Skip to main content
Log in

Effects of glucomannan/spirulina-surimi on liver oxidation and inflammation in Zucker rats fed atherogenic diets

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cholesterolemia is associated with pro-oxidative and proinflammatory effects. Glucomannan- or glucomannan plus spirulina-enriched surimis were included in cholesterol-enriched high-saturated diets to test the effects on lipemia; antioxidant status (glutathione status, and antioxidant enzymatic levels, expressions and activities); and inflammation biomarkers (endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α)) in Zucker fa/fa rats. Groups of eight rats each received diet containing squid-surimi (C), squid-surimi cholesterol-enriched diet (HC), glucomannan-squid-surimi cholesterol-enriched diet (HG), or glucomannan-spirulina-squid-surimi cholesterol-enriched diet (HGS) over a period of 7 weeks. HC diet induced severe hyperlipemia, hepatomegalia, increased inflammation markers, and impaired antioxidant status significantly (at least p < 0.05) vs. C diet. HG diet decreased lipemia and liver size and normalized antioxidant status to C group levels, but increased TNF-α with respect to HC diet (p < 0.05). In general terms, 3 g/kg of spirulina in diet maintained the positive results observed in the HG diet but, in addition, increased inflammation index [eNOS/(eNOS + iNOS)] and decreased plasma TNF-α (both p < 0.05). In conclusion, glucomannan plus a small amount of spirulina blocks negative effects promoted by hypercholesterolemic diets. Although more studies are needed, present results suggest the utility of including glucomannan and/or spirulina as functional ingredients into fish derivates to be consumed by people on metabolic syndrome risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

eNOS:

Endothelial nitric oxide synthase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

iNOS:

Inducible nitric oxide synthase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor alpha

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  2. Aguirre L, Hijona E, Macarulla MT, Gracia A, Larrechi I, Bujanda L, Hijona L, Portillo MP (2013) Several statins increase body and liver fat accumulation in a model of metabolic syndrome. J Physiol Pharmacol 64:281–288

    CAS  PubMed  Google Scholar 

  3. Arai S, Osawa T, Ohigashi H, Yoshikawa M, Kaminogawa S, Watanabe M, Ogawa T, Okubo K, Watanabe S, Nishino H, Shinohara K, Esashi T, Hirahara T (2001) A mainstay of functional food science in Japan: history, present status, and future outlook. Biosci Biotech Bioch 65:1–13

    Article  CAS  Google Scholar 

  4. Bocanegra A, Benedí J, Sánchez-Muniz FJ (2006) Differential effects of konbu and nori seaweed dietary supplementation on liver glutathione status in normo- and hypercholesterolaemic growing rats. Br J Nutr 95:696–702

    Article  CAS  PubMed  Google Scholar 

  5. Bondia-Pons I, Ryan L, Martínez JA (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 68:701–711

    Article  CAS  PubMed  Google Scholar 

  6. Borderías A, Sánchez-Alonso I, Pérez-Mateos M (2005) New applications of fibres in foods: addition to fishery products. Trends Food Sci Tech 16:458–465

    Article  Google Scholar 

  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  8. Brockman D, Chen X, Gallaher D (2012) Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker diabetic fatty rats. Nutr Metab 9:100

    Article  CAS  Google Scholar 

  9. Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer Á, Alonso-Iglesias E (2011) Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res 158:369–384

    Article  PubMed  Google Scholar 

  10. Fernández-Villaverde A, Benlloch S, Berenguer M, Miguel-Rayón J, Pina R, Berenguer J (2004) Acute hepatitis of cholestatic type possibly associated with the use of glucomannan (Amorphophalus konjac). J Hepatol 41:1061–1067

    Article  Google Scholar 

  11. González-Canga A, Fernández-Martínez N, Sahagún AM, García-Vieitez JJ, Diez-Liébana MJ, Calle-Pardo AP, Castro-Robles LJ, Sierra-Vega M (2004) Glucomanano: propiedades y aplicaciones terapéuticas. Nutr Hosp 19:45–50

    PubMed  Google Scholar 

  12. González-Torres L, Churruca I, Schultz Moreira AR, Bastida S, Benedí J, Portillo MP, Sánchez-Muniz FJ (2012) Effects of restructured pork containing Himanthalia elongata on adipose tissue lipogenic and lipolytic enzyme expression of normo- and hypercholesterolemic rats. J Nutrigenet Nutrigenomics 5:158–167

    Article  PubMed  Google Scholar 

  13. Hissin P, Hill R (1976) Fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  14. Irizar A, Barnett CR, Flatt PR, Ioannides C (1995) Defective expression of cytochrome P450 proteins in the liver of the genetically obese Zucker rat. Eur J Pharmacol 293:385–393

    Article  CAS  PubMed  Google Scholar 

  15. Kris-Etherton P, Harris W, Appel LJ (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:20–30

    Article  Google Scholar 

  16. Lawrence R, Burk R (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  PubMed  Google Scholar 

  17. Lecumberri E, Mateos R, Ramos S, Alia M, Rupérez P, Goya L, Izquierdo-Pulido M, Bravo L (2006) Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats. Nutr Hosp 21:622–628

    CAS  PubMed  Google Scholar 

  18. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  19. Lorente-Cebrián S, Costa AG, Navas-Carretero S, Zabala M, Laiglesia LM, Martínez JA, Moreno-Aliaga MJ (2015) An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem 71:341–349

    Article  PubMed  Google Scholar 

  20. Marklund SL (1985) Pyrogallol oxidation. In: Greenwald R (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  21. Martínez JA (2006) Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J Physiol Biochem 62:303–306

    Article  PubMed  Google Scholar 

  22. Mells JE, Fu PP, Kumar P, Smith T, Karpen SJ, Anania FA (2015) Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J Nutr Biochem 26:285–292

    Article  CAS  PubMed  Google Scholar 

  23. Nagaoka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y, Otsuka A, Hirahashi T, Kato T (2005) A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr 135:2425–2430

    CAS  PubMed  Google Scholar 

  24. Paglia D, Valentine W (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  25. Plaza-Diaz J, Gomez-Llorente C, Abadia-Molina F, Saez-Lara MJ, Campaña-Martin L, Muñoz-Quezada S, Romero F, Gil A, Fontana L (2014) Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillusrhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats. PLoS One 9:e98401

    Article  PubMed Central  PubMed  Google Scholar 

  26. Raju J, Bird RP (2006) Alleviation of hepatic steatosis accompanied by modulation of plasma and liver TNF-a levels by Trigonella foenum graecum (fenugreek) seeds in Zucker obese (fa/fa) rats. Int J Obes 30:1298–1307

    Article  CAS  Google Scholar 

  27. Sánchez-Muniz FJ, Bastida S (2008) Do not use the Friedewald formula to calculate LDL-cholesterol in hypercholesterolaemic rats. Eur J Lipid Sci Technol 110:295–301

    Article  Google Scholar 

  28. Schultz-Moreira A, Benedí J, González-Torres L, Olivero-David R, Bastida S, Sánchez-Reus MI, González-Muñoz MJ, Sánchez-Muniz FJ (2011) Effects of diet enriched with restructured meats, containing Himanthalia elongata, on hypercholesterolaemic induction, CYP7A1 expression and antioxidant enzyme activity and expression in growing rats. Food Chem 129:1623–1630

    Article  CAS  Google Scholar 

  29. Shinkyo R, Guengerich F (2011) Cytochrome P450 7A1 cholesterol 7alpha-hydroxylation: individual reaction steps in the catalytic cycle and rate-limiting ferric iron reduction. J Biol Chem 286:4632–4643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Stokes KY, Cooper D, Tailor A, Granger DN (2002) Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Rad Biol Med 33:1026–1036

    Article  CAS  PubMed  Google Scholar 

  31. Stuehr D (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    Article  CAS  PubMed  Google Scholar 

  32. Tousoulis D, Kampoli A, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18

    Article  CAS  PubMed  Google Scholar 

  33. Vázquez-Velasco M, González-Torres L, López-Gasco P, Bastida S, Benedí J, Sánchez-Reus MI, González-Muñoz MJ, Sánchez-Muniz FJ (2014) Liver oxidation and inflammation in fa/fa rats fed glucomannan/spirulina-surimi. Food Chem 159:215–221

    Article  PubMed  Google Scholar 

  34. Winiarska K, Focht D, Sierakowski B, Lewandowski K, Orlowska M, Usarek M (2014) NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: a comparison with melatonin. Chem Biol Interact 218:12–19

    Article  CAS  PubMed  Google Scholar 

  35. Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty MF, Fujii M, Ikeda N, Kobayashi K, Sonoda N, Takayanagi R (2013) Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol 304:110–120

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Spanish projects AGL-2011-29644-C02-02, AGL-2008-04892-C03-02 and Consolider-Ingenio 2010 project # CSD2007-00016. We gratefully acknowledge the foreign fellowship for graduate studies granted by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México to Laura González-Torres.

Author’s contributions

All authors have significantly contributed to the paper and agree with the present version of the manuscript. FJ S-M is the corresponding author and guarantor of the paper, M V-V has contributed to the study design, data discussion, and writing of the paper, L G-T and P L-G have contributed to the data acquisition and analysis and writing of the paper. S B, J B, and MJ G-M have contributed to data discussion and have made a critical review of the paper.

Compliance with ethical standards

The present study was approved by the Spanish Science and Technology Advisory Committee (project AGL-2008-04892-C03-02) and by an ethics committee of the Universidad Complutense de Madrid (Spain). All experiments were performed in compliance with Directive 86/609/EEC of November 24, 1986 for the protection of scientific research animals.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Sánchez-Muniz.

Additional information

Miguel Vázquez-Velasco and Laura González-Torres are the first authors of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Velasco, M., González-Torres, L., López-Gasco, P. et al. Effects of glucomannan/spirulina-surimi on liver oxidation and inflammation in Zucker rats fed atherogenic diets. J Physiol Biochem 71, 611–622 (2015). https://doi.org/10.1007/s13105-015-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0425-9

Keywords

Navigation