Ayuda
Ir al contenido

Dialnet


Finite element analysis of magnetostrictive vibration energy harvester

    1. [1] Lorestan University

      Lorestan University

      Irán

  • Localización: Compel: International journal for computation and mathematics in electrical and electronic engineering, ISSN 0332-1649, Vol. 31, Nº 6, 2012, págs. 1757-1773
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Purpose – The paper aims to analyze the behavior of the Galfenol rods under bending conditions that are employed in a vibration energy harvester by illustrating the spatial variations in stress and magnetic field.

      Design/methodology/approach – This paper describes a 3‐D static finite element model of magnetostrictive materials, considering magnetic and elastic boundary value problems that are bidirectionally coupled through stress and field dependent variables. The finite element method is applied to a small vibration‐driven generator of magnetostrictive type employing Iron‐Gallium alloy (Galfenol).

      Findings – The 3‐D static finite element modeling presented here highlights the spatial variations in magnetic field and relative permeability due to the corresponding stress distribution in the Galfenol rods subjected to transverse load. The numerical calculations show that about 1.1 T change in magnetic flux density is achieved which demonstrates the effectiveness of the inspected vibration‐driven generator in voltage generation and energy harvesting. The model predictions agree with the experimental results and are coherent with the magnetostriction phenomenon.

      Originality/value – This paper fulfils the behavior analysis of Galfenol rods under transverse load that includes both compression and tension. The compressive and tensile stresses contributions to change in magnetic flux densities in the Galfenol rods were calculated by which the effectiveness of the inspected vibration‐driven generator in voltage generation and energy harvesting is demonstrated


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno