Ayuda
Ir al contenido

Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding

    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Journal of Applied Research in Technology & Engineering, ISSN-e 2695-8821, Vol. 2, Nº. 2, 2021, págs. 71-81
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study was analyzed the effect of three different compatibilizers polyethylene-graft-maleic anhydride (PE-g-MA), unmodified halloysite nanotubes (HNTs), and HNTs treated by silanization with (3-glycidyloxypropyl) trimethoxysilane (GLYMO) (silanized HNTs) in blends of bio-based high-density polyethylene (bioPE) and poly(butylene succinate) (PBS) with a weight ratio of (70/30). Each compatibilizer was added in a proportion of (3 phr regarding PBS). Standard samples were obtained by extrusion and subsequent injection molding. The analyzes of the samples were performed by mechanical tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), field emission scanning electron microscopy (FESEM), and wettability (θw). Results suggest that the addition of modified HNTs (silanized HNTs) allowed to obtain better properties than samples compatibilized with unmodified HNTs and PE-g-MA, due to it contributes with the improvement in mechanical properties regarding bioPE/PBS blend, for instance, the tensile modulus and elongation at break increase about 8% and 13%, respectively. In addition, it was determined through FESEM images and that silanized HNTs particles were better dispersed over the matrix, which in fact contribute to the enhance in mechanical properties. TGA showed that silanized HNTs delay the degradation temperature regarding the uncompatibilized blend. While DMTA indicated the reduction in the mobility of the chains in samples with unmodified and modified HNTs. Therefore, it was successfully obtained compatibilized bioPE/PBS blends, which constitutes an interesting option to develop new sustainable polymers.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno