Ayuda
Ir al contenido

Dialnet


Disseny òptim d'amplificadors d'audio commutats DCI-NPC d'alta potència i qualitat

  • Autores: Vicente Miguel Sala Caselles
  • Directores de la Tesis: José Luis Romeral Martínez (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2014
  • Idioma: catalán
  • Tribunal Calificador de la Tesis: Emilio Figueres Amorós (presid.), José Luis García de Vicuña Muñoz de la Nava (secret.), Gabriel Garcerá Sanfeliú (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Class-D Amplification has been an absolute improvement in terms of electrical efficiency in audio amplification systems, but it has been during the first stabilization decade of this technology in the market when manufacturers have made public their concern about the incompatibility between distributed audio or PA (Public Address) applications and HiFi or Professional sound applications. High quality sound systems need switching frequencies (>1MHz) whose switching losses do not allow to work at high power (>250W). To the contrary, applications for high power amplification need high electrical efficiency, so the switching frequencies must be set to low values (<400kHz), reducing the signal quality. This incompatibility is called Power-Quality Compromise. The Characteristics of the Multilevel Topologies of DC-AC power electronic converters allow them to work at high power (increasing the working voltage) while maintaining or even increasing the quality of the output signal using the extra levels in the PWM output signal. The application of these topologies in the world of sound amplification could lead to the resolution of the Quality-Power Compromise and so, the main problem of the Class-D amplifiers. In the first place, this Thesis proposes the study of the Multilevel Topologies in order to determine the one who shows better features and feasibility, in terms of implementation as a Switching Audio Amplifier. Having determined the Optimal Topology, it is proposed to study, characterize and model the non-ideal phenomena and those mechanisms who generate Time and Pulse Width errors in the PWM output signals of the Amplifier Topology selected. Using these models, the effects of the errors in the output signals are studied by means of computer simulation, expressing these effects using non normative merit factors. These merit factors, unlike regulations, allow to evaluate quantitatively and qualitatively the degree of involvement of each one of the different error sources intrinsic to the design and topology. From these results it can be developed Estimation Models of the Non Normative Merit Factors, which allow to calculate the values of the Width Error and Distortion, local or total, generated by any source of error in the Amplification Sound Chain. In order to express this information in normative values, Estimation Models of Electric Efficiency, Distortion (THD) and Signal Efficiency are developed from the estimated non normative values of Width Error Distortion. These estimation models provide an information that, once ordered and classified in order to be used as a tool in the different levels of the design process, production and marketing of Switching Amplifier Equipment, allow the optimal component selection in the pre-design phase and the decision-making process to ensure the future validation of the Multilevel Switching Amplifier under market regulatory criteria. The Estimation models of the Width and Distortion Errors and the estimation models of the Electrical Efficiency, Distortion and Signal have been validated through the comparison with experimental results from a laboratory prototype and an industrial manufacturing prototype, designed by a company in the sector using the Optimal Design Tools based on the Estimation Models developed in this Thesis. The experimental results confirm that the normative values measured of the Electrical Efficiency, Distortion and Signal Efficiency are within the acceptable values for the commercialization of the equipment.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno