We give several new characterizations of the dual of the dyadic Hardy space H1,d(T2), the so-called dyadic BMO space in two variables and denoted BMOdprod. These include characterizations in terms of Haar multipliers, in terms of the "symmetrised paraproduct" ?b, in terms of the rectangular BMO norms of the iterated "sweeps", and in terms of nested commutators with dyadic martingale transforms. We further explore the connection between BMOdprod and John-Nirenberg type inequalities, and study a scale of rectangular BMO spaces.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados