Ayuda
Ir al contenido

Dialnet


Nanofluids with optimised thermal properties based on metal chalcogenides with different morphology

  • Autores: Paloma Martínez Merino
  • Directores de la Tesis: Francisco Javier Navas (dir. tes.), Rodrigo Alcantara Puerto (codir. tes.)
  • Lectura: En la Universidad de Cádiz ( España ) en 2023
  • Idioma: español
  • Tribunal Calificador de la Tesis: Leonor Hernández López (presid.), Luis Lugo Latas (secret.), Filippo Agresti (voc.)
  • Programa de doctorado: Programa de Doctorado en Nanociencia y Tecnologías de Materiales por la Universidad de Cádiz
  • Materias:
  • Enlaces
  • Resumen
    • Over the last decades, the interest around renewable energies has increased considerably because of the growing energy demand and the environmental problems derived from fossil fuels combustion. In this scenario, concentrating solar power (CSP) is a renewable energy with a high potential to cover the global energy demand. However, improving the efficiency and reducing the cost of technologies based on this type of energy to make it more competitive is still a work in progress.

      One of the current lines of research is the replacement of the heat transfer fluid used in the absorber tube of parabolic trough collectors with nano-colloidal suspensions of nanomaterials in a base fluid, typically named nanofluids. Nanofluids are considered as a new generation of heat transfer fluids since they exhibit thermophysical properties improvements compared with conventional heat transfer fluids. But there are still some barriers to overcome for the implementation of nanofluids. For example, obtaining nanofluids with high stability is a priority challenge for this kind of system. Also ensuring that nanoparticles will not clog pipes or cause pressure drops.

      In this Doctoral Thesis, the use of transition metal dichalcogenide-based nanofluids as a heat transfer fluid in solar power plants has been investigated for the first time. Specifically, nanofluids based on one-dimensional, two-dimensional and three-dimensional MoS2 , WS2 and WSe2 nanostructures have been researched. The base fluid used in the preparation of these nanofluids is the eutectic mixture of biphenyl and diphenyl oxide typically employed as heat transfer fluid in concentrating solar power plants. Mainly two preparation methods have been explored: the liquid phase exfoliation method, and the solvothermal synthesis of the nanomaterial and its subsequent dispersion in the thermal oil by ultrasound. Experimental parameters such as surfactant concentration, time and sonication frequency for preparation of nanofluids have also been analysed. The nanofluids have been subjected to an extensive characterisation which includes the study of colloidal stability over time, characterisation of thermal properties such as isobaric specific heat or thermal conductivity, rheological properties and optical properties. The results have revealed that nanofluids based on 1D and 2D nanostructures of transition metal dichalcogenides are colloidally stable over time and exhibit improved thermal properties compared to the typical thermal fluid used in solar power plants. The most promising nanofluids are those based on MoS 2 nanosheets and those based on WSe 2 nanosheets with heat transfer coefficient improvements of 36.2% and 34.1% respectively with respect to thermal oil. Furthermore, the dramatic role of WSe2 nanosheets in enhancing optical extinction of the thermal oil suggests the use of these nanofluids in direct absorption solar collectors. In conclusion, the present work demonstrates the feasibility of using nanofluids based on transition metal dichalcogenide nanostructures as heat transfer fluids in concentrating solar power plants based on parabolic trough collectors.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno