Skip to main content
Log in

AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Activation of 5′ adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25–1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl CoA-carboxylase

AICAR:

Aminoimidazole carboxamide ribonucleotide

AMPK:

5′ Adenosine monophosphate-activated protein kinase

DM:

Differentiation media

ETC:

Electron transport chain

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

FDB:

Flexor digitorum brevis

MB:

Extracellular flux measurement buffer

OCR:

Oxygen consumption rates

PA:

Sodium palmitate

SRC:

Spare respiratory capacity

References

  1. Bai J, Cederbaum AI (2000) Overexpression of catalase in the mitochondrial or cytosolic compartment increases sensitivity of HepG2 cells to tumor necrosis factor-alpha-induced apoptosis. J Biol Chem 275:19241–19249

    Article  PubMed  CAS  Google Scholar 

  2. Beylkin DH, Allen DL, Leinwand LA (2006) MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Dev Biol 294:541–553

    Article  PubMed  CAS  Google Scholar 

  3. Brown LD, Schneider MF (2002) Delayed dedifferentiation and retention of properties in dissociated adult skeletal muscle fibers in vitro. In Vitro Cell Dev Biol An 38:411–422

    Article  CAS  Google Scholar 

  4. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism 3:403–416

    Article  PubMed  CAS  Google Scholar 

  5. Flanagan WF, Holmes EW, Sabina RL, Swain JL (1986) Importance of purine nucleotide cycle to energy production in skeletal muscle. Am J Physiol 251:C795–C802

    PubMed  CAS  Google Scholar 

  6. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591

    Article  PubMed  CAS  Google Scholar 

  7. Foley JM, Adams GR, Meyer RA (1989) Utility of AICAr for metabolic studies is diminished by systemic effects in situ. Am J Physiol 257:C488–C494

    PubMed  CAS  Google Scholar 

  8. Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, Ferrick DA, Nicholls DG, Brand MD (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Annal Chem 81:6868–6878

    Article  CAS  Google Scholar 

  9. Guigas B, Taleux N, Foretz M, Detaille D, Andreelli F, Viollet B, Hue L (2007) AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J 404:499–507

    Article  PubMed  CAS  Google Scholar 

  10. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell. Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  11. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  PubMed  CAS  Google Scholar 

  12. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metabolism 11:554–565

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373

    PubMed  CAS  Google Scholar 

  14. Howlett RA, Kindig CA, Hogan MC (2007) Intracellular PO2 kinetics at different contraction frequencies in Xenopus single skeletal muscle fibers. J Appl Physiol 102:1456–1461

    Article  PubMed  Google Scholar 

  15. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed  Google Scholar 

  16. Lanner JT, Georgiou DK, Dagnino-Acosta A, Ainbinder A, Cheng Q, Joshi AD, Chen Z, Yarotskyy V, Oakes JM, Lee CS, Monroe TO, Santillan A, Dong K, Goodyear L, Ismailov II, Rodney GG, Dirksen RT, Hamilton SL (2012) AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nature Med 18:244–251

    Article  PubMed  CAS  Google Scholar 

  17. Lau GY, Richards JG (2011) AMP-activated protein kinase plays a role in initiating metabolic rate suppression in goldfish hepatocyte. J Comp Physiol B, Biochem, Sys Environ Physiol 181:927–939

    Article  CAS  Google Scholar 

  18. Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, Wasserman DH (2009) Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284:23925–23934

    Article  PubMed  CAS  Google Scholar 

  19. McAllister RM, Terjung RL (1990) Acute inhibition of respiratory capacity of muscle reduces peak oxygen consumption. Am J Physiol 259:C889–C896

    PubMed  CAS  Google Scholar 

  20. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112

    PubMed  CAS  Google Scholar 

  21. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134:405–415

    Article  PubMed  CAS  Google Scholar 

  22. Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA (2010) Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp. (46): pii: 2511

  23. O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108:16092–16097

    Article  PubMed  Google Scholar 

  24. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17:1688–1699

    Article  PubMed  CAS  Google Scholar 

  25. Raney MA, Yee AJ, Todd MK, Turcotte LP (2005) AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Am J Physiol Endocrinol Metab 288:E592–E598

    Article  PubMed  CAS  Google Scholar 

  26. Robinson DM, Ogilvie RW, Tullson PC, Terjung RL (1994) Increased peak oxygen consumption of trained muscle requires increased electron flux capacity. J Appl Physiol 77:1941–1952

    PubMed  CAS  Google Scholar 

  27. Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE (2012) Measuring mitochondrial respiration in intact single muscle fibers. Am J Physiol Regul Integ Comp Physiol 302:R712–R719

    Article  CAS  Google Scholar 

  28. Segalen C, Longnus SL, Baetz D, Counillon L, Van Obberghen E (2008) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. Endocrinology 149:1490–1498

    Article  PubMed  CAS  Google Scholar 

  29. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  PubMed  CAS  Google Scholar 

  30. Wang CZ, Wang Y, Di A, Magnuson MA, Ye H, Roe MW, Nelson DJ, Bell GI, Philipson LH (2005) 5-Amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channel-dependent and -independent pathways. Biochem Biophys Res Commun 330:1073–1079

    Article  PubMed  CAS  Google Scholar 

  31. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304

    PubMed  CAS  Google Scholar 

  32. Wohlers LM, Sweeney SM, Ward CW, Lovering RM, Spangenburg EE (2009) Changes in contraction-induced phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinases in skeletal muscle after ovariectomy. J Cell Biochem 107:171–178

    Article  PubMed  CAS  Google Scholar 

  33. Zheng D, Perianayagam A, Lee DH, Brannan MD, Yang LE, Tellalian D, Chen P, Lemieux K, Marette A, Youn JH, McDonough AA (2008) AMPK activation with AICAR provokes an acute fall in plasma [K+]. Am J Physiol: Cell physiol 294:C126–C135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr(s) David Thomson, Andy Philp, Keith Baar, and John Thyfault for insightful discussions. The work was supported by grants from the National Institutes of Health AR059913 (EES), Baltimore Diabetes Research Training Center Grant (EES) (P60DK079637), Rehabilitation R&D REAP and Biomedical R&D CDA-02 from the VA Research Service (RAS). The funding sources play no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen E. Spangenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spangenburg, E.E., Jackson, K.C. & Schuh, R.A. AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture. J Physiol Biochem 69, 909–917 (2013). https://doi.org/10.1007/s13105-013-0269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0269-0

Keywords

Navigation