Ayuda
Ir al contenido

Dialnet


Resumen de Tracking environmental change in seagrass meadows: understanding indicator behaviour across space and time

Guillem Roca Carceller

  • Nearshore marine ecosystems like seagrass meadows face a wide range of anthropogenic influences, impacting the system at different spatial and temporal scales. Managing these systems in the face of these pressures requires detailed knowledge of how seagrass habitats respond to these various threats. A plethora of useful indicators have been developed to help managers and policy makers track seagrass meadow health and status, detect environmental impacts or measure the effectiveness of management interventions. However, choosing between these indicators can often be a daunting task since they vary considerably in their overall behaviour in relation to ecosystem and environmental changes. This thesis assesses the most commonly employed seagrass indicators to determine if they are adequate and appropriate to the specific needs of coastal ecosystem management. This assessment is based on evaluating three fundamental characteristics of each indicator – the robustness of its response, the specificity or generality of its response, and the time of response. We use a variety of complementary approaches to explore indicator behaviour. In Chapter 3, we use field-based studies to assess how seagrass indicators respond to the construction of a breakwater in the vicinity of a Posidonia oceanica seagrass meadow. Chapters 4 and 5 examine long-term trends in seagrass indicators to improving water quality conditions after significant regional management interventions. In addition, in Chapter 6, we comprehensively review seagrass indicator responses to multiple stressors. Chapters 3, 4 and 5 focus largely on the Catalan Coast in the Mediterranean with Posidonia oceanica as a target species. Chapter 6 in contrast is a broad review of a wide range of indicators used across several seagrass species worldwide. A central learning across these studies was that the level of biological organisation of the indicator (i.e. Physiological, biochemical, growth, morphological, structural or demographic) is critical in determining the specificity or generality of response: the lower the level (e.g. biochemical), the most specific the response, while the higher the level (e.g. population, community), the wider the response. Thus, biochemical indicators are ideal to determine the identity or even the origin of a pressure while structural indicators, in contrast, are useful as generic indicators of declining conditions. Response times are also heavily determined by the level of organisation, particularly in the detection of improving environmental quality along the Catalan coast. Biochemical indicators responded unequivocally to water quality improvements observed both in the experimental field study (Chapter 3) as well as in the analysis of the long-term data series (Chapters 4 and 5). The meta-analysis confirmed that these trends in specificity and response time were not unique to Posidonia oceanica or the Catalan coast and highlighted the critical role of plant size in determining indicator time responses. Large species take considerably longer to register a response to environmental degradation as well as improvement – a critical factor that needs to be accounted for in designing monitoring programmes and interpreting ecosystem trends. Taken together, these results suggest that differences in the behaviour of seagrass indicators require that they should be carefully selected to match the objectives of management. Based on the results reported in this thesis, where different sets of indicators have been proven successful for given management objectives, we finally develop a simple decision tree to help managers chose the most reliable sets of indicators matching their objectives. Understanding the diversity of responses that seagrass indicators display can make them a powerful set of tools in the ecosystem manager’s toolkit. Carefully employed, they can serve as bespoke solutions to a wide range of management objectives as we seek to monitor and protect these vital ecosystems and coastal water quality in the face of increasing coastal pressures.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus