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Chapter I. Introduction, objetives and structure of the thesis 
 
 
I-1. INTRODUCTION 
 
The olive tree is a species that is very well adapted to the Mediterranean climate; the 
Mediterranean basin has more than 5 million ha of olive groves, of which 2.58 million ha are 
located in Spain, and with 60% of that figure concentrated in Andalusia (MAGRAMA, 2013). 
Over the last 20 years, Spanish production has doubled (European Commission, 2012). 
 
This crop is not particularly demanding in terms of water and nutrients, which has meant that 
traditionally it has been cultivated in marginal areas of low soil fertility and marked inclines 
(Semple, 1931). The olive tree can grow in rocky soils or low productivity soils, which makes 
alternating with another crop in the area difficult, particularly with arable crops. In Spain, 
about 60% of olive cultivation is carried out in adverse locations (European Commission, 2012). 
 
Tillage has traditionally been the standard method of managing agricultural soils. There are 
three basic purposes of tillage: preparing a suitable seed bed, soil decompaction and weed 
control.  The advent of tractors resulted in an increase in tillage power and frequency, greater 
depth of tillage, sometimes with soil turnover, and a significant reduction in labour time. 
 
Tillage would seem to encourage infiltration since it breaks the surface crust, but it causes 
compaction at the depth beyond the reach of the plough, creating a plough pan. Coupled with 
the development of new farming tools, this has resulted in excessive tillage leading to particle 
disintegration, surface crusting which reduces infiltration, and creation of plough pans which 
increase runoff (Giráldez, 1997). 
 
Furthermore, the Mediterranean climate is characterized by certain features: 70-80% of the 
total annual rainfall is concentrated in autumn and winter months, and summers are normally 
very dry and hot. Farmers must therefore attempt to store as much of the water content as 
possible in their crop soil during the wet months as this generally results in increased 
production (Pastor et al. 2004). To this end, farmers have endeavoured to remove the natural 
vegetation that competes with the olive for water and also for nutrients. With the primary aim 
of controlling weeds, tillage has intensified, accelerating the loss of soil and organic matter 
(Pulleman et al., 2005), which makes the soil more easily erodible (Reicosky et al., 1997). 
 
According to experts, the principal environmental problem in Andalusian olive groves is soil 
erosion and degradation, chiefly in areas with steep slopes, but also in areas with moderate 
slopes. Data from the National Action Programme to Combat Desertification indicate that 
extensive areas of Andalusian olive cultivation far exceed soil loss rates of 25 tonnes per 
hectare per year, more than 25 times over the natural rates of soil formation. As such, this 
situation is environmentally unsustainable. 
 
A number of studies point to significant soil losses in woody crops. Laguna and Giraldez (1990), 
for example, estimated annual losses in olive groves of between 60 and 105 Mg ha-1 year-1. 
Subsequent studies give somewhat lower values: 41 (Raglione et al., 1999), 41.4 (Bruggeman 
et al., 2005), 21.5 (Gómez y Giráldez, 2007) and 19 Mg ha-1 year-1 (Gómez et al. 2009b) in plots 
under conventional tillage. These erosion ratios are well above what is considered acceptable 
(Montgomery, 2007). Soil loss is such that erosion is considered the biggest environmental 
problem facing olive cultivation (Beaufoy, 2002). 
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The factors which have the greatest influence on soil loss are the intensity of rainfall events 
and the slope gradient and length (Martínez-Raya et al., 1993), as the greater it is, the greater 
the runoff and transport of particles. In Andalusia, a fifth of all olive groves are situated on 
slopes with a gradient of over 20% (Araujo, 2014) and torrential rainfall is becoming ever more 
common, which makes it one of the most at-risk regions. 
 
The EU has attempted, by means of the Common Agricultural Policy (CAP), to change this 
unsustainable model of traditional tillage and move towards a sustainable system. Some 
aspects of soil protection were included in the CAP after the concept of sustainability was 
introduced in 2003, within the framework of "Good Agricultural and Environmental 
Conditions" (GAEC). Thus, the new proposal for rural development incorporates objectives for 
sustainable management of natural resources and the adaptation and mitigation of climate 
change by promoting soil management approaches which facilitate carbon sequestration in 
both agriculture and forestry. The “greening" of the first pillar of the CAP 2020, proposed by 
the European Commission, is expected to improve the situation, particularly in relation to the 
problem of soil erosion and organic matter (OM) content. But the reality is that most farmers 
still use traditional tillage systems. 
 
Soil regeneration is slow and at times extremely hard to achieve. Consequently, soil is 
considered a non-renewable resource and its conservation must accordingly be made a 
priority. Soil loss leads to a decrease in natural soil fertility due to the loss of OM and nutrients 
from the system, especially since the upper horizon is usually the most fertile. It also produces 
a decrease in the biological or productive potential of the soil which, over the medium-to-long 
term, could lead to the degradation of the area. In addition, the nutrients washed away from 
the crop are converted to contaminants that may give rise to problems of eutrophication. 
 
A number of current farming techniques that completely bypass the use of tillage are regarded 
as "Conservation Agriculture" (CA). It is a broad concept characterized by minimal physical 
alteration of the soil, protecting the soil by means of a permanent cover on the surface, and 
crop rotation (FAO, 2014). CA combines profitable agricultural production with environmental 
protection and sustainability. It can be put into practice in a wide range of ecological zones and 
farming systems, where it forms the basis for a sustainable intensification of production. The 
CA approach also facilitates the integration of different production sectors, such as crop-
livestock integration and the integration of trees and pastures in the agricultural landscape. 
The principle CA methods are direct seeding in arable crops and the use of cover crops in 
permanent crops. 
 
In the recent past, before the use of cover crops in olive groves, a no-tillage technique was 
used as an alternative to conventional tillage. It involves bare soil treated with residual 
herbicides and no tillage pass at all. This system reduces the cost of weed control but leaves 
the soil entirely unprotected by vegetation. The first rains cause surface crusting and 
machinery use causes compaction that is not counteracted by the temporarily mellow soil that 
tillage produces. As such, infiltration is significantly reduced. Studies such as that of Francia et 

al. (2000) note that although soil loss may be somewhat lower than with conventional tillage, 
higher runoff losses occur, which means that the applied chemical products are more easily 
washed away with the resulting pollution that entails. Subsequent studies showed greater soil 
and water losses in no-tillage with bare soil compared to conventional tillage and cover crop 
systems (Francia et al. 2006; Gómez et al., 2009a). 
 
Furthermore, the flow of water and sediment also causes surface runoff of nutrients, which 
reduces soil fertility. Once outside of agricultural use, these nutrients become pollutants and 
the runoff provides the means of their dispersal (Smith et al., 1993). 
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To make better use of soil resources, olive trees are placed in planting frames which leaves an 
unprotected area between trees. In conventional olive groves, the canopy normally provides 
coverage of less than 35% of the cultivated area (Pastor, 1998). Olive trees and other woody 
crops are thus considered crops of limited vegetation cover. 
 
The most effective way to protect soil from erosion is to reduce or nullify the force of the rain. 
This is made possible by establishing a cover that is able to sufficiently dissipate the impact 
energy of the raindrop on the soil, preventing the disintegration of structural aggregates of 
surface soil horizons as well as slowing overland flow. When rain strikes the surface, the soil 
compacts at the point of impact, generating a wave of pressure that is transmitted through the 
pores resulting in an erosion crust (Bielders et al., 1996). 
 
The existence of a vegetation cover on the ground in the area between olive trees not only 
dissipates the kinetic energy of raindrops, but also reduces the overland flow, causing water to 
be retained and allowing it to be incorporated into the soil, thus reducing the risk of runoff and 
erosion. Gomez and Fereres (2006) found reductions in soil loss of more than 50% with the use 
of cover crops compared to conventional tillage. Many studies show that planting cover crops 
reduces water and soil loss (Rodríguez-Lizana et al., 2007; Ordóñez et al., 2007a), which also 
helps maintain soil fertility. 
 
The percentage reduction in soil loss generally lies between 50 and 90%, as the results of 
Francia et al. (2006) y Ordóñez et al. confirm. There results of Gómez et al. (2009a) were 
similar, showing that use of cover crops led to a 93% reduction in soil loss compared to bare 
soil. Gómez et al. (2011) carried out a comparison of the two soil management systems in 
vineyards and olive groves in south-western Europe. This study also indicated annual 
reductions in losses of water, soil and nutrients with the use of cover crops.  Espejo-Pérez et al. 
(2013) reduced erosion by an average of 76% in a study carried out in micro-plots in 
Andalusian olive groves. 
 
Moreover, the development of sustainable agricultural systems requires an understanding of 
the quality and evolution of the residues generated by farming practices, in order to devise 
strategies for their management. The decomposition process of plant residues plays a key role 
in ecosystems as it influences the formation of soil organic matter and the release of nutrients 
to the plants (Prescott 2005). 
 
In terms of fertility, a cover performs a dual function: on the one hand it reduces the loss of 
nutrients in soluble or sediment form caused by runoff and erosion; on the other hand it 
contributes to nutrient absorption during the dormancy period of the olive tree as, after 
mowing, its decomposition contributes to soil mineralization (Weiner et al., 2002). 
 
In most crops, the quantification of nutrients from the decomposition of residual biomass is 
often underestimated, with the consequent over-application of inputs which negatively affect 
the environmental and economic sustainability of the system. Many studies of decomposition 
have been conducted which examine the relationship between the chemical characteristics of 
plant residues and the weight lost by the material during decomposition. There are fewer 
studies evaluating the effect of the interaction between residue quality and decomposition 
rate on underlying soil fertility (Sariyildiz and Anderson, 2003; Semmartin, 2006). 
 
The decomposition process depends on the edaphic environment, on inherent characteristics 
of the residue such as its C:N ratio, lignin content and soluble carbohydrates content, as well as 
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on management considerations such as amount, distribution (Khalid et al. 2000a; Lim and 
Zaharah, 2000) and residue size (Khalid et al. 2000b). 
 
In general, most papers in the literature focus on the decomposition of arable crop residues 
left on the soil after the harvest (Douglas and Rickman, 1992; Stiener et al., 1994). Some 
notable studies in Spain include analyses of no-tillage systems (Quemada y Cabrera, 1997; 
López et al., 2003; Quemada, 2004; López et al., 2005), and in regards to Andalusia, the work 
of Ordóñez et al. (2007b) and Rodríguez-Lizana et al. (2010) is particularly noteworthy, as there 
are few studies of covers in woody crops. 
 
Within the context of olive cultivation, Hernández et al. (2005), Castro, et al. (2008) and Nieto 
et al. (2010) examined the effect of various cover management approaches in terms of 
improving soil fertility. These and other authors such as Lal (1997), Smith et al. (2000) and 
Gómez et al. (2009a) show that changes to the surface of an agricultural soil, such as the use of 
a vegetation cover, leads to an increase soil organic carbon (SOC) due to both the reduction in 
OM loss caused by erosion as well as the decomposition of organic residue. 
 
There are few studies on using pruning residues for cover. The high C:N ratio and low moisture 
content of these residues means that that they are characterized by slow decomposition rates 
(Ramos, 1999). Ordóñez et al. (2001) evaluated the effect of maintaining a continuous cover of 
olive pruning residues over a period of six years, revealing improvements in the physical and 
chemical properties of the soil. Rodríguez-Lizana et al. (2008) proposed the use of pruning 
residues as a cover in order to reduce losses of soil, P and K compared to conventional tillage. 
Nieto et al. (2010) used a carbon model to estimate the carbon sequestration potential and 
increase in SOC due to different treatments with pruning residues. 
 
In the earliest studies of vegetation covers, these covers were situated in the central area 
between the lines of olive trees. The most common approach was to use the naturally-
occurring spontaneous vegetation of the region as cover, reaped either chemically or 
mechanically. The soil loss in this system was compared with the loss generated in tillage and 
bare soil systems (Civantos and Torres, 1981). Later, covers were sown between lines of olive 
trees in order to ensure sufficient cover. Gramineous species such as barley were among the 
first to be used (Castro, 1993) along with legumes (Humanes and Shepherd, 1995; Saavedra 
and Pastor, 1996). Pastor et al. (2000) compared planted and spontaneous legumes. Saavedra 
and Shepherd (2002) surveyed studies carried out with different types of cover and 
management systems. 
 
González-Sánchez et al. (2007) identify the following basic types of cover: 
� Spontaneous vegetation cover: consists of the natural regional flora. Farmers can let this 

grow freely, or they can manage it by selecting some species, usually gramineous plants. 
In order to do so, they have to apply herbicides that eliminate broadleaf species in 
autumn or early winter. To manage such a cover, a strip should be left to complete its 
cycle and germinate, thus providing a seed bank to ensure the regrowth of the cover the 
following season. Spontaneous cover is the one most widely used by farmers as it is the 
most economical. Sometimes it is the only viable option if the topography of the area 
prevents sowing. 95% of the olive groves in Spain that use a cover (30% of the total area 
of olive groves) use a spontaneous vegetation cover (MAGRAMA, 2013). 

� Sown cover: recommended in soils with high erosion levels, soils that have previously 
been managed with tillage, or bare soil that may have lost a lot of its seed bank and would 
therefore see little spontaneous growth of cover or the growth of hard-to-control species. 
Although it offers many benefits, sown covers make up only 1% of the surface area of 
olive groves with a cover (MAGRAMA, 2013). 
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− Gramineae: Covers made up of gramineous plants provide a high degree of soil 
cover and are easy to control. They are not typically particularly tall crops and thus 
they present little competition to the olive tree. The most widely-used are barley 
(Hordeum ssp), ryegrass (Lolium ssp) and brome (Bromus spp.) This paper 
examines a newer species, "Vegeta" (Brachypodium distachyon). It is a short plant 
which nevertheless produces a lot of biomass, and its cycle is shorter than the 
most common gramineous species, which means less competition with the olive 
trees.  

− Cruciferae: These species are well known by farmers as they usually form part of 
the spontaneous flora of olive groves. Their taproot can help reduce compaction 
(Wolfe, 2000), but they are particularly useful due to their potential for disease 
control, especially Verticillium dahliae (Cabeza-Fernández and Bejarano-Alcázar, 
2008), which is currently being studied by plant pathologists. Some species with 
high glucosinolate content can have a toxic effect on fungal microsclerotia 
(Mayton et al. 1996). Some of the most beneficial species were studied by 
Alcántara et al. (2009; 2011), of which, Sinapis alba subsp. mairei, Eruca vesicaria 
and Brassica carinata particularly stood out.  

− Legumes: From an agricultural point of view, legumes play an important role in 
terms of their ability to fix atmospheric nitrogen due to their symbiosis with 
Rhizobium bacteria. When legume residue is left on the surface or incorporated 
into the soil it provides part of the main crop’s N requirements as it decomposes 
(Guzman and Alonso, 2001), acting as a green manure. One disadvantage is their 
low persistence in the soil due to their low C:N ratio, which means faster residue 
decomposition and can leave the soil unprotected in early autumn. Those most 
frequently used as covers are clovers (Trifolium spp), vetches (Vicia sativa and 

Vicia villosa) and bitter vetch (Vicia ervilia). 
� Dead mulch: Made up of non-living elements, it offers the great advantage of not 

competing with the main crop for water and nutrients. It may be composed of pruning 
residues, leaves stripped from olives in the mills, or even stones. The pruning residues 
have to be shredded in a grinder and applied to the soil. Shredding eliminates the risk of 
olive bark beetles (Phloetribus scarabeoides), even in the case of coarsely-ground residue. 
Such residues are extremely beneficial as they increase the content of organic matter and 
nutrients in the soil, form a durable cover and improve soil structure. They also have a 
marked effect on weeds thus reducing the use of herbicides. The drawback of this type of 
cover is the potential spread of disease. In order to avoid this, it is advisable to remove all 
affected material in the olive grove, by pruning and isolating it, so that the infected 
residues are not spread throughout the plantation. The surface area of olive groves with 
this type of cover represents 4% of the total area of olive groves with cover in Spain 
(MAGRAMA, 2013). 

 
The use of moss as a vegetation cover is currently being researched (Saavedra, 2013), 
especially in cases where it naturally occurs in the olive grove. It would provide a permanent 
cover that would not compete with the main crop and could possibly reduce the use of 
herbicides in managing the cover. 
 
Originally, the main objective of covers was to protect against large losses of soil resulting from 
conventional tillage. However, other benefits were observed, such as improved hydric balance 
(Márquez et al., 2007) if managed appropriately; weed control (Hatcher and Melander, 2003); 
and improved soil in terms of soil organic matter and nutrient balance (Bowman and 
Billbrough, 2002). 
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Lastly, it should be noted that the implementation of covers has been officially promoted via 
the CAP, which has been incorporating environmental criteria (Calatrava and Franco, 2011). It 
was initially based on subsidized voluntary programmes. Council Regulation (EC) 2078/92 
included agri-environmental measures. This was later replaced by Council Regulation (EC) 
1257/99 and the Ministry of Agriculture, Fisheries and Food published Royal Decree 4/2001, 
establishing a grant scheme for environmentally-friendly production methods. Subsequent 
CAP reforms established direct aid to farmers through Council Regulation (EC) 73/2009, 
implemented in Spain via Royal Decree 486/2009, which set out the statutory management 
requirements and the appropriate agricultural and environmental conditions that farmers 
must meet in order to receive direct payments. 
 
Agri-environmental assistance, developed by communities, has increased the implementation 
of vegetation covers, especially in Andalusian olive groves. Currently 40% of the total surface 
area of Andalusian olive plantations have some kind of cover, compared to 30% nationally 
(MAGRAMA, 2013). These figures highlight not only the need for studies, but above all the 
need for the dissemination and transfer of knowledge in this field to farmers. 
 
Some studies and measures have been implemented via the European Union’s LIFE 
programme ("The Financial Instrument for the Environment"). Specifically, the LIFE 
“Sustainable Doñana Project” (LIFE00 ENV / E / 000547) produced very good results in 
combating soil erosion in the olive groves of the Doñana National Park. Tests were carried out 
on 33 farms covering 320 ha, chosen on the basis of their high exposure to erosion and their 
representativeness of the most common types of soils in the area. 
 
It was estimated that LIFE investments would prevent a total of 345 000 tonnes of soil erosion, 
which translates to about 10 cm of soil in 230 ha of agricultural land, and that this would 
greatly reduce the pressure of sediments in the Guadiamar river (European Commission, 
2010). The implementation of this project has provided a boost to the use of sustainable 
practices in the region, mainly due to the great efforts made in raising public awareness and 
informing local farmers about the importance of preserving natural resources and the 
landscape. The EU recognizes that the problem for conservation agriculture is not so much the 
cost as the lack of knowledge required on the part of farmers in order to implement such 
practices (European Parliament, 2014). 
 
 
I-2. OBJECTIVES  
 
The ultimate aim of this study was to provide technicians and farmers with a range of possible 
uses of covers according to their needs, presenting information on which species or 
treatments are best for solving a given problem based on the characteristics of their farming. 
 
In particular, we aim to use a sprinkler rainfall simulator to determine the effect of the 
coverage and intensity of rainfall on the generation of runoff, soil loss and loss of SOC in the 
sediment washed away. To this end, comparisons were carried out of species from different 
families used as a vegetation cover, spontaneous grass and a tillage system (Chap. II). 
 
We also aim to evaluate the decomposition of different types of covers, observing their ability 
to keep the soil covered (Chapters III and IV); to study their potential to fix atmospheric CO2 
and their use as a source of carbon (Chapters III and IV.); and the release and contribution of 
macronutrients (Chapter V) to the soil. Live gramineous and cruciferous plants were used 
(Chapter III) as well as a dead mulch of pruning residues (Chapters IV and V) with different 
treatments featuring different application volumes and residue size. 
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I-3. STRUCTURE OF THE THESIS 
 
This thesis is divided into six chapters:  
Chapter I: General introduction and objectives.  
Chapter II: This chapter outlines the reductions in runoff, erosion and carbon losses according 
to the different species used as cover compared with a tillage system. This is an article which is 
being prepared for publication. 
Chapter III: Presents a published article about the carbon sequestration potential and soil 
protection with a live cover of gramineous and cruciferous plants. 
Chapter IV: Contains a published article on a study of dead mulch cover made up of pruning 
residues applied to the soil. The article takes an environmental perspective on soil protection, 
examining soil fertility and OM content within this context.  
Chapter V: Published article featuring data from the same experiment as in Chapter V, 
developed with dead mulch cover made up of pruning residues. The release of N, P and K from 
the residue is studied as well as the resulting soil improvement in terms of these 
macronutrients.  
Chapter VI: A summary and general conclusions of the study are detailed. 
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II-Abstract 
 
Olive, one of the main crops of the Mediterranean area, is usually planted following a pattern 
which leaves a large bare soil area between the trees, enhancing erosion losses. The erosive 
processes are more intense in steep slopes, where many olive orchards are located. Cover 
crops represent an effective soil conservation practice for olives cropped in steep slopes. The 
use of cover crops in tree orchards, either spontaneous or periodically drilled, has increased in 
recent years as a management system to prevent soil and water losses. In order to compare 
runoff, erosion and soil organic carbon (SOC) losses in sediment, several trials were carried out 
in plots located in the south of Spain over a two year period. The plots were rectangles 5 m 
wide and 10 m long. Several covers were adopted including a gramineous (Brachypodium 

distachyon), a cruciferous (Sinapis alba) and two leguminous plants (Vicia sativa and Vicia 

ervilia). The covers were compared with conventional tillage and a cover crop of spontaneous 
weeds, the cover commonly used by most farmers. Rain was simulated with a set of sprinklers 
which yield constant rates of 15 and 40 mm h-1 at two different times of the year: when the 
cover was in its development phase and after it was mechanically mowed. Runoff hydrographs 
and sediment concentration were registered and total amount of runoff, sediment yield and 
SOC losses were determined. The extended root system of crucifers and their fast growth, 
which favours infiltration, reduced runoff in the S. alba plot by over 95% with respect to 
conventional tillage and spontaneous weeds. All cover crop treatments significantly reduced 
soil loss rates compared to the tillage system. S. alba, V. ervillia, B. distachyon, spontaneous 
weeds and V. sativa followed in decreasing reduction order with respect to the tillage 
treatment with reductions grater than 93%. Compared to spontaneous weeds, Sinapis alba 

achieved a 91.1% of reduction in both losses. The low percentage of cover in the tillage system 
significantly increases water, soil and SOC losses. The high rate of losses observed emphasizes 
the need to protect the soil in order to conserve its fertility. A kinematic wave model for the 
runoff hydrograph with a variable soil infiltration rate was fitted to the experimental data 
obtaining good fits to the data of all treatments. The coefficient of determination between 
measured and fitted data was 0.98. 
 
Keywords: Rain simulator, runoff, erosion, cover crops, olive, kinematic wave model. 
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II-1. INTRODUCTION 
 
The 97% of the global surface area of olive trees is located in countries in the Mediterranean 
basin. It is a species well adapted to this climate, where 70-80% of the total annual rainfall 
occurs in autumn and winter months, and where summers are normally very dry and hot. Olive 
is not a very demanding crop in terms of water and nutrients, as a consequence of its long 
adaptation to adverse environmental conditions usually planted in marginal areas with steep 
slopes and shallow soils. 
 
Permanent crops are placed in tree planting patterns to better take advantage of the soil 
resources, leaving the area between the crop lines unprotected. Moreover, to capture more 
water in the soil profile, the farmer controls weeds, traditionally with agricultural implements. 
By the mid-twentieth century, light work done by animal traction gave way to an 
intensification of the work using new agricultural machinery. Excessive tillage has led to the 
disintegration of soil particles, degradation of soil structure and formation of surface crusts 
and plough pans that reduce infiltration inducing great runoff volumes (Giráldez, 1997). 
 
About 12.6% of the area of Spain is threatened by the risk of severe, or very severe, erosion, 
while 34.1% is at medium risk (MMA, 2007). Some studies indicate large losses of soil in olive 
groves, such as Laguna and Giráldez (1990) who estimated that the annual losses in the olive 
groves studied were in the range of 60 to 105 Mg ha-1. Raglione  et al. (1999) measured annual 
soil losses of 41 Mg ha-1, similar values (40 Mg ha-1) reported Bruggeman et al. (2005) in olive 
groves managed with tillage. Lower data (21.5-25.6 Mg ha-1) were measured by Gómez and 
Giráldez (2007) and Francia et al. (2006) in a tilled and a no-tilled bare soil respectively. Today, 
erosion is considered the biggest environmental problem in the cultivation of olives (Beaufoy, 
2002). 
 
The mineral nutrients of the soil are lost with the runoff, either in soluble form, or adsorbed in 
the sediment, which implies in-site fertility losses and off-site damage by the spread of 
pollutants in the watershed. 
 
Factors that influence soil loss are the intensity of rainfall events and the inclination and length 
of slope. The existence of a living or inert cover crop, breaking the uniformity of the surface, 
reduces the impact of rain on the ground as well as the increase of surface flow, reducing its 
velocity and favouring infiltration. Gómez and Fereres (2006) obtained reductions in soil loss of 
more than 50% with cover crops compared to conventional tillage. Francia et al. (2006), 
Ordóñez et al. (2007), and Rodríguez-Lizana et al. (2007) results indicated that cover crops 
reduce runoff, soil erosion, and nutrient losses, thus contributing to the maintenance of 
fertility. 
 
The low organic matter content of Mediterranean soils is an important factor which affects the 
runoff-erosion process. It is also an essential element in soil fertility. An increase in its 
proportion makes the soil more permeable, thereby reducing the flow of surface water and 
soil loss. The removal of cover crops and other plant residues decreases the soil organic carbon 
(SOC), increasing soil erodibility.  
 
Crop rotation is a practice that is not only recommended in extensive field crops but also in 
cover crops (Alcántara et al., 2009), since the continued use of the same type or family of crop 
does not take the most of all the resources in the system, and can produce compaction and 
other problems. There are only a few studies with different types of cover crop from an 
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environmental point of view, and those studies carried out in the same farm on homogeneous 
terrain that show the effect on erosion and SOC loss of different species used as cover crops 
are very scarce. 
 
The use of a rainfall simulator allows the exploration of the efficiency of the different plant 
types as cover crop. The introduction of physical-mathematical models to describe surface 
runoff flow, under controlled conditions, could be adopted to estimate the values of soil 
parameters and their modification by the different agricultural conservation practices. 
 
The kinematic wave model, a simplification of the Saint-Venant equations for the open channel 
flow, is considered a good tool for interpreting soil and water losses in erosion experiments. 
Laguna and Giráldez (1993) adapted the model initially proposed by Singh and Regl (1983) 
carrying on a sensitivity analysis in a similar experiment with rainfall rate constant. They 
estimated the hydrograph parameters assuming a constant soil water infiltration rate. Under 
this hypothesis when the equilibrium is reached the flow rate remains constant during the 
steady-state period. In the circumstances of the Laguna and Giráldez (1993) experiments, with 
a shallow soil, the model was well fitted to the experimental data. Nevertheless the infiltration 
rate of water into soil changes with time in most of the cases. Smith and Parlange (1978) 
developed an equation for the infiltration of water into the soil which was similar to the 
simplified Green and Ampt equation of wide use in hydrological studies. In fact they 
demonstrated that both their equation and the Green and Ampt equations can be deduced 
from a general infiltration equation by the value of a single parameter. Giráldez and Woolhiser 
(1996) obtained an analytical solution to the kinematic wave equations for the Smith and 
Parlange (1978) infiltration model, but they did not apply it to any experimental data. 
 
The first aim of this study was to determine the effect of cover crops and rainfall intensity on 
runoff, sediment yield and associated SOC losses, using a sprinkler rainfall simulator and 
comparing different species as cover crop.  
 
The second aim of this article was adoption of the kinematic wave model of Giráldez and 
Woolhiser (1996) to the experimental runoff data of the simulated rain plots adopting the 
Smith and Parlange (1978) formulation for a variable infiltration rate. 
 
 
II-2. MATERIALS AND METHODS 
 
II-2.1. Experimental plots 

 
Several rectangular experimental plots were used, 5×10 m2 in size, located on a 20% slope in 
the IFAPA "Alameda del Obispo" Experiment Station in Cordoba, in a 6×5 m2 plantation pattern 
of olive trees (Fig. 1). The plots had a runoff and sediments collection channel at their lower 
side, draining the flow through a PVC pipe into a gauge based on the tipping bucket design of 
Barfield and Hirschi (1986). 
 
The soil of the experimental plots is a Calcixerept Inceptisol, according to Soil Survey Staff 
(1999). The Table II-1 shows some physicochemical characteristics of the soil. 
 
 
 
 

Table II-1. Physicochemical characteristics of the soil used in the trial. 
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Depth pH pH CO3
-2

 CEC Sand Silt Clay Textural OM 

cm in H2O in CaCl2 % Molc kg
-1

 % % % Class % 

0-20 8.61 7.79 19.34 0.15 47.34 34.71 17.94 Loam 2.07 

20-40 8.57 7.88 23.60 0.14 49.29 30.88 19.83 Loam 1.07 

40-60 8.59 7.89 20.52 0.15 49.04 32.57 18.39 Loam 0.92 

   CEC: Cation Exchange Capacity; OM: Organic Matter. 

 
Traditional tillage was compared to live planted or spontaneous cover crops as soil 
management systems. For the sown cover crops, a family of grasses (Brachypodium 

distachyon) was chosen because their good ground protection and ease of handling make 
them suitable species for cover crops. Sinapis alba L. subsp. mairei (H. Lindb. Fil.) Maire was 
chosen as a cruciferous plant; cruciferous plants are a species known by farmers because they 
usually form part of the spontaneous flora in olive groves, but also are very important for their 
disease control potential, especially Verticillium dahliae (Cabeza-Fernández and Bejarano-
Alcázar, 2008) currently under study. Legumes are relevant from the agricultural point of view 
due to their ability to fix atmospheric nitrogen through symbiosis with Rhizobium bacteria. The 
decomposition of their remains, either left on the surface or incorporated into the soil, provide 
part of the N requirements for the crop (Guzmán and Alonso, 2001), acting as green manure. 
Two of the most commonly used species: Vicia sativa and Vicia ervilia, were choosed for this 
work. Brachypodium distachyon and the leguminous were sown at a rate of 100 kg ha-1 of 
cover. Sinapis alba was sown and buried 0.5 cm deep following the procedures established in 
previous field studies (Alcántara et al., 2009) at a rate of 10 kg per ha of cover. 
 
In one of the plots, the natural flora of the area was allowed to grow as a spontaneous grass. 
The dominant species were identified, which were Calendula, Bromus and Hordeum species. 
Later in spring after irrigation, other species appeared such as Avena barbata, species of the 
genera Erodium, Convolvulus arvensis, Crepis vesicaria and some mallow. 
 
Summing up, there were six treatments: Tillage, B. distachyon, S. alba, V. sativa, V. ervilia and 
spontaneous weeds. The tillage was performed with rototiller 20 cm at depth. 
 
II-2.2. Rainfall simulator 

 
In order to compare the losses, a rainfall simulator was used, consisting of a series of sectorial 
sprinklers, placed on lateral line on either side of each of the plots, with 3 sprinkler heads per 
lateral line located on supports 3 m in height (Fig. II-1). By varying the pressure, different flows 
were obtained, with the possibility of changing the intensity of the simulated rainfall. 
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Fig. II-1. Sketch of the rain simulator and the runoff plot. 

 
Twelve simulations for each plot and year were carried out, grouped into 2 series: with cover 
in its development and after mechanical mowing. In each series two intensities of rain were 
used: 40 mm h-1 (for 90 min before mowing and 120 min after mowing) and 15 mm h-1 (for 3 h) 
and three repetitions were carried out on each plot. The experiment was conducted over two 
years. 
 
II-2.3. Sampling and analysis 

 
Although previous tests were carried out to check the rainfall was homogeneous across the 
plot area and intensity was that determined, 8 rain gauges were used during each simulation 
to check the actual intensity of the trial. The Christiansen uniformity coefficient (unity minus 
the average absolute deviation from the mean depth divided by the mean depth) was used to 
evaluate the rain uniformity. Runoff generated was measured with the flow gauge. Erosion 
was evaluated by a periodic sample of the runoff which was weighed, oven dried, and weighed 
again to get the sediment mass and the volume. The sediment accumulated in the runoff 
channel was also collected at the end of the trial. The SOC loss was calculated analyzing the 
percentage of organic Carbon in sediment samples. 
 
The determination of organic C is based on the Walkley-Black chromic acid wet oxidation 
method. Oxidisable matter in the soil is oxidised by 1N K2Cr2O7 solution. The reaction is 
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assisted by the heat generated when two volumes of H2SO4 are mixed with one volume of the 
dichromate. The remaining dichromate is titrated with ferrous sulphate. The titre is inversely 
related to the amount of organic C present in the soil sample (Sparks et al. 1996) 
 
The percentage of cover was measured by the method of Agrela et al. (2003), which consists of 
estimating the percentage of covered soil in each of the 100 grids each 0.01 m2 in size divided 
up in a 1 m2 frame, using a scale of 0 to 5. The coverage of a plot was calculated as the average 
of 10 selected points at every series. 
 
The plots were irrigated two days before each run to reach saturation. To check the initial 
homogeneity in the plots, depth soil samples were taken before each test using an Edelman 
auger to measure moisture by the gravimetric method. Four depth intervals were taken: 0-5, 
5-20, 20-40 and 40-60 cm in three points of each plot. 
 
II-2.4. Kinematic wave model 

 
The model based on the kinematic wave approximation of the Saint-Venant equations: 

 fr
x

q

t

h −=
∂
∂+

∂
∂

 [1] 

The equation [1] is the mass conservation expression for the water, where h is the water 
depth, t time, x space, and q, r and f are the overland flow, rainfall and infiltration rates 
respectively. 
 
The relationship between water depth and flow rate constitutes the momentum conservation 
equation, reduced to a uniform flow equation: 

 mhq α=  [2] 

The α coefficient related to any uniform flow equation such as Manning’s or Chezy’s, 
expressing surface conditions, with the m exponent.  
 

By substituting eq. [2] in [1]: ( ) frh
xt

h m −=α
∂
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The term 1−α m
mh  represents the celerity of the wave.  

Initial and boundary conditions of surface flow were null water depth: 
 h(0, t) = h(x, 0) = 0 [5] 
These equations can be solved by the method of characteristics (Courant and Hilbert, 1962), 
which converts the partial differential equations to a pair of ordinary differential equations, 
expressing the absolute time variation of the water depth 

 fr
dt

dh −=  [6] 

along the characteristic curves whose equation is 

 1−α= m
mh

dt

dx
 [7] 

For any rainfall rate starting at time t = 0, runoff begins to flow at ponding time tp, defined by 
Smith and Parlange (1978) as: 

 
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S is the sorptivity and Ks the saturated hydraulic conductivity of the soil. 
 



Chapter II 

23 

 

The infiltration rate, f, according to Smith and Parlange (1978), is an implicit equation given by: 
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The equation for the characteristic curve is found by integration of equation (7) 
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The integral of equation (11) was numerically evaluated with the Gauss-Legendre scheme. The 

parameters (Ks, S
2
/2, m and α) were estimated by optimization using Rosenbrock algorithm 

(Press et al., 2007). The goodness of the fit was calculated with the Nash and Sutcliffe 

efficiency (ENS) (Krause et al., 2005), which compares the observed (
iobsq ) and calculated 

(
icalq ) values, being obsq  the average for the observed flows: 
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II-3. RESULTS AND DISCUSSION 
 
II-3.1 Runoff, Soil and SOC losses 

 
The real rain rates obtained in each plot and simulation runs are shown in table II-2. The values 
obtained were slightly different to 40 and 15 mm h-1 established previously. The averages for 
high and low rain rates were 38.75 and 18.06 mm h-1 respectively. Significant differences were 
not found between treatments. 
 
The averages of the Christiansen Uniformity Coefficient in the three repetitions per each 
simulations series are shown in table II-2. The high values indicate the good homogeneity of 
the rainfall simulations. 
 

Table II-2.  Real rate rain obtained (r) and Christiansen Uniformity Coefficient (CUC) in each plot 

for the different simulation runs and treatments over the two years of study. B: Before mowing, 

A: After mowing. 

 
Year B/A Rain TILLAGE B. distachyon S. alba V. sativa V. ervilia SPONTAN. 

 
mowing 

 
rate 

(mm h
-1

) 
r 

(mm h
-1

) 
CUC 
(%) 

r 
(mm h

-1
) 

CUC 
(%) 

r 
(mm h

-1
) 

CUC 
(%) 

r 
(mm h

-1
) 

CUC 
(%) 

r 
(mm h

-1
) 

CUC 
(%) 

r 
(mm h

-1
) 

CUC 
(%) 

1 B 40 37.69 92.12 38.00 90.10 37.40 89.53 39.79 88.36 39.74 92.37 40.78 90.52 

 B 15 16.73 90.37 17.67 89.13 17.23 84.32 17.36 83.12 18.09 78.69 18.97 87.92 

 A 15 19.50 91.14 18.59 89.21 17.45 77.05 18.49 83.18 18.10 83.69 19.78 87.41 

 A 40 38.83 95.88 40.06 96.43 40.22 96.47 36.63 92.61 36.16 92.36 39.44 93.82 

2 B 40 35.54 78.94 37.32 88.47 38.06 89.65 41.03 91.80 41.36 95.58 39.65 93.94 

 B 15 18.98 89.51 18.42 87.03 18.56 81.32 17.68 88.68 18.38 89.99 16.94 91.97 

 A 15 20.72 87.02 18.64 84.00 19.95 81.47 15.57 86.05 15.99 90.93 15.67 86.26 

 A 40 39.16 89.91 39.86 93.72 36.79 85.31 37.36 90.97 38.46 89.21 40.56 92.03 
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In spite of all plots were irrigated with the same volume, the type and develop of cover and 
the day of year conditioned the initial soil moisture (Table II-3). 
 

Table II-3. Gravimetric moisture (kg kg
-1

) at depth of 0-60 cm in each plot before the simulation 

runs and treatments over the two years of study. Different letters indicate significant 

differences between treatments compared with LSD-test (p≤0.05). B: Before mowing, A: After 

mowing. 

 
Year B/A 

mowing 

Rain rate Duration Gravimetric moisture (kg kg
-1

) 

(mm h
-1

) (h) TILLAGE B. distachyon S. alba V. sativa V. ervilia SPONTAN. 

1 B 40 1.5 0.15 a 0.14 a 0.13 a 0.15 a 0.15 a 0.14 a 

 B 15 3 0.11 a 0.10 a 0.11 a 0.12 a 0.14 a 0.12 a 

 A 15 3 0.13 b 0.10 c 0.10 c 0.14 ab 0.16 a 0.14 ab 

  A 40 2 0.12 b 0.11 b 0.10 b 0.16 a 0.16 a 0.15 a 

2 B 40 1.5 0.13 ab 0.10 cd 0.09 d 0.16 a 0.15 ab 0.13 bc 

 B 15 3 0.13 ab 0.12 b 0.11 c 0.14 a 0.13 ab 0.13 ab 

 A 15 3 0.13 b 0.13 b 0.12 c 0.15 a 0.13 b 0.11 c 

  A 40 2 0.12 c 0.13 bc 0.11 c 0.15 a 0.14 ab 0.14 a 

 
The average runoff values obtained from the three repetitions in each series are shown in 
table II-4. In it, the significant differences with tillage can be seen in almost all the series 
carried out, except in cases where the soil was freshly tilled, in which case infiltration was 
improved but only down to the plough pan. This happened in the first series of the first year 
where spontaneous grass and vetch (V. sativa) produced a great runoff volume. At the end of 
the trials after the two years, all sown species reduced the runoff generated by over 70% 
compared to a tillage system. With respect to the spontaneous grasses, the Sinapis cover 
runoff was significantly lower than those of other types. The extensive root system of the 
cruciferous plants facilitated infiltration and their good biomass production provided high 
surface cover.  
 

Table II-4. Runoff (mm) in each plot for the different simulation runs and treatments over the 

two years of study. Also indicated are the amount of runoff generated in all the tests carried 

out, and the percentage reductions relative to tillage and relative to spontaneous weeds. 

Different letters indicate significant differences between species compared with LSD-test 

(p≤0.05) 

 
Year B/A 

mowing 

Rain rate Duration RUNOFF (mm) 

(mm h
-1

) (h) TILLAGE B. distachyon S. alba V. sativa V. ervilia SPONTAN. 

1 B 40 1.5 2.43 b 2.10 b 0.27 b 9.03 a 1.99 b 7,52 a 

 B 15 3 0.58 a 0.00 b 0.00 b 0.29 b 0.46 ab 0,42 ab 

 A 15 3 2.85 a 0.00 b 0.00 b 0.05 b 0.35 b 0,26 b 

  A 40 2 9.98 a 0.22 d 0.15 d 3.29 c 3.76 c 6,81 b 

2 B 40 1.5 7.45 a 2.24 b 0.30 b 0.23 b 1.69 b 0,74 b 

 B 15 3 2.09 a 0.00 c 0.00 c 0.07 c 0.28 b 0,19 b 

 A 15 3 2.84 a 0.27 b 0.01 b 0.01 b 0.02 b 0,16 b 

  A 40 2 16.61 a 3.60 b 0.06 b 0.45 b 3.71 b 0,34 b 

 TOTAL years 1+2 44.81 a 8.42 bc 0.79 c 13.41 b 12.25 bc 16.45 b 

% REDUCTION compared to TILLAGE     -81.20   -98.25   -70.08   -72.65   -63.29   

% REDUCTION compared to SPONT. 63.29   -48.79   -95.23   -18.50   -25.50       
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Soil losses were generally higher in treatments where there was more runoff, although 
differences were bigger. Regarding tillage, adding all the losses, reduction percentages of over 
90% were obtained with any type of cover (Table II-5). Regardless of the plot where tillage was 
used, Sinapis soil losses were statistically lower than V. sativa and B. distachyon. The last two 
species experienced developing problems during the first year, which caused major losses 
especially under the high intensity rainfall. 
 

Table II-5. Soil losses (kg ha-1) in each plot for the different simulation runs in the two years of 

study. The amount of erosion generated in all the tests carried out and the percentage 

reductions relative to tillage and relative to spontaneous grass are also shown. Different letters 

indicate significant differences between species compared with the LSD-test (p≤0.05). B: Before 

mowing, A: After mowing. 

 
Year B/A 

mowing 
Rain rate Duration SOIL LOSS (kg ha

-1
) 

(mm h
-1

) (h) TILLAGE B. distachyon S. alba V. sativa V. ervilia SPONTAN. 

1 B 40 1.5 373.10 a 233.01 ab 6.25 b 275.61 ab 72.81 b 132.82 ab 

 B 15 3 44.69 a 0.00 b 0.00 b 6.92 b 5.38 b 5.80 b 

 A 15 3 182.80 a 0.00 b 0.00 b 0.30 b 2.31 b 3.63 b 

  A 40 2 2462.45 a 3.09 b 5.41 b 9.14 b 12.44 b 55.79 b 

2 B 40 1.5 665.71 a 7.07 b 6.84 b 2.23 b 13.47 b 5.73 b 

 B 15 3 126.05 a 0.00 c 0.00 c 2.71 b 2.44 b 2.48 b 

 A 15 3 150.67 a 4.46 b 0.00 b 1.61 b 0.85 b 3.18 b 

  A 40 2 853.29 a 82.89 b 0.17 b 1.66 b 8.01 b 1.78 b 

TOTAL years 1+2 4858.76 a 330.53 b 18.67 b 300.19 b 117.71 b 211.23 b 

% REDUCTION compared to TILLAGE     -93.20   -99.62   -93.82   -97.58   -95.65   

% REDUCTION compared to SPONT. 95.65   36.09   -91.16   29.64   -44.27       

 
The effect of a cover crop, either sown or spontaneous, is greater regarding soil loss than in 
terms of runoff. In runoff generation, the characteristics of the species may be more decisive, 
and in addition, newly tilled soil may still have good infiltration although the loss of flow has a 
higher sediment load. 
 
Fig. II-2 shows the relationship between runoff and sediment yield of every simulation. The 
values corresponding to the tilled plot are usually larger in runoff but mainly in erosion, the 
points from tillage are represented over the rest (Fig. II-2). 
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Fig. II-2. Relationship between runoff and soil loss for all treatments and replications. 

 
SOC loss was higher in treatments where soil loss was higher (Table II-6). Occasionally, the low 
content of organic matter in tilled soils can result in lower loss compared to soil that is richer, 
especially with rain events that are not very erosive. Fig. 3 represents the percentage of 
organic carbon in sediment and the soil loss. The data show a descending trend with increasing 
erosion. The contents of organic carbon in the sediments from tillage plot are usually lower 
than in cover treatments, especially in events with high erosion (Fig. II-3). 
 

Table II-6. SOC losses (kg ha
-1

) in each plot for the different simulation runs and treatments 

during the two years of study. The SOC losses generated across all the tests performed and the 

percentage reductions relative to tillage and relative to spontaneous weeds are also shown. 

Different letters indicate significant differences between species compared with the LSD-test 

(p≤0.05). B: Before mowing, A: After mowing. 

 
Year B/A 

mowing 
Rain rate Duration SOC LOSS (kg ha

-1
) 

(mm h
-1

) (h) TILLAGE B. distachyon S. alba V. sativa V. ervilia SPONTAN. 

1 B 40 1.5 6.76 a 2.03 bc 0.14 c 4.59 ab 1.04 bc 3.04 abc 

 B 15 3 0.85 a 0.00 b 0.00 b 0.13 b 0.14 b 0.13 b 

 A 15 3 6.35 a 0.00 b 0.00 b 0.01 b 0.06 b 0.09 b 

  A 40 2 36.45 a 0.16 b 0.07 b 0.22 b 0.35 b 0.80 b 

2 B 40 1.5 11.53 a 0.17 b 0.19 b 0.07 b 0.32 b 0.18 b 

 B 15 3 1.96 a 0.00 c 0.00 c 0.14 b 0.12 b 0.12 b 

 A 15 3 1.17 a 0.07 b 0.00 b 0.03 b 0.03 b 0.15 b 

  A 40 2 8.18 a 1.31 b 0.00 b 0.03 b 0.24 b 0.08 b 

TOTAL years 1+2 73.26 a 3.73 bc 0.41 c 5.21 b 2.30 bc 4.60 b 

% REDUCTION compared to TILLAGE     -94.91   -99.44   -92.89   -96.86   -93.72   

% REDUCTION compared to SPONT. 93.72   -18.89   -91.07   11.78   -49.97     

 
 



Chapter II 

27 

 

0.01 0.1 1 10 100 1000 10000

Soil loss [kg/ha]

0

2

4

6

8

O
rg

an
ic

 C
 in

 s
ed

im
en

t 
[%

]

TILLAGE
Brachypodium distachyon
Sinapis alba
Vicia sativa
Vicia ervilia
SPONTANEOUS

 

 

Fig. II-3. Contents of organic carbon in the sediments from each simulation runs and treatments 

and the soil loss. 

 
Fig. II-4 presents the overall differences between SOC and soil loss between treatments. 
Worthy of highlight are the cut in the vertical axis and the change of scale to represent the soil 
loss in tillage plot. 
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Fig. II-4. Soil and SOC total losses from the simulations performed over two years. Vertical lines 

represent the Standard Error.  Different letters indicate significant differences between species 

compared with the LSD-test (p≤0.05). 

 
Our results agree with those obtained by other authors like the 83% reduction of Francia et al. 
(2000) and the 93% of Gómez et al. (2009a) respect to a bare soil treatment. Gomez et al. 
(2011) in a comparison between these systems, carried out on grape vines and olive trees, 
found large reductions in soil loss, SOC and nutrients with different types of seeded and 
spontaneous cover. Espejo-Pérez et al. (2013) reduced erosion by an average of 76% in a study 
carried out in micro-plots in Andalusian olive groves. 
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Tillage can lower the organic matter content between 30 and 50% over a few years (Robert et 

al., 2004). Other authors suggest that losses can reach 60% (Jones et al., 2004). In our 
simulations, the covers reduced SOC loss by over 90%, percentage greater than those indicated 
by Marquez-García et al. (2013) who found reductions of 80.5 and 67.7% in soil and SOC losses 
respectively. The reductions of this study are according with those obtained by Gómez et al. 
(2009b) with a Lolium cover in bigger plots and lower slope. 
 
II-3.2. Percentage of cover 

 
The sparse crop cover in the tillage system produced greater losses in this plot. The average 
level of cover over each year is shown in Figure II-5. The period when each series of simulated 
rainfall was conducted is also shown. 
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Fig. II-5. Soil surface cover in all simulation runs and day of the year. Vertical lines represent 
the Standard Error. 

 
After mowing, the surface cover can even increase slightly, given that the erect stems cover 
less surface than those freshly mowed and left on the ground, though as the remains 
decompose, the percentage of cover reduces. In some cases such as spontaneous grass, 
increases can occur due to the onset of summer grasses. Parallel to the mowing in the plots 
with cover, tillage was carried out in the tilled plot. This plot was tilled before carrying out the 
series each year. In this type of management the usual practice is to perform at least two 
tillages over the year. 
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Figure II-6 compares surface cover with soil and SOC losses. The greatest losses usually 
correspond to lower cover values, which occur mainly in tillage. The soil and SOC losses are 
plotted using a logarithmic scale indicating that the differences are larger than those that can 
be appreciated at first glance. 
 
The cover values obtained with any cover crop loosely exceeded 30% of the covered surface, 
even after clearing, a threshold that is internationally accepted in conservation agriculture to 
keep the soil protected (CTIC, 1990). 
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Fig. II-6. Representation in semi logarithmic scale of the individual values of loss of soil and SOC 

compared to percentage of cover. 

 
II-3.3. Kinematic wave model 

 
The oscillation in the flow data, ought to the tipping bucket, did necessary to choose some 
data to be able to apply the program. 
 
The model had a good fit to the experimental data, mainly in the tillage plot and high rainfall 
rate where efficiencies over 0.90 were obtained (Table II-4) except in one case. In the 
treatments with cover crops, a routine was added to the program because the 2nd domain of 
the characteristic curve was not always reached. 
 

Table II-7. Parameters obtained with the model and efficiency of the fit. B: Before mowing, A: 

After mowing. 

Treatment Year B/A 
mowing 

Rain rate Rep. Ks S
2
/2 m α ENS 

  mm h-1  mm h-1
 mm2 h-1

  mm1-mh-1  

Tillage 1 B 40 R1 17.22 793 1.61 0.312 0.983 

    R2 5.28 788 2.22 0.329 0.985 

    R3 17.70 788 1.25 0.621 0.938 

Tillage 1 B 15 R1 3.91 397 1.32 0.353 0.949 

    R2 3.86 460 1.05 1.806 0.814 

    R3 3.90 421 1.16 2.529 0.948 

Tillage 1 A 15 R1 2.33 366 3.91 0.022 0.884 

    R2 4.25 280 2.75 0.812 0.963 
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    R3 1.61 366 2.73 0.227 0.886 

Tillage 1 A 40 R1 1.83 362 3.12 0.861 0.883 

    R2 16.70 491 1.68 0.128 0.955 

    R3 33.32 352 1.93 0.542 0.971 

Tillage 2 B 40 R1 19.35 609 1.30 0.719 0.963 

B.distachyon 1 B 40 R2 20.30 468 2.19 0.161 0.865 

    R3 27.97 357 1.97 0.022 0.958 

B.distachyon 1 A 40 R3 3.82 213 2.98 0.041 0.973 

Sinapis alba 1 B 40 R2 6.20 524 1.33 0.003 0.834 

    R3 10.46 524 1.05 0.013 0.933 

Sinapis alba 1 A 40 R2 1.08 312 3.72 0.102 0.825 

Vicia sativa 1 B 15 R1 7.77 138 1.01 0.253 0.502 

Vicia sativa 1 A 40 R1 0.86 67.6 2.97 0.001 0.823 

    R3 1.38 102 1.97 0.415 0.644 

Vicia ervilia 1 B 15 R1 4.69 118 1.01 0.258 0.842 

Vicia ervilia 1 A 15 R1 6.56 24.3 1.01 0.090 0.600 

    R2 5.77 128 2.70 0.035 0.963 

    R3 4.24 79.8 2.19 0.004 0.843 

Spontaneous 1 B 15 R1 9.23 179 1.13 0.090 0.664 

Spontaneous 1 A 15 R1 4.55 412 2.21 0.578 0.855 

   15 R3 6.40 34.7 1.79 0.017 0.656 

 
All treatments with cover crops got larger values for saturated conductivity (Ks) than tillage in 
events with 15 mm h-1. This fact indicates a high infiltration in these treatments with low 
rainfall rate. 
 
One hydrograph chosen from every treatment is shown in the Fig. II-7. 
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Fig. II-7. Measured and fitted hydrographs for the indicated treatment and run. 

 
A highly significant relationship (R2=0.98; p<0.0001) was found between measured and fitted 
values (Fig. II-8). 
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Fig. II-8. Comparison between measured and fitted runoff data. 

 
The good fit indicates the usefulness of this model that has been applied to all treatments with 
different soil managements providing representative data. 
 
 
II-4. CONCLUSIONS 
 
The low soil cover of the tillage system significantly increases erosion and SOC loss with 
respect to the cover crop treatment, with good results obtained irrespective of the plant 
specie whether it was drilled or natural flora that grew spontaneously. A cruciferous, Sinapis 

alba, was the cover crop that better protected the soil with the lowest runoff, soil and SOC 
losses. 
 
The rotation of cover crops is recommended to avoid compaction, flora is reversed and to take 
better advantage of resources and environmental practices. Planting of a species belonging to 
these three families in a rotation cycle will provide some of the advantages they have, keeping 
the land protected and reducing losses significantly compared to the tillage system, especially 
if it is a sloping olive grove, thus maintaining fertility. 
 
The kinematic wave model adopting the Smith and Parlange (1978) solution for variable 
infiltration rate fits very well to the experimental data of the runoff plots, especially when the 
soil conditions are homogeneous like a uniformly tilled soil and there are high rainfall rates. 
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III-Abstract 
 
The maintenance of plant cover between olive grove lanes until the beginning of spring is a soil 
management alternative that is gradually being adopted by olive growers. As well as protecting 
the soil from erosion, plant covers have other advantages such as improving the 
physicochemical properties of the soil, favouring its biodiversity and contributing towards the 
capturing of atmospheric carbon and its fixation in the soil. A trial was conducted over three 
growing seasons in an olive plantation situated in southern Spain. It was designed to evaluate 
the C fixation potential of the residues of the cover species Brachypodium distachyon, Eruca 

vesicaria, Sinapis alba and of spontaneous weeds; and also to study the decomposition 
dynamics of plant residues after mowing cover. After 156 and 171 days of decomposition, the 
species that released the largest amount of C was Brachypodium with values of 2,157 and 
1,666 kg ha-1 respectively, while the lowest values of 461 and 509 kg ha-1 were obtained by 
spontaneous weeds. During the third season (163 days of decomposition) and due to the 
weather conditions restricting the emergence and growth of cover, spontaneous weeds 
released the most C with a value of 1,494 kg ha-1. With respect to the fixation of C, Sinapis 

records the best results with an increase in soil organic C (SOC) concentration of 7,690 kg ha-1. 
Considering the three seasons and a depth of 20 cm, the behaviour sequence of the different 
species in favouring the fixation of soil organic C was Sinapis>Brachypodium>spontaneous 
weeds>Eruca.  

Keywords: cover crops, carbon release, soil carbon fixation. 

 
Resumen 
 
Potencial de secuestro de carbono de residuos de diferentes tipos de cubiertas en olivar bajo 
clima mediterráneo 
 
El mantenimiento de una cubierta vegetal entre líneas de olivo hasta el comienzo de la 
primavera es una alternativa de manejo de suelo que está siendo gradualmente adoptada por 
los olivareros. Así como la protección del suelo contra la erosión, las cubiertas vegetales tienen 
otras ventajas como la mejora de las propiedades físico-químicas del suelo, favorecer su 
biodiversidad y contribuir a la captura de carbono atmosférico y su fijación en el suelo. Se ha 
realizado un ensayo durante tres campañas en una plantación de olivos situada en el sur de 
España. Éste fue diseñado para evaluar el potencial de fijación de C en residuos de cubiertas de 
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las especies Brachypodium distachyon, Eruca vesicaria, Sinapis alba y de hierba espontánea; y 
también para estudiar la dinámica de descomposición del residuo tras el desbroce de la 
cubierta. Después de 156 y 171 días de descomposición, la especie que más cantidad de C 
liberó fue el Brachypodium con un valor de 2157 y 1666 kg ha-1 respectivamente, mientras que 
los valores más bajos fueron 461 y 509 kg ha-1 y se obtuvieron por la hierba espontánea. 
Durante la 3ª campaña (163 días de descomposición), debido a las condiciones climáticas, se 
vio restringida la emergencia y el crecimiento de la cubierta. La hierba espontánea liberó la 
mayor cantidad de C con un valor de 1494 kg ha-1. Con respecto a la fijación de C, Sinapis 
registró los mejores resultados con un incremento de la concentración de C orgánico en suelo 
de 7690 kg ha-1. Considerando las 3 campañas y una profundidad de 20 cm, la secuencia de 
especies que favorecen la fijación de C orgánico fue Sinapis>Brachypodium>hierba 
espontánea>Eruca. 

Palabras clave: cubierta vegetal, carbono liberado, fijación de carbono en suelo. 

 
Abbreviations used: CEC (cation exchange capacity); Covermax (percentage of maximum cover 
along decomposition period); Cover (%)it (percentage of cover obtained in the strip i and 
instant t); Covert (percentage of cover at the instant t); Mt (residue mass at instant t, in kg ha-1); 
OM (organic matter); SOC (soil organic carbon) 
 
 
III-1. INTRODUCTION 
 
Tree crops in Spain occupy 4,748,283 ha or 46.5% of the total plantation surface of the area in 
15 countries in Europe. The olive tree (Olea europaea L.) is the most common, representing 
51% of the area, a figure that is increasing every year due to the lack of profitability of 
alternative crops. Mediterranean countries account for 98% of the world's olive cultivation 
area, largely in Spain (2.6 × 106 ha), Italy (1.4 × 106 ha), Greece (1 × 106 ha) and Portugal (0.5 × 
106 ha). The Common Agricultural Policy (CAP) (EU) budget devoted to olive groves amounts to 
2,250 million euros (Beaufoy, 2002). Some 1.5 Mha of the 2.4 Mha olive groves registered in 
Spain are in Andalusia (MARM, 2010), accounting for over 80% of our production. These groves 
have traditionally occupied marginal, not very fertile soils broken up by erosion and steep 
slopes and are hardly suitable for other crops. Only in the last few decades areas with 
acceptable conditions of soil and climate started to be cultivated. 
 
Currently, olive groves in Andalusia (Spain) suffer from environmental degradation, i.e. 
erosion, compaction and the risk of diffuse contamination, and also from the loss of soil 
fertility and the need to replenish the nutrients extracted by the plant or lost in erosion 
processes. 
 
In order to mitigate this problem, research has been carried out since 1980 to facilitate weed 
control, improve soil management systems and prevent the mineralization of organic matter 
(OM) and the loss of soil structure. This has been done using no-till and the establishment of 
plant covers between the rows of olive trees to protect the soil from erosion (Francia et al., 
2006). 
 
The benefits of plant covers recognized in the scientific and technological bibliography are very 
great: they reduce the pollution of surface waters (Rodríguez-Lizana et al., 2007), improve the 
water balance in the soil (Bowman and Billbrough, 2004), help to control weeds (Hatcher and 
Melander, 2003) and recycle the unused nitrogen in the soil (Weiner et al., 2002). 
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Historically, intensive tillage of agricultural land has caused substantial losses (from 30 to 50%) 
of C from the soil (Pulleman et al., 2005). These C losses are due to the fragmentation of the 
soil triggered by tillage and facilitated by biological activity. 
 
Loveland and Webb (2003), in a review of the critical levels of OM in agricultural soils of the 
temperate area, suggested that a C content of 1% could represent the threshold under which 
the functioning of the soil-crop system could be jeopardized even when adequate mineral 
fertilizers were added. 
 
Covering the soil with a layer of stubble is a fundamental management practice in sustainable 
agriculture systems. The control of erosion, the accumulation of water in the profile and the 
maintenance of acceptable levels of OM and soil fertility are some of the aims of this practice. 
By conserving the resource, sustainable production over time is assured (Sparrow et al., 2006). 
 
The development of this type of system requires knowledge of the quality and evolution of 
plant residues in order to set up management strategies. The quality of the residue is generally 
associated with two factors. On one hand, with the time it continues to protect the soil and on 
the other, its capacity to supply C as it decomposes, with the area's climate and the residue's 
composition being an influence on both aspects (Ernst et al., 2002). C represents 
approximately 50% of the dry weight of the harvest residues, hence its importance as a source 
of organic C to agricultural soils (Crovetto, 2002). 
 
The rate at which residues decompose depends on their nature and composition. Under 
Mediterranean edaphoclimatic conditions, the most restrictive factor is the low availability of 
water in the summer, which greatly limits the decomposition of residues incorporated into the 
soil at this time of year (Ordóñez et al., 2007).  
 
This work aims to evaluate the fixation potential of C for the different residue types of plant 
covers located in the lanes of an olive grove, as well as estimating the decomposition dynamics 
of plant residues after mowing the species and how their development over time affects the 
surface cover, the residue biomass and the latter's capacity to be a source of C in the soil. 
 
 
III-2. MATERIAL AND METHODS 
 
III-2.1. Experiment sites 

 
Experiments were conducted over a period of three agricultural years (2007/08, 2008/09 and 
2009/10) at Arenillas olive orchard farm, which was established in 2001 in Fernán Núñez, 
Córdoba, Spain (37º 40' 1.53" N and 4º 47' W; 266 m above mean sea level) on soil with an 
11% average slope. The physicochemical characteristics of the soil are shown in Table III-1. 

Table III-1. Characteristics of the olive grove soil on which the experiment was conducted 

Depth 
(cm) 

OM1 
(%) 

N 
(%) 

CEC2 
(molckg-1) 

 

Texture 
(%) 

CO3
-2 

(%) 
pH 

Sand Silt Clay 

0-10 0.85 0.04 0.24 6.03 43.50 50.48 29.88 8.14 
10-20 0.72 0.03 0.22 9.78 39.35 51.13 28.50 8.23 
20-40 0.65 0.02 0.23 8.38 41.73 49.90 31.75 8.28 
40-60 0.58 0.02 0.22 8.80 41.83 49.37 33.06 8.36 

1OM = organic matter. 2CEC = cation exchange capacity  
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III-2.2. Experimental design 

 
The “Picual” variety trees were planted 5 years before at a distance of 4 m × 8 m. The single 
plot measured 192 m2 and it consisted of two central olive trees with a cover crop strip of 12 m 
× 4 m to each side. The experimental design was randomised complete blocks sited 
perpendicular to the slope, with four replications.  
 
III-2.3. Cover crops and sowing rate 

 
The cover crops evaluated were: two cruciferous species, common mustard (Sinapis alba L. 
subsp. mairei (H. Lindb. Fil.) Maire) and rocket (Eruca vesicaria (L.) Cav.), a commercial grass 
cover called “Vegeta” (Brachypodium distachyon) and a spontaneous cover consisting of 
typical weed flora of the area. 
 
The sowing dates depended on weather conditions: 22nd October 2007, 25th November, 2008 
and 30th November 2009. Common mustard and rocket seeds were previously collected from 
spontaneous wild populations and replicated in the Andalusia Research Center, IFAPA Alameda 
del Obispo (Córdoba, Spain). Cruciferous seeds were sown and buried 0.5 cm deep following 
the procedures established in previous field studies (Alcántara et al., 2009) at rates of 10 and 3 
kg ha-1 for common mustard and rocket, respectively, three years. Brachypodium was only 
sown the first year at a rate of 100 kg ha-1 following commercial recommendations. The second 
and third years, Brachypodium was established from a cover crop strip which had been left 
alive the first year and left to sow itself the following seasons. 
 
III-2.4. Sampling 

 
The cover in the experimental olive grove plot was mown in April, and from that date onwards 
and up to the autumn sowing of the new covers, plant residues were periodically sampled 
during the agricultural years 2008, 2009 and 2010. In each species, in each block, areas with a 
high accumulation of residue were selected, and three residue collection points established, 
which made a total of 12 samples per type of cover and sampling day. 
 
In the three growing seasons, the soil was sampled at the beginning and end of the 
decomposition period of the plant cover at depths of 0-5, 5-10 and 10-20 cm from each plot. 
The same occurred in the case of the plant remains, three sampling points being considered in 
each of the four control subplots per species. The samples were extracted with a Veihmeyer 
tube and transported to the laboratory in a plastic bag. Subsequently, the soils were air dried 
and run through a 2 mm sieve. 
 
III-2.5. Analysis of samples 

 
The biomass of the stubble residue was estimated in a 0.25 m2 metal frame which served to 
mark out the sampling area and was placed at all the selected points. The residue collected 
was sent to the laboratory where it was washed with distilled water to prevent contamination 
in subsequent analysis and was placed in an oven at 65ºC until it reached a constant weight 
and it was possible to estimate the amount of dry matter. 
 
The cover percentage was measured following the evaluation per sectors method described by 
Agrela et al. (2003), which is characterized by the use of a 1 m2 frame divided into 100 
reticules. The method consists of a subjective assessment of the different percentages of cover 
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estimated in each reticule on a scale of 0 to 5 according to the greater or lesser amount of 
cover. Total C in the residue samples was analysed in a LECO elemental analyser. 
 
The soil samples were air-dried, ground and sieved through a 2 mm mesh sieve for subsequent 
analysis. The determination of soil organic C is based on the Walkley-Black chromic acid wet 
oxidation method. Oxidisable matter in the soil is oxidised by 1 N K2Cr2O7 solution. The 
reaction is assisted by the heat generated when two volumes of H2SO4 are mixed with one 
volume of the dichromate. The remaining dichromate is titrated with ferrous sulphate. The 
titre is inversely related to the amount of C present in the soil sample (Sparks et al., 1996). 
 
III-2.6. Cover-residue biomass relation 

 
In order to determine the relationship between biomass and cover percentage, a grade 2 
polynomial was used, of the type: 

2
ttt McMba(%)Cover ×+×+=  [1] 

the same as that used by Lyon (1998) in dryland crops, where Mt (kg ha-1) is the residue 
biomass at instant t. Likewise, the exponential model proposed by Gregory (1982) was used: 

( )[ ]tmaxt Mkexp1CoverCover −−=  [2] 

where Covert is the fraction of cover at the instant t (%),Covermax is the fraction of maximum 
cover (100% in all cases), k is the coefficient of cover calculated by the model (ha kg-1) and Mt is 
the residue biomass at the instant t (kg ha-1). 
 
III-2.7. Spatial-temporal distribution of stubble residue in the soil 

 
This section evaluates the variability of that percentage under field conditions. For this 
purpose, 52 field strips were selected, from which samples of 0.25 m2 were selected over time. 
In order to analyse the temporal stability of the cover percentage in the different strips, a 
method similar to that proposed by Vachaud et al. (1985) was used. This was based on the 
concept of temporal stability, calculating averages and variance over time. 
In this case, unlike the method proposed by the cited authors, we calculated the temporal 
means of each strip, rather than the relative differences, as this was of interest in order to 
ascertain the average cover. 

∑
=

=
n

1t

it
i

n

(%)Cover
strip_AC  [3] 

where AC stripi represents the mean temporal cover in the strip i; n = samplings done in each 
treatment of residues; i=1,2…,12; Cover (%)it: cover percentage obtained in the strip i, instant t. 
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with σ(AC_stripi) denoting the standard deviation of the mean, calculated as an estimator of 
temporal stability. From this point of view, time-stable locations (strips) are defined as those 
with a low value of σ(AC_stripi). 
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III-2.8. Data analysis 

 
The climatology of the area was monitored in the three years studied, with precipitation and 
maximum and minimum daily temperature data being evaluated. 
The percentage of original dry weight and organic carbon (OC) remaining at each sampling 
were regressed over time using the linear regression model procedure of SPSS 11. 
An analysis of variance (ANOVA) was performed for all the parameters measured and 
comparison of means was carried out by the Tukey-test with p≤ 0.05. 
 
 
III-3. RESULTS 
 
III-3.1. Dynamics of residue biomass 

 
Fig. III-1 depicts the temporal evolution of weather and biomass of the plant residues of the 
different species of cover crop used in the assay for the three agricultural years. 
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 Fig. III-1. Temporal evolution of the climatology and of the residue biomass mean values of the 

different species and years considered in the study. 

 
After mowing in the first year, the species with the largest residue mass was Brachypodium 
with 7,323 kg ha-1, followed by Sinapis with 3,141 kg ha-1, then Eruca with 2,960 kg ha-1 , and 
the least residue mass was found in spontaneous weeds which, at the beginning of the 
sampling, recorded 2,148 kg ha-1. Throughout the decomposition period, significant differences 
were noted between the weight of the Brachypodium remains and that of the other covers 
(Table III-2). These differences decreased as the plant remains grew.  
 
In the second year, after mowing, the data recorded were as follows: 11,038 kg ha-1 for 
Brachypodium, 7,461 kg ha-1 for Eruca, 6,732 kg ha-1 for spontaneous weeds and 5,850 kg ha-1 
for Sinapis (Fig. III-1). It can be seen that there was a higher production of residue in the 
second year in all cases as a consequence both of the seeding of the different species and of 
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the rainfall recorded in the autumn and winter months, which favoured the growth of the 
cover. In this case, the significant differences in the weight of the residue of the different 
species are not so clear and vary from one sampling date to another (Table III-2). 
 
The exceptional weather conditions during autumn (September-December) 2010, with 550 
mm of rainfall in the experimental area, which is equivalent to a normal annual average, 
allowed plants to emerge and grow normally, thereby restricting the production of residues to 
a great extent in the third agricultural year. This situation caused a decrease in biomass values 
after the clearing of all covers, spontaneous weeds registering the best data with 5,949 kg ha-1 
and Brachypodium the lowest figures with 4,137 kg ha-1. No significant differences are 
appreciated from one species to another (Table III-2). 
 
The greatest biomass losses were noted between the months of April and May and from 
September to October, when rainfall and mild temperatures favoured the activity of 
microorganisms which decomposed the organic remains. 
 

Table III-2. Comparisons of residue biomass (RB) dry weight means and of cover means 

between species for the different years and dates sampled, based on the analyses of variance 

and the Tukey test. Different letters between covers represent significant differences at a 

probability level of p≤0.05. 

 Brachypodium Eruca Sinapis Spontaneous 

 RB Cover RB Cover RB Cover RB Cover 

Year 2008 

13/05 a a b ab b a b b 

03/06 a a b b b b b b 

27/06 a a b b b b b b 

11/07 a a b b b b b b 

28/08 a a ab b ab b b b 

25/09 a a ab b ab b b b 

16/10 a a a b a b a b 

Year 2009 

11/05 a a b a b a b a 

09/06 a a ab a b a b a 

25/06 a a a a a a a a 

16/07 a a a a a a a a 

27/08 a a a a a a a a 

16/09 a a b b b c b c 

29/10 a a b b ab b ab b 

Year 2010 

10/05 a a a a a a a a 

15/06 a a a a a a a a 

30/07 a a a a a a a a 

27/08 a a a a a a a a 

22/09 a a a a a a a a 

19/10 a a a a a a a a 
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III-3.2. Dynamics of residue cover 

 
Fig. III-2 represents the temporal evolution of the percentage of soil cover for the residues of 
the different species considered. Brachypodium cover registers the highest percentage of 
cover with respect to the rest, with significant differences on all the sampling dates (Table III-
2). While the trend is usually downward over the summer, in this species the degree of soil 
cover is maintained at above 80%, protecting the soil when the autumn rains begin and the 
erosion risk is higher. 
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Fig. III-2. Temporal evolution of the cover percentage for the different species and years 

considered in the study. 

 
In the second year, the trend was similar among the different covers and significant 
differences were only noticed between Brachypodium and the remaining species on the last 
two sampling dates. In third sample season, Brachypodium once again recorded the highest 
cover values throughout the decomposition period, but no significant differences were 
observed in regard to the rest of covers (Table III-2). 
 
III-3.3. Cover-residue mass relation 

 
Table III-3 and Fig. III-3 show the result of applying the two models to the relationship between 
the percentage of soil cover in terms of biomass. The relationship between the soil cover 
percentage and its biomass was not significant between the variables considered for 
Brachypodium. The high percentage of cover maintained by this species during the whole 
decomposition period, even with low values of biomass, due to its capacity to regrow, may be 
the reason for it not fitting the models proposed. Spontaneous weeds provide the best fit to 
both models, whereas the rest of the species show lower coefficients of determination (R2), 
especially Sinapis. 
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Table III-3. Relationship between soil cover and residue mass per unit area for the different 

covers 

Species Model Equation R
2 

n 

Eruca 

Quadratic Covert = 19.184 + 0.0168 Mt - 9.116 × 10-7 Mt 
2 0.59 155 

Gregory Covert =100 [1 - exp (-0.000332 Mt)] 0.58 155 

Sinapis 

Quadratic Covert = 23.615 + 0.0151 Mt - 8.462 × 10-7 Mt 
2 0.50 144 

Gregory Covert =100 [1 - exp (-0.000323 Mt)] 0.49 144 

Spontaneous 
Quadratic Covert = 15.782 + 0.0200 Mt - 1.271 × 10-6 Mt 

2 0.75 145 

Gregory Covert =100 [1 - exp (-0.000363 Mt)] 0.74 145 

R
2=coefficient of determination. n=number of samples 

 
(a) 

0 4000 8000 12000 16000
BIOMASS [kg ha-1]

0

20

40

60

80

100

C
O

V
E

R
 [

%
]

Eruca vesicaria

30%

 

 

(b) 

0 4000 8000 12000 16000
BIOMASS [kg ha-1]

0

20

40

60

80

100

C
O

V
E

R
 [

%
]

Sinapis alba

30%

 



Chapter III  

48 

 

(c) 

0 4000 8000 12000 16000
BIOMASS [kg ha-1]

0

20

40

60

80

100

C
O

V
E

R
 [

%
]

Spontaneous weeds

30%

 

Fig. III-3. Relationship between biomass and cover of (a) Eruca vesicaria, (b) Sinapis alba and (c) 

spontaneous weeds. The fits are quadratic model (---) and Gregory model (―). 

 
In accordance with the experiment data obtained, we calculated the amount of residue 
necessary to obtain a 30% cover, this being the limit used in the definition of conservation 
agriculture. The results are presented in Fig. III-3 and Table III-4. The exponential model 
(Gregory) shows that we need around 1,000 kg ha-1 for all the species, which is larger than 
quadratic model, although considering a range of cover of 25-35% and 28-32%, measured 
values were larger than both models (Table III-4). The residue mass was piled up covering a 
portion of soil without being effectively dispersed, and we obtained amounts of residue mass 
larger in Eruca and Sinapis than spontaneous weeds. 
 

Table III-4. Residue biomass (kg ha
-1

) necessary for reaching 30% of cover according to the 

different species and models considered in the study, and measured values (kg ha
-1

) for a range 

of measured cover between 25-35% and 28-32%. 

Species 
Biomass (kg ha-1) 

Quadratic model Gregory model Range 25-35% Range 28-32% 

Eruca 668.02 1,074.32 2,167.60 2,461.00 

Sinapis 433.37 1,104.26 2,006.29 1,554.97 

Spontaneous  746.29 982.58 1,348.72 1,405.33 

 
III-3.4. Spatial-temporal distribution of the residue on the soil 

 
Fig. III-4 shows the average cover of the 52 strips controlled for the different species and 
seasons sampled. Covers were highly variable in the 2008 season, recording covers of less than 
30% and others of 100%. More specifically, cover ranged from minimums of 29, 26, 21 and 
12% to maximums of 100, 89, 94 and 68% for Brachypodium, Eruca, Sinapis and spontaneous 
weeds. During the same year, the time stability of the cover did not follow a specific pattern 
and variations in the standard deviation at control points are similar for the different covers. 
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In 2009, the favourable growth of the covers resulted in less spatial variability in the 
percentage of residue cover at the selected points in each of the species. The lowest variation 

was observed in Brachypodium (90%−100% of cover), while the highest variation was recorded 

by Sinapis (41%−100%). 
 
Spatial variability rose again in 2010, with minimum cover values of 48%, 48%, 20% and 47% 
for Brachypodium, Eruca, Sinapis and spontaneous weeds respectively and maximum values of 
100% in all covers. The variation in cover followed a similar temporal pattern in both seasons. 
The highest standard deviations were observed at the points where the percentage of cover 
was lowest, while greater stability over time was observed at the points where the percentage 
of cover exceded 85%. 
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Fig. III-4. Average cover by ranges in the sample strips. Vertical lines represent the standard 

deviation obtained in each strip. 

 
III-3.5. Release of carbon 

 
Table III-5 shows the amount of C released and the reduction in the mass of the different 
species considered in the study after the decomposition period. Brachypodium recorded the 
greatest biomass losses in the first and second years, which gives an idea of the ease of 
decomposition of the residues of this cover which, at the beginning of the decomposition 
cycle, had a C/N ratio close to 20, which was lower than that for the rest of the species 
(Sinapis: 34; Eruca: 29; spontaneous weeds: 23). 
 
Due to the weather conditions, which affected the growth of the covers and the amount of 
residues after they were cleared up, spontaneous weeds registered the largest biomass loss in 
the third year and the highest values of residue mass at the beginning of the decomposition 
period. As regards the amount of organic C released during decomposition, these values are 
highly disparate among the different species (Table III-5). 
 

Table III-5. Loss of residue biomass and release of carbon from plant cover in the experiment 

plots for the 2008 (157 days of decomposition), 2009 (172 days of decomposition) and 2010 

(163 days of decomposition) agricultural years.  

 Biomass (kg ha-1) Organic C (kg ha-1) 

Year 2008 

Brachypodium 5,253 2,157 

Eruca 1,350 588 

Sinapis 1,540 666 

Spontaneous 1,063 462 

Year 2009 

Brachypodium 3,640 1,911 

Eruca 3,412 1,471 

Sinapis 878 404 

Spontaneous 1,745 509 

Year 2010 

Brachypodium 1,630 614 

Eruca 2,937 1,145 

Sinapis 3,477 1,372 

Spontaneous 3,809 1,493 
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III-3.6. Soil carbon fixation 

 
The effect of the decomposition of the residues of the different covers on the concentration of 
organic C in the soil has been evaluated. Table III-6 shows the values of this parameter in the 
soil for the samplings carried out and the increase in C estimated in the three years during the 
decomposition period. 
 

Table III-6. Content of organic carbon in the soil (SOC) at the beginning of the 2008 sample year 

and at the end of the decomposition period of the residues in the third sample year, and the 

carbon fixed for the three agricultural years considered in the study. Different letters between 

covers represent significant differences at a probability level of p≤0.05. 

Depth (cm) 
SOC (kg ha-1) Fixed OC 

(kg ha-1) 2008 2010 

Brachypodium 

0-5 3,511 5,732 2,221  a 

5-10 3,280 3,816 536 b 

10-20 5,582 7,104 1,522 a 

Eruca 

0-5 4,154 5,707 1,553 a 

5-10 3,280 3,968 688 ab 

10-20 5,582 6,861 1,279 a 

Sinapis 

0-5 4,236 6,592 2,356 a 

5-10 3,280 5,099 1,819 a 

10-20 5,582 9,097 3,515 a 

Spontaneous weeds 

0-5 3,940 5,510 1,571 a 

5-10 3,280 4,103 823 ab 

10-20 5,582 7,260 1,678 a 

 
The non alteration of the soil, leaving the cover residues on the surface for three consecutive 
years, has increased the C content in the different layers of soil considered. Sinapis fixed the 
largest amount of C in the entire profile of the soil, although no significant differences in the 
values of fixed C are observed between the surface and at depth among species. 
 
Most olive growers use spontaneous weeds as soil cover. As a result, the increase or decrease 
in the amount of C that has been fixed by the different species has been represented in Fig. III-
5 in relation to that estimated for spontaneous weeds. The planting of cover has fixed 47% and 
5% more C in 20 cm of soil than the measure recorded in soils where the native weed flora was 
left. 
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Fig. III-5. Comparison of the quantity of C fixed by different species of plant cover to that fixed 

by spontaneous weeds in the entire profile of soil (depth: 0-20 cm). 

 
 
III-4. DISCUSSION 
 
The decomposition process of the harvest residues are influenced by edaphic and 
environmental factors like: temperature, moisture, availability of nutrients, microflora and soil 
fauna, by factors inherent to the residue such as their C/N ratio, content of lignin and soluble 
carbohydrates, and by management factors like the amount of stubble and its size (Thorburn 
et al., 2001). However, the most important ones are the climate variables and how susceptible 
residues are to being colonized by microorganisms (Soon and Arshad, 2002). Authors like Ernst 
et al. (2002) have carried out studies on different residues and concluded that the C/N ratio 
determines its decomposition rate. Ruffo and Bollero (2003) indicated the need for a better 
knowledge of residue decomposition through research conducted under more realistic field 
conditions. 
 
In regard to the dynamics of residue cover, the benefits of conservation agriculture systems 
with regard to soil protection from erosion and an improvement in soil water balance are 
associated with the presence of plant residues covering the soil at times when there is no crop. 
However, the percentage of the cover and its persistence depends on the type of residue and 
on the climate in the area (Gajri et al., 2002). 
 
In our case, considering all decomposition period, none of the species recorded mean cover 
values of below 30% that is the limit over which the soil would be protected from erosion 
agents (Conservation Tillage Information Center, 1990). Snelder and Bryan (1995) investigated 
the relationship between cover density and soil loss under simulated rainstorms. In their 
experiment, a critical threshold occurred with a 55% cover, below which erosion rates 
increased rapidly.  
 
Analysing the stability of the percentage of cover over time makes it possible to define the 
persistence of a behaviour pattern in each strip in regard to the rest of strips over time and 
identify areas with little or excessive cover. The accumulation of biomass or cover in certain 
areas of the terrain could make later operations performed in olive groves more difficult and 
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affect the decomposition of the residue, as well as areas with little cover reducing the level of 
protection against erosion (Ayed and Mohammad, 2010). 
 
The study undertaken reveals that the greatest spatial variability of the cover was observed in 
the first and third seasons when less residue was produced and irregular distribution left areas 
with a cover of less than 30%.  
 
Regardless of the sample season considered, Brachypodium records the lowest standard 
deviations, which indicates the cover provided by this species is more stable over time.  
 
While most crop residue studies related to erosion control or the effect of tillage on residue 
retention express residue data primarily as a percentage of soil cover, studies dealing with 
residue decomposition usually calculate residue losses in terms of mass. Due to the time and 
work involved in obtaining residue mass data and the difficulty attributed to residue cover 
determination methods, there is an interest in establishing relationships between residue 
mass and soil cover for prediction purposes. 
 
As we show in Table 3, the cover coefficients k of the different species are lower than those 
estimated by Steiner et al. (2000) in crops of barley, oat, spring wheat and winter wheat in 
field experiments, k between 0.0099 and 0.00162 ha kg-1, and also lower than that indicated by 
Ordóñez et al. (2007) for peas (k =0.0011 ha kg-1). This could be due to the fact that the 
amount of biomass necessary to achieve 100% cover in the different species of plant cover is 
much greater than that necessary for the crops previously cited.  
 
López et al. (2005) indicated that in order to achieve a 100% cover with barley residue, 
between 2,000 and 3,000 kg ha-1 of biomass are necessary, which contrasts with our data in 
which 7,500, 5,900 and 6,700 kg ha-1 of residues of Eruca, Sinapsis and spontaneous grass 
weeds, respectively, are required to achieve maximum cover. In fact, the values of the 
coefficient k are very similar to that reported by Gregory (1982) in corn crops, with k=0.0004 
ha kg-1, with residue values of over 8,000 kg ha-1. 
 
In addition to protecting the soil, another important characteristic of the residues is that they 
supply C. However, this depends on the composition of the residue and on how easily it 
decomposes. The C release rate of the different residues was estimated, understanding this to 
be the difference between the content of this element in the stubble when the covers are 
mown and that estimated in the residue samples collected on different dates.  
According to the results shown in Table 5 and considering three years, the C release rate of 
Brachypodium residue was 1.5, 1.9 and 1.9 times higher than that of Eruca, Sinapis and 
spontaneous weeds respectively. At the end of its decomposition cycle, Brachypodium stubble 
had lost 72%, 42% and 40% of its initial C content.  
 
The edaphoclimatic conditions of the area and the characteristics of the residue played an 
important role in the evolution of plant residues. In all cases, the highest percentage of C 
released by the decomposition of the residues was recorded in the first year because of lower 
rainfall recorded in the second year. Some authors like Aulak et al. (1991) and Baggs et al. 
(2000), mention that moisture is important as a trigger of the the decomposition process and 
even more so in the case of residues with a low C/N ratio. Authors like Ernst et al. (2002) have 
carried out studies on different residues and concluded that the C/N ratio determines its 
decomposition rate 
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The relationship between the amount of biomass and C released by the decomposition of 
residues approaches 2.5, regardless of the type of cover and sample season considered. This 
indicates that 1 kg of C is released for every 2.5 kg of biomass that are lost. 
 
It has been amply proven that when changing from traditional agriculture (intensive tillage) to 
conservation agriculture, the content in OM in the soil increases over time, with all the positive 
results that this brings with it (Bravo et al., 2006).  
 
The C sequestration values observed in Table 6 were higher than those estimated by Castro et 

al. (2008) in olive grove soil where plant cover was maintained for 28 years, and similar to 
those estimated by Márquez et al. (2008) in an olive grove with a cover for 4 years. In both 
cases, the cover was spontaneous weeds. 
 
González et al. (2012) in a study a statistical analysis of cover crops reviewed studies show that 
those with native species obtained a sequestration mean of 1.78 Mg ha–1 yr-1, while those with 
sowed species reached 1.16 Mg ha–1 yr–1. In our case, Sinapis and Brachypodium sequestered 
3,618 and 207 kg ha-1 more than spontaneous weeds. Considering three years and a soil depth 
of 20 cm, the behaviour sequence of the different species in favouring the fixation of organic C 
in the soil was Sinapis>Brachypodium>spontaneous weeds>Eruca. 

 
As final conclusions, under the edaphoclimatic conditions in southern Spain, the plant residues 
remaining from the olive grove covers when the latter are mowed in April have the two-fold 
task of protecting the soil from intense spring and summer rain and favouring the maintenance 
of soil fertility with the release of C and nutrients as they become degraded. The summer 
protection of the soil by the residues of different species has been assured as, in the worst of 
the cases (Sinapis), 38% of the cover was lost until the next cover is established. Despite that, a 
spatial variability study indicates the convenience of uniform residue distribution in order to 
ensure cover in the entire area and avoid points that lack protection and could restrict the 
benefits of cover when faced with erosion. 
 
Likewise, the mass-to-cover relationship established in this study for different cover residues 
could be used to estimate soil cover from residue mass throughout the decomposition period 
by using a single k coefficient for each species. 
 
As regards the protection of the soil, Brachypodium developed the greatest amount of biomass 
and maintained the highest and most stable levels of cover throughout the period under 
analysis.  
 
In reference to the effect of plant covers on C sequestering, Sinapis fixed the most C, namely 
7.7 Mg ha-1 in three years, which represents 44%, 47% and 54% more than the amount fixed by 
Brachypodium, spontaneous weeds and Eruca respectively. 
 
Although spontaneous weeds are the most popular alternative among farmers when it comes 
covering the soil of their olive groves, the results of this study reveal that other types of plant 
covers not only improved soil fertility, but also yield more environmental benefits as regards 
their contribution towards reducing erosion processes and fighting climate change. 
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IV-Abstract 
 
The application of organic materials to land is a common practice in sustainable agriculture. 
The current availability of several types of pruners and choppers on the market has boosted 
the use of these types of residues as plant cover. Applying these types of residues increases 
the content of organic matter in the soil, which is very positive for the fertility of the soil and 
agricultural biodiversity. The latter should be taken into account in ecological olive groves 
where fertilisation programmes are highly limited. However, no quantitative information is 
available to provide farmers with a precise assessment. 
 
Experiments were conducted over a period of two agricultural years (2009/10 and 2010/11). 
Treatments consisted of pruning applications to fine (≤ 8 cm in diameter) and thick (> 8 cm in 
diameter) in the amounts indicated, I = 2.65 kg m-2 fine; II = 2.65 kg m-2 fine + 1.12 kg m-2 thick; 
III = 5.30 kg m-2 fine; IV = 5.30 kg m-2 fine + 2.24 kg m-2 thick; and a Control of spontaneous 
weeds. 
 
The greatest loss of residue mass was recorded at the beginning of the sampling period. The 
estimated biomass loss in the first six months represented 37-50% of the total. After 704 days 
of decomposition, the soil maintained cover percentages of 62, 76, 74 and 88% for treatments 
I, II, III and IV respectively.  
 
The various treatments applied to pruning residues have been more effective at increasing the 
levels of Soil Organic Matter (SOM) than spontaneous cover. SOM values on the surface (0-5 
cm) rose by 0.86, 1.04, 1.28 and 1.52 % for treatments I, II, III and IV in regard to the control 
treatment, maintaining this improvement in fertility at a depth of 0-20 cm, where SOM 
increased by 0.43, 0.46, 0.84 and 0.47 % for treatments I, II, III and IV respectively in regard to 
the control. 
 
Considering all the soil sampled, the largest increase in SOM in regard to the initial content of 
the soil was achieved by treatment III, which contained the largest amount of fine residues, 
with 0.63%, compared to increases of 0.33, 0.29, 0.36 and 0.10% for treatments I, II, IV and 
spontaneous weeds respectively. 
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IV-1. INTRODUCTION 
 
Andalusia (Spain) is a leader in world olive oil production. This industry is an essential part of 
the economic activity in over 300 towns and villages in the region. The Andalusia olive industry 
accounts for 80% of Spanish production, a third of the olive groves in Europe and produces 
40% of the olive oil in the world (MARM, 2010).    
 
Olive oil production in Andalusia (Spain) faces two serious problems that have not yet been 
solved, namely the loss of soil productivity and increasing diffuse pollution due to soil erosion 
(Rodríguez-Lizana et al., 2007).  
 
The benefits of establishing plant covers for soil protection against erosion and for improving 
their water balance are associated with the presence of plant remains which maintain a dense 
cover on the soil for the longest possible time. However, the cover percentage and its 
permanence over time depend on the type of residue and on the area’s climatology (Thorbun 
et al., 2001). 
 
Some experiments have been carried out on the use of plant covers in woody crops, where the 
conservation benefits have been shown. Francia et al. (2000), in olive tree plots with a 30% 
slope, indicate a reduction of 83% in the loss of soil with the use of plant covers. Gómez et al. 
(2009) indicate that plant cover reduces 93% of soil loss due to runoff with respect to an olive 
grove on bare soil. Ordóñez et al. (2007a) found that covered soils reduce the effects of 
erosion in ecological olive orchards by 56% and 80% as compared to conventionally tilled soils. 
Monteiro and Lopes (2007) and Francia et al. (2006) recommend extending the use of cover 
crops to olive groves and vineyards in Mediterranean areas to improve soil and water 
conservation. 
 
Apart from the benefits described above, one of the factors that contribute to the increased 
use of plant covers in olive groves in Mediterranean areas is that more environmental criteria 
are being incorporated into agricultural policy and Community rural development through The 
Code of Good Agricultural Practice and, more recently, the single payment system (Calatrava 
et al., 2011). 
 
Practically all the studies have been performed on live plant covers. However, in rain-fed 
plantations, these types of cover can compete for water and nutrients with trees. As a result, 
the modification of other cultural practices is necessary, such as the dose and application time 
of fertilisers. Although this type of cover improves infiltration (Pastor, 1989), better water 
balances are obtained by using inert plant covers that do not compete with trees (Márquez, 
2007a; Márquez, 2007b). Alcántara et al. (2011) indicate the importance of when live 
cruciferous plant covers are mowed so they do not compete with olive trees for water and 
nutrients. Moreover, the trees make better use of such plant covers (Welker and Glenn, 1991).  
 
Inert covers include pruning remains, of which the rain-fed Andalusian olive orchards supply 
similar annual amounts to the harvest of olives (between 1.3 and 3.0 Mg ha-1) (Ordóñez et al., 
2007b). Pursuant to current legislation, farmers must take into account Decree 247/2001 
(amended by Decree 371/2010), which approves the Regulations to Prevent and Combat 
Forest Fires, when removing pruning residues. 
 
The decomposition rate of organic residues varies significantly depending on whether they are 
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located on the surface or within the soil (Alvarado, 2006), on their spatial distribution (Khalid 
et al., 2000a; Lim and Zahara, 2000) and on the size of the residues (Khalid et al., 2000b). The 
size of the residues affects the specific surface in contact with the ground and therefore 
microbial colonisation and the exchange of water and nutrients with the surrounding soil. In 
this study, Fruit et al. (1999) cited by Guérif et al. (2001), indicate that the ideal average for 
such pruning remains should be between 5 and 15 cm. 
 
Pruning residues decompose and humificate slowly due to their high content of cellulose and 
lignin, medium to low content of moisture and a high C/N ratio, which makes it possible to 
ensure long-lasting soil protection (Ramos, 1999).  
 
Most of these residues are usually burnt on the farm requiring a large amount of the labour 
force. This practice, which is being increasingly controlled by authorities, has several 
drawbacks, such as the risk of burning olive trees near the bonfire, especially in intensive 
plantations, and CO2 emissions into the atmosphere. One additional problem of residue 
burning is the reduction in C sequestration (Qingren et al., 2010). 
 
Furthermore, in ecological farming systems, fertility management is one of the most important 
aspects in terms of limiting output (Ostegard, 2002). Ecological agriculture bases the 
management of soil fertility on organic matter and biological soil processes. As soil organisms 
are generally heterotrophs, their activity will be particularly relevant when organic matter is 
readily available. 

Olive grove soils generally have a low content of organic matter, a situation which is further 
aggravated by erosion, mainly due to certain farming practices that have exerted a decisive 
influence on accelerating this process (Soria et al., 2003). In the Mediterranean region, Álvarez 
et al. (2007) observed that the carbon in the soil could decrease by up to 50% in olive grove 
soils, compared to natural areas of vegetation nearby. 
 
As regards plant remains, many authors have indicated the benefits of returning the remains 
of the crops to the soil and their possible utilisation as an organic rectifier, as they enhance soil 
quality (Franzluebbers, 2002; Sofo et al. 2005), the most direct effect being an increase in the 
organic carbon content of the soil (Chivenge et al., 2007; Mondini et al., 2007). 
 
The objective of this research is to assess the capacity of different pruning residue treatments 
carried out in olive orchard lanes to increase carbon, in addition to estimating the 
decomposition dynamics of these plant remains and how their evolution over time affects the 
cover surface, the biomass of the remains and their capacity as a source of carbon for the soil.   
 
 
IV-2. MATERIAL AND METHODS 
 
IV-2.1. Field Trials and Experiment Design 

 
Experiments were conducted over a period of two agricultural years (2009/10 and 2010/11) in 
Alameda del Obispo (Córdoba, Spain) organic olive orchard farm, with picual olive trees that 
are 40 years old and a plantation frame of 8 x 8 m. The olive trees had a height average of 4.1 
m and a canopy diameter of 5.3 m which represents a volume of 9407 m3 ha-1. The UTM 
coordinates in the central point of the trial plot are X = 341642 m, Y = 4192085 m, zone = 30 
North, with an elevation of 117 m above sea level. The soil is a calcixerept Inceptisol, according 
to Soil Survey Staff (1999), with some physicochemical characteristics shown in Table IV-1. 
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Table IV-1.  Physicochemical characteristics of olive grove soil used in the trial. 

Depth pH H2O pH Cl2Ca EC CEC Sand Silt Clay Textural class OM 

cm   dS/m molc kg
-1 

% % %  % 

0-20 8.6 7.8 0.1 0.20 41.6 40.6 17.8 Loam 1.9 

20-40 8.6 7.8 0.1 0.19 44.5 37.6 17.9 Loam 1.3 

40-60 8.8 7.9 0.1 0.17 44.8 37.5 17.7 Loam 1.0 

          

Depth CO3
-2 NO3

- NO2
- NH4

+ P K+ Na+ Ca+2 Mg+2 

cm % mg kg
-1 

mg kg
-1 

mg kg
-1 

mg kg
-1 

mg kg
-1 

mg kg
-1 

mg kg
-1 

mg kg
-1 

0-20 16.4 8.0 0.5 1.1 18.4 402.6 36.9 5482.7 125.3 

20-40 20.4 5.8 0.6 1.4 14.1 303.6 38.8 5452.0 122.7 

40-60 20.9 8.3 0.3 1.6 12.8 205.0 41.7 5337.3 140.0 

 
 
The experimental unit was a subplot of 28 m2 and consisted of the distance between 3 olive 
trees with a cover strip width of 2 m (Figure IV-1). A randomised complete block design with 
six replications was adopted. The experimental plots were sited perpendicularly to the slope 
(1.7 %). 
 

8 m

8 
m

2 
m

14 m

1 m

 

Fig. IV-1.  Diagram of a trial subplot. 

 
In order to perform the trial, different olive trees on the farm were pruned and the residues 
obtained per tree were weighed, differentiating the fine wood (light pruning from the cleaning 
of the orchard, with a diameter equal to or below 8 cm) from the thick wood (renewal pruning 
greater than 8 cm in diameter). The average pruning of ten olive trees was measured, 
obtaining 42.3 (4.4) kg of fine pruning residues and 17.9 (2.4) kg of thick pruning residues per 
tree. Standard error is indicated in brackets. The olive trees had not been pruned for three 
years. 
 
In order to include the various chopping options currently available to farmers, two types were 
distinguished, depending on the size of the residues, namely field treatments with self-fed and 
hand fed chopping machines. Therefore, two treatments were adopted, namely treatment I 
(fine residues) and treatment II (fine and thick residues). 
 
In the field, one operation usually carried out during pruning when the residues are 
subsequently going to be scattered is to occupy half the lanes, so that one lane is left free 
while the remains from two rows are distributed in the other. For that reason, treatments III 
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(fine residues) and IV (fine and thick residues) have double the remains of treatments I and II. 
The experiment consisted of pruning applications to fine (< 8 cm in diameter) and thick (> 8 cm 
in diameter) residues in the amounts indicated: I = 2.65 kg m-2 fine; II = 2.65 kg m-2 fine + 1.12 
kg m-2 thick; III = 5.30 kg m-2 fine; IV = 5.30 kg m-2 fine + 2.24 kg m-2 thick and a control of 
spontaneous weeds that were mowed twice a year. 
 
These amounts per unit of surface were adopted in accordance with the average pruning 
output of 10 olive trees and the distance between olive trees considering an aisle width of 2 m: 
42.3 kg fine pruning per tree / (8 m between olive tree x 2 m of cover strip width) = 2.65 kg 
fine pruning per m2; 17.9 kg thick pruning per tree / (8 m between olive x 2 m of cover strip 
width) = 1.12  kg thick pruning per m2. 
 
Control subplots were characterised by species and biomass of spontaneous weeds. The 
control treatment had 1848 kg ha-1 of residue mass of spontaneous weeds at the beginning of 
the experiment. The main annual species of weeds were Bromus madritensis, Bromus 

hodeaceus, Avena barbata and Hordeum leporinum. In spring and summer, Medicago sativa, 

Convolvulus arvensis, Cyperus rotundus and Crepis vesicaria had been growing mainly, adding 
about 400 kg ha-1 of biomass. 
 
IV-2.2. Sampling 

 
In each treatment and block, an area with a high accumulation of residue was selected. Six 
pruning residue collection points were established, which made a total of 24 samples per 
sampling day. The residue mass was estimated from the stubble collected in a metal frame of 
0.25 m2, which served to delimit the sampling area and which was placed at all the points 
selected. The sampling was carried out on a quarterly basis and as the residue was 
lignocellulosic with a high C/N ratio that limited decomposition. 
 
Soil samples were taken every two field visits. The same occurred in the case of the pruning 
residues, that is, six sampling points were considered for each of the five treatments. Samples 
were taken at a depth of 5 cm. At the end of the second year, soil sampling at depths of 5, 10, 
15 and 20 cm was performed to assess the effect of applying the pruning residues at depth. 
The soil samples were taken with Veihmeyer auger at depth. A cylinder of known volume was 
used to measure the bulk density. 
 
The cover percentage was estimated following the evaluation per sector method described by 
Agrela et al. (2003), which uses a 1 m2 frame divided into 100 0.01 m2 squares and consists of 
subjectively evaluating the different percentages of cover estimated in each reticule on a scale 
of 0 to 5 according to the greater or lesser amount of cover.  
 
IV-2.3. Analysis of samples 

 

The residue collected was sent to the laboratory, where it was washed with distilled water to 
prevent contamination in the subsequent analysis and placed in an oven at 65ºC until it 
reached a constant weight and it was possible to estimate the amount of dry matter. Total 
carbon and nitrogen was analysed in a LECO elemental analyser.  
 
The soil samples were air-dried and sieved through a 2 mm mesh sieve for their subsequent 
analysis. In order to determine the percentage of total organic carbon, the method by 
oxidation with dichromate was used (Sparks et al., 1996). 
 
The amount of Soil Organic Carbon (SOC) was calculated according to equation [1]: 
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where “ρb” is the bulk density of the soil and “D” the depth of soil we refer to. 
 
For each treatment (t), we calculate the content of carbon accumulated at a given depth (D) 
using equation [2]: 
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where “i” is  the number of depth intervals sampled. 
 
The increase in soil carbon content for the different treatments was obtained by way of 
equations [3] and [4]: 
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Equation [3] provides the increase in regard to the original state, which is calculated as the 
difference between SOC at the beginning and the end of the period of study for each 
treatment. Equation [4] determines the difference between a given treatment and the control. 
 
Soil Organic Matter (SOM) was calculated from SOC. 
 
IV-2.4. Decomposition of residues 

 
We have fitted a double exponential decay model (Bunnell and Tait, 1974) [eq. 5], which takes 
into account the fractions of easy and difficult decomposition. The corresponding equation is 
as follows: 

( ) ( )tkexp)L1(y+tkexpLy=y 2010t −−−  [5] 

where yt (kg ha-1) is the remaining amount of pruning residues at time t; y0 (kg ha-1) the 
quantity of remains at the beginning (t = 0 days); L is the Labile fraction and 1-L the difficult 
decomposition fraction; k1 and k2 (days-1) are the decay constants of the labile and recalcitrant 
fraction, respectively and t (days) is the time considered.  
 
IV-2.5. Spatial-temporal distribution of pruning residue in the soil 

 
This section evaluates the variability of the percentage of cover under field conditions. For this 
purpose, 12 field strips were selected, from which samples of 0.25 m2 were selected over time. 
 
In order to analyse the temporal stability of the percentage of cover in the different strips, a 
similar method to that proposed by Vachaud et al. (1985) was used. This was based on the 
concept of temporal stability, calculating averages and variance over time. 
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In this case, unlike the method proposed by the cited authors, we calculated the temporal 
means of each strip, rather than the relative differences, as this was of interest in order to 
ascertain the average cover. 
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with )strip_(ACδ i  the standard deviation of the mean, calculated as an estimator of temporal 

stability. From this point of view, time-stable locations (strips) are defined as those with a low 

value of  )strip_(ACδ i .  

 
IV-2.6. Carbon release 

 
The carbon release rate of the different pruning residue treatments was estimated, 
understanding as such the difference between the content of this element in the residues 
when they were incorporated into the soil after pruning and that estimated in the residue 
samples collected on the different dates, according to equation [8]: 

t0t CCreleasedC −=  [8] 

where Ct (kg ha-1) is the amount of carbon remaining in the residue at time t and C0 (kg ha-1) 
the amount of this element remaining in residues when these were applied to the soil. 
 
The decreases over time were fitted with a single exponential model to the element, as 
follows:  

( ) iiot ε+tkexpα=C −  [9] 

where Ct is the amount of carbon remaining at time it , oα  is the estimated element pool in 

0=t i , k (day-1) is the carbon release rate constant, it  is the time (in days after pruning), and 

iε  is the random error. 

 
IV-2.7. Data analysis 

 

We controlled the weather in the area during the two-year study, assessing rainfall and 
maximum and minimum daily temperature data. The data are taken from a weather station 
located 500 m from the experimental plot, which belongs to the network of agricultural 
weather stations (RIA) of the Andalusia Regional Ministry of Agriculture and Fisheries (Spain).  
 
On each of the sampling days a variance analysis was performed using a random block design, 
the dependent variables of which were the quantity of residues on the surface and the 
percentage of cover. The subsequent comparison of means was undertaken using the Tukey‘s 
test (p≤0.05) 
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Percentages of OC remaining at each sampling were regressed in time using the non-linear 
regression model procedure of SPSS 12. The double exponential model was fitted to the data 
using the non-linear regression model provided by the Statistix 9.0 programme. 
 
 
IV-3. RESULTS AND DISCUSSION 
 
IV-3.1. Residue mass and C/N ratio 

 
Figure IV-2 represents the temporal evolution of the residue mass in the different pruning 
residue treatments considered in the study, as well as the temperature and rainfall recorded 
during the two-year sample period.  
 
The greatest loss of residue mass was recorded at the beginning of the sampling period. In 
fact, mass loss in the first six months amounted to 45%, 48%, 37% and 42% of the total 
estimated in I, II, III and IV treatments respectively, in the 704 days that the residues covered 
the soil. Similar results were obtained with pruning residues in alley cropping by Youkhana and 
Idol (2009), although with other species and climate. During the decomposition of 
lignocellulosic residues, as is the case here, there is an initial stage of rapid biomass loss due to 
soluble compounds being washed and the decay of labile matter (e.g. sugars, some phenols, 
starches and proteins), followed by a slower second stage resulting from the decay of 
recalcitrant elements such as cellulose, hemicelluloses, tannins and lignin (Arellano et al., 
2004; Goma-Tchimbakala and Bernhard-Reversat, 2006). 
 

After this period of time, the residues decompose very slowly, biomass losses of only 2% and 
10% being recorded in the samplings made in the following 12 months regardless of the 
treatment considered. The high proportion of remains applied in treatment IV maintained 
biomass values above those registered in the rest of treatments, recording significant 
differences of p≤0.05 on all the days sampling was performed. 
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Fig. IV-2. Temporal evolution of rainfall, air temperature and kg of residue mass per ha of cover 

in the different pruning residue treatments considered in the study. Different letters on a 

specific date indicate significant differences compared with Tukey’s test p≤0.05. The 

represented fit is a double exponential model. 

 
The C/N ratio can be used to explain the quality of the plant residue that is applied to the soil 
in regard to movement ratios (Tejada et al., 2009); Tian (1992) states that it is the main 
indicator of microbial activity. Figure 3 shows the percentage of remaining residue mass 
depending on the C/N ratio and the percentage of N in the remains for the different 
treatments and sampling dates. The best ratio is observed in the treatments with the least 
amount of remains, namely treatments I and II, which also record the highest coefficients of 
determination. In the case of treatments III and IV, the fact that more residues were applied 
has had a greater impact on their evolution than the weather conditions or their composition 
(Figure IV-3). Furthermore, it is worth indicating that for one same percentage of remaining 
pruning residue mass, the treatments with only fine residues (I and III) have more content of N 
and a lower C/N ratio, which is logical considering the matter is less lignified. 
 
Authors such as Barajas-Guzmán and Álvarez-Sánchez (2003) and Arrigo et al. (2005) point out 
that excess plant residues applied to the soil can produce anaerobic conditions that limit 
residue decay. This situation facilitates the concentration of some of the indicators of soil 
quality, such as lignin, cellulose, nitrogen and carbon, relating such changes to the colonisation 
and activity of decomposing organisms.  
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Fig. IV-3 I), II), III) and IV). Percentage of remaining pruning residue mass and percentage of N 

content and C/N ratio in pruning. 

 
Treatment IV recorded the largest loss of biomass, namely 35404 kg ha-1, followed by doses II 
(17278 kg ha-1), III (12635 kg ha-1) and I (10252 kg ha-1). However, the overall loss percentage 
for the 704 days in total was similar for all doses, the percentage of remaining residue mass 
was between 25% for treatment IV and 35% for I (Fig. IV-7).  
 
The decomposition dynamics of the pruning residue mass have been fitted to a double 
exponential model. This type of model is related to the presence of various chemical 
constituents of differing resistance to degradation contained in the material, with the readily 
decomposable ones disappearing rapidly and the more resistant constituents remaining. 
 
All treatments fit the model well with coefficients of determination close to unity (Table IV-2). 
A larger labile fraction is obtained from the statistical fit for the treatments of only fine 
residues (I and II), which is reasonable considering the plant matter is younger. In all 
treatments, the constant k1 which regulates the decomposition of the labile fraction is greater 
than k2 which includes the evolution of recalcitrant compounds.  
 



Chapter IV 

69 

 

The labile fraction is made up of water-soluble substances and polysaccharides that are readily 
biodegraded by the bacteria and fungi that act in the initial stages of decomposition. The 
recalcitrant fraction comprises cellulose, lignin and more complex proteins and decomposes 
more slowly following the action of specialised septate fungi, such as Ascomycetes, 
Basidiomycetes and Actinomycetes (Sánchez et al., 2008; Martius et al., 2004). 
 
Aguilar et al. (2001) found that the decomposition of stems in agroforestry systems such as 
coffee fit the double exponential model better. Isaac et al. (2000) reached the same conclusion 
in a study on the decomposition and nitrogen release of pruning from Leucaena species. 
 

Table IV-2. Fit of a double exponential model to pruning residue mass (kg ha
-1

). SD: Standard 

Deviation. R
2
: Coefficient of determination. 

Treatment L k1 [days-1] k2 [days-1] SD R2 

I 0.347 7.90 × 10-3 8.23 × 10-4 489.97 0.99 

II 0.200 10.00 × 10-3 14.22 × 10-4 902.56 0.98 

III 0.300 1.82 × 10-3 16.46 × 10-4 1303.30 0.98 

IV 0.194 348 × 10-3 11.90 × 10-4 3889.40 0.91 

 

IV-3.2. Soil cover 

 
Figure IV-4 depicts the temporal evolution of the cover percentage for the different pruning 
residue treatments. All treatments recorded a high percentage of cover throughout the 
decomposition cycle with covers ranging from 80% to 99% being observed in the majority of 
samples taken. 
 
We can see that throughout the decomposition cycle in both years, none of the pruning 
residue treatments exhibit coverage rates below 30%, which is considered the minimum 
threshold at which the soil would be protected from external agents, according to the 
definition of conservation agriculture indicated by the Conservation Tillage Information Centre 
(1990). However, Snelder and Bryan (1995) investigated the relationship between cover 
density and soil loss under simulated rainstorms. In their experiment, a critical threshold 
occurred with a 55% cover, below which erosion rates rapidly increased. In our case, this cover 
percentage was exceeded in all the treatments and sampling dates. This is important because 
the benefits of establishing plant covers for soil protection against erosive agents and for 
improving their water balance are associated with the presence of plant remains which 
maintain a dense cover on the soil for the longest possible time. 
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Fig. IV-4. Temporal evolution of the cover percentage for the different sampling dates and 

treatments considered in the study. The vertical lines represent the standard errors. Different 

letters on a specific date indicate significant differences compared with Tukey’s test p≤0.05. 

 
The percentages of cover in this study contrast with those estimated by Rodríguez-Lizana et al. 
(2007). In their study on the temporal evolution of the cover percentage provided by 
spontaneous weeds in an ecological olive grove, cover ranged between 35% and 75% for two 
agricultural years. As can be seen in Figure IV-4, the loss of cover is directly proportional to the 
amount of residue applied to the soil, except between treatments II and III. In this case, the 
fact that treatment II has a fraction of thick residues causes it to maintain more cover until the 
end of the period under study, although there are only significant differences between 
treatments with treatment IV. 
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IV-3.3. Spatial-temporal distribution of the residue on the soil 

 
By analysing how stable the cover is over time, we can define the persistence of a behaviour 
model of each strip with respect to the rest and identify areas with scant or excessive cover. 
 
Figures IV-5 l), II), III) and IV) show the mean covers of the 12 strips or controlled positions. 
This study is not interested in determining a point with average behaviour, as in Vachaud et al. 
(1985), but rather in preventing accumulations of biomass or cover at certain points of the plot 
on the one hand, which hinder operations in the grove and condition the decomposition of the 
residue and the presence of points with scant cover on the other, where there is poor 
protection against erosion (Zuzel and Pikul, 1993). In the case of treatment l, in which a lower 
proportion of fine residues was applied, variability was observed, with a minimum mean value 
of 68% compared to a maximum mean value of 92%. There is less variability in the rest of 
doses with minimum values of 78%, 86% and 90% and maximum values of 92%, 95% and 100% 
for treatments II, III and IV, respectively. 
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Fig. 5 I), II), III) and IV). Mean cover ordered by range in the sampling areas. The vertical lines 

represent the standard deviation obtained in each area. 

 
Treatment IV records the greatest temporal stability of cover with respect to the position, 
which results in a lower standard deviation (Fig. IV-5 IV), whereas the greatest temporal 
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variations per position occur in treatment I (Fig. IV-5 I), due to this matter decaying more 
easily. 
 
IV-3.4. Carbon release 

 
In addition to protecting the soil, another important characteristic of the residues is that of 
providing the soil with nutrients and carbon as they decompose.  
 
The dynamics of the carbon release with the decomposition of the residues is similar to the 
evolution of the biomass. Figure IV-6 shows how the carbon release constant, k, is similar for 
all the treatments and lower than that estimated by Ordóñez et al. (2007c) in a study on the 
decomposition of sunflower stubble (Heliantus annus), which was 0.0049 (day-1) and that 
measured by Boniche et al. (2008), which was 0.0064 (day-1) after the decomposition of 
harvest residues in heart-of-palm plantations (Bactris gasipaes). 
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Fig. IV-6. Carbon remaining in different pruning treatments as a function of the time and 

simulated values. Units are kg of Carbon per ha of cover. 

 
After 704 days, treatment IV had released the largest amount of carbon with a value of 16630 
kg ha-1, followed by III with 10989 kg ha-1, II with 8306 kg ha-1 and I with 5093 kg ha-1. The 
difference in the amount of carbon lost is considerable between treatments. In fact, the 
carbon release rate in the maximum dose was 3.3 times higher than that measured in the 
treatment with a smaller amount of residues. 
 
The amount of carbon released by the decomposition of the different pruning residue 
treatments contrasts with that estimated by Ordóñez et al. (2010) in different species of crop 
covers used in the olive grove, such as Brachypodium distachyon (1911 kg of C ha-1), Eruca 

vesicaria (1471 kg of C ha-1), Sinapis alba (404 kg of C ha-1) and spontaneous weeds (509 kg of C 
ha-1), for a decomposition period of 172 days. Pruning residue released 3652, 5880, 6109 and 
9832 kg of C ha-1 according to the treatment for the same decomposition period. 
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Despite the differences observed, the overall carbon loss percentage with respect to the 
beginning of the experiment was similar for the different treatments, maintaining a 
percentage of 30%, 24%, 25% and 24% for doses I, II, III and IV, respectively (Figure IV-7). In the 
first year of cover establishment, the percentage of carbon released exceeded 50% in all 
treatments as a result of the decomposition of the residue labile fraction. 
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Fig. IV-7. Percentage of cover, residue mass and carbon remaining after 704 days of 

decomposition for the different treatments considered in the study. The vertical lines represent 

the standard errors. Different letters in a specific type of bar indicate significant differences 

between treatments compared with Tukey´s test p≤0.05. 

 
IV-3.5 Soil carbon content 

 
The overall fertility of agricultural soil has always been related to its content in organic matter. 
Maintaining adequate levels of organic matter in the soil is of great agronomic importance as it 
intervenes in all the processes connected to structure dynamics, to plant growth and the 
macro and microbial life sustaining it (Bravo et al., 2006). Organic matter has lately been 
receiving special attention due to its potential for sequestering carbon, thus diminishing 
atmospheric CO2 emissions (Farina et al., 2011). 
 
We have assessed the effect of applying different treatments of pruning residues and 
spontaneous weed cover on the variation in the concentration of organic matter on the 
surface (0-5 cm) and to a depth of 20 cm (Table IV-3). In comparison to the beginning of the 
experiment, the most favourable situation was displayed by treatment IV, which increased 
SOM content on the surface by approximately 5 Mg ha-1 more than treatments I, II and III and 
11 Mg ha-1 more than the control, which is the treatment that records significant differences in 
regard to the rest of treatments. 
 
Consider the total amount of soil sampled, treatment III registers a significantly higher increase 
in SOM concentration than the rest of treatments, with a score that was approximately 10 Mg 
ha-1 in relation to that estimated in the case of the other treatments of pruning residues and 
24 Mg ha-1 in comparison to the control (Table IV-3). 
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Nieto et al. (2010) observed how the SOC in olive grove soil increased from 27.1 Mg ha-1 in the 
first 10 cm of soil to 113.6 Mg ha-1 after applying pruning residues as plant cover for a period 
of five years. 
 

Table IV-3. Increase in SOM content in regard to the initial situation and the control treatment 

at depths of 0-5 cm and 0-20 cm. Different letters indicate significant differences compared 

with Tukey’s test p≤0.05. 

Depth 

[cm] 

Treat ∆beginning SOM 

[%] 

∆control SOM 

[%] 

∆beginning SOM 

[Mg ha-1] 

∆control SOM 

[Mg ha-1] 

0-5 I 2.28 ab 0.86 a 16.98  6.46  

 II 2.20 ab 1.04 a 16.37  7.78  

 III 2.25 ab 1.28 a 16.70  9.53  

 IV 2.90 a 1.52 a 21.53  11.32  

  Control 1.42 b     10.52    

0-20 I 0.33 ab 0.43 a 15.71  12.73  

 II 0.29 ab 0.46 a 16.51  13.53  

 III 0.63 a 0.84 a 27.97  24.99  

 IV 0.36 ab 0.47 a 16.96  13.98  

  Control 0.10 b     2.98    

 
After 704 days of decomposition y considering the entire soil profile sampled, the organic 
carbon percentage increased with respect to the moment at which the pruning residues were 
applied to the soil by 46% for treatment I, 48% for II, 81% for III, 49% for IV and 9% for the 
control treatment. 
 
As was the case for the different pruning residue treatments, the level of organic carbon in the 
control treatment also increases as a consequence of the decomposition of the spontaneous 
weeds and flowers, leaves and fruit that fall on the ground and accumulate in the area. 
 
In order to be able to estimate the real accumulation of organic carbon provided by the 
pruning residue cover, the value of this parameter in the control was subtracted from that 
estimated for the rest of the treatments. The result of this calculation is represented in Fig. IV-
8 and different depths have been considered to assess the effect of pruning residues in deeper 
layers. 
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Fig. IV-8. Increase in organic carbon fixed in the soils following the different pruning residue 

treatments with respect to the control for the depths sampled. Units are kg of Soil Organic 

Carbon per ha of cover. 

 
As seen in the figure, the application of pruning remains improved the content of organic 
carbon down to a depth of 15 cm, treatment IV being the most favourable on the surface and 
treatments II and III at depth. These results coincide with those obtained by Ordóñez et al. 
(2007b) in a six-year study in which pruning residues were applied to the soil of an untilled 
olive grove maintained with bare soil. In that case, the authors noted an increase in organic 
matter content in covered soils in the first 10 cm of the profile.        
 
The non alteration of the soil, leaving cover residues on the surface for 704 days, determined 
the following amounts of organic carbon accumulated in the first 5 cm of the soil (where the 
greatest differences are observed): 3.8 Mg ha-1, 4.6 Mg ha-1, 5.6 Mg ha-1 and 6.7 Mg ha-1 for 
treatments I, II, III and IV, respectively, with respect to the content of this parameter in the 
control treatment. In this sense, the amount of carbon sequestered in the soils was 1.7 times 
higher than that measured in the treatment with a lesser amount of residues.  
Nieto et al. (2010) assessed the increase in SOC content in two olive groves where pruning 
residues were applied as cover, observing an increase of 1.88 and 2.33 Mg ha-1 in one year. 
Romanyà et al. (2000) registered similar results for a vineyard in the Mediterranean area, with 
an annual carbon input of 1.4 Mg C ha-1 yr-1. 
 
The values observed were higher than those estimated by Castro et al. (2008) in olive grove 
soil in which the plant cover was maintained for 28 years, but similar to the ones estimated by 
Márquez et al. (2008) in an olive grove with a cover for 4 years. In both cases, the cover was 
spontaneous weeds. These values coincide with Hernández et al. (2005), although the residue 
mass at beginning was smaller and the experiment lasted for 5 years.  
Several studies have suggested that the Soil Organic Carbon content increases rapidly during 
the first ten years after the change from traditional soil management systems to protect soil 
systems. After this period, the increases slow until near zero growth in the OM content is 
reached, indicating soil equilibrium (Puget and Lal, 2005). 
 
 
IV-4. CONCLUSIONS 
 
Pursuant to current legislation, the elimination of pruning remains in olive groves in the south 
of Spain must be performed in accordance with the decree that regulates the prevention and 
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combating of forest fires. This decree establishes restrictions in terms of how and when such 
remains can be burned, which together with the large amount of labour this practice entails, 
has led olive growers to seek alternative solutions for eliminating these remains in such a way 
as to take advantage of their ability to protect and enhance soil fertility. 
 
Any of the treatments considered in the study could be used to protect the soil, as all of them 
easily surpassed the threshold of 30%, beyond which soil is considered to be protected from 
external agents. The treatment with the largest amount of residues (IV) recorded less spatial 
variability and greater temporal cover stability, although it did lose 2, 2.8 and 3.5 times more 
mass in the decomposition period than treatments III, II and I, respectively.  
 
The largest amount of carbon (over 50%) is released in the first 12 months of decomposition as 
a consequence of the attack by microorganisms of the most labile organic C fractions of 
pruning residues. The recalcitrant fractions of organic C are the most difficult to decompose 
and, hence, the organic carbon release slows down due to the evolution of the residues in the 
second year. The low carbon release constant measured in the different treatments confirms 
that it is more difficult for these types of residues to decompose.    
 
The favourable results observed in terms of how much soil organic carbon increased after 
applying pruning remains confirm an improvement in soil fertility in regard to that recorded by 
spontaneous weeds cover, which is the most widely used in organic olive groves. Although 
treatment IV registers a larger increase in carbon on the surface, treatment III recorded the 
best results in carbon sequestration when considering the entire volume of soil with respect to 
the control. 
 
In view of the results obtained, we believe it is more recommendable to apply fine residue 
treatments that, due to having a greater proportion of labile remains, decompose more easily, 
thereby allowing olive growers to apply the next pruning remains to the soil. Furthermore, 
such treatments improved the levels of organic matter in a larger volume of soil. The thick 
pruning residues could be used as energy biomass. 
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V-SUMMARY 
 
The arrival on the market of various types of mulchers and chippers has boosted the use of 
pruning residues as plant cover among olive growers. In order to increase knowledge regarding 
the decomposition of these types of residues and their effect on soil fertility, an experiment 
was performed using different doses and sizes of pruning residues applied on the areas 
between the lines of olive trees in an organic olive grove. 
 
Experiments were conducted over a period of two growing seasons (2009/10 and 2010/11). 
Treatments consisted of fine (≤ 8 cm in diameter) and thick (> 8 cm in diameter) pruning 
residues in the amounts indicated, I = 2.65 kg/m2 fine; II = 2.65 kg/m2 fine + 1.12 kg/m2 thick; 
III = 5.30 kg/m2 fine; IV = 5.30 kg/m2 fine + 2.24 kg/m2 thick; and a control without residues 
As regards the loss of biomass and nutrients during the decomposition of residues, two phases 
were observed. First, soluble compounds were degraded during a rapid initial phase, while in a 
second and slower phase, lignocellulosic compounds were decomposed. As a result, the 
pattern over time of nitrogen (N), phosphorus (P) and potassium (K) release fitted a double 
exponential model better, regardless of the treatment considered, registering in most cases 
determination coefficients close to one. 
 
The favourable results observed in terms of augmentation in N, P and K soil content following 
the application of pruning residues confirmed a greater improvement in soil fertility than the 
soil covered by spontaneous weeds, which is the option most frequently adopted by organic 
olive growers. The initial amount of pruning residues has influenced the increment of soil 
nutrients. Considering the entirety of the soil profile (0–40 cm) and the content of these 
elements in the soil, treatment III, which contained the largest amount of fine residues, was 
the most efficient in terms of improving soil fertility, recording increases in the concentration 
of N, P and K of 1805.4 kg/ha, 53.1 kg/ha and 598.7 kg/ha respectively. The most unfavourable 
results were recorded by treatment I, with increases of 480.9 kg/ha in the case of N and a 
decrease in P content in regard to the control sample. Treatment II increased K (recording 
215.2 kg/ha) which was the least in comparison to the control sample. 
 
Keywords: olive tree; pruning residues; residue decomposition; N, P and K release; soil N, P 
and K. 
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V-1. INTRODUCTION 
 
Organic olive groves account for c. 0.19 of total organic surface area in Spain. In Andalusia, this 
crop represents 0.38 of the surface area devoted to agriculture and its presence on the 
region’s farmland has increased over time, from 9083 ha in 1996 to nearly 47000 ha registered 
in 2010 (CAP 2011). This type of olive-growing system constitutes an economic opportunity for 
certain rural areas that, generally speaking, are not very productive and supplies a 
differentiated quality of product that is subject to ever-increasing demand in Europe (El-Hage 
Scialabba & Hattam 2002). Support from the European Union has contributed towards the 
growth of this system by including this farming activity in the group of agricultural production 
methods that favour the fulfilment of agro-environmental goals (Regulation 2078/1992, 
European Comission 1992). 
 
Organic olive groves in Andalusia are generally located in mountain regions with steep slopes 
and acidic and shallow soil with little organic matter. Two of the most significant problems in 
organic olive-growing systems are the high rates of erosion and the fact that the olive growers 
cannot use synthetic fertilizers. As a result, maintaining the natural fertility of the soil has 
become a key factor (Rembialkowska 2004; Rosati & Aumaitre 2004). 
 
In this sense, implementing plant cover as part of a sustainable system may help a great deal, 
as this raises the levels of organic matter and, therefore, the mineral nitrogen (N) available for 
olive growth (Wells et al. 2000), together with other nutrients. Furthermore, according to 
Korsaeth & Eltun (2000), in order for a farming system to be sustainable, it must not only have 
a suitable level of nitrogen in the soil, but also minimize the losses through run-offs and 
leaching, underlining the fact that crop rotations handled organically struggle to maintain their 
output if the soil is continually tilled. 
 
One of the most inert plant covers is pruning residues, which have several benefits for the soil 
they are applied to. Pruning residues decompose and humify slowly, due to their high 
proportion of cellulose and lignin, a medium-low content of moisture and a high carbon (C)/N 
ratio, which ensures soil protection over time (Ordóñez et al. 2007). The application of pruning 
residues to the areas between the lines of perennial crops has been backed by the 
Government and recommended by specialists, mainly due to soil protection and the extra 
organic matter this practice produces. 
 
In order to develop this type of system, there must be awareness of the quality and evolution 
of the residues generated by an agricultural system to be able to establish strategies for 
handling them. The decomposition of plant residues is a vital process in ecosystems, as it 
influences the supply of organic matter in the soil and the release of nutrients for plant uptake 
(Prescott 2005). 
 
Many studies of decomposition analyse the relationship between the chemical characteristics 
of plant residues and the loss of weight from the matter decomposing, while fewer studies 
assess the effect of interactions between the residue quality and speed of decomposition on 
the underlying soil (Sariyildiz & Anderson 2003; Semmartin 2006). 
 
Moreover, the chemical composition of the residues, the decomposition rate and the 
subsequent release of nutrients is regulated by the weather, the biodiversity of microbial 
communities, the physical and chemical degradation, the quantity of plant residues applied 
and the application frequency (Carrera et al. 2005; Austin & Vivanco 2006; Gallo et al. 2006). 
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In the case of most crops, growers reject the idea of quantifying the nutrients that are 
produced by residual biomass decomposition and as a result overuse inputs, which has 
repercussions for the environmental and economic sustainability of the system. However, 
some residues provide permanent biomass that gradually releases nutrients as they 
decompose, with a subsequent effect on soil fertility. Ordóñez et al. (2001) assessed the 
impact of constantly maintaining olive tree pruning residues as plant cover for a period of 6 
months, observing significant improvements in the characteristics of the soil.  
 
Few papers have been found to specify the effects of applying olive tree pruning residues on 
the properties of soil and fewer still have provided quantitative data on the amount of such 
organic residues, generated by the olive grove itself, that is required to reap the benefits of 
improving soil fertility. 
 
The goal of the current research was to assess the decomposition dynamics of various doses 
and sizes of plant residues by measuring the developments that take place in their 
composition and their capacity to release N, phosphorus (P) and potassium (K) for the soil of 
an organic olive grove. 
 
 
V-2. MATERIALS AND METHODS 
 
V-2.1. Field trials and experiment design 

 
The current study was performed at the IFAPA centre ‘Alameda del Obispo’ in Córdoba, Spain 
(37º 51′ N and 4º 47′ W; 117 m a.s.l.). The organic olive orchard has ‘picual’ olive trees 40 years 
old and a plantation frame of 8 × 8 m. 
 
The climate in the area where the experiment was performed is typically Mediterranean, 
characterized by xeric humidity according to the standards established by Soil Taxonomy (Soil 
Survey Staff 1998). This climate entails a cold and wet period in the autumn and winter 
months, which account for 0.80 of rainfall and a very warm and dry period in spring and 
summer. The temperature regime is thermic. The soil is a Calcixerept Inceptisol, according to 
Soil Survey Staff (1999). Table 1 shows soil physicochemical characteristics of the experimental 
area. The experiment was conducted over a period of two growing seasons (2009/10 and 
2010/11), which corresponds to the time between two prunings. 
 

Table V-1. Physicochemical characteristics of olive grove soil used in the trial. 

Depth pH (H2O) pH (Cl2Ca) CO3
= CEC sand silt clay Textural Class OM 

cm   g/kg molc/kg % % %  % 

0-20 8.6 7.8 164 0.20 41.6 40.6 17.8 Loam 1.9 

20-40 8.6 7.8 204 0.19 44.6 37.6 17.9 Loam 1.3 

40-60 8.8 7.9 209 0.17 44.9 37.5 17.7 Loam 1.0 

  CEC, Cation Exchange Capacity; OM, Organic Matter. 
 
 
In order to perform the trial, different olive trees on the farm were pruned and the residues 
obtained per tree were weighed, differentiating the fine wood (light pruning from the cleaning 
of the orchard, with a diameter equal to or below 8 cm), from the thick wood (renewal pruning 
greater than 8 cm in diameter), and applied to the soil.  
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In order to include the various chopping options currently available to farmers, two types of 
chopping were distinguished depending on the size of the residues, namely field treatments 
with self-fed and hand-fed chopping machines. Therefore, two treatments were adopted, 
namely treatment I (fine residues) and treatment II (fine and thick residues). 
 
During pruning, the residues from two rows are usually accumulated on an inter-row. This 
operation let to occupy only half inter-rows, reducing the work of chopping and scattering 
machinery. For that reason, another two treatments were adopted: treatment III (fine 
residues) and IV (fine and thick residues) having double the residues of treatments I and II. 
 
The doses per unit of surface area were adopted in accordance with the average pruning 
output of 10 olive trees and the distance between olive trees considering a residue application 
strip (cover strip) width of 2 m: 42.4 (S.E. = 4.4) kg fine pruning per tree / (8 m between olive 
tree × 2 m of cover strip width) = 2.65 kg fine pruning/m2; 17.9 (S.E. = 2.4) kg thick pruning per 
tree / (8 m between olive × 2 m of cover strip width) = 1.12 kg thick pruning/m2.  
 
Table V-2 shows the different doses of residues used and nutrients added in the study and a 
control treatment of spontaneous weeds where no residues were applied. 
 

Table V-2. Doses of olive pruning residues applied to the soil in kg/m
2
 (wet weight) and nutrient 

content in the pruning in kg/ha (dry matter). 

Treatments Fine size Thick size Total N P K 

 kg/m
2
 kg/m

2
 kg/m

2
 kg/ha kg/ha kg/ha 

I 2.65 0 2.65 132.59  28.73  80.45  
II 2.65 1.12 3.77 160.53  34.90  100.87  
III 5.30 0 5.30 265.17  57.46  160.90  
IV 5.30 2.24 7.54 321.06  69.79  201.75  

Control 0 0 0 0 0 0 

Fine size: ≤ 8 cm in diameter; Thick size: > 8 cm in diameter 
 
Control sub-plots were characterized by species and biomass of spontaneous weeds. The 
control treatment had 1848 kg/ha of spontaneous weeds at the beginning of the experiment. 
The main annual species of weeds were Bromus madritensis, Bromus hodeaceus, Avena 

barbata and Hordeum leporinum. In spring and summer, Medicago sativa, Convolvulus 

arvensis, Cyperus rotundus and Crepis vesicaria had also grown, adding c. 400 kg/ha of weed 
biomass. 
 
The experimental design was a randomized complete block with six replications. The 
experimental unit was a sub-plot of 28 m2; it consisted of the distance between three trees, 
leaving 2 m between sub-plots (14 m), per cover width of 2 m. 
 
V-2.2. Sampling 

 
Because of the high C/N ratio of pruning residues, which limited decomposition, sampling was 
performed on a quarterly basis. The residue mass was estimated from the prunings collected 
in a 0.25 m2 metal frame from the soil, which served to delimit the sampling area and was 
placed at all the points selected. The residue collected was sent to the laboratory, where it was 
washed with distilled water to prevent contamination in the subsequent analysis and placed in 
an oven at 65ºC until it reached a constant weight and it was possible to estimate the amount 
of dry matter. 
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At the end of the second year, soil sampling at depths of 5, 10, 20 and 40 cm was performed to 
assess the effect of applying the pruning residues. The soil samples were taken with an 
Edelman auger. A cylinder of known volume was used to measure bulk density. Soil samples 
were air-dried and sieved through a 2 mm mesh sieve for subsequent analysis. 
 
V-2.3. Analysis of samples 

 
Residue and soil samples were analysed for total nitrogen content using a LECO (TRUSPEC, 
CNS; St. Joseph, MI, USA) elemental analyser. Total P content in residues was determined by 
colorimetry and total K by atomic absorption spectrophotometry, both after converting the 
sample into ash and dissolving it in 100 ml HCl 0.1N. Available P in soil was measured by 
colorimetry and exchangeable K by atomic absorption spectrophotometry after extracting with 
NaHCO3 0.5M and CH3COONH4, respectively (Sparks et al. 1996). 
 
V-2.4. Nitrogen, Phosphorous and Potassium release 

 
The release rate of N, P and K from the different pruning residue treatments was estimated. It 
was calculated as the difference between the content of this element in the residues when 
they were applied to the soil, and a comparison sample of a specific date, according to the Eq. 
[1]: 

Released Nutrientt = Y0 – Yt [1] 

where Yt is the amount of nutrient remaining in the residue at time t (kg/ha) and Y0 the 
amount of this nutrient remaining in residues when these were applied to the soil (kg/ha). 
 
In order to describe the reduction of the remaining amount of considered nutrient (N, P, K) in 
residue, two models were fitted by means of non-linear regression. The first was the simple 
negative exponential model (Olson 1963), which is described by Eq. [2]: 

Yt = Y0 exp(-k t) + ε [2] 

where Yt is the amount of nutrient remaining at time t, Y0 is the estimated nutrient pool at t = 
0, k (1/day) is the nutrient release rate constant, t is time (in days after application) and ε is the 
random error. 
 
The second was a double exponential decay model (Bunnell & Tait 1974) [eq. 3], which takes 
into account the fractions of easy and difficult decomposition. The corresponding equation is 
as follows: 

( ) ( ) ( )tkexpL1Y+tkexpLY=Y 2010t −−−  [3] 

where Yt (kg/ha) is the remaining amount of the considered element (N, P, K) at time t; Y0 
(kg/ha) the quantity of that element remaining at the beginning (t = 0 days); L is the Labile 
fraction and 1-L the difficult decomposition fraction; k1 and k2 (1/days) are the decay constants 
of the labile and recalcitrant fraction, respectively and t (days) is the time considered. In order 
to select the models, the determination coefficient (R2) was used as an indicator of goodness 
of fit. 
 
V-2.5. Soil N, P and K 

 
The amount of N, P and K in soil was calculated according to Eq. [4]: 
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where X is the nutrient, ρb is the bulk density of soil and D the depth of soil we refer to. 
 
For each treatment (T) the content of N, P and K accumulated at a given depth (D) was 
calculated using Eqn (5): 

 
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where i is  the number of depth intervals sampled. Three intervals at depth of 0-20 cm (0-5, 5-
10 and 10-20 cm) and one interval at depth of 20-40 cm. 
 
The increase in N, P and K content in soil for the different treatments with respect to the 
control was obtained according to Eq. [6]: 
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and the percentage increase over the control was calculated as follows: 
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V-2.6. Data analysis 

 
Weather in the local area was monitored during the 2-year study, assessing rainfall and 
maximum and minimum daily temperature data. The data were taken from a weather station 
located 500 m from the experimental plot, which belongs to the network of agricultural 
weather stations (RIA) of the Andalusia Regional Ministry of Agriculture, Fisheries and the 
Environment (Spain).  
 
The residual amounts of nutrients analysed at each moment in time were calculated using the 
product of the dry matter of the residues by the concentration of the element on the day of 
sampling. The amount of N, P and K remaining (kg/ha) at each sampling were regressed in time 
using the non-linear regression model procedure of SPSS 15.0. The double exponential model 
was fitted to the data using the non-linear regression model provided by the Statistix 9.0 
program. 
 
In order to determine the association between the behaviour of the dry matter of the residues 
and the nutrients analysed, the Pearson linear correlation coefficients between the variable 
biomass (kg/ha), N, P and K content (kg/ha) and C/N, N/P, N/K and P/K were calculated. This 
relationship was measured for all samplings. Statistix 9.0 software program was used for 
statistical analysis. 
 
The ANOVA statistical test was employed to nutrients in residues and soil and with a 
comparison of means (Tukey’s test P ≤ 0.05). 
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V-3. RESULTS 
 
V-3.1. Dry Matter evolution 

 
The Mediterranean climate in the south of Spain, with long periods of drought and irregular 
rainfall distribution, affects both the quantity and evolution of the residues left on the soil 
surface. 
 
Table V-3 shows how the pruning residue mass in each of the pruning residue treatments has 
evolved over time every year. A detailed study of decomposition of pruning residues is shown 
in Repullo et al. (2012). 
 
As can be appreciated, the standard error of the data decreases as the days of decomposition 
elapse, being bigger in year 2 than in year 1, except for treatment I. However, coefficient of 
variation increased such as the decomposition proceeded. 
 

Table V-3. Anual evolution of average of remaining pruning residue mass (dry matter), 

Standard Error (SE), coefficient of variation (CV), decomposition days and proportion of 

decomposed residue from the beginning of experiment for the different treatments used. 

Treatment 
 

Year 
 

Decompositions 
days 

Residue mass 
[kg/ha] 

SE 
[kg/ha] 

CV 
 

Decomposed 
residue 

I 1 392 7746.53  696.56  0.220 0.49  

2 704 5420.53   853.03  0.386 0.85   

II 1 392 11293.87  1452.88  0.315 0.48  

2 704 6404.16   806.16  0.282 0.79   

III 1 392 17415.20  1788.65  0.205 0.56  

2 704 8709.76   1584.63  0.407 0.72   

IV 1 392 27201.47  2031.08  0.183 0.57  

2 704 11960.53   1489.67  0.305 0.69   

 
 
V-3.2. N, P, K release 

 
Apart from protection, the residues also provided the soil with nutrients. However, this 
property depends on the quantity and composition of the residue mass and how easily it 
decomposes. 
 
As regards the three nutrients considered, nitrogen was present in the greatest proportion in 
pruning residues, recording a percentage of 760 g/kg, compared to 170 g/kg and 470 g/kg in 
the case of phosphorous and potassium, respectively. 
 
Table V-4 summarizes the amounts of N, P and K released through residue decomposition in 
each of the treatments considered in the study. As regards N, the release rate for treatment IV 
was 2.3, 2.0 and 1.1 times greater than in the case of Treatments I, II and III, respectively at the 
end of second year. Treatments I and III, which only involved fine pruning residues, released a 
greater proportion of initial N: 0.65 and 0.67, respectively. 
 
 



Chapter V  

90 

 

Table V-4. Released N, P and K in kg/ha and proportion remaining, from the beginning to the 

end of first and second year. Standard Error is indicated in parenthesis. 

Treatment 
 

Year 
 

Released N 
(kg/ha) 

N* Released P 
(kg/ha) 

P* Released K 
(kg/ha) 

K* 

I 1 63.9 
(3.8) 

0.52 
(0.029) 

15.5 
(1.5) 

0.46 
(0.052) 

62.6 
(2.6) 

0.22 
(0.033) 

2 86.7 
(7.3) 

0.35 
(0.055) 

22.5 
(0.9) 

0.22 
(0.032) 

75.7 
(0.5) 

0.06 
(0.006) 

II 1 71.2 
(17.2) 

0.56 
(0.061) 

17.0 
(2.9) 

0.51 
(0.082) 

76.1 
(4.8) 

0.25 
(0.048) 

2 97.9 
(13.5) 

0.39 
(0.084) 

28.2 
(1.0) 

0.20 
(0.008) 

95.3 
(0.9) 

0.06 
(0.009) 

III 1 77.4 
(40.6) 

0.71 
(0.153) 

35.1 
(4.2) 

0.39 
(0.074) 

130.2 
(4.1) 

0.19 
(0.026) 

2 177.6 
(26.3) 

0.33 
(0.099) 

46.9 
(2.6) 

0.19 
(0.045) 

151.9 
(2.0) 

0.06 
(0.012) 

IV 1 87.9 
(32.4) 

0.73 
(0.186) 

38.8 
(3.6) 

0.44 
(0.051) 

153.1 
(4.2) 

0.24 
(0.021) 

2 200.0 
(12.8) 

0.38 
(0.040) 

57.1 
(1.2) 

0.18 
(0.018) 

192.0 
(1.4) 

0.05 
(0.007) 

* Proportion of nutrient remaining in pruning residue 
 
The amount of P released during the decomposition of residues displayed a similar trend to 
that described previously. The proportion of P released in regard to the initial concentration 
was related to the amount of residues applied to the soil, registering losses of 0.78 in 
treatment I and 0.82 in treatment IV. 
  
As in the previous cases, the more pruning residues applied, the greater the amount of K 
released, the largest quantity being recorded by treatment IV, which was 2.5, 2 and 1.3 times 
greater than in the case of treatments I, II and III, respectively. The proportion of K remaining 
in the residue was the lowest of all the elements and similar for all the treatments considered 
(Table V-4). 
 
As regards the quantity of total nutrients released through the decomposition of residues in all 
treatments, the sequence was as follows: N>K>P (Table V-4). However, the proportion of 
nutrient released by the residue mass in regard to the initial content followed the sequence 
K>P>N.  
 
V-3.3. N, P, K evolution and models 

 
Regardless of the element considered, the trend over time of the concentration of the nutrient 
remaining in the residue mass was similar for the various pruning residue treatments (Figs V-1, 
2 and 3). More nutrients were released during the sampling dates: this process slowed down in 
the second year of study. 
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Fig. V-1. Temporal evolution of rainfall, air temperature and kg of N in residue mass per ha of 

cover in the different pruning residue treatments considered in the study. A double exponential 

model (above) and a single exponential model (below) have been represented. Vertical lines 

represent the Standard Error. 
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As regards N, Fig. V-1 reveals two groups that registered the same pattern. The first group 
includes treatments III and IV, which had a larger quantity of pruning residues and which also 
recorded the highest values of N on all sampling dates. The proportion of nutrients released 
during the first year of the experiment represented 0.43 and 0.22 of the total, respectively. 
The second group encompasses treatments I and II. In this case, N was released more quickly 
at the beginning of the experiment due to the mineralization of the residue mass. In fact, a 
proportion of 0.74 and 0.73 of the total were released in the first year. Treatments III and IV 
recorded the greatest data dispersion obtained by sampling date and the highest values for 
the standard error. 
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Fig. V-2. Temporal evolution of kg of P in residue mass per ha of cover in the different pruning 

residue treatments considered in the study. A double exponential model (above) and a single 

exponential model (below) have been represented. Vertical lines represent the Standard Error. 

 
In the case of P, a significant decrease in the concentration of this element in the residue 
remains was observed at the beginning of the period, followed by a gradual decline from the 
second sampling date onwards (Fig. V-2). A total of 0.69, 0.60, 0.75 and 0.65 of total P lost in 
treatments I, II, III and IV respectively, was released in the first year. After 704 days of 
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decomposition, these differences lessened and the average concentration of P in the residue 
mass on the last sampling date ranges from 6.3 kg/ha in the case of treatment I to 12.7 kg/ha 
in treatment IV. 
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Fig. V-3. Temporal evolution of kg of K in residue mass per ha of cover in the different pruning 

residue treatments considered in the study. A double exponential model (above) and a single 

exponential model (below) have been represented. Vertical lines represent the Standard Error. 

 
The K release rate was influenced by rainfall during the decomposition period and the 
decrease in the concentration of this element in the residue mass over time was similar for all 
treatments (Fig. V-3). As in the previous case, the presence of fine residues in the composition 
of the residue mass led to a greater release of K in the first year of the experiment. During this 
period, the residue mass under treatments I, II, III and IV respectively lost 0.84, 0.80, 0.86 and 
0.80 as proportion of the total amount of K released. Due to being highly soluble, the average 
concentration of K remaining in the residue mass at the end of the period was the lowest of all 
the nutrients and ranged from 4.5 kg/ha for the treatment that employed the least residues to 
9.7 kg/ha for the maximum dose. 
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Tables V-5, 6 and 7 represent the fit of a single and double exponential model over time to the 
release of N, P and K during the decomposition of residue mass. In general terms, as the 
residue mass contains matter that does not decompose easily, such as cellulose, hemicellulose 
and lignin, all the nutrients fitted the double exponential model better and recorded higher 
determination coefficients than those registered by the single exponential model. 
 

Table V-5. Fit of a double and single exponential model to N remaining in pruning (kg/ha). R
2
: 

Coefficient of determination. 

 DOUBLE EXPONENTIAL  SINGLE EXPONENTIAL 

Treatment L k1 [1/days] k2 [1/days] R
2 

 k [1/days] R
2 

I 0.19 50.7×10-3 1.02×10-3 0.97  1.21×10-3 0.91 

II 0.15 08.8×10-3 1.15×10-3 0.97  1.37×10-3 0.94 

III 0.22 15.4×10-3 1.00×10-3 0.72  1.73×10-3 0.72 

IV 0.15 50.0×10-3 0.85×10-3 0.71  1.21×10-3 0.65 

 

Table V-6. Fit of a double and single exponential model to P remaining in pruning (kg/ha). R
2
: 

Coefficient of determination.  

 DOUBLE EXPONENTIAL  SINGLE EXPONENTIAL 

Treatment L k1 [1/days] k2 [1/days] R
2 

 k [1/days] R
2 

I 0.59 45.8×10-3 0.42×10-3 0.92  1.21×10-3 0.49 

II 0.49 53.0×10-3 0.86×10-3 0.90  1.57×10-3 0.68 

III 0.58 23.1×10-3 0.68×10-3 0.94  1.57×10-3 0.65 

IV 0.50 32.7×10-3 8.72×10-3 0.89  1.70×10-3 0.68 

 

Table V-7. Fit of a double and single exponential model to K remaining in pruning (kg/ha). R
2
: 

Coefficient of determination. 

 DOUBLE EXPONENTIAL  SINGLE EXPONENTIAL 

Treatment L k1 [1/days] k2 [1/days] R
2 

 k [1/days] R
2 

I 0.59 45.8×10-3 0.42×10-3 0.92  1.21×10-3 0.49 

II 0.49 53.0×10-3 0.86×10-3 0.90  1.57×10-3 0.68 

III 0.58 23.1×10-3 0.68×10-3 0.94  1.57×10-3 0.65 

IV 0.50 32.7×10-3 8.72×10-3 0.89  1.70×10-3 0.68 

 
 
Pearson correlation coefficients were estimated between the dynamics of dry matter in the 
residue mass, that of the various nutrients and their relationships (Table V-8). The trend in N, P 
and K content of the various treatments of pruning residues was strongly related to the 
evolution of the biomass, with P ≤ 0.001 in all cases.  
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The highest correlation coefficients were generally observed between the biomass and N. The 
coincidence between dry matter dynamics and N in the residue mass was due to the fact the 
proportion of this element remained practically unchanged throughout the entire cycle of 
decomposition, recording average values of 0.0085 and 0.0098 for the initial and final samples, 
respectively. 
 

Table V-8. Pearson correlation coefficients between residue mass (kg/ha) and, N, P and K in 

kg/ha, and between C/N, N/P, N/K and P/K ratios for each treatment. 

Pearson correlation 
Treat. I Treat. II Treat. III Treat. IV 

Residue mass 

N 0.862 
(P ≤ 0.001) 

0.873 
(P ≤ 0.001) 

0.915 
(P ≤ 0.001) 

0.788 
(P ≤ 0.001) 

P 0.629 
(P ≤ 0.001) 

0.809 
(P ≤ 0.001) 

0.747 
(P ≤ 0.001) 

0.740 
(P ≤ 0.001) 

K 0.757 
(P ≤ 0.001) 

0.788 
(P ≤ 0.001) 

0.836 
(P ≤ 0.001) 

0.767 
(P ≤ 0.001) 

C/N 0.518 
(P ≤ 0.01) 

0.370 
(P ≤ 0.05) 

0.146 
NS 

0.055 
NS 

N/P 0.074 
NS 

–0.004 
NS 

0.143 
NS 

–0.038 
NS 

N/K –0.435 
(P ≤ 0.01) 

–0.513 
(P ≤ 0.001) 

–0.739 
(P ≤ 0.001) 

–0.589 
(P ≤ 0.001) 

P/K –0.408 
(P ≤ 0.05) 

–0.388 
(P ≤ 0.05) 

–0.619 
(P ≤ 0.001) 

–0.631 
(P ≤ 0.001) 

NS, not significant. 
 
V-3.4. Increase in soil nutrients 

 

The effect of the evolution of the residues under the different treatments on the 
concentration of nitrogen, phosphorous and potassium in the soil was evaluated. One 
common practice in organic olive growing is to allow spontaneous weeds to grow as plant 
cover to protect the soil. For this reason, in order to estimate the real effect of the 
decomposition of pruning residues on the various nutrients considered, the values of N, P and 
K content of the control sample (spontaneous weeds) were subtracted from those estimated 
for the rest of the treatments. The result of this calculation is presented in Fig. V-4 and two 
depths were considered to assess the effect of pruning residues both on the soil surface and 
also at lower layers. In all cases the value of the standard error of the data was very high, 
which explains why no significant differences were observed between the treatments for any 
of the nutrients considered. 
 



Chapter V  

96 

 

0

400

800

1200

1600

∆N
 [k

g/
ha

]

 I             II           III           IV
Control

0-20 cm

          
0

400

800

1200

1600

∆N
 [k

g/
ha

]

 I             II           III           IV
Control

20-40 cm

 
 
 

-20

0

20

40

60

∆P
 [k

g/
ha

]

 I             II           III           IV
Control

0-20 cm

          -20

0

20

40

60

∆P
 [k

g/
ha

]

 I             II           III           IV

Control

20-40 cm

 
 
 

-200

0

200

400

600

∆K
 [k

g/
ha

]

 I             II           III           IV
Control

0-20 cm

           

-200

0

200

400

600

∆K
 [k

g/
ha

]

 I             II           III           IV

Control

20-40 cm

 
 

Fig. V-4.  Increase in soil nutrients (N, P and K) in kg/ha between each treatment and the 

control, at depths of 0-20 and 20-40 cm. Vertical lines represent the Standard Error. 

 
The concentration of N increased in all treatments and at all depths considered. On the soil 
surface (0–20 cm), the largest increase was observed under treatment III, where N 
concentration rose by 28.0% in regard to the control. As regards the rest of the treatments, 
increases of 13.0 (I), 13.7 (II) and 6.6% (IV) were recorded when compared to the control. 
 
In the deepest layer of soil (20-40 cm), the amount of N in regard to the control generally 
increased by more than on the soil surface. Nutrient increases of 8.7%, 61.0%, 61.6% and 
35.0% were registered for treatments I, II, III and IV, respectively. 
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The effect of pruning residue decomposition on P content in the soil surface differed markedly 
from one treatment to another. The smallest increase (4.6%) was recorded under treatment I, 
which involved the least amount of residues, while the largest increase (58.8%) was observed 
under treatment III, in which the largest quantity of residues were applied. In regard to 
treatments II and IV, which combine fine and thick residues, P increased by 44.7% and 27.9%, 
respectively. 
 
The concentration of P at depth increased in regard to the control by 97.7%, 81.9% and 29.4% 
under treatments III, II and IV, respectively. Applying residues under treatment I apparently 
had no effect at this depth on the concentration of P, which actually recorded a lower portion 
than the control. 
 
Meanwhile, the concentration of K on the soil surface increased in regard to the control by 
12.7%, 11.8%, 27.0% and 23.4% under treatments I, II, III and IV, respectively. At depth, there 
was only an increase in the soil content of this element under treatments III (28.1%) and IV 
(18.3%). The treatments that involved less pruning residues (I and II) recorded a lower content 
of K than that estimated for the control. 
 
 
V-4. DISCUSSION 
 
V-4.1. Evolution of dry matter 

 
Dose IV registered the smallest variation in biomass data, probably due to the fact that the 
high proportion of residue mass influenced the activity of micro-organisms that decompose 
plant residues. Authors such as Arrigo et al. (2005) have pointed out that excess plant residues 
applied to the soil can produce anaerobic conditions that limit residue decay. 
 
According to ASAE (1998) standards, soil is considered to be protected during periods of 
critical erosion when at least 1120 kg/ha of residues are maintained on the soil surface. The 
residue mass under the various treatments and on the sampling dates was always maintained 
well above that limit, thereby ensuring soil protection at all times. 
 
The largest quantity of biomass was lost during the first season. In fact, 0.77, 0.72, 0.62 and 
0.57 of the total biomass was lost under treatments I, II, III and IV, respectively. During the 
decomposition process, the most labile organic compounds, such as sugars, starch and 
proteins, are easily degraded by micro-organisms in the soil, while other recalcitrant matter, 
such as cellulose, lignin and waxes have a slower decomposition rate (Aguilar 2005). The 
amount of residues applied also affected decomposition, as the largest percentage loss of 
biomass was recorded under treatment I (85%), which involves the least amount of residues.  
 
No papers were found that allowed comparison of the biomass decomposition results of the 
current study to others that assess the behaviour of olive pruning residues. As regards other 
studies of perennial crop residues, the amount of dry matter remaining in the residues of 
treatment IV was similar to that indicated by Boniche et al. (2008) in a paper on the annual 
decomposition of palm stalks (Bactris gasipaes) and to the matter decomposed from oil palm 
tree pruning residues in Malaysia, regardless of whether it comes from plant biomass (Khalid 
et al. 2000a) or empty fruit bunches. 
 
In a study on the decomposition of residues from different types of plant cover used in olive 
groves, Ordóñez et al. (2009) estimated an annual loss of biomass of 3110 kg/ha in the case of 
Brachypodium distachyon, 1350  kg/ha for Eruca vesicaria and 1540 kg/ha for Sinapis alba. All 
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of those values were substantially lower than those recorded in the current study, although 
the proportions of decomposed residue were similar: 0.60, 0.46 and 0.49 respectively. 
 
V-4.2. N, P, K release 

 
Since micro-organisms can more easily decompose fine residues, treatments with fine pruning 
residues only released greater proportions of N. 
 
The results obtained for this type of residue in one growing season contrast with those 
estimated by Rodríguez-Lizana et al. (2010) in a study on the release of N, P and K during the 
decomposition of more degradable residues such as pea (13.5, 2.9 and 9.9 kg/ha), wheat (6.7, 
–0.6 and 22.5 kg/ha) and sunflower (8.5, 0.7 and 78.0 kg/ha) in one growing season under 
similar climate conditions. Despite this, the proportions of nutrients released were usually 
higher than those obtained with the treatment of the current study: 0.77, 0.88 and 0.96 for 
pea; 0.48, –0.48 (immobilization) and 0.93 for wheat; and 0.56, 0.63 and 0.98 for sunflower. In 
the first year, the proportions of nutrient released ranged between 0.27 and 0.81. 
 
In a study on the annual decomposition of palm stalks, Boniche et al. (2008) indicated similar N 
release values to those in the current study, but higher values in the case of P and K. In 
addition, for Acacia mangium residues, Ngoran et al. (2006) obtained losses of K of > 80%. 
 
Ordóñez et al. (2009) assessed the mineralization and release of nutrients from the residues of 
various herbaceous species used as plant cover in olive groves over one growing season, 
finding that Brachypodium distachyon released 81.6, 7.3 and 78.2 kg/ha (82, 85 and 94% 
released), Eruca vesicaria released 24.3, 3.4 and 33.4 kg/ha (58, 61 and 86% released) and 
Sinapis alba released 21.5, 3.5 and 8.6 kg/ha (56, 68 and 67% released) for N, P and K, 
respectively. These amounts contrast with those indicated in the current study and highlight 
how important the choice of cover is when it comes to achieving improvements in the soil. 
 
V-4.3. Evolution of N, P, K and models 

 
The amount of nutrients released from pruning residues and the timing of this process during 
decomposition is very important for improving soil fertility (Mendoça & Stott 2003). The 
release of N, P and K from the residue mass as it decomposes fitted a downwardly exponential 
model, which took into account the amount of nutrient that remains in the residue mass 
throughout the period of decomposition. This type of model is related to the existence of 
various chemical constituents of differing resistance to degradation contained in the material. 
In this sense, the readily decomposable constituents degrade rapidly, as indicated by Wilson & 
Hargrove (1986), who studied the release of nitrogen and carbon from crimson clover 
residues. Similar results were obtained with Leucaena pruning residues in a shaded coffee 
agroecosystem by Youkhana & Idol (2009). 
 
Authors such as Rovira & Vallejo (1997) contemplated single and double exponential models, 
among others, in their studies of decomposition using Eucalyptus globulus, Quercus ilex and 
Pinus halepensis buried at depth. 
 
The studies performed by Aguilar & Staver (2001) found that the decomposition of stalks in 
agroforestry systems such as coffee were better suited to the double exponential model, 
which distinguishes two components, a labile fraction that decomposes easily and a 
recalcitrant component that degrades more slowly. Isaac et al. (2000) reached the same 
conclusion in a study on the decomposition and nitrogen release of pruning from Leucaena 
species. These authors’ results coincide with those obtained in the current study. 
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In the case of N, treatments I, II and III displayed a good fit to the aforementioned model with 
determination coefficients that were very close to one in all cases. Treatment IV did not fit the 
model as well due to the large amount of residues applied to the soil under this treatment. 
Possibly, the activity of microorganisms at the beginning of the decomposition process was 
negatively influenced. Schlesinger (2000) and Soto et al. (2002) found the increase in microbial 
biomass of colonising organisms can immobilize them in the residue mass. 
 
As in the previous case, P and K fitted the double model better. In this case, there was a clear 
difference between treatments that only contain fine pruning residues, which recorded 
determination coefficients close to one, and those which combine fine and thick residues, 
which registered lower determination coefficients. 
 
Authors such as Schomberg & Steiner (1999), in studies on the release of nutrients contained 
in herbaceous crops that are difficult to decompose, observed disparate behaviour of P in 
comparison to other elements, even detecting that the microbial biomass had immobilized this 
nutrient. This is due to this element being released more slowly by the residue mass, resulting 
in a concentration of P. Furthermore, in conditions in which dry matter is released slowly, 
structural P can be retained by glucophosphates, nucleotides and mainly by phospholipides of 
the cellular membrane (Salisbury & Ross 1992). 
 
In the double exponential model, the constant k1 which regulates the decomposition of the 
labile fraction is generally greater than that estimated in the simple model, and k2 which 
contemplates the evolution of recalcitrant compounds was lower in most cases. Authors such 
as Weerakkody & Parkinson (2006) indicated that in the case of residues with a high C/N ratio, 
as is the case in the current study, up to three phases can be distinguished in the release of 
nutrients: an initial phase in which soluble compounds are rapidly released, dominated by 
washing processes, followed by a phase of immobilisation and finally by a net release phase. 
Tian et al. (1992) stated that the C/N ratio is the main indicator of microbial activity. 
 
In the simple exponential model, the release constant k was similar for N and P under all 
treatments and lower than that recorded for K. Similarly, this element registered the highest 
k2, which indicates that despite being present in the most recalcitrant fractions of the residue 
mass, it is released rapidly due to being in ionic and mobile form inside the cytoplasm. The fact 
that K compounds are more soluble means the climate has a greater effect on the loss and 
release rate of this element, which accelerate when it rains. These results were similar to those 
reported by Delgado & Follet (2002) who stated that K is not associated with organic C and is 
leached out by rainfall. 
 
The ease with which residues release K during decomposition when rainfall conditions are 
favourable was described in other studies with similar characteristics to the current one 
(Zaharah & Bah 1999; Cobo et al. 2002). The rapid release of K could be attributed to its 
presence in mobile cations in the cell fluid, which are released upon disintegration of cell 
membranes (Jordan 1985; Castellanos-Barliza & León Peláez 2011). Khalid et al. (2000a) and 
Lim & Zaharah (2000) also indicated a high K release rate and a low N release rate in studies on 
the decomposition of residues from various organs of oil palm. 
 
The results of k1 and k2 obtained in the model for P and K remaining in the pruning residues 
were lower than those indicated by Bossa et al. (2005) in a study on decomposition and 
phosphorus and potassium release patterns from Leucaena leaves in three environments: 
these authors obtained values of 1.52 and 1.26 for k1 and 0.024 and 0.075 for k2 for P and K, 
respectively. 
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The composition of the residue mass played a vital role in the amount and speed at which 
nutrients were released. Khalid et al. (2000a) obtained a release rate for N in a study on oil 
palm residues that was much higher in the case of leaves than for other organs such as rachis, 
petioles and stalks, which contain less readily decomposable compounds. Aguilar (2005) 
reached similar conclusions in an analysis of data from decomposition and mineralisation trials 
with plant residues in coffee plantations. 
 
The high degree of correlation observed between the dry matter of the residue mass and the 
elements analysed suggests that if the concentrations were stable, monitoring the remaining 
biomass could be a good indicator for predicting nutrient release. This is more reliable in N and 
P than in K because its concentration in residue was less stable. Authors such as Ngoran et al. 
(2006), Martínez-Yrízar et al. (2007) and Prause & Fernández López (2007) found strong 
relationships between the loss of weight and some quality indicators (lignin, N, C, C/N content, 
among others) in studies on the decomposition of plant residues, which coincides with the 
results of the current experiment. 
 
Nitrogen/potassium and P/K were negatively correlated with biomass under all the treatments 
and were also highly significant in most cases. The explanation for this is the high solubility of 
K, which causes the release of this element to accelerate when it rains, regardless of the state 
of decomposition of the pruning residues. 
 
The relationship between the loss of N and P from the residue mass as the biomass 
decomposes was not significant in any of the cases. This could be due to the fact that these 
nutrients are generally associated to organic forms and that the exclusive presence of large 
size residues on the soil can slow down and delay decomposition. In fact, if residues are large 
(size), bacteria and fungi have little penetration power and practically can only grow on the 
external surface (Alvear et al. 2008). 
 
V-4.4. Increase in soil nutrients 

 
After nitrogen, potassium is the element that is most used in fertilizing olive trees (Pastor et al. 
2006). The amounts of nutrients necessary for the plant depend to a great extent on the 
characteristics of the plantation. The potassium demand of an olive grove is around 15 kg 
K2O/1000 kg olives, identical to that of N and in contrast with the 4 kg P2O5/1000 kg olives 
(Domínguez-Vivancos 1993; Tombesi et al. 2002). 
 
Phosphorus can be immobilized by microorganisms and this process plays an important role in 
maintaining the levels of this element in the soil (Ngoran et al. 2006), as in the case of 
treatment I at depth (20–40 cm). 
 
In most cases, the nutrients of treatments with pruning residues increased, with respect to the 
control, at depth (20–40 cm) more than at the surface. This could be due to the fact that 
processes that affect the content of a soil nutrient, such as erosion, leaching, fixation, 
volatilization, denitrification, immobilization and absorption by other components of the 
agroecosystem, such as spontaneous weeds, are more intense on the soil surface, as Khalid et 

al. (2000b) observed in a study on the effect of oil palm residue decomposition on the soil 
content of nutrients. 
 
The decomposition of the plant cover residues increased the medium or long-term levels of 
nutrients in the soil, as reported by Soria et al. (2000) in a study on the content of K and its 
relationship to the properties of 227 olive grove plots. 
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Ordóñez et al. (2007) also observed change in the content of nutrients in a study that assessed 
the modification in soil properties: the soil in an olive grove where pruning residues were 
applied for six years was compared to a non-tilled olive grove where the soil was left bare. 
Unlike the current study, Ordóñez et al. (2007) found an increase in the content of total N, 
available P and exchangeable K in the first 15 cm of the soil profile. At greater depths, the 
results did not favour the soil treated with residues, probably due to the constant application 
of residues every year affecting the capacity of microorganisms to decompose them. 
 
Authors such as Ouro et al. (2001), Merino Barrios et al. (2003) and Zas & Serrada (2003) 
performed studies on the effect of applying pruning residues from Pinus radiata plantations to 
the soil surface on soil properties, obtaining an increase in the main nutrients on the soil 
surface. Youkhana & Idol (2009) obtained increases in soil C and N with Leucaena pruning 
residues mulching in a shaded coffee agroecosystem. Brañas et al. (2000) performed a study 
on the application of residues from various plantations of Eucalyptus globulus in order to 
provide information towards helping to design both the management of slash residues and 
also the duration of application turns, highlighting the improvement in soil fertility this practice 
has led to 
 
 
V-5. CONCLUSIONS 
 
Planning the use of tree residues must consider not only the amount available, but also the 
provision of nutrients that the operation brings about in the agricultural system. Under the 
conditions of the study performed for the current paper, the quantity, composition and quality 
of the residue mass had a great influence on the parameters monitored.  
 
One of the problems that restricts the productivity of organic systems is that they cannot 
correct the lack of nutrients in the soil by applying synthetic fertilizers. Another problem is that 
herbicides cannot be used to control the weeds, so tillage is usually the preferred method of 
soil management. In view of the results obtained in the current study, a high dose of fine and 
thick residues, like the treatment IV, is recommended when the goal of the farmer is to keep 
the soil protected from erosive agents. However, a treatment of only fine residues in a high 
dose, as in treatment III, would be more suitable in order to improve the soil fertility in a short 
to medium term, in accordance with the edaphoclimatical conditions in the region, while still 
complying with the standards that govern this type of farm system. The release of nutrients 
during the decomposition of pruning was better fits to a double exponential model, which 
includes a labile fraction and another recalcitrant fraction that degrades more slowly. 
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Chapter VI. Summary, Resumen and General Conclusions 
 
 
VI-1. SUMMARY 
 
The majority of the world’s olive production is concentrated in the Mediterranean basin. 
Problems of erosion and loss of soil fertility pose a particular threat to the sustainability of this 
crop. In comparison to tillage systems, cover crops have proven to be an effective way of 
protecting the soil and producing improvements in its organic matter content. 
 
The aim of this thesis is to gain a better understanding of cover crops, in particular in terms of 
which species most reduce runoff and erosion losses, and which have the most positive effect 
on soil fertility. The study was carried out with plant species typically used as covers: 
graminoids, crucifers and legumes. Dead mulches, which to date have been the focus of 
limited study, were also analysed. Such covers include pruning residues and their benefits 
were examined in relation to different amounts and residue size. 
 
The existence of a vegetation cover, whether sown or spontaneous, reduces runoff and 
erosion losses. The study carried out using a sprinkler rainfall simulator on 50 m2 plots with a 
20% slope showed that the cover crop system significantly reduces soil loss and loss of soil 
organic carbon (SOC) associated with sediment wash-off. The experiment was carried out over 
two years with two rainfall intensities (40 mm h-1 and 15 mm h-1) and at two different times of 
the year (when the cover crop is growing and after it has been mechanically mowed). The 
results showed that with a cover crops system runoff was reduced by more than 60% 
compared to a tillage system, and that there were reductions of soil and SOC loss of more than 
90%. 
 
In addition to protecting the soil against erosion and the associated loss of organic matter, 
cover crops offer other advantages such as improved physical and chemical properties of the 
soil as well as contributing to the capture and fixation of atmospheric carbon in the soil. A 
study was carried out over three seasons on a farm in southern Spain in order to assess the 
degree of protection during the period of decomposition of the cover after mechanical 
mowing, and the release of C to the soil. Three species, a gramineous plant (Brachypodium 

distachyon) and two cruciferous (Eruca vesicaria and Sinapis alba), were compared with the 
spontaneous vegetation in the area, which is the cover most widely used by farmers. 
 
The decomposition of the cover crops released between 2.4 y 4.7 t ha-1 of C, depending on the 
species, with B. distachyon being the species that generated most biomass and best protected 
the soil throughout the decomposition period. 
 
The climate of the area exerts a significant influence on the growth of the cover crops and thus 
on the benefits they provide. In fact, meteorological conditions in the third season meant that 
the gramineous species did not develop as it had in previous seasons, leaving S. alba as the 
species that fixed the most C as SOC in the soil profile studied. 
 
A dead mulch of pruning residues protects the soil for a longer period of time, as it 
decomposes more slowly. Our study confirms that coverage did not drop below 60% in any of 
the different treatments tested in an experiment carried out over two seasons (704 days). The 
treatments involved the use of fine chopped residue (leaves and twigs of up to 8 cm) from spur 
pruning, as well as both fine and thick residue from a renewal pruning. 
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The decomposition of these residues and their nutrient release revealed a better fit to a 
double exponential model than to a single exponential model. This was because the residues 
contain both labile and recalcitrant fractions, which are not decomposed by microorganisms at 
the same rate. 
 
The treatments with only fine residues and a high amount of biomass resulted in a higher rate 
of release of C and other nutrients except P. In the soil profile studied, all treatments increased 
the concentration of SOC, N, P and K compared to spontaneous cover. Although the treatment 
with the greatest amount of residues (both fine and thick) resulted in the highest percentage 
of covered surface area, the treatment with the greatest quantity of fine residues gave better 
results in terms of soil fertility. 
 
Covers play an important role in terms of environmental sustainability, as they protect the soil 
and the decomposition of their residues promotes soil fertility. 
 
 
VI-2. RESUMEN 
 
En la cuenca mediterránea se concentra la mayor parte de la superficie mundial de olivar. La 
sostenibilidad de este cultivo está amenazada especialmente por problemas de erosión y 
pérdida de fertilidad de sus suelos. Las cubiertas han demostrado ser un sistema de cultivo 
eficaz para proteger el suelo del olivar y favorecer la mejora de su contenido en materia 
orgánica en comparación con el sistema de laboreo. 
 
El objetivo que se pretende con esta tesis doctoral es tener un mayor conocimiento sobre las 
cubiertas vegetales, en concreto qué especies reducen más la escorrentía y las pérdidas por 
erosión, y cuáles son más favorables para mejorar la fertilidad del suelo. El estudio se ha 
desarrollado con especies vegetales típicamente empleadas como cubierta: gramíneas, 
crucíferas y leguminosas. Se ha trabajado también con cubiertas inertes, poco estudiadas hasta 
la fecha, como son los de restos de poda, valorándose los beneficios del uso de distintas dosis 
y tamaño de restos. 
 
La existencia de una cobertura vegetal, ya sea sembrada o espontánea, reduce las pérdidas por 
escorrentía y erosión. El estudio desarrollado mediante un simulador de lluvia por aspersión en 
parcelas de 50 m2 y una pendiente del 20% demostró que el sistema de cubiertas reduce de 
forma significativa las pérdidas de suelo y las pérdidas de soil organic carbon (SOC) asociadas al 
sedimento arrastrado. En el experimento, desarrollado durante dos años con dos intensidades 
de lluvia (40 mm h-1 y 15 mm h-1) y en dos momentos del año (con la cubierta en su desarrollo 
y tras su desbroce mecánico), la escorrentía se redujo más de un 60% con el sistema de 
cubierta y las pérdidas de suelo y SOC en más de 90% respecto al sistema de laboreo. 
 
Además de la protección del suelo contra la erosión y la pérdida de materia orgánica que ésta 
supone, las cubiertas vegetales tienen otras ventajas como la mejora de las propiedades físico-
químicas del suelo y contribuir a la captura de carbono atmosférico y su fijación en el suelo. 
Para evaluar el grado de protección en el periodo de descomposición de la cubierta tras su 
desbroce mecánico y la liberación de C al suelo, se realizó un estudio desarrollado durante tres 
campañas en una finca del sur de España. Se emplearon tres especies, una gramínea 
(Brachypodium distachyon) y dos crucíferas (Eruca vesicaria y Sinapis alba), que fueron 
comparadas con la hierba espontánea de la zona, la cual es la cubierta más ampliamente 
utilizada por los agricultores. 
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La descomposición de la cubierta liberó entre 2.4 y 4.7 t ha-1 de C según la especie, siendo B. 

distachyon la que más biomasa generó y mantuvo el suelo mejor protegido a lo largo del 
periodo de descomposición. 
 
La climatología de la zona tiene gran influencia en el desarrollo de las cubiertas y por extensión 
sobre los beneficios que proporcionan. De hecho, las condiciones meteorológicas de la tercera 
campaña provocaron que la gramínea no se desarrollara como en las anteriores y el S. alba fijó 
la mayor cantidad de C en forma SOC en el perfil de suelo estudiado. 
 
Una cubierta inerte de restos de poda mantiene el suelo protegido durante un mayor periodo 
de tiempo ya que su descomposición es más lenta. Nuestras experiencias han confirmado que 
la cobertura no bajó del 60% en los distintos tratamientos de un experimento realizado 
durante dos campañas (704 días). Los tratamientos consideraban restos triturados finos (hojas 
y ramas de hasta 8 cm) procedentes de una poda de fructificación, y restos finos y gruesos 
generados en una poda de renovación. 
 
La descomposición de estos restos y su liberación de nutrientes se ajustó mejor a un modelo 
doble exponencial que a un modelo exponencial simple, ya que en su composición estos restos 
contienen fracciones lábiles y recalcitrantes que presentan mayor o menor dificultad a la 
descomposición por los microorganismos. 
 
El tratamientos con sólo restos finos y alta cantidad de biomasa obtuvo una mayor tasa de 
liberación de C y nutrientes salvo para el caso del P. Todos los tratamientos aumentaron la 
concentración de SOC, N, P y K respecto a la hierba espontánea en el perfil de suelo 
considerado. Aunque el tratamiento con mayor cantidad de restos (finos y gruesos) mantuvo 
el más alto porcentaje de superficie cubierta, el tratamiento con la mayor cantidad de sólo 
restos finos tuvo mejores efectos en cuanto a fertilidad de suelo. 
 
Las cubiertas suponen una herramienta para la sostenibilidad del medio manteniendo el suelo 
protegido y favoreciendo la fertilidad con la descomposición de sus restos. 
 
 
VI-3. GENERAL CONCLUSIONS 
 

1. The low levels of cover associated with a conventional tillage system leads to 
considerably greater losses from runoff and soil erosion compared to cover crop 
systems. Significant results have been achieved through the use of cover crops, both 
sown and spontaneous, reducing runoff by more than 60% and soil and SOC loss by 
more than 90%. 

 
2. Runoff hydrographs from experimental data are well suited to the kinematic wave 

model adopting a variable infiltration rate, especially in high-intensity rainfall, high-
volume runoff events. 

 
3. The powerful root system of cruciferous plants and their rapid biomass development 

facilitates infiltration. As a result, the Sinapis alba species reduces both water and soil 
loss much more than the other cover crops tested. 

 
4. The spatial and temporal variation of cover residues is more stable with gramineous 

plants and pruning residues, although the residues must be spread evenly so as to 
minimise unprotected surface area. 
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5. The exponential model put forward by Gregory showing the relationship between 
cover and residue mass of cover crops is a better fit than the quadratic model. 
Calculating the coefficient of coverage k for each species of cover crop allows us to 
estimate coverage for a known residue mass during the period of decomposition. 

 
6. Cover crops perform a dual function: they protect the soil from agents of erosion and 

facilitate soil fertility by increasing SOC through CO2 fixation. In the study carried out 
over a three-year period using residues from live cover crops, the species 
Brachypodium distachyon achieved the highest percentage of soil cover, while Sinapis 

alba produced the greatest increases in SOC in the soil profile tested. 
 

7. Although spontaneous, naturally-occurring vegetation is the most widely-used type of 
cover crop by farmers, other types of cover crop offer greater advantages in terms of 
soil protection: they provide greater and more stable percentage coverage over time; 
they release more carbon due to their greater biomass; and they fix more atmospheric 
carbon by sequestration. 

 
8. Pruning residues, when used as dead mulch instead of being burned, provide effective 

and long-lasting soil coverage. Their high biomass means that they release a large 
quantity of carbon and nutrients, which consequently increases the content of these 
elements in the soil. This is particularly important in the case of organic olive groves 
where deficiencies in certain elements cannot be quickly replenished using artificial 
fertilizers. 

 
9. To model the decomposition of pruning residue and the release of nutrients, a double 

exponential model is recommended. It separates the faster decomposing labile 
fractions from slower decomposing recalcitrant fractions. Due to the different rates of 
degradation of its components, the highest levels of biomass loss are recorded at the 
start of the decomposition period.   

 
10. Treatments using chopped pruning residue from two rows of olive trees and applied in 

the space between two rows (treatments III and IV of our study) proved to be more 
effective at providing a greater and more consistent soil cover over time, if both coarse 
and fine residue was used. When only fine residue was used it also improved soil 
fertility. 

 
11. In the same way that crop rotation is recommended for herbaceous crops, cover crop 

rotation between rows of permanent crops brings with it advantages such as avoiding 
soil compaction or flora inversion. It also makes better use of environmental 
resources, protecting the soil by preventing erosion, improving soil fertility and 
facilitating atmospheric carbon fixation. 

 
12. For the most part, the deployment of cover crop systems will be subsidised at a 

regional, national or European level in the future, just as they are now. In addition to 
research, knowledge transfer and training for farmers are essential for the 
implementation of such systems. 

 
 
 
 
 
 


