Skip to main content
Log in

Effects of wortmannin on cardioprotection exerted by ischemic preconditioning in rat hearts subjected to ischemia-reperfusion

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Ischemic preconditioning (IPC) is one of the most powerful interventions to reduce ischemia-reperfusion injury. The aim of the present study was to investigate the involvement of the phosphatidylinositol-3-kinases (PI3Ks) family in cardioprotection exerted by IPC and the relationship between preservation of mitochondrial morphology and ATP synthesis capacity. In this regard, macroautophagy (autophagy) is considered a dynamic process involved in the replacement of aged or defective organelles under physiological conditions. IPC consisted of four 5-min cycles of ischemia-reperfusion followed by sustained ischemia. Wortmannin (W), a PI3K family inhibitor, was added to the perfusion medium to study the involvement of autophagy in the beneficial effects of IPC. In the present study, LC3-II/I expression was significantly increased in the IPC group when compared with the control group. The hearts subjected to IPC showed greater degradation of p62 than control groups, establishing the existence of an autophagic flow. Electron microscopy showed that IPC preserves the structural integrity of mitochondria after ischemia and at the end of reperfusion. Moreover, hearts subjected to IPC exhibited increased mitochondrial ATP synthesis. The beneficial effects of IPC were abolished by W in all trials of this study, abolishing the differences between the IPC and control groups. These results suggest that IPC could partly reduce injury by ischemia-reperfusion (I/R) by decreasing mitochondrial damage and promoting autophagy. Since W is a nonspecific inhibitor of the PI3Ks family, further research is required to confirm participation of PI3K in the response to IPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelárová H, Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243(1–2):240–246

    Article  CAS  PubMed  Google Scholar 

  2. Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292:H19–H27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  4. Brown WJ, De Wald DB, Emr SD, Plunter H, Balch WE (1995) Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J Cell Biol 130:781–796

    Article  CAS  PubMed  Google Scholar 

  5. Clague MJ, Thorpe C, Jones AT (1995) Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 367:272–274

    Article  CAS  PubMed  Google Scholar 

  6. Clarke JF, Young PW, Yonezawa K, Kasuga M, Holman GD (1994) Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-Ll cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 300:631–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts; Ultrastructural and cytochemical changes. Am J Pathol 98(2):425–444

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Dirksen MT, Laarman GJ, Simoons ML, Duncker DJ (2007) Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res 74:343–355

    Article  CAS  PubMed  Google Scholar 

  9. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  CAS  PubMed  Google Scholar 

  10. Gottlieb R, Mentzer R (2013) Autophagy: an affair of the heart. Heart Fail Rev 18:575–584. doi:10.1007/s10741-012-9367-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gustafsson AB, Gottlieb RA (2008) Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol 44(4):654–661. doi:10.1016/j.yjmcc.2008.01.010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288(2):H971–H976

    Article  CAS  PubMed  Google Scholar 

  13. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. PharmacolTher 116:173–191

    CAS  Google Scholar 

  14. Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6(6):e20975. doi:10.1371/journal.pone.0020975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ji L, Zhang X, Liu W, Huang Q, Yang W, Fu F, Ma H, Su H, Wang H, Wang J, Zhang H, Gao F (2013) AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 8(7):e69910. doi:10.1371/journal.pone.0069910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jones AT, Clague MJ (1995) Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem J 311:31–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kapeller R, Cantley LC (1994) Phosphatidylinositol 3-kinase. Bioessays 8:565–576

    Article  Google Scholar 

  18. Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J, Hill JÁ (2013) Cardiovascular autophagy: concepts, controversies and perspectives. Autophagy 9(10):1455–1466. doi:10.4161/auto.25969

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Mol Cell Biol 8:741–752

    CAS  Google Scholar 

  21. Marina Prendes MG, González M, Savino E, Varela A (2007) Role of endogenous nitric oxide in classic preconditioning in rat hearts. Reg Pep 139:141–145

    Article  Google Scholar 

  22. Marina Prendes MG, Hermann R, Torresin ME, Vélez D, Savino E, Varela A (2014) Role of mitochondrial permeability transition pore and mitochondrial ATP-sensitive potassium channels in the protective effects of ischemic preconditioning in isolated hearts from fed and fasted rats. J Physiol Biochem 70:791–800. doi:10.1007/s13105-014-0347-y

    Article  CAS  Google Scholar 

  23. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. doi:10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  24. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  25. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  26. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    Article  CAS  PubMed  Google Scholar 

  27. Post H, Heusch G (2002) Ischemic preconditioning. Experimental facts and clinical perspective. Minerva Cardioangiol 50(6):569–605

    CAS  PubMed  Google Scholar 

  28. Przyklenk K, Dong Y, Undyala VV, Whittaker P (2012) Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 94(2):197–205. doi:10.1093/cvr/cvr358.

    Article  CAS  PubMed  Google Scholar 

  29. Quarrie R, Lee DS, Steinbaugh G, Cramer B, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA (2012) Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production. J Surg Res 178(1):8–17. doi:10.1016/j.jss.2012.05.090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shiomi M, Miyamae M, Takamura G, Kaneda K, Inamura Y, Onishi A, Koshinuma S, Momota Y, Minami T, Figueredo V (2014) Induction of autophagy restores the loss of sevoflurane cardiac preconditioning seen with prolonged ischemic insult. Eur J Pharmacol 724:58–66. doi:10.1016/j.ejphar.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  31. Solani G, Harris DA (2005) Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 390:377–394. doi:10.1042/BJ20042006

    Article  Google Scholar 

  32. Solem L, Wallace K (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:150–157

    Article  Google Scholar 

  33. Thapalia BA, Zhou Z, Lin X (2014) Autophagy, a process within reperfusion injury: an update. Int J Clin Exp Pathol 7(12):8322–8341

    PubMed Central  PubMed  Google Scholar 

  34. Uchiyama T, Engelman RM, Maulik N, Das DK (2004) Role of Akt-signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 109(24):3042–3049

    Article  CAS  PubMed  Google Scholar 

  35. Varela A, Marina Prendes MG, Testoni G, Vázquez N, Astudilla C, Cerruti S, Savino E (2002) Influence of fasting on the effects of ischemic preconditioning in the ischemic-reperfused rat heart. Arch Physiol Biochem 110:250–261

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Norma Gladys Infante for technical assistance. This research was supported in part by grants from the University of Buenos Aires, the National Scientific and Technical Research Council (CONICET PIP 0774) and the Institute of Drug Chemistry and Metabolism (IQUIMEFA-CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Elisabet Vélez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez, D.E., Hermann, R., Frank, M.B. et al. Effects of wortmannin on cardioprotection exerted by ischemic preconditioning in rat hearts subjected to ischemia-reperfusion. J Physiol Biochem 72, 83–91 (2016). https://doi.org/10.1007/s13105-015-0460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0460-6

Keywords

Navigation