Skip to main content
Log in

Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Exercise offers several benefits for health, including increased lean body mass and heightened energy expenditure, which may be partially attributable to secretory factors known as myokines. Irisin, a recently identified myokine, was shown to increase metabolic rate and mitochondrial content in both myocytes and adipocytes; however, the mechanism(s) of action still remain largely unexplained. This work investigated if irisin functions by acting as an inflammatory myokine leading to cellular stress and energy expenditure. C2C12 myotubes were treated with various concentrations of irisin, TNFα, or IL6 for various durations. Glycolytic and oxidative metabolism, as well as mitochondrial uncoupling, were quantified by measurement of acidification and oxygen consumption, respectively. Metabolic gene and protein expression were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting, respectively. Mitochondrial content was assessed by fluorescent imaging. NFκB activity was assessed using an NFκB GFP-linked reporter system. Consistent with previous findings, irisin significantly increased expression of several genes including peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) leading to increased mitochondrial content and oxygen consumption. Despite some similarities between TNFα and irisin treatment, irisin failed to activate the NFκB pathway like TNFα, suggesting that irisin may not act as an inflammatory signal. Irisin has several effects on myotube metabolism which appear to be dependent on substrate availability; however, the precise mechanism(s) by which irisin functions in skeletal muscle remain unclear. Our observations support the hypothesis that irisin does not function through inflammatory NFκB activation like other myokines (such as TNFα).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abd TT, Jacobson TA (2011) Statin-induced myopathy: a review and update. Expert Opin Drug Saf 10:373–387

    Article  CAS  PubMed  Google Scholar 

  2. Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L et al (2015) Irisin - a myth rather than an exercise-inducible myokine. Sci Rep 5:8889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Aydin S, Aydin S, Kuloglu T, Yilmaz M, Kalayci M, Sahin I et al (2013) Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides 50:13–18

    Article  CAS  PubMed  Google Scholar 

  4. Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T et al (2014) A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61:130–136

    Article  CAS  PubMed  Google Scholar 

  5. Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, Kumar A (2010) Tumor necrosis factor-a regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 5(10):e13262

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bostroem P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–U72

    Article  CAS  Google Scholar 

  7. Castillo-Quan JI (2012) From white to brown fat through the PGC-1 alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5:293–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Daskalopoulou SS, Cooke AB, Gomez Y-H, Mutter AF, Filippaios A, Mesfum ET et al (2014) Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 171:343–352

    Article  CAS  PubMed  Google Scholar 

  9. Ellefsen S, Vikmoen O, Slettalokken G, Whist JE, Nygaard H, Hollan I et al (2014) Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur J Appl Physiol 114:1875–1888

    Article  CAS  PubMed  Google Scholar 

  10. Erickson HP (2013) Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocytes 2:289–293

    Article  Google Scholar 

  11. Evans MJ, Scarpulla RC (1990) NRF-1—a transactivtor of nuclear-encoded respiratory genes in animal-cells. Genes Dev 4(6):1023–1034

    Article  CAS  PubMed  Google Scholar 

  12. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA (2014) Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer 136(4):E197–E202

    Article  PubMed  Google Scholar 

  13. Giulivi C, Ross-Inta C, Horton AA, Luckhart S (2008) Metabolic pathways in anopheles stephensi mitochondria. Biochem J 415(2):309–316

    Article  CAS  PubMed  Google Scholar 

  14. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gouni-Berthold I, Berthold HK, Huh JY, Berman R, Spenrath N, Krone W et al (2013) Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo (2013). PLoS One 8(9):e72858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ho RC, Hirshman MF, Li YF, Cai DS, Farmer JR, Aschenbach WG et al (2005) Regulation of I kappa B kinase and NF-kappa B in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289:C794–C801

    Article  CAS  PubMed  Google Scholar 

  17. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II et al (2014) Exercise-induced irisin secretion is independent of Age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol 99:E2154–E2161

    Article  CAS  Google Scholar 

  18. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. MRNA expression and circulating concentrations in response to weight loss and exercise. Metab Clin Exp 61:1725–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kalinkovich A, Livshits G (2015) Sarcopenia—the search for emerging biomarkers. Ageing Res Rev 22:58–71

    Article  CAS  PubMed  Google Scholar 

  20. Kelly DP (2012) Irisin, light my fire. Science 336:42–43

    Article  PubMed  Google Scholar 

  21. Kelly M, Gauthier M-S, Saha AK, Ruderman NB (2009) Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 58:1953–1960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Knutti D, Kaul A, Kralli A (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20:2411–2422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Komolka K, Albrecht E, Schering L, Brenmoehl J, Hoeflich A, Maak S (2014) Locus characterization and gene expression of bovine FNDC5: is the myokine irisin relevant in cattle? PLoS One 9(1):e88060

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kramer HF, Goodyear LJ (2007) Exercise, MAPK, and NF-kappa B signaling in skeletal muscle. J Appl Physiol 103:388–395

    Article  CAS  PubMed  Google Scholar 

  25. Kunsch C, Rosen CA (1993) NF-kappa-B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13:6137–6146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L et al (2014) Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 592:1091–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lecker SH, Zavin A, Cao P, Arena R, Allsup K, Daniels KM et al (2012) Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail 5:812–818

    Article  CAS  PubMed  Google Scholar 

  28. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F et al (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol 98:E769–E778

    Article  CAS  Google Scholar 

  29. Park M, Kim D, Choi J, Heo Y, Park S (2015) New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal 27(9):1831–1839

    Article  CAS  PubMed  Google Scholar 

  30. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE et al (2013) Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol 98:4899–4907

    Article  CAS  Google Scholar 

  31. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Polyzos S, Kountouras J, Shields K, Mantzoros C (2013) Irisin: a renaissance in metabolism? Metabolism 62:1037–1044

    Article  CAS  PubMed  Google Scholar 

  33. Polyzos S, Mantzoros C (2015) An update on the validity of irisin assays and the link between irisin and hepatic metabolism. Metabolism S0026–0495(15):00166–3

    Google Scholar 

  34. Pothineni NV, Ding Z, Mehta JL (2013) Is irisin an early marker of statin-induced myopathy? bench to the bedside. C Clin Lipidol 8:623–625

    Article  CAS  Google Scholar 

  35. Puigserver P, Rhee J, Lin JD, Wu ZD, Yoon JC, Zhang CY et al (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPAR gamma coactivator-1. Mol Cell 8(5):971–982

    Article  CAS  PubMed  Google Scholar 

  36. Sathasivam S (2012) Statin induced myotoxicity. Eur J Intern Med 23:317–324

    Article  CAS  PubMed  Google Scholar 

  37. Sathasivam S, Lecky B (2008) Statin induced myopathy. BMJ 337:a2286

    Article  PubMed  Google Scholar 

  38. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286(1):81–89

    Article  CAS  PubMed  Google Scholar 

  39. Scharhag-Rosenberger F, Meyer T, Wegmann M, Ruppenthal S, Kaestner L, Morsch A et al (2014) Irisin does not mediate resistance training-induced alterations in resting metabolic rate. Med Sci Sports Exerc 46:1736–1743

    Article  CAS  PubMed  Google Scholar 

  40. Scheler M, Irmler M, Lehr S, Hartwig S, Staiger H, Al-Hasani H et al (2013) Cytokine response of primary human myotubes in an in vitro exercise model. Am J Physiol Cell Physiol 305:C877–C886

    Article  CAS  PubMed  Google Scholar 

  41. Singh P, Kohr D, Kaps M, Blaes F (2010) Skeletal muscle cell MHC I expression: implications for stain-induced myopathy. Muscle Nerve 41:179–184

    CAS  PubMed  Google Scholar 

  42. Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9–E10

    Article  CAS  PubMed  Google Scholar 

  43. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM et al (2014) Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 16:711–718

    Article  CAS  PubMed  Google Scholar 

  44. Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA (2013) Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis. Eur J Pharmacol 711(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  45. Vaughan RA, Garcia-Smith R, Gannon NP, Bisoffi M, Trujillo KA, Conn CA (2013) Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 45(4):901–911

    Article  CAS  PubMed  Google Scholar 

  46. Vella L, Caldow MK, Larsen AE, Tassoni D, Della Gatta PA, Gran P et al (2012) Resistance exercise increases NF-kappa B activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302:R667–R673

    Article  CAS  PubMed  Google Scholar 

  47. Villarroya F (2012) Irisin, turning up the heat. Cell Metab 15:277–278

    Article  CAS  PubMed  Google Scholar 

  48. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene-expression in organelle biosynthesis. Proc Natl Acad Sci U S A 91(4):1309–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wang C, Wang L, Li W, Yan F, Tian M, Wu C et al (2015) Irisin has no effect on lipolysis in 3T3-L1 adipocytes or fatty acid metabolism in HepG2 hepatocytes. Endocrine 49(1):90–96

    Article  CAS  PubMed  Google Scholar 

  50. Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A et al (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 7(5):e33023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  52. Wu ZD, Puigserver P, Andersson U, Zhang CY, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y et al (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63:514–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the University of New Mexico Research Grant, the University of New Mexico 2013–2014 College of Education Graduate Excellence Award, the University of New Mexico Summer 2012 Office of Graduate Studies Research, and the University of New Mexico Project and Travel Grant. We would like to devote a special thanks to Dr. Kristina Trujillo, and the University of New Mexico Department of Biochemistry and Molecular Biology for their assistance in this work. In addition, we would also like to thank the shared facilities available through the University of New Mexico Health Sciences Center.

Conflict of interest

The authors declare that they have no competing of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Vaughan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Glucose-Dependent PGC-1α Expression. Expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) following treatment with irisin at 12.4 ng/ml (+) or control (−) dissolved in media containing 50 %, 25 %, or 0 % normal glucose content. (TIFF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaughan, R.A., Gannon, N.P., Mermier, C.M. et al. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem 71, 679–689 (2015). https://doi.org/10.1007/s13105-015-0433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0433-9

Keywords

Navigation