Ayuda
Ir al contenido

Dialnet


Resumen de Electrochemical Preparation of Co-Ag Nanostructured Materials for GMR Applications.

José Manuel García Torres

  • The electrodeposition is a technique that day by day is gaining positions among the mainly employed physical methods. This is due to the fact that electrodeposition shows some advantages over the physical techniques such as: versatility, selectivity, room temperature, high deposition rates, high thicknesses, among others. Therefore, the aim of this thesis is the use of the electrochemical technology to prepare Co-Ag nanostructured materials for magntoresistive applications.The first step was the preparation of granular films. However, the big difference in the standard potentials of both metals discards their codeposition and therefore, the main problem to overcome was to reduce this difference. Different electrolytic baths containing different complexing agents (Bath 1: Thiourea, bath 2: Thiosulphate and bath 3: Chloride) were employed in order to favour the codeposition. After optimizing the composition of each solution, Co-Ag films with a distribution of nanometric cobalt particles into the silver matrix were obtained. However, the deposits prepared from baths 1 and 2 only showed giant magnetoresistnace (GMR) at low temperatures, fact that was attributed to the presence of sulphur in the magnetic/non-magnetic interfaces which hindered the magnetoresistance effect to take place. The use of a sulphur-free bath (bath 3) allowed obtaining films with GMR values up to 7% at room temperature, values higher than those published by others. The numerical analysis of the magnetoresistance curves, which allowed the decomposition of the magnetoresistance curves into its ferromagnetic (FM) and superparamagnetic (SPM) contribution, indicated the higher SPM contribution over the FM one in all the electrodeposition conditions.On the other hand and taking profit of the versatility of the electrodeposition, Co-Ag multilayers were prepared. The magnetic (Co) and non-magnetic (Ag) layer deposition condition optimization was crucial to obtain the highest GMR values.The electrochemical technology was also useful to prepara Co-Ag nanowires (both granular and multilayered nanowires) into the pores of polycarbonate membranes. Moreover, nanoparticles of the Co-Ag system were also prepared with a core-shell structure and by the microemulsion method. A voltammetric method was developed to univocally determine the correct core-shell structure formation. An strategy was also developed to measure the magnetoresistance of the last two kinds of nanomaterials (nanowires and nanoparticles) which corroborated their magnetoresistive behaviour.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus