Ayuda
Ir al contenido

Dialnet


Communication in membrana Systems with symbol Objects.

  • Autores: Artiom Alhazov
  • Directores de la Tesis: Yurii Rogozhin (dir. tes.), Rudolf Freund (dir. tes.), Gemma Bel Enguix (dir. tes.)
  • Lectura: En la Universitat Rovira i Virgili ( España ) en 2007
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Carlos Martín Vide (presid.), Zoltan Esik (secret.), José Mira Mira (voc.), Maciej Koutny (voc.), Sheng Yu (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • español

      Esta tesis está dedicada a los sistemas de membranas con objetos-símbolo como marco teórico de los sistemas paralelos y distribuidos de procesamiento de multiconjuntos. Una computación de parada puede aceptar, generar o procesar un número, un vector o una palabra; por tanto el sistema define globalmente (a través de los resultados de todas sus computaciones) un conjunto de números, de vectores, de palabras (es decir, un lenguaje), o bien una función. En esta tesis estudiamos la capacidad de estos sistemas para resolver problemas particulares, así como su potencia computacional. Por ejemplo, las familias de lenguajes definidas por diversas clases de estos sistemas se comparan con las familias clásicas, esto es, lenguajes regulares, independientes del contexto, generados por sistemas 0L tabulados extendidos, generados por gramáticas matriciales sin chequeo de apariciones, recursivamente enumerables, etc. Se prestará especial atención a la comunicación de objetos entre regiones y a las distintas formas de cooperación entre ellos. Se pretende (Sección 3.4) realizar una formalización los sistemas de membranas y construir una herramienta tipo software para la variante que usa cooperación no distribuida, el navegador de configuraciones, es decir, un simulador, en el cual el usuario selecciona la siguiente configuración entre todas las posibles, estando permitido volver hacia atrás. Se considerarán diversos modelos distribuidos. En el modelo de evolución y comunicación (Capítulo 4) separamos las reglas tipo-reescritura y las reglas de transporte (llamadas symport y antiport). Los sistemas de bombeo de protones (proton pumping, Secciones 4.8, 4.9) constituyen una variante de los sistemas de evolución y comunicación con un modo restrictivo de cooperación. Un modelo especial de computación con membranas es el modelo puramente comunicativo, en el cual los objetos traspasan juntos una membrana. Estudiamos la potencia computacional de las sistemas de membranas con symport/antiport de 2 o 3 objetos (Capítulo 5) y la potencia computacional de las sistemas de membranas con alfabeto limitado (Capítulo 6). El determinismo (Secciones 4.7, 5.5, etc.) es una característica especial (restrictiva) de los sistemas computacionales. Se pondrá especial énfasis en analizar si esta restricción reduce o no la potencia computacional de los mismos. Los resultados obtenidos para sistemas de bombeo del protones están transferidos (Sección 7.3) a sistemas con catalizadores bistabiles. Unos ejemplos de aplicación concreta de los sistemas de membranas (Secciones 7.1, 7.2) son la resolución de problemas NP-completos en tiempo polinomial y la resolución de problemas de ordenación.

    • English

      Artiom Alhazov: Resumen de la Tesis Doctoral Communication in Membrane Systems with Symbol Objects Esta tesis está dedicada a los sistemas de membranas con objetos-símbolo como marco teórico de los sistemas paralelos y distribuidos de procesamiento de multiconjuntos.

      Una computación de parada puede aceptar, generar o procesar un número, un vector o una palabra; por tanto el sistema define globalmente (a través de los resultados de todas sus computaciones) un conjunto de números, de vectores, de palabras (es decir, un lenguaje), o bien una función. En esta tesis estudiamos la capacidad de estos sistemas para resolver problemas particulares, así como su potencia computacional. Por ejemplo, las familias de lenguajes definidas por diversas clases de estos sistemas se comparan con las familias clásicas, esto es, lenguajes regulares, independientes del contexto, generados por sistemas 0L tabulados extendidos, generados por gramáticas matriciales sin chequeo de apariciones, recursivamente enumerables, etc. Se prestará especial atención a la comunicación de objetos entre regiones y a las distintas formas de cooperación entre ellos.

      Se pretende (Sección 3.4) realizar una formalización los sistemas de membranas y construir una herramienta tipo software para la variante que usa cooperación no distribuida, el navegador de configuraciones, es decir, un simulador, en el cual el usuario selecciona la siguiente configuración entre todas las posibles, estando permitido volver hacia atrás. Se considerarán diversos modelos distribuidos. En el modelo de evolución y comunicación (Capítulo 4) separamos las reglas tipo-reescritura y las reglas de transporte (llamadas symport y antiport). Los sistemas de bombeo de protones (proton pumping, Secciones 4.8, 4.9) constituyen una variante de los sistemas de evolución y comunicación con un modo restrictivo de cooperación. Un modelo especial de computación con membranas es el modelo puramente comunicativo, en el cual los objetos traspasan juntos una membrana. Estudiamos la potencia computacional de las sistemas de membranas con symport/antiport de 2 o 3 objetos (Capítulo 5) y la potencia computacional de las sistemas de membranas con alfabeto limitado (Capítulo 6).

      El determinismo (Secciones 4.7, 5.5, etc.) es una característica especial (restrictiva) de los sistemas computacionales. Se pondrá especial énfasis en analizar si esta restricción reduce o no la potencia computacional de los mismos. Los resultados obtenidos para sistemas de bombeo del protones están transferidos (Sección 7.3) a sistemas con catalizadores bistabiles. Unos ejemplos de aplicación concreta de los sistemas de membranas (Secciones 7.1, 7.2) son la resolución de problemas NP-completos en tiempo polinomial y la resolución de problemas de ordenación.

      Artiom Alhazov: Summary of the PhD Tesis Communication in Membrane Systems with Symbol Objects This thesis deals with membrane systems with symbol objects as a theoretical framework of distributed parallel multiset processing systems.

      A halting computation can accept, generate or process a number, a vector or a word, so the system globally defines (by the results of all its computations) a set of numbers or a set of vectors or a set of words, (i.e., a language), or a function. The ability of these systems to solve particular problems is investigated, as well as their computational power, e.g., the language families defined by different classes of these systems are compared to the classical ones, i.e., regular, context-free, languages generated by extended tabled 0L systems, languages generated by matrix grammars without appearance checking, recursively enumerable languages, etc. Special attention is paid to communication of objects between the regions and to the ways of cooperation between the objects.

      An attempt to formalize the membrane systems is made (Section 3.4), and a software tool is constructed for the non-distributed cooperative variant, the configuration browser, i.e., a simulator, where the user chooses the next configuration among the possible ones and can go back. Different distributed models are considered. In the evolution-communication model (Chapter 4) rewriting-like rules are separated from transport rules. Proton pumping systems (Sections 4.8, 4.9) are a variant of the evolution-communication systems with a restricted way of cooperation. A special membrane computing model is a purely communicative one: the objects are moved together through a membrane. We study the computational power of membrane systems with symport/antiport of 2 or 3 objects (Chapter 5) and the computational power of membrane systems with a limited alphabet (Chapter 6).

      Determinism (Sections 4.7, 5.5, etc.) is a special property of computational systems; the question of whether this restriction reduces the computational power is addressed. The results on proton pumping systems can be carried over (Section 7.3) to the systems with bi-stable catalysts. Some particular examples of membrane systems applications are solving NP-complete problems in polynomial time, and solving the sorting problem.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno