Ayuda
Ir al contenido

Dialnet


Numerical modeling of delayed and progressive failure in stiff clays with two-stage softening behaviour

  • Autores: Zhifeng Zhan
  • Directores de la Tesis: Antonio Gens Sole (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2012
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Sebastià Olivella Pastallé (presid.), Pere Prat Catalan (secret.), José Joaquín Celma Giménez (voc.), Joaquín Marti Rodríguez (voc.), Mohamed Rouainia (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Based on the laboratory, field and numerical results, the post-rupture strength defined firstly by Burland (1990) is verified and introduced in this thesis to describe the two-stage post-peak strain-softening characteristics of stiff clays. The first softening stage is induced by the loss of interbonding between particles, i.e. the cohesive component of strength at relatively small displacement and hence termed as cementation loss; while the second is due to the gradual realignment, i.e. reorientation of clay particles at large displacements and can be called as gradual frictional resistance loss. A generalised constitutive model is then established to simulate the two-stage softening characteristics of stiff clays by modifying the Mohr-Coulomb model. This model is formulated and then implemented into an explicit finite difference program FLAC. The new model is applied to simulate laboratory tests such as triaxial compression tests and direct shear box test to depict the new model. The numerical results demonstrate the capability and efficiency of the modified softening model to model the two-stage strain-softening behaviour of stiff clays. A series of analyses of delayed progressive failure of cut slopes in stiff clays have been performed using two-stage softening model incorporating post-rupture strength. The numerical results reproduce well the progressive failure process, position of failure surface and failure time, which proves further the validity of the new model. Meanwhile, parametric analyses are also carried out to demonstrate the general influence of post-rupture strength. The results demonstrate that the slope stability with the adoption of two-stage softening model is reduced compared with that using one-stage softening model due to the quicker cohesion reduction with deviatoric plastic strain in the first softening stage of two-stage softening model. Both post-rupture strength concept and two-stage softening model are applied to the modelling of a famous case¿ Aznalcóllar dam failure under both inhomogeneous and homogeneous hypotheses. The simulations reproduced well the failure of Aznalcóllar dam including the location and shape of the slip surface, the progressive failure course and the development of pore water pressure in terms of the developments of shear strain rate, shear strain increment, displacement, velocity and strength parameter softening. The mechanism of Aznalcóllar dam failure is deemed to be progressive failure mainly due to the softening of Guadalquivir blue clay. The developments of average stress ratio, average residual factor, average brittleness, average stress path, the distribution of shear stress and mobilised strength parameters along the slip surface confirm further the mechanism of progressive failure of Aznalcóllar dam with these values to be intermediate between peak and residual values during the failure course. The post-rupture state could be thought as the average one at initial failure. At final failure, most part of the slip surface is at residual state, especially along the horizontal part. The Aznalcóllar dam failure is sensitive to the softening rate. Larger rates will induce earlier failure and no failure will occur with slow softening rates. Only an appropriate setting of softening rates can cause failure at final phase under both inhomogeneous and homogeneous hypotheses. Finally, the post-rupture concept is introduced to derive analytical solutions to limit pressure, the stress, strain, and displacement fields for the cylindrical cavity expansion in stiff overconsolidated clay. The results of computational examples and the similarity between numerical solution and analytical one verify the reasonableness of the analytical solution to cavity expansion in stiff clays with two-stage softening characteristics.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno