Ayuda
Ir al contenido

Dialnet


Detección de estrés híbrido y nutricional mediante fluorescencia clorofílica y modelos de transferencia radiativa a partir de imágenes hiperespectrales y térmicas

  • Autores: Carlos Camino
  • Directores de la Tesis: Maria Victoria González Dugo (dir. tes.), Pablo J. Zarco Tejada (dir. tes.)
  • Lectura: En la Universidad de Córdoba (ESP) ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Alfonso Garacía Ferrer (presid.), Miguel Quemada (secret.), José Luis Araus Ortega (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible por la Universidad de Córdoba y la Universidad de Sevilla
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Helvia
  • Resumen
    • El nitrógeno (N) y el agua son los factores limitantes más importantes en la producción y crecimiento de un cultivo. Conocer el estado fisiológico de un cultivo durante sus etapas de crecimiento es crítico para la optimización de la aplicación de insumos agrícolas, la predicción del rendimiento y la vigilancia de enfermedades. Desde un punto nutricional, el N es un elemento esencial en la producción de clorofila, fundamental para el proceso de fotosíntesis, y otros componentes celulares de la planta (proteínas, ácidos nucleicos, aminoácidos). Por su parte, el déficit hídrico afecta los procesos de crecimiento, rasgos filogenéticos tales como estructura de la hoja y la forma, la eficiencia fotosintética, por lo que su detección temprana es sumamente importante.

      En la última década, la estimación de parámetros fisiológicos a partir del uso de sensores hiperespectrales y térmicos se ha desarrollado ampliamente. A diferencia de los sensores multiespectrales de banda ancha, los sensores hiperespectrales se caracterizan por un elevado número de bandas estrechas y contiguas a lo largo del espectro electromagnético que permiten una mejor descripción de porciones del espectro y, por tanto, una mejor cuantificación de rasgos bioquímicos y biofísicos a través de modelos físicos de transferencia radiativa. El uso de sensores de imagen de tipo hiperespectral y térmico permite cubrir grandes áreas y cuantificar la variabilidad espacial de parámetros relacionados con el estado fisiológico del cultivo, siendo una alternativa real a los métodos destructivos tradicionales de muestreo en campo con medidas foliares.

      La presente tesis doctoral tiene como principal objetivo explorar la contribución que tiene la fluorescencia clorofílica (solar-induced fluorescence, SIF) cuantificada mediante sensores hiperespectrales a bordo de plataformas aéreas en la cuantificación de N y en la estimación de la tasa máxima de carboxilación (Vcmax), como proxy de la actividad fotosintética. Para ello, se han utilizado sensores hiperespectrales de imagen y modelos de transferencia radiativa en ensayos de fenotipado de selección de variedades de trigo en condiciones de secano y regadío. En el estudio se evaluaron las relaciones fisiológicas obtenidas entre las medidas realizadas en campo con los rasgos bioquímicos, biofísicos y fotosintéticos obtenidos mediante inversión de modelos de transferencia radiativa (PROSPECT-SAILH y SCOPE), índices espectrales de vegetación obtenidos con bandas situadas entre la región del visible y el infrarrojo de onda corta (400-1750 nm), la fluorescencia clorofílica cuantificada mediante el método de la profundidad de las líneas de Fraunhofer, e indicadores obtenidos con cámaras térmicas sensibles al rango espectral de 8-14 µm.

      Dada la importancia de los efectos estructurales en la estimación de parámetros biofísicos y bioquímicos mediante sensores remotos de alta resolución, esta tesis doctoral ha estudiado los efectos de la heterogeneidad estructural dentro de las copas de los árboles. Para ello, se han desarrollado métodos automáticos de segmentación de las imágenes obtenidas con sensores aerotransportados hiperespectrales y térmicos de alta resolución. El objetivo de este primer trabajo, fue analizar la variabilidad estructural dentro del árbol, y su efecto en las relaciones obtenidas entre las medidas fisiológicas de fluorescencia clorofílica y los indicadores térmicos.

      En la tesis doctoral se destaca el potencial que tienen las herramientas de detección remota para cuantificar la concentración de nitrógeno, detectar el estrés hídrico y estimar los rasgos de la fotosíntesis de la planta mediante el uso de imágenes hiperespectrales y térmicas combinadas con modelos de transferencia radiativa. Los resultados demuestran que la fluorescencia clorofílica natural mejora la estimación de la concentración de N y el parámetro Vcmax debido a la estrecha relación que tiene con la actividad fotosintética y la detección del estrés hídrico. Los resultados también resaltan la capacidad para estimar la tasa máxima de carboxilación utilizando inversiones con el modelo SCOPE y SIF cuantificado a partir de imágenes hiperespectrales de alta resolución en aplicaciones de fenotipado de alto rendimiento y agricultura de precisión.

      Bibliografía Allen, W.A., Gausman, H.W., Richardson, A.J., 1970. Mean Effective Optical Constants of Cotton Leaves*. J. Opt. Soc. Am. 60, 542–547. https://doi.org/10.1364/JOSA.60.000542 Allen, W.A., Gausman, H.W., Richardson, A.J., Thomas, J.R., 1969. Interaction of Isotropic Light with a Compact Plant Leaf*. J. Opt. Soc. Am. 59, 1376–1379. https://doi.org/10.1364/JOSA.59.001376 Alton, P.B., 2017. Retrieval of seasonal Rubisco-limited photosynthetic capacity at global FLUXNET sites from hyperspectral satellite remote sensing: Impact on carbon modelling. Agric. For. Meteorol. 232, 74–88. https://doi.org/10.1016/j.agrformet.2016.08.001 Amoros-Lopez, J., Gomez-Chova, L., Vila-Frances, J., Alonso, L., Calpe, J., Moreno, J., Del Valle-Tascon, S., 2008. Evaluation of remote sensing of vegetation fluorescence by the analysis of diurnal cycles. Int. J. Remote Sens. 29, 5423–5436. https://doi.org/10.1080/01431160802036391 Amtmann, A., Armengaud, P., 2009. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275–283. https://doi.org/10.1016/j.pbi.2009.04.014 Arena, C., Vitale, L., De Santo, A.V., 2008. Paraheliotropism in Robinia pseudoacacia L.: An efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol. 10, 194–201. https://doi.org/10.1111/j.1438-8677.2008.00032.x Baker, N.R., 2008. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Baret, F., Fourty, T., 1997. Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements. Agronomie 17, 455–464. https://doi.org/10.1051/agro:19970903 Baret, F., Jacquemoud, S., Guyot, G., Leprieur, C., 1992. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens. Environ. 41, 133–142. https://doi.org/10.1016/0034-4257(92)90073-S Barnabás, B., Jäger, K., Fehér, A., 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ. 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x Bausch, W.C., Halvorson, A.D., Cipra, J., 2008. Quickbird satellite and ground-based multispectral data correlations with agronomic parameters of irrigated maize grown in small plots. Biosyst. Eng. 101, 306–315. https://doi.org/10.1016/j.biosystemseng.2008.09.011 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science (80). 329, 834–838. https://doi.org/10.1126/science.1184984 Bellvert, J., Marsal, J., Girona, J., Gonzalez-Dugo, V., Fereres, E., Ustin, S.L., Zarco-Tejada, P.J., 2016. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. Remote Sens. 8, 1–17. https://doi.org/10.3390/rs8010039 Blackmer, T.M., Schepers, J.S., Varvel, G.E., 1994. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron. J. 86, 934–938. https://doi.org/10.2134/agronj1994.00021962008600060002x Bonfil, D.J., Karnieli, A., Raz, M., Mufradi, I., Asido, S., Egozi, H., Hoffman, A., Schmilovitch, Z., 2004. Decision support system for improving wheat grain quality in the Mediterranean area of Israel. F. Crop. Res. 89, 153–163. https://doi.org/10.1016/j.fcr.2004.01.017 Bousquet, L., Lachérade, S., Jacquemoud, S., Moya, I., 2005. Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sens. Environ. 98, 201–211. https://doi.org/https://doi.org/10.1016/j.rse.2005.07.005 Bowyer, P., Danson, F.M., 2004. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. Remote Sens. Environ. 92, 297–308. https://doi.org/10.1016/j.rse.2004.05.020 Boyer, J.S., 1976. Photosynthesis at Low Water Potentials. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 273, 501–512.

      Budak, H., Hussain, B., Khan, Z., Ozturk, N.Z., Ullah, N., 2015. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. Front. Plant Sci. 6, 1–13. https://doi.org/10.3389/fpls.2015.01012 Carmo-Silva, E., Andralojc, P.J., Scales, J.C., Driever, S.M., Mead, A., Lawson, T., Raines, C.A., Parry, M.A.J., 2017. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 68, 3473–3486. https://doi.org/10.1093/jxb/erx169 Cendrero-Mateo, M.P., Moran, M.S., Papuga, S.A., Thorp, K.R., Alonso, L., Moreno, J., Ponce-Campos, G., Rascher, U., Wang, G., 2016. Plant chlorophyll fluorescence: Active and passive measurements at canopy and leaf scales with different nitrogen treatments. J. Exp. Bot. 67, 275–286. https://doi.org/10.1093/jxb/erv456 Chen, P., 2015. A Comparison of Two Approaches for Estimating the Wheat Nitrogen Nutrition Index Using Remote Sensing. Remote Sens. 7, 4527–4548. https://doi.org/10.3390/rs70404527 Clevers, J.G.P.W., Kooistra, L., 2012. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 574–583. https://doi.org/10.1109/JSTARS.2011.2176468 Clevers, J.G.P.W., Kooistra, L., Schaepman, M.E., 2010. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 12, 119–125. https://doi.org/10.1016/j.jag.2010.01.007 Collatz, G., Ribas-Carbo, M., and Berry, J.A., 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aus. J. Plant Physiol., 1 9, 519–538.

      Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. For. Meteorol. 54, 107–136. https://doi.org/10.1016/0168-1923(91)90002-8 Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino, C., Panigada, C., 2008. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens. Environ. 112, 1820–1834. https://doi.org/10.1016/j.rse.2007.09.005 Corp, L.A., McMurtrey, J.E., Middleton, E.M., Mulchi, C.L., Chappelle, E.W., Daughtry, C.S.T., 2003. Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sens. Environ. 86, 470–479. https://doi.org/10.1016/S0034-4257(03)00125-1 Corp, L.A., Middleton, E.M., Campbell, P.K.E., Huemmrich, K.F., Cheng, Y.-B., Daughtry, C.S.T., 2009. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn. Proc. SPIE - Int. Soc. Opt. Eng. 7454, 1–11. https://doi.org/10.1117/12.825508 Cortazar, B., Koydemir, H.C., Tseng, D., Feng, S., Ozcan, A., 2015. Quantification of plant chlorophyll content using Google Glass. Lab Chip 15, 1708–16. https://doi.org/10.1039/c4lc01279h Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B., Staebler, R.M., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 23, 3513–3524. https://doi.org/10.1111/gcb.13599 Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M.E., Verhoef, W., Rascher, U., 2011. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 115, 1882–1892. https://doi.org/10.1016/j.rse.2011.03.011 Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., Eugster, W., Ammann, C., Schaepman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sens. Environ. 166, 91–105. https://doi.org/10.1016/j.rse.2015.06.004 Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A., Moya, I., 2012. Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field. IEEE Trans. Geosci. Remote Sens. 50, 4292–4300. https://doi.org/10.1109/TGRS.2012.2193131 Dechant, B., Cuntz, M., Vohland, M., Schulz, E., Doktor, D., 2017. Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 196, 279–292. https://doi.org/10.1016/j.rse.2017.05.019 Diaz, C., Lemaitre, T., Christ, A., Azzopardi, M., Kato, Y., Sato, F., Morot-Gaudry, J.-F., Le Dily, F., Masclaux-Daubresse, C., 2008. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition. Plant Physiol. 147, 1437–1449. https://doi.org/10.1104/pp.108.119040 Ehleringer, J., Bjorkman, O., Mooney, H.A., 1976. Leaf Pubescence: Effects on Absorptance and Photosynthesis in a Desert Shrub. Science (80). 192, 376–377. https://doi.org/10.1126/science.192.4237.376 Ehrler, W.L., 1973. Cotton Leaf Temperatures as Related to Soil Water Depletion and Meteorological Factors1. Agron. J. 65, 404–409. https://doi.org/10.2134/agronj1973.00021962006500030016x Evain, S., Flexas, J., Moya, I., 2004. A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens. Environ. 91, 175–185. https://doi.org/10.1016/j.rse.2004.03.012 Evans, J., Terashima, I., 1987. Effects of Nitrogen Nutrition on Electron Transport Components and Photosynthesis in Spinach. Aust. J. Plant Physiol. 14, 59. https://doi.org/10.1071/PP9870059 Evans, J.R., 1983. Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.). Plant Physiol. 72, 297–302. https://doi.org/10.1104/pp.72.2.297 Evans, J.R., Sharkey, T.D., Berry, J.A., Farquhar, G.D., 1986. Carbon Isotope Discrimination measured Concurrently with Gas Exchange to Investigate CO2 Diffusion in Leaves of Higher Plants. Funct. Plant Biol. 13, 281–292.

      Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90. https://doi.org/10.1007/BF00386231 Feret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin, S.L., le Maire, G., Jacquemoud, S., 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 112, 3030–3043. https://doi.org/10.1016/j.rse.2008.02.012 Féret, J.B., Gitelson, A.A., Noble, S.D., Jacquemoud, S., 2017. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215. https://doi.org/10.1016/j.rse.2017.03.004 Ferwerda, J.G., Skidmore, A.K., Mutanga, O., 2005. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. Int. J. Remote Sens. 26, 4083–4095. https://doi.org/10.1080/01431160500181044 Flexas, J., Briantais, J.M., Cerovic, Z., Medrano, H., Moya, I., 2000. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. Remote Sens. Environ. 73, 283–297. https://doi.org/10.1016/S0034-4257(00)00104-8 Flexas, J., Escalona, J.M., Evain, S., Gulías, J., Moya, I., Osmond, C.B., Medrano, H., 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Eur. Sp. Agency, (Special Publ. ESA SP 26–29. https://doi.org/10.1034/j.1399-3054.2002.1140209.x Flexas, J., Escalona, J.M., Medrano, H., 1999. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell Environ. 22, 39–48. https://doi.org/10.1046/j.1365-3040.1999.00371.x Flexas, J., Medrano, H., 2002. Drought-inhibition of photosynthesis in C3plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189. https://doi.org/10.1093/aob/mcf027 Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G., Verdebout, J., 1996. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 56, 104–117. https://doi.org/10.1016/0034-4257(95)00234-0 Frankenberg, C., Berry, J., 2018. Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval, Comprehensive Remote Sensing. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10632-3 Frankenberg, C., Butz, A., Toon, G.C., 2011. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light. Geophys. Res. Lett. 38, 1–5. https://doi.org/10.1029/2010GL045896 Galmés, J., Medrano, H., Flexas, J., 2007. Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ. Exp. Bot. 60, 105–111. https://doi.org/10.1016/j.envexpbot.2006.08.001 Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Penuelas, J., Valentini, R., 1995. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 5, 28–41. https://doi.org/10.2307/1942049 Gamon, J.A., Peñuelas, J., Field, C.B., 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. https://doi.org/10.1016/0034-4257(92)90059-S Gastellu-Etchegorry, J.P., Demarez, V., Pinel, V., Zagolski, F., 1996. Modeling Radiative Transfer in Heterogeneous 3-D Vegetation Canopies 156, 131–156.

      Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta - Gen. Subj. 990, 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 Giehl, R.F.H., Gruber, B.D., Von Wirén, N., 2014. It’s time to make changes: Modulation of root system architecture by nutrient signals. J. Exp. Bot. 65, 769–778. https://doi.org/10.1093/jxb/ert421 Gimenez, C., Mitchell, V.J., Lawlor, D.W., 1992. Regulation of Photosynthetic Rate of Two Sunflower Hybrids under Water Stress. Plant Physiol. 98, 516–524. https://doi.org/10.1104/pp.98.2.516 Gitelson, A.A., Keydan, G.P., Merzlyak, M.N., 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 33. https://doi.org/10.1029/2006GL026457 Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N., 2002. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 75, 272c Gnyp, M.L., Bareth, G., Li, F., Lenz-Wiedemann, V.I.S., Koppe, W., Miao, Y., Hennig, S.D., Jia, L., Laudien, R., Chen, X., Zhang, F., 2014. Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Int. J. Appl. Earth Obs. Geoinf. 33, 232–242. https://doi.org/10.1016/j.jag.2014.05.006 Goel, N.S., Thompson, R.L., 2000. A snapshot of canopy reflectance models and a universal nodel for the radiation regime. Remote Sens. Rev. 18, 197–225. https://doi.org/10.1080/02757250009532390 Gojon, A., Nacry, P., Davidian, J.C., 2009. Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338. https://doi.org/10.1016/j.pbi.2009.04.015 González-Dugo, M.P., Moran, M.S., Mateos, L., Bryant, R., 2006. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 24, 233–240. https://doi.org/10.1007/s00271-005-0022-8 Gonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P.J., Fereres, E., 2015. Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrig. Sci. 33, 43–52. https://doi.org/10.1007/s00271-014-0447-z Gonzalez-Dugo, Victoria, Hernandez, P., Solis, I., Zarco-Tejada, P.J., 2015. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens. 7, 13586–13605. https://doi.org/10.3390/rs71013586 Gonzalez-Dugo, V., Lopez-Lopez, M., Espadafor, M., Orgaz, F., Testi, L., Zarco-Tejada, P., Lorite, I.J., Fereres, E., 2019. Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards. Eur. J. Agron. 105, 78–85. https://doi.org/10.1016/j.eja.2019.01.010 Gonzalez-Dugo, V., Zarco-Tejada, P.J., Fereres, E., 2014. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric. For. Meteorol. 198–199, 94–104. https://doi.org/10.1016/j.agrformet.2014.08.003 Gruber, B.D., Giehl, R.F.H., Friedel, S., von Wiren, N., 2013. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies. Plant Physiol. 163, 161–179. https://doi.org/10.1104/pp.113.218453 Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4 Hernández-Clemente, R., Navarro-Cerrillo, R.M., Zarco-Tejada, P.J., 2012. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sens. Environ. 127, 298–315. https://doi.org/10.1016/j.rse.2012.09.014 Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J., 2017. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sens. Environ. 193, 165–179. https://doi.org/10.1016/j.rse.2017.02.012 Herrmann, I., Karnieli, A., Bonfil, D.J., Cohen, Y., Alchanatis, V., 2010. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens. 31, 5127–5143. https://doi.org/10.1080/01431160903283892 Himelblau, E., Amasino, R.M., 2001. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J. Plant Physiol. 158, 1317–1323. https://doi.org/10.1078/0176-1617-00608 Hlavinka, J., Nauš, J., Špundová, M., 2013. Anthocyanin contribution to chlorophyll meter readings and its correction. Photosynth. Res. 118, 277–295. https://doi.org/10.1007/s11120-013-9934-y Houborg, R., Cescatti, A., Migliavacca, M., Kustas, W.P., Yang, X., Tang, J., Mustard, J.F., Lee, J., Rossini, M., Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pikl, M., Pinto, F., Prey, L., Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., Houborg, R., Cescatti, A., Migliavacca, M., Kustas, W.P., Genty, B., Briantais, J.M., Baker, N.R., 2013. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP. Agric. For. Meteorol. 117, 10–23. https://doi.org/10.1016/j.agrformet.2013.04.006 Hsiao, T.C., 1973. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 24, 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511 Huang, Z., Turner, B.J., Dury, S.J., Wallis, I.R., Foley, W.J., 2004. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29. https://doi.org/10.1016/j.rse.2004.06.008 Huemmrich, K.F., 2001. The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance. Remote Sens. Environ. 75, 423–431.

      Idso, S.B., Jackson, R.D., Reginato, R.J., 1978. Extending the “Degree Day” Concept of Plant Phenological Development to Include Water Stress Effects. Ecology 59, 431–433. https://doi.org/10.2307/1936570 Idso, S.B., Jackson, R.D., Reginato, R.J., 1977. Remote-sensing of crop yields. Science (80). 196, 19–25. https://doi.org/10.1126/science.196.4285.19 Inoue, Y., Sakaiya, E., Zhu, Y., Takahashi, W., 2012. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 126, 210–221. https://doi.org/10.1016/j.rse.2012.08.026 IPCC, 2014. Climate change 2014. Synthesis report. Versión inglés, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324 Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, J.P.J., 1981. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17, 1133–1138. https://doi.org/10.1029/WR017i004p01133 Jackson, R.D., Reginato, R.J., Idso, S.B., 1977. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 13, 651–656. https://doi.org/10.1029/WR013i003p00651 Jacquemoud, S., Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z Jacquemoud, S., Ustin, S.L., Verdebout, J., Schmuck, G., Andreoli, G., Hosgood, B., 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 56, 194–202. https://doi.org/10.1016/0034-4257(95)00238-3 Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., Ustin, S.L., 2009. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 113, S56–S66. https://doi.org/10.1016/j.rse.2008.01.026 Jin, X., Yang, G., Tan, C., Zhao, C., 2015. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci. Rep. 5, 9311. https://doi.org/10.1038/srep09311 Johnson, L.F., 2001. Nitrogen influence on fresh-leaf NIR spectra. Remote Sens. Environ. 78, 314–320. https://doi.org/10.1016/S0034-4257(01)00226-7 Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., Middleton, E.M., 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651. https://doi.org/10.5194/bg-8-637-2011 Jury, W.A., Vaux, H.J., 2007. The Emerging Global Water Crisis: Managing Scarcity and Conflict Between Water Users. Adv. Agron. 95, 1–76. https://doi.org/10.1016/S0065-2113(07)95001-4 Kalei Wong, K., He, Y., 2013. Estimating grassland chlorophyll content using remote sensing data at leaf, canopy, and landscape scales. Can. J. Remote Sens. 39, 155–166. https://doi.org/10.5589/m13-021 Khamis, S., Lamaze, T., Lemoine, Y., Foyer, C., 1990. Adaptation of the Photosynthetic Apparatus in Maize Leaves as a Result of Nitrogen Limitation : Relationships between Electron Transport and Carbon Assimilation. Plant Physiol. 94, 1436–1443. https://doi.org/10.1104/pp.94.3.1436 Koetz, B., Baret, F., Poilvé, H., Hill, J., 2005. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 95, 115–124. https://doi.org/10.1016/j.rse.2004.11.017 Koffi, E.N., Rayner, P.J., Norton, A.J., Frankenberg, C., Scholze, M., 2015. Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system. Biogeosciences 12, 4067–4084. https://doi.org/10.5194/bg-12-4067-2015 Kokaly, R., 1999. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 67, 267–287. https://doi.org/10.1016/S0034-4257(98)00084-4 Kolber, Z., Klimov, D., Ananyev, G., Rascher, U., Berry, J., Osmond, B., 2005. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 84, 121–129. https://doi.org/10.1007/s11120-005-5092-1 Kötz, B., Schaepman, M., Morsdorf, F., Bowyer, P., Itten, K., Allgöwer, B., 2004. Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens. Environ. 92, 332–344. https://doi.org/10.1016/j.rse.2004.05.015 Kramer, D.M., Avenson, T.J., Edwards, G.E., 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 9, 349–357. https://doi.org/https://doi.org/10.1016/j.tplants.2004.05.001 Lamaoui, M., Jemo, M., Datla, R., Bekkaoui, F., 2018. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 6, 1–14. https://doi.org/10.3389/fchem.2018.00026 Lambers, H., F. S. Chapin III, and T.L.P. 1998:, 2000. Plant physiological ecology. Springer-verlag, berlin, heidelberg, new york, london, paris, tokyo, hong kong. 540 pp., 356 Fig.Hb. DM 98.00 (us$59.95). Isbn 0-387-98326-0., Journal of agronomy and crop science Zeitschrift für Acker- und Pflanzenbau. Blackwell Wissenschafts-Verlag, [Berlin, Germany] : https://doi.org/10.1046/j.1439-037x.2000.00378-1.x Lawlor, D.W., Cornic, G., 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell Environ. 25, 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.x le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.Y., Bréda, N., Genet, H., Davi, H., Dufrêne, E., 2008. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864. https://doi.org/10.1016/j.rse.2008.06.005 Li, F., Gnyp, M.L., Jia, L., Miao, Y., Yu, Z., Koppe, W., Bareth, G., Chen, X., Zhang, F., 2008. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. F. Crop. Res. 106, 77–85. https://doi.org/10.1016/j.fcr.2007.11.001 Li, F., Mistele, B., Hu, Y., Chen, X., Schmidhalter, U., 2014. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 52, 198–209. https://doi.org/10.1016/j.eja.2013.09.006 Lu, C., Zhang, J., 2000. Photosynthetic CO2 assimilation, chlorophyl fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci. 151, 135–143.

      Mahajan, G.R., Pandey, R.N., Sahoo, R.N., Gupta, V.K., Datta, S.C., Kumar, D., 2016. Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis. Agric. 1–26. https://doi.org/10.1007/s11119-016-9485-2 Mahajan, G.R., Sahoo, R.N., Pandey, R.N., Gupta, V.K., Kumar, D., 2014. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 15, 499–522. https://doi.org/10.1007/s11119-014-9348-7 Maillard, A., Diquélou, S., Billard, V., Laîné P., Garnica, M., Prudent, M., Garcia-Mina, J.-M., Yvin, J.-C., Ourry, A., 2015. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 6, 1–15. https://doi.org/10.3389/fpls.2015.00317 Makino, A., Mae, T., Ohira, K., 1984. Relation between Nitrogen and Ribulose-1,5-bisphosphate Carboxylase in Rice Leaves from Emergence through Senescence. Plant Cell Physiol. 25, 429–437. https://doi.org/10.1093/oxfordjournals.pcp.a076730 Malagoli, P., Laine, P., Rossato, L., Ourry, A., 2005. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann. Bot. 95, 853–861. https://doi.org/10.1093/aob/mci091 Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A., 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141–1157. https://doi.org/10.1093/aob/mcq028 Medrano, H., Parry, M.A.J., Socias, X., Lawlor, D.W., 1997. Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 131, 491–501. https://doi.org/10.1111/j.1744-7348.1997.tb05176.x Meron, M., Tsipris, J., Orlov, V., Alchanatis, V., Cohen, Y., 2010. Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis. Agric. 11, 148–162. https://doi.org/10.1007/s11119-009-9153-x Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of Spectral Fitting Methods for vegetation fluorescence quantification. Remote Sens. Environ. 114, 363–374. https://doi.org/10.1016/j.rse.2009.09.010 Meroni, M., Colombo, R., 2006. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens. Environ. 103, 438–448. https://doi.org/10.1016/j.rse.2006.03.016 Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051. https://doi.org/10.1016/j.rse.2009.05.003 Meyer, S., Genty, B., 1999. Heterogeneous inhibition of photosynthesis over the leaf surface of Rosa rubiginosa L. during water stress and abscisic acid treatment: induction of a metabolic component by limitation of CO 2 diffusion. Planta 210, 126–131.

      Morales, F., Abadía, A., Abadía, J., Montserrat, G., Gil-Pelegrín, E., 2002. Trichomes and photosynthetic pigment composition changes: Responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees - Struct. Funct. 16, 504–510. https://doi.org/10.1007/s00468-002-0195-1 Miller, J., Berger, M., Goulas, Y., Jacquemoud, S., Louis, J., Mohammed, G., et al. (2005). Development ofa Vegetation Fluorescence Canopy Model, ESTEC Contract No. 16365/ 02/NL/FF. 138 pp. (http://www.ias.csic.es/fluormod/ Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z.G., Latouche, G., Flexas, J., Ounis, A., 2004. A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens. Environ. 91, 186–197. https://doi.org/10.1016/j.rse.2004.02.012 Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R. V., 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors (Basel). 13, 10823–10843. https://doi.org/10.3390/s130810823 Nichol, C.J., Rascher, U., Matsubara, S., Osmond, B., 2006. Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees - Struct. Funct. 20, 9–15. https://doi.org/10.1007/s00468-005-0005-7 North, P.R.J., 1996. Three-dimensional forest light interaction model using a monte carlo method. IEEE Trans. Geosci. Remote Sens. 34, 946–956. https://doi.org/10.1109/36.508411 Norton, A.J., Rayner, P.J., Koffi, E.N., Scholze, M., 2017. Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE: Model description and information content. Geosci. Model Dev. Discuss. 1–26. https://doi.org/10.5194/gmd-2017-34 Nunes, M.A., Ramalho, J.D.C., Dias, M.A., 1993. Effect of nitrogen supply on the photosynthetic performance of leaves from coffee plants exposed to bright light. J. Exp. Bot. 44, 893–899. https://doi.org/10.1093/jxb/44.5.893 Oksanen, E., Häikiö, E., Sober, J., Karnosky, D.F., 2004. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol. 161, 791–799. https://doi.org/10.1111/j.1469-8137.2003.00981.x Palombi, L., Cecchi, G., Lognoli, D., Raimondi, V., Toci, G., Agati, G., 2011. A retrieval algorithm to evaluate the Photosystem i and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures. Photosynth. Res. 108, 225–239. https://doi.org/10.1007/s11120-011-9678-5 Parry, M., Delgado, E., Vadell, J., Keys, A., Lawlor, D., Medrano, H., 1993. stress and the diurnal activity of ribulose-1, 5-bisphosphate carboxylase in field grown Nicotiana tabacum genotypes selected for survival at low CO2 concentrations. Plant Physiol. Biochem. 31, 113–120.

      Parry, M.A.J., Andralojc, P.J., Khan, S., Lea, P.J., Keys, A.J., 2002. Rubisco activity: Effects of drought stress. Ann. Bot. 89, 833–839. https://doi.org/10.1093/aob/mcf103 Pedrós, R., Goulas, Y., Jacquemoud, S., Louis, J., Moya, I., 2010. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model. Remote Sens. Environ. 114, 155–167. https://doi.org/https://doi.org/10.1016/j.rse.2009.08.019 Pérez-Priego, O., Zarco-Tejada, P.J., Miller, J.R., Sepulcre-Cantó, G., Fereres, E., 2005. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence In-Filling of the O2-A band. IEEE Trans. Geosci. Remote Sens. 43, 2860–2868. https://doi.org/10.1109/TGRS.2005.857906 Pimstein, A., Karnieli, A., Bansal, S.K., Bonfil, D.J., 2011. Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. F. Crop. Res. 121, 125–135. https://doi.org/10.1016/j.fcr.2010.12.001 Plascyk, J.A., Gabriel, F.C., 1975. The Fraunhofer line discriminator MKII an airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans. Instrum. Meas. 24, 306–313. https://doi.org/10.1109/TIM.1975.4314448 Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van Der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 65, 4065–4095. https://doi.org/10.1093/jxb/eru191 Quemada, M., Gabriel, J.L., Zarco-Tejada, P., 2014. Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens. 6, 2940–2962. https://doi.org/10.3390/rs6042940 Quick, W.P., Horton, P., 1984. Studies on the Induction of Chlorophyll Fluorescence in Barley Protoplasts. II. Resolution of Fluorescence Quenching by Redox State and the Transthylakoid pH Gradient. Proc. R. Soc. B Biol. Sci. 220, 371–382. https://doi.org/10.1098/rspb.1984.0007 Rademacher, I.F., Nelson, C.J., 2001. Nitrogen effects on leaf anatomy within the intercalary meristems of tall fescue leaf blades. Ann. Bot. 88, 893–903. https://doi.org/10.1006/anbo.2001.1527 Reddy, A.R., Chaitanya, K.V., Vivekanandan, M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013 Rodriguez, D., Fitzgerald, G.J., Belford, R., Christensen, L.K., 2006. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Aust. J. Agric. Res. 57, 781–789. https://doi.org/10.1071/AR05361 Rosema, A., Verhoef, W., Schroote, J., Snel, J.F.H., 1991. Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements. Remote Sens. Environ. 37, 117–130. https://doi.org/10.1016/0034-4257(91)90023-Y Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1, 309–317. https://doi.org/citeulike-article-id:12009708 Sarvikas, P., Hakala-Yatkin, M., Dönmez, S., Tyystjärvi, E., 2010. Short flashes and continuous light have similar photoinhibitory efficiency in intact leaves. J. Exp. Bot. 61, 4239–4247. https://doi.org/10.1093/jxb/erq224 Schächtl, J., Huber, G., Maidl, F.-X., Sticksel, E., Schulz, J., Haschberger, P., 2005. Laser-Induced Chlorophyll Fluorescence Measurements for Detecting the Nitrogen Status of Wheat (Triticum aestivum L.) Canopies. Precis. Agric. 6, 143–156. https://doi.org/10.1007/s11119-004-1031-y Schlerf, M., Atzberger, C., 2006. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 100, 281–294. https://doi.org/10.1016/j.rse.2005.10.006 Seemann, J.R., Sharkey, T.D., Wang, J.L., Osmond, C.B., 1987. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84, 796–802. https://doi.org/10.1104/pp.84.3.796 Sehgal, V.K., Chakraborty, D., Sahoo, R.N., 2016. Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 3, 107–118. https://doi.org/10.1016/j.inpa.2016.04.001 Sepulcre-Cantó, G., Zarco-Tejada, P.J., Jiménez-Muñoz, J.C., Sobrino, J.A., Miguel, E. De, Villalobos, F.J., 2006. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 136, 31–44. https://doi.org/10.1016/j.agrformet.2006.01.008 Sepulcre-Cantó, G., Zarco-Tejada, P.J., Jiménez-Muñoz, J.C., Sobrino, J.A., Soriano, M.A., Fereres, E., Vega, V., Pastor, M., 2007. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sens. Environ. 107, 455–470. https://doi.org/10.1016/j.rse.2006.09.014 Serbin, S.P., Singh, A., Desai, A.R., Dubois, S.G., Jablonski, A.D., Kingdon, C.C., Kruger, E.L., Townsend, P.A., 2015. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy. Remote Sens. Environ. 167, 78–87. https://doi.org/10.1016/j.rse.2015.05.024 Serrano, L., Penuelas, J., Ustin, S.L., 2002. Remote sensing of nitrogen and lignin in Mediterranean vegetation\rfrom AVIRIS data:\rDecomposing biochemical from structural signals. Remote Sens. Environ. 81, 355–364.

      Shao, H.B., Chu, L.Y., Jaleel, C.A., Zhao, C.X., 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus - Biol. 331, 215–225. https://doi.org/10.1016/j.crvi.2008.01.002 Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L., 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell Environ. 30, 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x Silva-Perez, V., Molero, G., Serbin, S.P., Condon, A.G., Reynolds, M.P., Furbank, R.T., Evans, J.R., 2018. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 69, 483–496. https://doi.org/10.1093/jxb/erx421 Slatyer R. O, 1967. Plant-water relationships. Academic Press.

      Smith, W.K., Biederman, J.A., Scott, R.L., Moore, D.J.P., He, M., Kimball, J.S., Yan, D., Hudson, A., Barnes, M.L., Macbean, N., Fox, A.M., Litvak, M.E., 2018. Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America. Geophys. Res. Lett. 748–757. https://doi.org/10.1002/2017GL075922 Stroppiana, D., Boschetti, M., Brivio, P.A., Bocchi, S., 2009. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. F. Crop. Res. 111, 119–129. https://doi.org/10.1016/j.fcr.2008.11.004 Suits, G.H., 1971. The calculation of the directional reflectance of a vegetative canopy. Remote Sens. Environ. 2, 117–125. https://doi.org/https://doi.org/10.1016/0034-4257(71)90085-X Taghvaeian, S., Chávez, J.L., Hansen, N.C., 2012. Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern colorado. Remote Sens. 4, 3619–3637. https://doi.org/10.3390/rs4113619 Tezara, W., Mitchell, V.J., Driscoll, S.D., Lawlor, D.W., 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917. https://doi.org/10.1038/44842 Thoren, D., Schmidhalter, U., 2009. Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur. J. Agron. 30, 238–242. https://doi.org/10.1016/j.eja.2008.12.001 Tremblay, N., Fallon, E., Ziadi, N., 2011. Sensing of crop nitrogen status: Opportunities, tools, limitations, and supporting information requirements. Horttechnology 21, 274–281.

      Tremblay, N., Wang, Z., Cerovic, Z.G., 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32, 451–464. https://doi.org/10.1007/s13593-011-0041-1 Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H., 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91, 37–46. https://doi.org/10.1007/s11120-006-9077-5 Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., Ye, H., Casa, R., 2019. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 11, 481. https://doi.org/10.3390/rs11050481 van der Tol, C., Rossini, M., Cogliati, S., Verhoef, W., Colombo, R., Rascher, U., Mohammed, G., 2016. A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens. Environ. 186, 663–677. https://doi.org/10.1016/j.rse.2016.09.021 van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6, 3109–3129. https://doi.org/10.5194/bg-6-3109-2009 Verhoef, W., 1985. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 17, 165–178. https://doi.org/https://doi.org/10.1016/0034-4257(85)90072-0 Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 16, 125–141. https://doi.org/10.1016/0034-4257(84)90057-9 Verhoef, W., Bach, H., 2007. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 109, 166–182. https://doi.org/10.1016/j.rse.2006.12.013 Verhoef, W., Bach, H., 2003. Remote sensing data assimilation using coupled radiative transfer models. Phys. Chem. Earth 28, 3–13. https://doi.org/10.1016/S1474-7065(03)00003-2 Verhoef, W., Jia, L., Xiao, Q., Su, Z., 2007. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 45, 1808–1822. https://doi.org/10.1109/TGRS.2007.895844 Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G.P.W., Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review. ISPRS J. Photogramm. Remote Sens. 108, 273–290. https://doi.org/10.1016/j.isprsjprs.2015.05.005 Vilfan, N., van der Tol, C., Muller, O., Rascher, U., Verhoef, W., 2016. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 186, 596–615. https://doi.org/10.1016/j.rse.2016.09.017 von Caemmerer, S., 2000. Biochemical models of leaf photosynthesis. Tech. Plant Sci. 53, 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F., Scales, J.C., Wohlfahrt, G., Wullschleger, S.D., Woodward, F.I., 2014. The relationship of leaf photosynthetic traits - Vcmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecol. Evol. 4, 3218–3235. https://doi.org/10.1002/ece3.1173 Wang, W., Yao, Xia, Yao, XinFeng, Tian, Y., Liu, X., Ni, J., Cao, W., Zhu, Y., 2012. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. F. Crop. Res. 129, 90–98. https://doi.org/10.1016/j.fcr.2012.01.014 Wang, Z., Kawamura, K., Sakuno, Y., Fan, X., Gong, Z., Lim, J., 2017. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan. Remote Sens. 9, 1–14. https://doi.org/10.3390/rs9030264 Wang, Z., Skidmore, A.K., Wang, T., Darvishzadeh, R., Hearne, J., 2015. Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves. Remote Sens. Environ. 168, 205–218. https://doi.org/10.1016/j.rse.2015.07.007 Yang, P., Verhoef, W., van der Tol, C., 2017. The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sens. Environ. 201, 1–11. https://doi.org/10.1016/j.rse.2017.08.029 Yang, X., Tang, J., Mustard, J.F., Lee, J., Rossini, M., Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pikl, M., Pinto, F., Prey, L., Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., Houborg, R., Cescatti, A., Migliavacca, M., Kustas, W.P., Genty, B., Briantais, J.M., Baker, N.R., 2015. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP. Agric. For. Meteorol. 990, 10–23. https://doi.org/10.1111/gcb.13017 Yu, K., Gnyp, M.L., Gao, L., Miao, Y., Chen, X., Bareth, G., 2015. Estimate Leaf Chlorophyll of Rice Using Reflectance Indices and Partial Least Squares. Photogramm. - Fernerkundung - Geoinf. 2015, 45–54. https://doi.org/10.1127/pfg/2015/0253 Zarco-Tejada, P.J., Camino, C., Beck, P.S.A.A., Calderon, R., Hornero, A., Hernández-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P.R.J.J., Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439. https://doi.org/10.1038/s41477-018-0189-7 Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117, 322–337. https://doi.org/10.1016/j.rse.2011.10.007 Zarco-Tejada, P.J., González-Dugo, M. V., Fereres, E., 2016. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 179, 89–103. https://doi.org/10.1016/j.rse.2016.03.024 Zarco-Tejada, P. J., González-Dugo, V., Williams, L.E., Suárez, L., Berni, J.A.J., Goldhamer, D., Fereres, E., 2013a. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 138, 38–50. https://doi.org/10.1016/j.rse.2013.07.024 Zarco-Tejada, P. J., González-Dugo, V., Williams, L.E., Suárez, L., Berni, J.A.J.J., Goldhamer, D., Fereres, E., 2013b. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 138, 38–50. https://doi.org/10.1016/j.rse.2013.07.024 Zarco-Tejada, Pablo J., Miller, J.R., Harron, J., Hu, B., Noland, T.L., Goel, N., Mohammed, G.H., Sampson, P., 2004. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sens. Environ. 89, 189–199. https://doi.org/10.1016/j.rse.2002.06.002 Zarco-Tejada, P. J., Miller, J.R., Morales, A., Berjón, A., Agüera, J., 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 90, 463–476. https://doi.org/10.1016/j.rse.2004.01.017 Zarco-Tejada, Pablo J., Suarez, L., Gonzalez-Dugo, V., 2013. Spatial resolution effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation. IEEE Geosci. Remote Sens. Lett. 10, 937–941. https://doi.org/10.1109/LGRS.2013.2252877 Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt, M., Köhler, P., 2014. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Chang. Biol. 20, 3727–3742. https://doi.org/10.1111/gcb.12664 Zhang, Y., Guanter, L., Joiner, J., Song, L., Guan, K., 2018. Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data. Remote Sens. Environ. 210, 362–374. https://doi.org/10.1016/j.rse.2018.03.031 Zhao, F., Dai, X., Verhoef, W., Guo, Y., van der Tol, C., Li, Y., Huang, Y., 2016. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy. Remote Sens. Environ. 187, 385–399. https://doi.org/10.1016/j.rse.2016.10.036 Zhu, Y., Yao, X., Tian, Y., Liu, X., Cao, W., 2008. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 10, 1–10. https://doi.org/10.1016/j.jag.2007.02.006 Zlatev, Z., Cebola Lidon, F., 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates J. Food Agric. 24, 57–72.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno