Ayuda
Ir al contenido

Dialnet


Microencapsulation of roasted coffee oil from chitosan nanoparticles-stabilized pickering emulsions

  • Autores: Elisa Franco Ribeiro
  • Directores de la Tesis: Isabel Hernando Hernando (dir. tes.), Amparo Quiles (dir. tes.), Vânia Regina Nicoletti Telis (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: Paulo José do Amaral Sobral (presid.), Juan Andrés Carcel Carrión (secret.), Ellen Silva Lago Vanzela (voc.)
  • Programa de doctorado: Programa de Doctorado en Ciencia, Tecnología y Gestión Alimentaria por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The emulsification process of bioactive-rich oils makes possible their better application and preservation over the storage time. Among the many emulsification mechanisms, the Pickering method has been highlighted as it uses natural solid nanoparticles in replacement of artificial surfactants. Due to the antioxidant properties, non-toxicity and availability, this work aimed at studying chitosan modifications to produce potential Pickering particles. The studied modifications comprised self-aggregation, also called deprotonation, and crosslinking with sodium tripolyphosphate. The performance of these particles was evaluated in the emulsification of roasted coffee oil, a by-product of the coffee industry with a high content of bioactive and volatile compounds of interest. Subsequently, the physicochemical properties and stability of the microcapsules produced after drying the emulsions using spray-drying and lyophilization techniques were analyzed. All emulsions were characterized as shear-thinning, being them destabilized over the digestion process. Emulsions formulated with deprotonated chitosan nanoparticles and lower oil concentrations showed better stabilization and, consequently, greater bioaccessibility of total phenolic compounds. The different chitosan nanoparticles were characterized regarding surface charge, particle size distribution, microstructure and oil/water affinity. Deprotonated chitosan nanoparticles had a larger particle size, which resulted in emulsions with larger oil droplets. As the concentration of these particles increased, the viscosity of the emulsions was positively affected by the formation of a three-dimensional network in the continuous phase. The nanoparticles obtained by crosslinking with sodium tripolyphosphate were smaller, resulting in emulsions with smaller droplets. The viscosity of these emulsions was lower and little affected by the concentration of particles. Pickering emulsions containing 10% roasted coffee oil were spray-dried and freeze-dried, using the different studied chitosan nanoparticles and maltodextrin as carrier agents. The resulting microcapsules showed adequate moisture content, water activity and solubility for subsequent handling and storage. The presence of chitosan nanoparticles resulted in greater oil retention in the microcapsules and higher encapsulation efficiency. Microcapsules obtained by spray-drying had a more regular spherical shape, while the microparticles obtained by freeze-drying were larger with irregular morphology. Bioactive compounds and antioxidant properties were more preserved during freeze-drying. On the other hand, spray drying allowed greater protection of these compounds during the in vitro digestion. The spray- and freeze-dried microcapsules formulated with deprotonated nanoparticles were subjected to the storage test for 30 days at 25 ºC. During storage, their protection against lipid oxidation and volatile release were evaluated. The water sorption isotherms of these samples were previously determined under the storage conditions. Both samples presented type II isotherms, which resulted in a good fitting accuracy of the GAB model to the experimental data. The peroxide index and the conjugated dienes content resulted in adequate values during storage, although the freeze-dried samples showed a slightly higher tendency to oxidation due to the higher amount of surface oil. Although slight differences were observed between the dried samples, both of them showed less loss of total volatile compounds (~28%) when compared to the non-encapsulated oil (~51%) at the end of storage. Thus, it was concluded that the studied chitosan nanoparticles were efficient to encapsulate roasted coffee oil and to preserve its characteristics against the action of external agents.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno