Skip to main content
Log in

The interdependence of the reactive species of oxygen, nitrogen, and carbon

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This mini-review tries to summarize the main interdependences between the free radicals of oxygen, nitrogen, and carbon. Also, the main metabolic pathways for these radical species are described, as well as how these affect their interaction and functional implications. Emphasis is made on the metabolic disturbances induced by stressing aggressions that produce radical species. In this way, cellular oxidative imbalances created by the superiority of reactive oxygen species over the antioxidant systems produce both activation of nitroxide synthases and the oxidation of terminal nitrogen from l-arginine, as well as the metabolization of heme until carbon monoxide by nitric oxide-activated hemoxygenase. Also, multiple cellular protein and nucleoprotein alterations determined by these three kinds of radical species are completed by the involvement of hydrogen sulfide, which results from the degradation of l-cysteine by cistationine-γ-lyase. In this way, sufficient experimental data tend to demonstrate the involvement of hydrogen sulfide and other thiol derivatives in the interrelations between oxygen, nitrogen, and carbon, which results in a true radical cascade. Thus, oxidative stress, together with nitrosative and carbonilic stress, may constitute a central point where other factors of vulnerability meet, and their interactions could have an important impact in many modern diseases. Considering that the actions of reactive species can be most of the time corrected, future studies need to establish the therapeutical importance of various agents which modulate oxidative, nitrosative, or carbonilic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atochin DN, Huang PL (2010) Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch 460:965–74

    Article  PubMed  CAS  Google Scholar 

  2. Barter PJ, Rye KA (2008) Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler Thromb Vasc Biol 28:39–46

    Article  PubMed  CAS  Google Scholar 

  3. Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M (2006) Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1α. FASEB J 20:1889–91

    Article  PubMed  CAS  Google Scholar 

  4. Brown GC, Borutaite V (2006) Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans 34:953–6

    Article  PubMed  CAS  Google Scholar 

  5. Chapple ILC (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  PubMed  CAS  Google Scholar 

  6. Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–16

    Article  PubMed  CAS  Google Scholar 

  7. Ciobica A, Hritcu L, Padurariu M, Dobrin R, Bild V (2010) Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: relevance for anxiety and affective disorders. Adv Med Sci 55:289–296

    Article  PubMed  CAS  Google Scholar 

  8. Ciobica A, Bild V, Hritcu L, Padurariu M, Bild W (2011) Effects of angiotensin II receptor antagonists on anxiety and some oxidative stress markers in rat. Central Eur J Med 6:331–340

    Article  CAS  Google Scholar 

  9. Ciobica A, Hritcu L, Nastasa V, Padurariu M, Bild W (2011) Inhibition of central angiotensin converting enzyme exerts anxiolytic effects by decreasing brain oxidative stress. J Med Biochem 30:109–114

    Article  CAS  Google Scholar 

  10. Ciobica A, Olteanu Z, Padurariu M, Hritcu L (2012) The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem 68:59–69.

    Google Scholar 

  11. Ciobica A, Padurariu M, Dobrin I, Stefanescu C, Dobrin R (2011) Oxidative stress in schizophrenia—focusing on the main markers. Psychiatr Danub 23:237–45

    PubMed  CAS  Google Scholar 

  12. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  PubMed  CAS  Google Scholar 

  13. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  14. Espey MG, Miranda KM, Thomas DD, Xavier S, Citrin D, Vitek MP, Wink DA (2002) A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann N Y Acad Sci 962:195–206

    Article  PubMed  CAS  Google Scholar 

  15. Feelisch M (2007) Nitrated cyclic GMP as a new cellular signal. Nat Chem Biol 11:687–688

    Article  Google Scholar 

  16. Ferreri C, Kratzsch S, Landi L, Brede O (2005) Thiyl radicals in biosystems: effects on lipid structures and metabolisms. Cell Mol Life Sci 62:834–47

    Article  PubMed  CAS  Google Scholar 

  17. Galle J (2001) Oxidative stress in chronic renal failure. Nephrol Dial Transplant 16:2135–7

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  19. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  20. Haulica I, Bild W, Serban DN (2005) Angiotensin peptides and their pleiotropic actions. J Renin Angiotensin Aldosterone Syst 6:121–31

    Article  PubMed  CAS  Google Scholar 

  21. Hines DJ (2009) The roles of microglia in response to pathological stimuli in the brain. Thesis, The University of British Columbia, Vancouver pp 10-11

  22. Jin-Tao W (2006) Clinical analysis for 28 patients with carbon monoxide poisoning follow-up neuropsychic symptom. Proc Clin Med. doi:1671-8631.0.2006-09-009

  23. Kloner RA (1988) Introduction to the role of oxygen radicals in myocardial ischemia and infarction. Free Radic Biol Med 4:5–7

    Article  PubMed  CAS  Google Scholar 

  24. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–50

    Article  PubMed  CAS  Google Scholar 

  25. Leffler CW, Parfenova H, Jaggar JH, Wang R (2006) Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol 100:1065–76

    Article  PubMed  CAS  Google Scholar 

  26. Leffler CW, Parfenova H, Jaggar JH (2011) Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol 301:H1–H11

    Article  PubMed  CAS  Google Scholar 

  27. Little JW, Doyle T, Salvemini D (2010) Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids. doi:10.1007/s00726-010-0633-0

  28. Luo ZD, Cizkova D (2000) The role of nitric oxide in nociception. Curr Pain Headache Reports 4:459–466

    Article  CAS  Google Scholar 

  29. Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479:317–320

    Article  PubMed  CAS  Google Scholar 

  30. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 469:6–10

    Article  PubMed  CAS  Google Scholar 

  31. Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–9

    Article  PubMed  CAS  Google Scholar 

  32. Radermacher J, Klanke B, Schurek HJ, Stolte HF, Frölich JC (1992) Importance of NO/EDRF for glomerular and tubular function: studies in the isolated perfused rat kidney. Kidney Int 41:1549–59

    Article  PubMed  CAS  Google Scholar 

  33. Rosselli M, Keller PJ, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4:3–24

    Article  PubMed  CAS  Google Scholar 

  34. Salido GM, Rosado JA (eds) (2009) Apoptosis: involvement of oxidative stress and intracellular Ca2+ homeostasis. Springer, New York

    Google Scholar 

  35. Staels B, Maes M, Zambon A (2008) Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:542–53

    Article  PubMed  CAS  Google Scholar 

  36. Stein AB, Bolli R, Dawn B, Sanganalmath SK, Zhu Y, Wang OL, Guo Y, Motterlini R, Xuan YT (2011) Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. J Mol Cell Cardiol Nov 19

  37. Sunnen G (2005) Ozone, a physiological gas, is created in vivo. Ozonics Int 10:216–221

    Google Scholar 

  38. Tang C, Li X, Du J (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22

    Article  PubMed  CAS  Google Scholar 

  39. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide in neurological disorders. Can J Physiol Pharmacol 87:581–94

    Article  PubMed  CAS  Google Scholar 

  40. Toyokuni S (2008) Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life 60:441–447

    Article  PubMed  CAS  Google Scholar 

  41. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  42. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  43. Wink DA, Miranda KM, Espey MG (2001) Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp Biol Med (Maywood) 226:621–3

    CAS  Google Scholar 

  44. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–30

    Article  PubMed  CAS  Google Scholar 

  45. Zoete W, Grozidier A, Michelin O (2007) Peroxisome proliferator-activated receptor structures: ligands specificity, molecular switch and interactions with regulators. Biochim Biophis Acta 1771:915–925

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ciobica Alin is supported by a POSDRU grant /89/1.5/S/49944, “Developing the innovation capacity and improving the impact of research through post-doctoral programs” of Alexandru Ioan Cuza University, Iasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin Ciobica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bild, W., Ciobica, A., Padurariu, M. et al. The interdependence of the reactive species of oxygen, nitrogen, and carbon. J Physiol Biochem 69, 147–154 (2013). https://doi.org/10.1007/s13105-012-0162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0162-2

Keywords

Navigation