Ayuda
Ir al contenido

Dialnet


Resumen de Application of hyperspectral imaging combined with chemometrics for the non-destructive evaluation of the quality of fruit in postharvest

Sandra Munera Picazo

  • The objective of this doctoral thesis is to evaluate the potential of the hyperspectral imaging in the visible and near infrared range in combination with chemometrics for the assessment of the postharvest quality of fruit in a non-destructive, efficient and sustainable manner. To this end, different studies are presented in which the quality of some fruits is evaluated. Due to their economic, strategic or social value, the selected fruits are of special importance in the Valencian Community, such as Persimmon 'Rojo Brillante', the pomegranate 'Mollar de Elche', the loquat 'Algerie' or different nectarine cultivars.

    First, the quality monitoring of 'Big Top' and 'Magique' nectarines was carried out using reflectance and transmittance images. At the same time, transmittance was evaluated for the detection of split pit. In addition, a classification was performed to distinguish the 'Big Top' and 'Diamond Ray' cultivars, which look very similar but have different flavour. Whereas that for the 'Rojo Brillante' persimmon, the hyperspectral imaging was studied on the one hand to monitor its maturity, and on the other hand to evaluate the astringency of this fruit, which must be completely eliminated before its commercialization. The physicochemical properties of the 'Mollar de Elche' pomegranate were evaluated by means of hyperspectral and colour imaging during its maturity using the information from the intact fruit and arils. Finally, this technique was used to characterise and identify the internal and external defects of the 'Algerie' loquat.

    In the prediction of the IQI and RPI quality indexes using reflectance and transmittance images, R2 values around 0.90 were obtained and in the discrimination according to firmness, accuracy around 95.0 % using selected wavelengths was obtained. Regarding the split pit detection, the use of the hyperspectral image in transmittance mode obtained a 93.5 % of fruits with normal bone correctly classified and 100% with split pit using PLS-DA models and 7 wavelengths. The results obtained in the classification of 'Big Top' and 'Diamond Ray' fruits show accuracy higher than 96.0 % by using PLS-DA models and 14 selected wavelengths, higher than the obtained with colour image (56.9 %) and a trained panel (54.5 %).

    According to persimmon, the results obtained indicated that it is possible to distinguish between three states of maturity with an accuracy of 96.0 % using QDA models and its firmness was predicted obtaining a R2 value of 0.80 using PLS-R. Regarding astringency, two similar studies were carried out. In the first study, the fruit was classified according to the time of treatment with high concentrations of CO2 with a precision of around 95.0 % using QDA. In the second, the fruit was discriminated according to a threshold value of soluble tannins (0.04 %) and was determined what fruit area was better to perform this discrimination. Thus, an accuracy of 86.9 % was obtained using the middle area and 23 wavelengths.

    The results obtained for the pomegranate indicated that the use of colour and hyperspectral images have a similar precision in the prediction of physicochemical properties using PLS-R and the intact fruit information. However, when the information from the arils was used, the hyperspectral image was more accurate. Regarding the discrimination by the state of maturity using PLS-DA, the hyperspectral image offered greater precision, of 95.0 % using the information from the intact fruit and 100 % using that from the arils.

    Finally, the results obtained for the 'Algerie' loquat indicated that the hyperspectral image with the XGBOOST classification method could discriminate between sound samples and samples with defects with accuracy of 97.5 % and between sound samples or samples with internal or external defects with an accuracy of 96.7 %. It was also possible to distinguish between the different defects with an accuracy of 95.9 %.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus