CAS  PubMed  Google Scholar 

  7. da Silva FC, Zandoná MR, Vitolo MR, Campagnolo PD, Rotta LN, Almeida S et al (2013) Association between a frequent variant of the FTO gene and anthropometric phenotypes in Brazilian children. BMC Med Genet 14:34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davis W, van Rensburg SJ, Cronje FJ, Whati L, Fisher LR, van der Merwe L et al (2014) The fat and obesity associated FTO rs9939609 polymorphism is associated with elevated homocysteine levels in patients with multiple sclerosis screened for vascular risk factors. Metab Brain Dis 29:409–419

    CAS  PubMed  Google Scholar 

  9. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726

    Article  CAS  PubMed  Google Scholar 

  10. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC et al (2009) Inactivation of the FTO gene protects from obesity. Nature 458:894–988

    Article  CAS  PubMed  Google Scholar 

  11. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with the body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fredriksson R, Hägglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM et al (2008) The obesity gene, FTO, is of ancient origin, upregulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149:2062–2071

    Article  CAS  PubMed  Google Scholar 

  13. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gesteiro E, Bastida S, Sánchez-Muniz FJ (2009) Insulin resistance markers in term, normoweight neonates. The Merida cohort. Eur J Pediatr 168:281–288

    Article  CAS  PubMed  Google Scholar 

  15. Gesteiro E, Rodríguez-Bernal B, Bastida S, Sánchez-Muniz FJ (2012) Maternal diets with low healthy eating index or Mediterranean diet adherence scores are associated with high cord-blood insulin levels and insulin resistance markers at birth. Eur J Clin Nutr 66:1008–1015

    Article  CAS  PubMed  Google Scholar 

  16. Gesteiro E, Bastida S, Sánchez-Muniz FJ (2013) Cord-blood lipoproteins, homocysteine, insulin sensitivity/resistance marker profile, and concurrence of dysglycaemia and dyslipaemia in full-term neonates of the Mérida study. Eur J Pediatr 172:883–894

    Article  CAS  PubMed  Google Scholar 

  17. Gesteiro E, Bastida S, Rodríguez Bernal B, Sánchez-Muniz FJ (2015) Adherence to Mediterranean diet during pregnancy and serum lipid, lipoprotein and homocysteine concentrations at birth. Eur J Nutr 54:1191–1199

    Article  CAS  PubMed  Google Scholar 

  18. Glueck CJ, Steiner P, Leuba U (1973) Cord blood low-density lipoprotein-cholesterol estimation versus measurement with the preparative ultracentrifuge. J Lab Clin Med 82:467–472

    CAS  PubMed  Google Scholar 

  19. Harbron J, van der Merwe L, Zaahl MG, Kotze MJ, Senekal M (2014) Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients 6:3130–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haupt A, Thamer C, Staiger H, Tschritter O, Kirchhoff K, Machicao F et al (2009) Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes 117:194–197

    Article  CAS  PubMed  Google Scholar 

  21. Hertel JK, Johansson S, Sonestedt E, Jonsson A, Lie RT, Platou CG et al (2011) FTO, type 2 diabetes, and weight gain throughout adult life: a meta analysis of 41,504 subjects from the Scandinavian HUNT, MDC and MPP studies. Diabetes 60:1637–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K et al (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50:2461–2466

    Article  CAS  PubMed  Google Scholar 

  23. Jia G, Yang C, Yang S, Jian X, Yi C, Zhou Z et al (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582:3313–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Chem Biol 7:885–887

    CAS  Google Scholar 

  25. Labayen I, Ruiz JR, Ortega FB, Gottrand F, Huybrechts I, Dallongeville J et al (2012) Body size at birth modifies the effect of fat mass and obesity associated (FTO) rs9939609 polymorphism on adiposity in adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Br J Nutr 107:1498–1504

    Article  CAS  PubMed  Google Scholar 

  26. Lawlor DA, Fraser A, Macdonald-Wallis C, Nelson SN, Palmer TM, Smith GD et al (2011) Maternal and offspring adiposity-related genetic variants and gestational weight gain. Am J Clin Nutr 94:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Mou S, Pan C (2013) The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One 8:e71901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livingstone KM, Celis-Morales C, Lara J, Ashor AW, Lovegrove JA, Martinez JA, Food4Me et al (2015) Associations between FTO genotype and total energy and macronutrient intake in adults: a systematic review and meta-analysis. Obes Rev 16:666–678

    Article  CAS  PubMed  Google Scholar 

  29. López Bermejo A, Petry CJ, Díaz M, Sebastiani G, de Zegher F, Dunger DB et al (2008) The association between the FTO gene and fat mass in humans develops by the postnatal age of two weeks. J Clin Endocrinol Metab 93:1501–1505

    Article  PubMed  Google Scholar 

  30. Moleres A, Rendo-Urteaga T, Zulet MA, Marcos A, Campoy C, Garagorri JM, EVASYON Study Group et al (2012) Obesity susceptibility loci on body mass index and weight loss in Spanish adolescents after a lifestyle intervention. J Pediatr 161:466–470

    Article  PubMed  Google Scholar 

  31. Nettleton JA, Jebb S, Risérus U, Koletzko B, Fleming J (2014) Role of dietary fats in the prevention and treatment of the metabolic syndrome. Ann Nutr Metab 64:167–178

    Article  CAS  PubMed  Google Scholar 

  32. Nus M, Sánchez-Muniz FJ, Sánchez-Montero JM (2006) A new method for the determination of arylesterase activity in human serum using simulated body fluid. Atherosclerosis 188:155–159

    Article  CAS  PubMed  Google Scholar 

  33. O’Sullivan BA, Henderson ST, Davis JM (1998) Gestational diabetes. J Am Pharm Assoc 38:364–371, quiz 372–373

    Article  Google Scholar 

  34. Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MA, Salas Salvadó J et al (2012) Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol 11:137

    Article  PubMed  PubMed Central  Google Scholar 

  35. Poritsanos NJ, Lew PS, Fischer J, Mobbs CV, Nagy JI, Wong D et al (2011) Impaired hypothalamic FTO expression in response to fasting and glucose in obese mice. Nutr Diabetes 1:e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodríguez-López R, González-Carpio M, Serrano MV, Torres G, García de Cáceres MT, Herrera T et al (2010) Association of FTO gene polymorphisms and morbid obesity in the population of Extremadura (Spain). Endocrinol Nutr 57:203–209

    Article  PubMed  Google Scholar 

  37. Rzehak P, Scherag A, Grallert H, Sausenthaler S, Koletzko S, Bauer CP et al (2010) Associations between BMI and the FTO gene are age dependent: results from the GINI and LISA birth cohort studies up to age 6 years. Obes Facts 3:173–180

    Article  PubMed  Google Scholar 

  38. Sánchez-Muniz FJ, Gesteiro E, Espárrago Rodilla M, Rodríguez Bernal B, Bastida S (2013) Maternal nutrition during pregnancy conditions the fetal pancreas development, hormonal status and diabetes mellitus and metabolic syndrome biomarkers at birth. Nutr Hosp 28:250–274

    PubMed  Google Scholar 

  39. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al (2007) Genome wide association scan shows genetic variants in the FTO gene are associated with obesity related traits. PLoS Genet 3:e115

    Article  PubMed  PubMed Central  Google Scholar 

  40. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  41. Stratigopoulos G, Padilla SL, LeDuc CA, Watson E, Hattersley AT, McCarthy MI et al (2008) Regulation of FTO/FTM gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 294:R1185–R1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tung YC, Ayuso E, Shan X, Bosch F, O’Rahilli S, Coll AP et al (2010) Hypothalamic specific manipulation of FTO, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One 5:e8771

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wåhlén K, Sjölin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49:607–611

    Article  PubMed  Google Scholar 

  44. Zabena C, González-Sánchez JL, Martínez-Larrad MT, Torres-García A, Álvarez-Fernández-Represa J, Corbatón-Anchuelo A et al (2009) The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients. Obes Surg 19:87–95

    Article  PubMed  Google Scholar 

  45. Zhou D, Liu H, Zhou M, Wang S, Zhang J, Liao L et al (2012) Common variant (rs9939609) in the FTO gene is associated with metabolic syndrome. Mol Biol Rep 39:6555–6561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish AGL-2011 29644-C02-02 and CIBER 06/03/035 projects and the Research group of the UCM No. 920536. Thanks are due to the Gynecology and Obstetrics and Laboratory Services of Mérida Hospital (Spain), participant mothers and neonates, and Carmen Bravo from Departamento de Apoyo a la Investigación from the UCM. All authors have significantly contributed to the paper and agree with the present version of the manuscript. FJSM, the corresponding author and guarantor of the paper, has contributed to the study design, data discussion, and writing; EG to data acquisition, analysis, discussion, and writing of the paper; CO-A and MG to data acquisition and analysis; SB to the study design and data discussion; and DC contributed to data discussion and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Sánchez-Muniz.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesteiro, E., Sánchez-Muniz, F.J., Ortega-Azorín, C. et al. Maternal and neonatal FTO rs9939609 polymorphism affect insulin sensitivity markers and lipoprotein profile at birth in appropriate-for-gestational-age term neonates. J Physiol Biochem 72, 169–181 (2016). https://doi.org/10.1007/s13105-016-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0467-7

Keywords

Navigation