Ayuda
Ir al contenido

Resumen de Circular Economy and Circular Bioeconomy as pillars of the ecological transition for a worldwide enhanced sustainability

Alessandra Bonoli

  • español

    El principal objetivo de esta tesis doctoral es el de llevar a cabo una profunda revisión del estado del arte en relación conla crisis ecológica mundial y la identificación de posibles soluciones, que además promuevan la perspectiva de la economía y bio-economía circular. Este estudio enfatiza también la importancia de la integración de los aspectos ecológicos y socio-económicos, adoptando la perspectiva del ciclo de vida, para evaluar las consecuencias ambientales, económicas y sociales en algunos sectores. En particular, en la primera parte de esta investigación, se explora y analiza el campo de la edificación y el sector de la construcción, con el objetivo de poner en contexto su importancia tanto en el impacto económico como medioambiental. La edificación y la construcción forman parte de una industria que requiere y consume muchos recursos en una escala global y debe moverse a una economía circular para disminuir sus efectos sobre el medioambiente y preservar nuestros recursos limitados. Como se podrá comprobar en el primer artículo (anexo 1), se tratará de poner de manifiestoel impacto significativo sobre el medioambiente a nivel global que la industria de la construcción tiene. Esta industria es responsable de la producción de, aproximadamente, el 50% de las emisiones globales que causan el efecto invernadero, y consume hasta el 40% de todas las materias primas extraídas de la litosfera. Desde la construcción hasta la demolición, pasando por el uso y el mantenimiento, la edificación es responsable de un porcentaje importante del uso general de la energia (en torno al 40%) y emisiones de carbono aproximadamente el 36%). Por tanto, se pretende enfatizar la importancia del "diseño verde" de un producto, que se centre en la disminución del uso de materias primas, y la prevención de generación de residuos durante todo el ciclo de vida de los productos. La estrategia europea para un un entorno construido de forma sostenible, va a promover los principios de la circularidad de la construcción durante toda la vida útil de un edificio, empezando por una mejora en el reglamento sobre productos de construcción, adoptando también la idea de Life Cycle Assessment (LCA) en la contratación pública. Además, se investigará cómo los "Life Cycle Thinking" y "Life Cycle Assessment" son esenciales para la sostenibilidad y el Eco-Design, enfoques innovadores para la edificación y la construcción, y los procedimientos de reciclaje apropiados y eficientes para los residuos de construcción y demolición, centrados en el reciclaje de hormigón en línea con los estudios de caso examinados, que puedan apoyar la economía circular en este importante sector económico. Por último, se quiere poner en valor los principios de economía circular, queafirman que la implementación de la eficiencia energética ofrece ventajas desde la optimización del ciclo de vida y aumentando la vida útil de las construcciones con valor histórico. Con este propósito, y como objetivo fundamental del plan de investigación, el segundo documento (anexo 2) presenta un estudio de caso que involucra la aplicación del enfoque LCA a la restauración de edificios y enfatizará la importancia de los métodos basados en LCA en la evaluación y selección de materiales en el campo de la conservación y reparación de edificios históricos, que representan una parte importante del parque de edificios, especialmente en Europa. Posteriormente, el objetivo principal de la segunda sección de la tesis será concentrarse en los fundamentos de una “bioeconomía circular”, la importancia de la preservación de la biodiversidad, el uso de recursos biológicos renovables, y la gestión y el tratamiento adecuado y eficiente de los residuos orgánicos. Se pretende conocer cuánto se acerca a políticas dea sostenibilidad la bioeconomía y cómo esta puede verse amenazada por diferentes riesgos ambientales y socio-económicos, como, por ejemplo, la competencia existente en ocasiones entre la industria alimentaria y la de los combustibles para el uso del suelo, los cambios directos o indirectos en estos, la utilización marginal de dicho suelo con efectos perjudiciales sobre la biodiversidado las emisiones de gases de efecto invernadero. En este contexto, se realizará una descripción general de la gestión de residuos orgánicos, con un enfoque particular en algunas economías emergentes o países en desarrollo. Como se indica en los artículos 3 y 4 (ver los dos anexos correspondientes) una de las fracciones más grandes de los residuos es el desecho (residuo) orgánico. Se analizarán diferentes estrategias a nivel europeo, así como investigaciones detalladas en el contexto de América Central y del Sur, que den a conocer las infraestructuras “bio -based”, tales como sistemas de recuperación del biogás, instalaciones para el compost, o el uso técnicas de biorremediación. y Oriente Medio, y en particular los Territorios Palestinos ocupados, están experimentando una degradación ambiental cada vez mayor debido a la falta de recursos hídricos, los efectos dramáticos del cambio climático, el uso destructivo de la tierra y las malas prácticas de gestión de residuos. Esta degradación se ha visto agravada por años de conflicto. El objetivo del estudio, en este contexto, será el de implementar un proyecto piloto para optimizar la recolección de residuos orgánicos y el compostaje para la agricultura local. Finalmente, como último objetivo y relacionado con el artículo 5 pone de manifiesto como, en términos de biodiversidad, América Central, representa un "punto caliente, por su riqueza en flora y fauna”. Contiene más del 7% de la diversidad biológica del mundo, a pesar de cubrir solo el 1% de la área del planeta. Además, según Naciones Unidas, Europa, América Latina y la zona del Caribe son las regiones con la más altas cobertura de bosques (25 % cada una). En América Central, este porcentaje es aproximadamente el 38%. Según algunas proyecciones, 300 millones de hectáreas de suelo podrían estar disponibles en torno a 2050 para el desarrollo de industrias relacionadas con la bioeconomía. Dada su tecnología actual y su potencial para la biodiversidad, la protección de la biodiversidad tiene que ser un objetivo condiviso para América Central, y llegar a una economía de base biológica, con un enfoque respetuoso para el ambiente. En relación con estas cuestiones, el último paso en la comparación entre la Unión Europea y la América Central está en la relación entre Biocapacidad y gobernanza. Esta investigación está en la actualidad enviada para su publicación, y se centra en el sector del comercio de ganado utlizando las herramientas y las políticas ambientales disponibles tanto en la UE como en la región de América Central. La huella ecológica de la UE ha superado los límites ambientales, tal y como se indica en el artículo, siendo en la actualidad un “importador neto” de biocapacidad. Fuera de las fronteras europeas, se producen el 31% de las emisiones de gas de efecto invernadero y el 42% de la huella hídrica. La UE publicó en 2010 la Comunicación sobre la Comercio, crecimiento y asuntos mundiales. La política comercial como elemento fundamental de la Estrategia 2020 de la UE, donde se enfatiza que las políticas del comercio tienen que seguir apoyando un crecimiento “verde”, los objetivos del cambio climático, así como apoyar y promover diferentes áreas en el mundo en temas de energía, eficiencia en el uso de los recursos y la protección de la biodiversidad. El último objetivo de este plan de trabajo será el de considerar los factores económicos y la sostenibilidad ambiental como un componente crucial de la buena gobernanza europea como uno de los principales resultados de este compromiso de apoyo al crecimiento verde y a la mejora de la sostenibilidad en el planeta.

  • English

    We are currently experiencing a worldwide crisis that is unprecedented, a complicated and perplexing scenario that is full of challenges, symbolized by environmental, social and economic emergencies. Ecological challenges, such as the worldwide climate crisis, the expanding global population, the significant demand on natural resources, the over-extraction of primary materials, and overall pressures and impacts on the environment that humans are experiencing, are interconnected and require urgent and effective actions. Along with environmental ones, social and economic inequities are growing. The increasing use of natural resources, together with the production of waste and pollution, has caused humans to breach critical planetary boundaries. For the sake of the environment and global justice, it has to be favored the severe enforcement of reduction for emissions, pollutants, and resources (i.e., energy, raw materials, water, land, etc.) consumption and utilization. Three keywords can be declared and disseminated in any context, at urban and national policy, at the industrial level, and in common life: efficiency, consistency, and sufficiency. The efficiency notion is referred to an optimization of the processes, to produce the best results, and connected to optimization in energy consumption and in the utilization of resources. It is necessary to refer to the idea of eco-efficiency, which entails minimizing the negative effects of any process on the environment by lengthening the lifespan of the products, promoting material recycling, and boosting the use of renewable resources. Consistency, in general, is the attempt to incorporate the material and production cycles into the natural cycles as well. It represents an integrated constructive approach creating closed-loop material flows, and a more widespread circular economy, with attentive regard to the bioeconomy. Being satisfied with less material commodities and more intangible social and collective goods is what sufficiency ultimately entails. The sufficiency principle, also known as enoughness or strong sustainable consumption, should be incorporated into materials and resources management policies and plans in order to dissociate the concepts of life satisfaction from materialism, to decouple human development and prosperity from resources consumption and depletion. The concept of environmental sustainability falls within the constraints of the resource-limited growth ecological economic framework. According to this definition, environmental sustainability also refers to a set of restrictions on two essential activities—the use of renewable and non-renewable resources on the source side and the assimilation of pollution and waste on the outcome—that govern the scales of the human economic subsystem. Another definition of environmental sustainability emphasizes its bio-geophysical components. The maintenance or improvement of the systems that support our life is referred to as biophysical sustainability. Providing opportunities for economic and social advancement for present and future generations within the context of cultural variety, while preserving the biosphere's biological diversity and biogeochemical integrity through resource conservation and sensible use, is part of this. Environmental sustainability and development are inextricably linked to the idea of the ecosystem and the natural processes that sustain life on our planet, such as the ozone layer in the stratosphere, the climate, the hydrological or biogeochemical cycles, mineral resources, water and oceans, the land on the surface, and the space below and above the Earth. The most crucial component of the environmental framework and a fundamental prerequisite for human life is biodiversity. Taking care of nature itself, the world's ecosystems, and biodiversity entails taking care of the goods and services that nature offers. A more fundamental change is required in order to stay within the limits of the planet: a shift to an economy where prosperity is no longer predicated on the consumption of natural resources. The “circular economy” conceptual framework addresses resource use-related social and environmental challenges, mainly focusing on efficiency and consistency, complemented by the principles of sufficiency. The circular economy proposes a new paradigm in production and consumption, a different model to transform waste in resources and to redesign materials flows. In order to realize the European Commission's vision of a smart, sustainable, and inclusive economy that can lead our society to a decarbonized and pollutant-free future, it must be accompanied by initiatives to prevent waste, promote sufficiency, and decouple the concepts of well-being from consumerism and the depletion of natural resources. Reducing, reusing, and recycling are the cornerstones of the circular economy idea, that has to be restorative and regenerative by intention and design. Based on the principles of a circular economy, with a focus on the use of renewable biological resources, the circular bioeconomy refers basically to an economic system food, energy, and other biomaterials creation oriented, entailing the sustainable use and management of natural resources, including forests, fisheries, and agricultural land. A bioeconomy must be sustainable in order to address issues of the environment and society. It is encouraged to employ renewable resources, produce sustainable biomass feedstock, and create goods and conversion methods using biomass. By incorporating circular economy ideas into the bioeconomy, a circular bioeconomy is easily seen as a more effective resource management of bio-based renewable resources. It can help restore the Earth's biodiversity and natural capital while significantly lowering the negative consequences of resource extraction and utilization on the environment. It should also avoid the loss of natural resources by encouraging the reuse and recycling of wastes, byproducts, losses, and other materials. To assess the environmental, economic, and social issues related to any activity, a life-cycle perspective can be adopted. The Life Cycle Sustainability Assessment (LCSA) is a development of life cycle thinking for evaluating how a product, process, or service will affect the environment and society over the course of its full life cycle, from the extraction and processing of raw materials to disposal or recycling. It considers the complete spectrum of environmental, economic, and social impacts, including resource use, energy use, emissions, waste production, and socioeconomic implications. It provides a comprehensive framework for evaluating the sustainability of products or processes, taking into account both the positive and negative impacts of each stage of their life cycle. Objectives The main objective of this doctoral dissertation has been a deep description of the state of the art of the worldwide ecological crisis and the identification of possible solutions, promoting circular economy and circular bioeconomy perspectives. The importance of integrating ecological and socio-economic issues by adopting a life-cycle thinking perspective, to assess the environmental, economic, and social consequences in some sectors, has been highlighted. In particular, in the first part of the research, the buildings and construction sector has been explored, because of its importance both in terms of economic and environmental impacts. Building and construction is a very resource-intensive industry on a global scale and it must transition to a circular economy in order to lessen its effects on the environment and safeguard our finite resources. As stated in the first paper (annex 1), it is well acknowledged that the built environment has a significant impact on the environment globally. This industry is in charge of producing about 50% of the world's greenhouse gas emissions, and it consumes up to 40% of all the raw materials taken from the lithosphere. Along the entire chain from construction to destruction, passing through utilization and maintenance, buildings and construction are responsible for a significant portion of the overall energy consumption (approximately 40%) and carbon emissions (36%).. It is important to emphasize the significance of a product's "green design," which must be focused on a decrease in the consumption of raw materials and waste prevention along the full life cycle of products. The European strategy for a Sustainably Built Environment will promote circularity principles of construction over a building's lifespan, beginning with an update in the Construction Product Regulation, also adopting a Life Cycle Assessment (LCA) approach in public procurement. In addition, it was investigated how Life Cycle Thinking and Life Cycle Assessment, as essential tools for sustainability, Eco-design, an innovative approach to building and construction, and appropriate and efficient recycling procedures for Construction and Demolition Waste, with a focus on concrete recycling in line with the case studies examined, can support circular economy in building and construction. Finally, Circular Economy principles state that implementing energy efficiency is anticipated by optimizing lifecycle performance and extending the lifespan of historically significant construction. For this purpose, and as a fundamental goal of the study activities, the second paper (annex 2) presents a case study involving the application of the LCA approach to building restoration and emphasizes the significance of LCA-based methods in the assessment and selection of materials in the field of conservation and repair of historical buildings, which account for a sizable portion of the building stock, particularly in Europe. Subsequently, the main goal of the thesis' second section was to concentrate on the fundamentals of a circular bio-economy, the importance of protecting biodiversity, the use of renewable biological resources, and the proper and efficient treatment of organic waste. The sustainability of the bioeconomy could be threatened by a number of environmental and socioeconomic risks, including rising land-use competition between food and fuel crops, direct and indirect changes in land use, marginal land use with detrimental effects on biodiversity, and greenhouse gas emissions, among others. In this context, an overview of organic waste management, with a particular focus on some emerging economies or developing countries has been conducted. According to papers 3 and 4 (see both corresponding annexes), one of the largest portions of the global waste management system is made up of organic waste. It will be analysed different strategies at the European level, as well as researches carried on in the context of South and central America, shows that in the area there are many bio-based infrastructures, including biogas recovery systems, composting facilities, and bioremediation techniques The Middle East, and particularly the Occupied Palestinian Territories, are experiencing increasing environmental degradation due to a lack of water resources, the dramatic effects of climate change, destructive land use, and poor waste management practices. This degradation has been made worse by years of conflict. The objective of the study, in this context, will be to implement a pilot project to optimize organic waste collection and composting for local agriculture. Finally, as the last objective related to Paper 5, it was significant to highlight how, in terms of biodiversity, the Central America area, represents a "hotspot", rich in flora and fauna species. It contains over 7% of the world's biological diversity despite covering only 1% of the planet's area. Additionally, according to the United Nations, Europe and Latin America and the Caribbean are the regions with the highest forest cover (25% each). In Central America, this percentage is roughly 38% of its surface. According to certain projections, 300 million hectares of land could be made available by 2050 for the development of bioeconomy-related industries. The protection of biodiversity must also be a shared goal for Central America and the region can move toward a bio-based and circular economy with an environmentally friendly approach, given current technology and Central America's potential for biodiversity. On the same subjects, the last step in the comparison between the European Union and Central America is represented by the issue of “Biocapacity and governance”. The research is on the way to being published, concentrating on the livestock trade sector and utilizing the environmental tools and policies available in both the European Union and the Central American Region. The EU's ecological footprint has surpassed environmental limits, as indicated in the paper, and it is now a net importer of biocapacity. Outside of the EU's boundaries, 31% of the continent's greenhouse gas (GHG) emissions and 42% of its water footprint are produced. The EU adopted the Communication on Trade, Growth, and World Affairs in 2010, which emphasizes that the EU trade policy should continue to support green growth and climate change objectives as well as to support and promote various areas around the world, in terms of energy, resource efficiency, and biodiversity protection. The last objective of this work plan will be to consider economic factors and environmental sustainability as a crucial component of good European governance should be one of the main results of this commitment to support green growth and improve sustainability in the planet.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus