Skip to main content
Log in

Effect of calcium treatment on blood parameters, gonadal development and the structure of bone in immature female rats

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Calcium is an essential nutrient required for critical biological functions. Calcium supplementation is to be evaluated using immature female rats. The present study focused on some blood parameters, gonadal development and bone structure. Forty immature female Sprague–Dawley rats were randomly divided into four equal-sized groups (80 g average body weight) to receive calcium chloride dihydrate (group I: control; groups II, III and IV: received 20 mg, 40 mg and 60 mg per kg body weight, respectively) for 5 weeks. Rats were decapitated, and their trunk blood was sampled for biochemical assays. Cholesterol, triglycerides, glucose and calcium were measured. Gonadal and bone structure were histologically evaluated. Results revealed that treatment of developing female rats with three calcium doses used have no marked effect on the serum calcium and cholesterol levels. However, serum triglyceride level and body weight gain are significantly decreased in rats treated with all of the three calcium doses. Serum glucose level showed a marked increase in animals treated with the higher calcium doses. Moreover, observable histological alterations are recognized in the ovaries. Bones of the experimental animals also showed morphological alterations. These results suggest that increasing calcium supplementation decreases triglycerides and percentage body weight gain and positively affects the bone and gonadal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boer I, Tinker L, Connelly S, Curb J, Howard B, Kestenbaum B (2008) Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women's Health Initiative. Diabetes Care 31:701–707

    Article  PubMed  Google Scholar 

  2. Boon N, Koppes LL, Saris WH, Van Mechelen W (2005) The relation between calcium intake and body composition in a Dutch population: the Amsterdam Growth and Health Longitudinal Study. Am J Epidemiol 162:27–32

    Article  PubMed  CAS  Google Scholar 

  3. Bostick RM, Fosdick L, Grandits GA, Grambsch P, Gross M, Louis TA (2000) Effect of calcium supplementation on serum cholesterol and blood pressure. Arch Fam Med 9:31–39

    Article  PubMed  CAS  Google Scholar 

  4. Caan B, Neuhouser M, Aragaki A, Lewis CB, Jackson R, LeBoff MS, Margolis KL, Powell L, Uwaifo G, Whitlock E, Wylie-Rosett J, LaCroix A (2007) Calcium plus vitamin D supplementation and the risk of postmenopausal weight gain. Arch Intern Med 167:893–902

    Article  PubMed  CAS  Google Scholar 

  5. Cadogan J, Eastell R, Jones N, Barke ME (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. British Medical Journal 315:1255–1260

    Article  PubMed  CAS  Google Scholar 

  6. Chan GM, Hoffman K, McMurray M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126:551–556

    Article  PubMed  CAS  Google Scholar 

  7. Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour JP (2005) Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche. J Clin Endocrinol Metab 90:44–51

    Article  PubMed  CAS  Google Scholar 

  8. Cummings NK, James AP, Soares MJ (2006) The acute effects of different sources of dietary calcium on postprandial energy metabolism. Br J Nutr 96:138–44

    Article  PubMed  CAS  Google Scholar 

  9. Curtiss H, LuAnn J (2007) Calcium requirements: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. American Journal of Clinical Nutr 86:1054–1063

    Google Scholar 

  10. Davies KM, Heaney RP, Recker RR, Lappe JM, Barger-Lux MJ, Rafferty K, Hinders S (2000) Calcium intake and body weight. J Clin Endocrinol Metab 85:4635–4638

    Article  PubMed  CAS  Google Scholar 

  11. De Jongh ED, Binkley TL, Specker BL (2006) Fat mass gain is lower in calcium-supplemented than in unsupplemented preschool children with low dietary calcium intakes. Am J Clin Nutr 84:1123–1127

    Google Scholar 

  12. Denke MA, Fox MM, Schulte MC (1993) Short-term dietary calcium fortification increases fecal saturated fat content and reduces serum lipids in men. J Nutr 123:1047–1053

    PubMed  CAS  Google Scholar 

  13. Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ, Poskitt EM (2002) Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. Am J Clin Nutr 76:681–686

    PubMed  CAS  Google Scholar 

  14. Dibba B, Prentice A, Poskitt EME, Cole TJ (1998) Calcium supplementation increases the bone mineral status of Gambian children. Proc Nutr Soc 57:73A

    Article  Google Scholar 

  15. Flynn A, Cashman K (1999) Calcium. In: Hurrel R (ed) The mineral fortification of foods. Leatherhead, Surrey, pp 18–53

    Google Scholar 

  16. Fumeron F, Lamri A, Abi Khalil C, Jaziri R, Porchay-Balderelli I (2011) Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome, results from a French prospective study, data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 34:813–817

    Article  PubMed  Google Scholar 

  17. Greer FR, Krebs NF (2006) Optimizing bone health and calcium intakes of infants, children, and adolescents. Pediatrics 117:578–585

    Article  PubMed  Google Scholar 

  18. Heaney RP (2000) Calcium, dairy products and osteoporosis. J Am Coll Nutr 19:83S–99S

    PubMed  CAS  Google Scholar 

  19. Hsu HH, Culley NC (2006) Effects of dietary calcium on atherosclerosis, aortic calcification and icterus in rabbits fed a supplemental cholesterol diet. Lipids Health Dis 5:16

    Article  PubMed  Google Scholar 

  20. Isaia G, Giorgino R, Adami S (2001) High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care 24:1496

    Article  PubMed  CAS  Google Scholar 

  21. Jacqmain M, Doucet E, Després JP, Bouchard C, Tremblay A (2003) Calcium intake, body composition, and lipoprotein–lipid concentrations in adults. Am J Clin Nutr 77:1448–1452

    PubMed  CAS  Google Scholar 

  22. Johnson L, DeLuca H (2001) Vitamin D receptor null mutant mice fed high levels of calcium are fertile. American Society for Nutritional Sciences J Nutr 131:1787–1791

    CAS  Google Scholar 

  23. Johnston CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87

    Article  PubMed  Google Scholar 

  24. Jolma P, Kööbi P, Kalliovalkama J, Kähönen M, Fan M, Saha H, Helin H, Lehtimäki T, Pörsti I (2003) Increased calcium intake reduces plasma cholesterol and improves vasorelaxation in experimental renal failure. Am J Physiol Heart Circ Physiol 285:H1882–H1889

    PubMed  CAS  Google Scholar 

  25. Karandish M, Shockravi S, Jalali MT, Haghighizadeh MH (2009) Effect of calcium supplementation on lipid profile in overweight or obese Iranian women: a double-blind randomized clinical trial. Eur J Clin Nutr 63:268–272

    Article  PubMed  CAS  Google Scholar 

  26. Ht L, Eastell R, Karnik K, Russell J, Margo E (2008) Calcium supplementation and bone mineral accretion in adolescent girls: an 18-mo randomized controlled trial with 2-y follow-up. Barker Am J Clin Nutr 87:455–462

    Google Scholar 

  27. Lee WT, Leung SS, Leung DM, Wang SH, Xu YC, Zeng WP, Cheng JC (1997) Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 86:570–576

    Article  PubMed  CAS  Google Scholar 

  28. Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JC (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 60:744–775

    PubMed  CAS  Google Scholar 

  29. Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, Eggli DF, Kieselhorst K, Kulin HE (1993) Calcium supplementation and bone mineral density in adolescent girls. JAMA 270:841–844

    Article  PubMed  CAS  Google Scholar 

  30. Loos RJ, Rankinen T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2004) Calcium intake is associated with adiposity in black and white men and white women of the HERITAGE Family Study. J Nutr 134:1772–1778

    PubMed  CAS  Google Scholar 

  31. Lorenzen JK, Mølgaard C, Michaelsen KF, Astrup A (2006) Calcium supplementation for 1 y does not reduce body weight or fat mass in young girls. Am J Clin Nutr 83:18–23

    PubMed  CAS  Google Scholar 

  32. Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A (2007) Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr 85:678–687

    PubMed  CAS  Google Scholar 

  33. Major GC, Alarie F, Dore J, Phouttama S, Tremblay A (2007) Supplementation with calcium + vitamin D enhances the beneficial effect of weight loss on plasma lipid and lipoprotein concentrations. Am J Clin Nutr 85:54–59

    PubMed  CAS  Google Scholar 

  34. Malekzadeh J, Keshavarz A, Siassi F, Kadkhodaei M, Eshraghian M, Dorosti-Motlagh A, Aliehpoor A, Chamari M (2007) Effect of dietary calcium on concentrations of lipids, glucose and insulin in male Sprague–Dawely rats. RYA Ather 3:14–20

    Google Scholar 

  35. Melanson EL, Donahoo WT, Dong F, Ida T, Zemel MB (2005) Effect of low- and high-calcium dairy-based diets on macronutrient oxidation in humans. Obes Res 13:2102–12

    Article  PubMed  CAS  Google Scholar 

  36. Miller G, Jarvis J, McBean L (2001) The importance of meeting calcium needs with foods. J Am Coll Nutr 20:168S–185S

    PubMed  CAS  Google Scholar 

  37. Milner RD, Hales CN (1967) The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia 3:47–49

    Article  PubMed  CAS  Google Scholar 

  38. Moore LL, Bradlee ML, Gao D, Singer MR (2006) Low dairy intake in early childhood predicts excess body fat gain. Obesity (Silver Spring) 14:1010–1018

    Article  CAS  Google Scholar 

  39. Mullender MG, Huiskes R, Versleyen H, Buma H (2005) Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orhtop Res 14(6):972–979

    Article  Google Scholar 

  40. NIH Consensus Development Panel (1994) Optimal calcium intake. JAMA 272:1942–1948

    Article  Google Scholar 

  41. Orwoll E, Riddle M, Prince M (1994) Effects of vitamin D on insulin and glucagon secretion in non-insulin-dependent diabetes mellitus. Am J Clin Nutr 59:1083–1087

    PubMed  CAS  Google Scholar 

  42. Papakonstantinou E, Flatt WP, Huth PJ, Hrris R (2003) High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obesity Res 11:387–394

    Article  CAS  Google Scholar 

  43. Peterson CA, Eurell JA, Erdman JW (1995) Alterations in calcium intake on peak bone mass in the female rat. J Bone Miner Res 10:81–95

    Article  PubMed  CAS  Google Scholar 

  44. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, Hu FB (2006) Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 29:650–656

    Article  PubMed  CAS  Google Scholar 

  45. Pittas AG, Harris SS, Stark PC, Dawson-Hughes B (2007) The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 30:980–986

    Article  PubMed  CAS  Google Scholar 

  46. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, Baverstock M, Birks Y, Dumville J, Francis R, Iglesias C, Puffer S, Sutcliffe A, Watt I, Torgerson DJ (2005) Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 330:1003

    Article  PubMed  CAS  Google Scholar 

  47. Reid IR, Horne A, Mason B, Ames R, Bava U, Gamble GD (2005) Effects of calcium supplementation on body weight and blood pressure in normal older women: a randomized controlled trial. J Clin Endocrinol Metab 90:3824–3829

    Article  PubMed  CAS  Google Scholar 

  48. Shahkhalili Y, Murset C, Meirim I, Duruz E, Guinchard S, Cavadini C, Acheson K (2001) Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. Am J Clin Nutr 73:246–252

    PubMed  CAS  Google Scholar 

  49. Shi H, Dirienzo D, Zemel MB (2001) Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. FASEB J 15:291–293

    PubMed  CAS  Google Scholar 

  50. Shi H, Norman AW, Okamura WH, Sen A, Zemel MB (2001) 1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J 15:2751–2753

    PubMed  CAS  Google Scholar 

  51. Slemenda CW, Peacock M, Hui S, Zhou L, Johnston CC (1997) Reduced rates of skeletal remodeling are associated with increased peak bone mineral density during the development of peak skeletal mass. J Bone Miner Res 12:676–682

    Article  PubMed  CAS  Google Scholar 

  52. Sun C, Yu X, LI Y, Liu R (2004) Effects of dietary calcium on the blood glucose, blood lipid and hormone of rat fed a high fat diet. Wei Sheng Yan Jiu 33:164–166

    PubMed  Google Scholar 

  53. Talbott SM, Chowdhury H, Shapses SA (1999) Urinary 3H-tetracycline and pyridinium crosslinks differ in their response to calcium restriction in mature and aged rats. Calcif Tissue Int 64:352–356

    Article  PubMed  CAS  Google Scholar 

  54. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    Article  PubMed  CAS  Google Scholar 

  55. Trowman R, Dumville JC, Hahn S, Torgerson DJ (2006) A systematic review of the effects of calcium supplementation on body weight. Br J Nutr 95:1033–1038

    Article  PubMed  CAS  Google Scholar 

  56. Van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR (2006) Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care 29:2238–2243

    Article  PubMed  Google Scholar 

  57. Vaskonen T (2003) Dietary minerals and modification of cardiovascular risk factors. J Nutr Biochem 14:492–506

    Article  PubMed  CAS  Google Scholar 

  58. Vaskonen T, Mervaala E, Sumuvuori V, Seppanen-Laakso T, Karppanen H (2002) Effects of calcium and plant sterols on serum lipids in obese Zucker rats on a low-fat diet. Br J Nutr 87:239–245

    Article  PubMed  CAS  Google Scholar 

  59. Welberg JW, Monkelbaan JF, de Vries EG, Muskiet FA, Cats A, Oremus ET, Boersma-van Ek W, van Rijsbergen H, van der Meer R, Mulder NH (1994) Effects of supplemental dietary calcium on quantitative and qualitative fecal fat excretion in man. Ann Nutr Metab 38:185–191

    Article  PubMed  CAS  Google Scholar 

  60. Williams PF, Caterson ID, Cooney GJ, Zilkens RR, Turtle JR (1990) High affinity insulin binding and insulin receptor–effector coupling: modulation by Ca21. Cell Calcium 11:547–556

    Article  PubMed  CAS  Google Scholar 

  61. Winzenberg T, Shaw K, Fryer J, Jones G (2007) Calcium supplements in healthy children do not affect weight gain, height, or body composition. Obesity (Silver Spring) 15:1789–1798

    Article  CAS  Google Scholar 

  62. Yin J, Zhang Q, Liu A, Du W, Wang X, Hu X, Ma G (2010) Calcium supplementation for 2 years improves bone mineral accretion and lean body mass in Chinese adolescents. National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention. Beijing, China Asia Pac J Clin Nutr 19(2):152–160

    CAS  Google Scholar 

  63. Zemel MB (2004) Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr 79:907S–912S

    PubMed  CAS  Google Scholar 

  64. Zemel MB, Miller SL (2004) Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr Rev 62:125–131

    Article  PubMed  Google Scholar 

  65. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC (2000) Regulation of adiposity by dietary calcium. FASEB J 14:1132–1138

    PubMed  CAS  Google Scholar 

  66. Zhang Q, Tordoff MG (2004) No effects of dietary calcium on body weight of lean and obese mice and rats. Am J Physiol Regul Integr Comp Physiol 286:R669–R677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the technical staff of the Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Lebanon for their helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Balbaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Merhie, N., Sabry, I. & Balbaa, M. Effect of calcium treatment on blood parameters, gonadal development and the structure of bone in immature female rats. J Physiol Biochem 68, 219–227 (2012). https://doi.org/10.1007/s13105-011-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0133-z

Keywords

Navigation