Ayuda
Ir al contenido

Dialnet


Resumen de Enabling knowledge-defined networks: deep reinforcement learning, graph neural networks and network analytics

José Rafael Suárez Varela Maciá

  • Significant breakthroughs in the last decade in the Machine Learning (ML) field have ushered in a new era of Artificial Intelligence (AI). Particularly, recent advances in Deep Learning (DL) have enabled to develop a new breed of modeling and optimization tools with a plethora of applications in different fields like natural language processing, or computer vision.

    In this context, the Knowledge-Defined Networking (KDN) paradigm highlights the lack of adoption of AI techniques in computer networks and – as a result – proposes a novel architecture that relies on Software-Defined Networking (SDN) and modern network analytics techniques to facilitate the deployment of ML-based solutions for efficient network operation.

    This dissertation aims to be a step forward in the realization of Knowledge-Defined Networks. In particular, we focus on the application of AI techniques to control and optimize networks more efficiently and automatically. To this end, we identify two components within the KDN context whose development may be crucial to achieve self-operating networks in the future: (i) the automatic control module, and (ii) the network analytics platform.

    The first part of this thesis is devoted to the construction of efficient automatic control modules. First, we explore the application of Deep Reinforcement Learning (DRL) algorithms to optimize the routing configuration in networks. DRL has recently demonstrated an outstanding capability to solve efficiently decision-making problems in other fields. However, first DRL-based attempts to optimize routing in networks have failed to achieve good results, often under-performing traditional heuristics. In contrast to previous DRL-based solutions, we propose a more elaborate network representation that facilitates DRL agents to learn efficient routing strategies. Our evaluation results show that DRL agents using the proposed representation achieve better performance and learn faster how to route traffic in an Optical Transport Network (OTN) use case. Second, we lay the foundations on the use of Graph Neural Networks (GNN) to build ML-based network optimization tools. GNNs are a newly proposed family of DL models specifically tailored to operate and generalize over graphs of variable size and structure. In this thesis, we posit that GNNs are well suited to model the relationships between different network elements inherently represented as graphs (e.g., topology, routing). Particularly, we use a custom GNN architecture to build a routing optimization solution that – unlike previous ML-based proposals – is able to generalize well to topologies, routing configurations, and traffic never seen during the training phase.

    The second part of this thesis investigates the design of practical and efficient network analytics solutions in the KDN context. Network analytics tools are crucial to provide the control plane with a rich and timely view of the network state. However this is not a trivial task considering that all this information turns typically into big data in real-world networks. In this context, we analyze the main aspects that should be considered when measuring and classifying traffic in SDN (e.g., scalability, accuracy, cost). As a result, we propose a practical solution that produces flow-level measurement reports similar to those of NetFlow/IPFIX in traditional networks. The proposed system relies only on native features of OpenFlow – currently among the most established standards in SDN – and incorporates mechanisms to maintain efficiently flow-level statistics in commodity switches and report them asynchronously to the control plane. Additionally, a system that combines ML and Deep Packet Inspection (DPI) identifies the applications that generate each traffic flow.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus