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for different heat-pulse based methods taking the estimated predawn values 

of Fw and Dx as references (Eqs. 4.9 and 4.10).   

Table 5.1. Maximum increases in hydraulic resistance (∆R, in n-folds 

increases) observed in the literature for woody species exposed to different 
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temperature treatments. Equation 5.1 was applied to deduce the viscosity 

increments (∆η, in n-folds). Data from the present study are presented in 

the last two rows allowing comparisons. Values of η for the 2012-2013 

season were estimated from midday soil temperature measurements 

Table 6.1. Strengths and weaknesses of the available methods for 

estimating Fw using sap flow sensors. 
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List of symbols 

a Empirical coefficient 
A Bulk net assimilation 
b Empirical coefficient 
Ca CO2 concentration in the leaf boundary layer 
Ci CO2 concentration in the substomatal cavity 
cs Specific heat capacity of the wood matrix 
cw Specific heat capacity of water 
D Thermal diffusivity 
Dx Thermal diffusivity in the axial (flow) direction 
Dy Thermal diffusivity in the tangential (lateral) direction  
EJ Relative error in the determination of J 
Ep Plant transpiration 
Ep,est Modeled transpiration 
ET Evapotranspiration 
ET0 Reference evapotranspiration 
f Fraction of intercepted PAR 
Fg Volumetric fraction of gas in sapwood 
Fs Volumetric fraction of solids in sapwood 
FV,FSP Volumetric sapwood water content at fiber saturation 

point 
Fw Volumetric fraction of liquid in sapwood 
Fw,corr θc corrected by anisotropic effects 
Fw,est Stem water content estimated with VSH-CHP 
Fw,obs Gravimetrical stem water content  
Gc Bulk stomatal conductance to CO2 
Gs Bulk stomatal conductance to H2O 
H Heat input from heat pulse 
I Irrigation applied 
J Sap flux density 
k Empirical coefficient 
K Thermal conductivity 
Kx Thermal conductivity in the axial (flow) direction 
Kw Thermal conductivity of water 
Ky Thermal conductivity in the tangential (lateral) direction 
Li Distance to the heater in the “i” direction 
P Atmospheric pressure 
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Peff Effective precipitation 
Q Sap flow rate 
Qn Sap flow rate normalized by cross-sectional xylem area 
R Hydraulic resistance of the water pathway from soil to 

shoots 
RK Ratio of axial to tangential thermal conductivity 
Rroot Hydraulic resistance of the water pathway from soil to 

trunk 
Rsd Total daily solar radiation 
t Time from heat pulse emission 
T Temperature 
t0 Time from heat pulse emission until ∆T returns to its 

initial value 
T1 Temperature in the downstream probe of a CHP sensor 
T2 Temperature in the upstream probe of a CHP sensor 
tm Time for the maximum temperature rise after heat pulse 

emission 
tn Time for ∆T to reach the minimum value from heat pulse 

emission 
tp Heat pulse duration 
V Fresh volume 
vh Convective heat pulse velocity 
wd Dry weight 
wf Fresh weight 
x Axial distance from a temperature probe to the heater 
x1 Distance from the downstream probe to the heater in a 

CHP sensor 
x2 Distance from the upstream probe to the heater in a CHP 

sensor 
β Ratio of Ci to Ca 

δ Square root of RK 

∆R Seasonal change in R estimated in relative terms as the 
ratio of winter values to those of spring 

∆Rroot Seasonal change in Rroot estimated in relative terms as the 
ratio of winter values to those of spring 

∆T Temperature difference between down- and up-stream 
probes 

∆Ta Averaged ∆T in the 170 s following a heat pulse 
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∆η Seasonal change in η estimated in relative terms as the 
ratio of winter values to those of spring 

∆Ψ Water potential gradient 
ε Apparent dielectric constant 
η Viscosity of xylem sap 
ρcw Basic density of cell walls 
ρd Basic density of sapwood 
ρw Basic density of liquid water 
ρc Volumetric specific heat 
Ψ Water potential 
Ψref Reference water potential 
Ψsoil Soil water potential 
Ψtrunk Trunk xylem water potential 
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List of abbreviations 
 
CAG Calibrated average gradient 
CDI Continuous deficit irrigation treatment 
CHP Compensated heat pulse 
CI Control irrigation treatment aimed to supply enough water 

to keep maximum ET 
DI Deficit irrigation 
DOY Day of year 
FI Farm irrigation treatment 
GMT Greenwich Mean Time 
HFD Heat field deformation 
HR Heat ratio 
LVDT Linear variable differential transducer 
MXTD Daily maximum trunk diameter 
NEE Net ecosystem exchange 
PAR Photosynthetically active radiation 
RDI Regulated deficit irrigation treatment 
RSWC Relative soil water content 
SHB Stem heat balance method 
SPAC Soil plant atmosphere continuum 
SWC Soil water content 
TD Thermal dissipation 
TDR Time domain reflectometry 
TDV Trunk diameter variation 
THB Trunk sector heat balance 
Tmax Tmax method 
VPD Vapor pressure deficit 
VSH-CHP Volumetric specific heat – Compensated heat pulse 

method 
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Summary 

Sap flow sensors based on heat pulse techniques enable a semi-continuous 

estimation of transpiration, which makes them promising devices for 

studying water relations in woody species. Furthermore, high expectations 

have been created for the role that these sensors might play in the 

development of irrigation scheduling strategies in fruit trees. The general 

objective of this thesis is to contribute to explore the full potential and 

limitations of heat pulse techniques, illustrating how they can yield 

information both about water relations and the effects of water stress on 

tree functioning. As first outputs, new methodologies to estimate net 

assimilation at the canopy level and xylem water content dynamics from 

sap flow measurements are presented. The validity of such methodologies 

was tested on several experiments, some of them carried out in mature olive 

orchards under different irrigation regimes. Besides, this thesis assesses the 

extent to which the accuracy of heat pulse techniques are compromised 

both by changes in xylem water content and by the method applied to 

determine its thermal properties. Finally, based on sap flow and water 

potential measurements conducted in a mature olive orchard during two 

consecutive winters, it is evidenced that chilling temperatures lead to a 

disturbance in water relations similar to those occurring under drought 

stress conditions in that species. 
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Resumen 

Los sensores de flujo de savia basados en técnicas de pulso de calor 

permiten obtener estimas casi continuas de la transpiración, lo que los 

convierte en dispositivos prometedores para el estudio de relaciones 

hídricas en especies leñosas. Además, se han creado grandes expectativas 

sobre el papel que estos sistemas podrían jugar en el desarrollo de 

estrategias de programación de riego en árboles frutales. El objetivo general 

de esta tesis es contribuir a explorar el máximo potencial y las limitaciones 

de las técnicas de pulso de calor, ilustrando como éstas pueden 

proporcionar información sobre las relaciones hídricas y el efecto del 

déficit hídrico en el funcionamiento de los árboles. Como primeras 

aportaciones, se presentan dos nuevas metodologías que permiten estimar la 

asimilación neta a nivel de cubierta y la dinámica del contenido de agua del 

xilema a partir de medidas de flujo de savia. La validez de dichas 

metodologías fue analizada en varios experimentos, algunos de ellos 

llevados a cabo en olivares adultos bajo distintos regímenes de riego. Por 

otra parte, esta tesis evalúa el grado en el que la precisión de las técnicas de 

pulso de calor se ven comprometidas por cambios en el contenido de agua 

del xilema y el método aplicado para determinar sus propiedades térmicas. 

Finalmente, en base a medidas de flujo de savia y potencial hídrico 

realizadas durante dos inviernos consecutivos en un olivar adulto, se 

evidencia que las bajas temperaturas resultan en alteraciones en las 

relaciones hídricas que se asemejan a las que ocurren en condiciones de 

sequía en esa especie. 
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Chapter 1 

General introduction 

 

1.1. Why sap flow sensors can be useful in an agronomical context 

Irrigated agriculture play an undeniable role for the sustenance of human 

life. Globally, food production from irrigation represents >40 % of the total 

and uses only about 17 % of the land area devoted to agriculture (Fereres 

and Connor 2004). However, the improvement of crop yields associated to 

irrigation presents a high cost in terms of water applied, which makes 

irrigated agriculture being the largest single consumer of freshwater on the 

planet by far. Thus, in arid and semiarid zones the proportion of water 

allocated for agriculture is estimated to exceed 70 % of the total (Fereres 

and Soriano 2007). In the coming decades, the forecast global population 

growth will not only increase the demand for food, but also will result in a 

higher proportion of water destined to satisfy the needs of the urban, 

industrial and environmental sectors. Global climate change might further 

exacerbate the competition for water through the likely increase in 

temperature and changes in annual rainfall amounts and regional 

distribution patterns (IPCC 2007). In view of the simultaneous expectations 

of increasing food demand and decreasing supplies to agriculture, there is 

an urgent need for a more efficient management of the water resources 

employed by irrigated systems.  

Over the last decades, the modernization of irrigation schemes and the shift 

from traditional surface towards precision irrigation methods (e.g. drip 

irrigation) have played a major role in reducing the water requirements in 

agricultural crops. At the same time, these changes have emphasized the 

need for new methods of accurate irrigation scheduling and control. For 
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example, irrigation scheduling was initially developed to supply crops with 

sufficient water so that the full evapotranspiration requirements were met 

throughout the season, while in recent years it has become clear that 

maintaining slight water deficits allows for a more efficient use of water in 

many crops. The application of water below the full evapotranspiration 

requirements is termed deficit irrigation (DI) and its main strength lies in 

the fact that the yield losses associated to the unavoidable water stress-

induced reductions in biomass production can be partially compensated by 

improvements in the partitioning of assimilates to reproductive structures 

(Fereres and Soriano 2007).  

Although DI has been satisfactorily tested in a variety of field crops, it is in 

fruit trees and vines where it has achieved the greatest success. This fact 

can be explained because the economic return in tree crops is notoriously 

influenced by quality attributes, which makes total production more 

decoupled from the farmer's profit in relation to annual crops. Furthermore, 

the imposition of moderate levels of water stress at certain developmental 

periods (referred to as regulated deficit irrigation) can result in very low or 

negligible reductions in yield on the one hand, and both help to control 

excessive growth and have a positive effect on fruit quality on the other 

(Uriu and Magness 1971; Chalmers et al. 1981; Goldhamer et al. 2006; 

Iniesta et al. 2009). Hence, the application of regulated deficit irrigation in 

fruit tree orchards is regarded as a promising mean to cope with the 

forthcoming water scarcity landscape. 

The implementation of successful DI involves accurate soil moisture or 

plant water status sensing in order to avoid exceeding critical water stress 

thresholds at critical time instances. To this end, a variety of sensors and 

methodologies based on either soil or plant measurements have been 

developed. The former approaches are thought to be less appropriate than 
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the later because many plant physiological features respond directly to 

changes in the water status of plant tissues, rather than to changes in bulk 

soil water content (McCutchan and Shackel 1992; Jones 2004). Moreover, 

monitoring the rootzone water status under localized irrigation is not an 

easy task (Fereres and Goldhamer 1990). These facts have motivated an 

intense search for robust plant-based approaches over the last decades.  

Perhaps the measurement of leaf or stem water potential (Ψ) using the 

classical pressure chamber method (Scholander et al. 1965) has become the 

most widely extended plant-based indicator for irrigation scheduling. In 

fact, it has been applied not only in experimental studies, but also by 

farmers in commercial orchards (Fereres, personal communication). 

Despite being considered a reference technique for monitoring plant water 

status, the pressure chamber technique presents considerable limitations 

including its destructive nature, the high labor requirements in the operation 

process or the fact that results can vary slightly between users (Jones 2004). 

As an alternative, new techniques for water stress detection have appeared 

in recent years. Among them, the indices based on dendrometry, sap flow 

and hyperspectral and multispectral imagery seem to be the most 

promising. 

The greatest strength of sap flow methods for irrigation scheduling lay in 

their capacity to provide semi-continuous estimates of sap flow rates (Q) 

which can generally be considered good surrogates of plant transpiration 

(Ep) (Swanson 1994). Ep is sensitive to water deficits and stomatal closure 

and, because the outward flow of water via stomatal openings is coupled 

with the inward flow of carbon dioxide, Q records indirectly provide 

information about biomass production. These facts are indicative of the 

great potential that sap flow methods present for both irrigation scheduling 

and studying water relations in general. For instance, measures of Q could 
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provide useful information to enhance our understanding about the 

functioning of vascular transport through the xylem (Williams et al. 2001; 

López-Bernal et al. 2010) or to quantify stomatal conductance to either H2O 

or CO2 (Gs or Gc, respectively) at canopy scale (Villalobos et al. 2013). In 

addition, sap flow methods can be a valuable tool in the development and 

calibration of soil-plant-atmosphere continuum (SPAC) models (Swanson 

1994; Steppe et al. 2006) or serve as a diagnostic tool for plant diseases 

caused by vascular phatogens (Yamoaka et al. 1990; Urban and Dvorak 

2014). 

1.2. An overview of sap flow methods and their working principles 

Although the many sap flow methods available to date present different 

principles, all of them are based on the use of heat as a tracer. Heat 

transport in the xylem occurs by convection in the flowing sap and by 

conduction through the sap and the stationary tissue of both sapwood and 

heartwood, which makes the problem of measuring Q theoretically 

complex. All methods deal with such difficulties and address the convective 

component to estimate Q (typically expressed in l h-1), but they do it 

through different approaches. Because in-depth information about the 

particularities of each sap flow method can be easily found in the literature 

(Swanson 1994; Smith and Allen 1996; Vandegehuchte and Steppe 2013), 

only a brief description summarizing the main features of the most common 

sap flow methods is provided below.  

Sap flow methods can be classified in two categories, depending on 

whether the heat is applied continuously or discontinuously through short 

heat pulses. Both the stem heat balance (SHB, Sakuratani 1981) the trunk 

sector heat balance (THB, Cermak et al. 1973; 2004), thermal dissipation 

(TD, Granier 1985; 1987) and the heat field deformation (HFD, 

Nadezhdina et al. 1998; 2012) methods are included in the former group. 
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On the one hand, both SHB and THB directly derive Q by solving the heat 

balance over a continuously heated section of the plant, with the first being 

the only non-invasive method (and hence suitable for both herbaceous and 

relatively thin woody stems). Both of them exhibit some limitations as 

some of the components of the heat balance are difficult to estimate with 

accuracy (particularly the storage component in the case of large stems -

THB) or require zero flow conditions (Smith and Allen 1996). On the other 

hand, both TD and HFD derive Q from determinations of sap flux density 

(J, cm3 cm-2 h-1) and their bases remain empirical. TD is probably the most 

widely extended sap flow method because of its simplicity and low cost, 

but its accuracy is compromised by a variety of issues such as the 

sensitivity to natural temperature gradients (Do and Rocheteau 2002) and 

water content variations (Vergeynst et al. 2014), the need for some 

reference zero flow periods (Granier 1985; 1987) and the uncertainties 

associated to the position of boundaries between active and inactive xylem 

(Vandegehuchte and Steppe 2013). HFD overcomes some of the later issues 

but accurate J estimates are only obtained using specific calibration 

equations, as in the case of TD (Vandeghuchte and Steppe 2012a).    

Heat pulse methods are perhaps the most suitable for monitoring tree water 

use in field conditions because they have lower power requirements. Unlike 

the aforementioned methods, they are based on the fundamental heat 

conduction-convection equation for porous media presented by Marshall 

(1958), who was inspired by the works of Carslaw and Jaeger (1947). Many 

heat pulse methods have been developed over the last decades including the 

compensated heat pulse (CHP, Swanson and Whitfield 1981), Tmax 

(Cohen et al. 1981), heat ratio (HR, Burgess et al. 2001), calibrated average 

gradient (CAG, Testi and Villalobos 2009) and Sapflow+ (Vandegehuchte 

and Steppe 2012b) methods. The complexity of the instrumentation used by 

each of these methods varies widely, as well as the equations from which 
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the convective heat velocity (vh, cm3 cm-2 h-1) is calculated. As heat pulse 

methods play a central role in the present thesis, their main features of each 

one have been summarized in Table 1.1 and a more detailed description is 

provided below. 

Table 1.1. Overview of heat-pulse sap flow methods, indicating the range of flows in 

which they are applicable and some relevant comments  

Method Range Comments 

Tmax 

(Cohen et al. 1981) 

Moderate to 

high flows 

- Instrumentally simple 

- Needs Dx estimation 

 

Heat ratio 

(HR; Burgess et al. 2001) 

Reverse to 

moderate flows 

 

- Needs Dx estimation 

Compensated heat pulse 

(CHP; Swanson & Whitfield 1981) 

Moderate to 

high flows 

 

- Low flows are measurable 

when combined with CAG 

Calibrated average gradient 

(CAG; Testi & Villalobos 2009) 

Zero to 

moderate flows 

 

- Applied in combination 

with CHP 

Sapflow+ 

(Vandegehuchte & Steppe 2012b) 

Reverse to high 

flows 

- Instrumentally complex 

- Estimates Fw at low flows 

- Not tested in living trees 

 

Of all heat pulse methods, Tmax is the simplest instrumentally, but at 

expense of a lower robustness. Sensors consist of a temperature probe 

located downstream from a heater probe. By measuring the time for the 

maximum temperature rise (tm) after a heat pulse, vh can be determined 

provided axial diffusivity of sapwood (Dx) is known (Cohen et al. 1981; 
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Green et al. 2003). Dx is typically determined from tm records at night 

assuming that vh is null before dawn but this procedure is challenged by the 

occurrence of nocturnal sap flow. Further uncertainties arise because the 

resulting temperature curves are noisy and slight errors in the determination 

of tm lead to large deviations in the resulting values of Dx and vh.  

HR sensors consist of a heater and two temperature probes that are located 

at equal distances up- and downstream from the heater. According to 

Burgess et al. (2001), vh can be calculated from the temperature increases at 

given times after heat pulse emission, with Dx being again present in the 

working equation. In this method, Dx is derived from the model of thermal 

properties of Siau (1971) -recently corrected by Vandegehuchte and Steppe 

(2012c)- using both dry density (ρd) and water content (Fw) of sapwood as 

inputs. Such parameters can be easily determined from core sampling 

measurements. Given a good estimation of Dx, the HR method has proven 

its robustness for measuring vh in conditions of low or even reverse flows. 

By contrast, it is unreliable in practice when vh is high (Bleby et al. 2008). 

CHP systems present similar instrumentation than HR, but in this case the 

temperature probes are asymmetrically inserted in relation to the heater (i.e. 

the distance from the downstream probe to the heater is higher than that 

from the upstream one). Swanson and Whitfield (1981) showed that vh is 

linearly related to the inverse of the time from heat-pulse emission until the 

temperature difference between the downstream and upstream probes (ΔT) 

returns to its initial value (t0). As a great advantage over HR and Tmax, Dx 

is not present in the working equation of CHP, which only includes t0 

records and the distances from each temperature probe to the heater. 

Besides that, the method is reliable for measuring from moderate to high vh 

and, contrary to HR, is not suitable for determining low values of vh. This 
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limitation has been overcome by the development of CAG (Testi and 

Villalobos 2009).  

The CAG method uses the same sensor configuration than CHP and is 

based on the fact that, at low flows, vh is linearly correlated with the 

average temperature difference between the downstream and upstream 

probes (∆Ta). Such linear relation can be empirically obtained from data on 

∆Ta when vh is low but still measurable with the CHP working equation 

(Testi and Villalobos 2009). Hence, the application of CAG allows for 

extending the measurable domain of vh in CHP sensors from zero to high 

values. 

Sapflow+ is the most recently developed heat pulse method 

(Vandegehuchte and Steppe 2012b). The sensor configuration is that of HR 

with an additional temperature probe tangentially located in relation to the 

heater. The corrected heat conduction-convection equations of 

Vandegehuchte and Steppe (2012d) are fitted to the measured temperature 

curves enabling the simultaneous estimation of vh, volumetric specific heat 

(ρc) and axial and tangential thermal conductivities (Kx and Ky, 

respectively). From these parameters, both Fw, Dx and thermal diffusivity in 

the tangential direction (Dy) can be theoretically inferred in low flow 

conditions, which makes the method particularly promising. However, 

Sapflow+ has not been tested yet in standing trees to our knowledge. 

Regardless of the heat pulse method employed, flow path obstruction and 

wounding reactions originated by the insertion of the probes can lead to 

large underestimations of vh. Generally, this problem is solved by applying 

polynomial wound correction equations that have been derived from finite 

element modelling analysis for given sensor configurations (Swanson and 

Whitfield 1981; Burgess et al. 2001; Green et al. 2003). Once the values of 

vh are corrected, sap flux density can be calculated as: 
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� = (��� + ��)�� [1.1] 

where the factor k is assumed to be 0.441 within and between species for a 

temperature of 20 ºC (Becker and Edwards 1999) and Fs represents the 

volumetric solid fraction of sapwood. Typically, Fw and Fs are determined 

from single gravimetric measurements in wooden cores taken at the end of 

the measurement period. Finally, Q can be estimated by integrating the 

values of J over the conductive xylem area.  

1.3. Theoretical and practical limitations of heat pulse sap flow 

methods 

As heat pulse methods move beyond a research tool towards being an 

instrument that might have potential for irrigation scheduling, 

understanding the limitations of these techniques becomes essential. Apart 

from the aforementioned intrinsic restrictions in the measurable range of vh 

that are specific for each method, there is a variety of issues that can affect 

their accuracy. Such issues make calibration highly recommendable, if not 

a prerequisite, when good estimates of Ep are needed; and they appear as a 

result of: 

• Violation of implicit assumptions: the working equations of all heat 

pulse methods were deduced from the fundamental heat conduction-

convection equations presented by Marshall (1958). Such equations present 

a variety of underlying assumptions which are to some extent unrealistic 

and, hence, might result in errors in the determinations of vh. As first 

example, the equations of Marshall (1958) are based on the premise that 

sapwood is an infinite, thermally homogeneous and isotropic medium. In 

general, there is a general agreement that the first two are not an issue, 

except, perhaps, in the case of some hardwood species with very low vessel 

density and non-uniform distribution of xylem elements (e.g. in kiwifruit, 

according to Green and Clothier 1988). The third one, in turn, implies a 
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major flaw because sapwood thermal properties are dependent on the 

direction considered. Fortunately, the methods remain theoretically correct 

because they are based on derivations of the fundamental equation that rule 

out any anisotropic aspects. This was evidenced by Vandegehuchte and 

Steppe (2012d), who also modified Marshall (1958)’s equations to account 

for the anisotropic nature of sapwood. Further implicit issues arise from the 

assumptions of both infinitesimal probe diameter and infinitesimal heat 

pulse duration. While the first one is accounted for by using empirical 

wound correction equations (Swanson and Whitfield 1981; Green et al. 

2003), the second is typically neglected, which may theoretically result in 

an underestimation of vh. 

• Incorrect probe installation: precise positioning of the sensor 

probes is of paramount importance to obtain good estimates of vh 

(Vandegehuchte and Steppe 2013). Using drill-bit templates during sensor 

installation prevent probe misalignments, but it might still be insufficient at 

large sapwood depths. Apart from that, additional uncertainties arise in 

species with spiral patterns of sap ascent (Kozlowski and Winget 1963; 

Waisel et al. 1972) because flow direction can be difficult to predict. 

• Ignoring temporal variations in Fw: values of ρd and Fw are 

required for the conversion of vh into J (Eq. 1), but as they are usually 

determined from single wood core measurements, the natural seasonal and 

daily variations of Fw are disregarded. Such variations can also affect the 

accuracy of HR and Tmax because they result in fluctuating patterns for Dx. 

The magnitude of this issue is specifically addressed in the Chapter 4 of the 

present thesis.  

• Difficulties in the scaling up from J to Q and Ep: heterogeneities in 

sapwood functioning complicate the estimation of sap flow from J 

determinations. On the one hand, J rates tend to decrease from the outer to 

the inner portions of xylem implying that measurements should be 
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performed at several depths if a reliable estimate of sap flow is to be 

obtained (Fernández et al. 2001; Nadezhdina et al. 2007; González-

Altozano et al. 2008). Sensors incorporating several thermocouples along 

the temperature probes allow both to capture such radial variations and to 

establish the boundaries between active and inactive xylem. On the other, 

there is compelling evidence indicating that enormous azimuthal variations 

in sap flow take place in some tree species (López-Bernal et al. 2010), 

which challenges the reliability of heat pulse methods for yielding realistic 

estimates of Q when a small number of sensors per monitored tree are used. 

As a final remark, the instant Q rates are not perfectly coupled with the Ep 

ones because stems and leaves are capable to extract/release water from/to 

the transpiration stream. This complication can be neglected if either sap 

flow is determined over a sufficiently long period to negate changes in 

storage (Swanson 1994). 

1.4. Water stress detection using sap flow sensors 

The use of sap flow systems as a tool for assessing water status is founded 

on the grounds that Gs and Ep are tightly coupled. Thus, as water stress 

develops stomata tend to close inducing a decrease in Gs, which in turn 

triggers a reduction in Ep that can be monitored with sap flow methods. 

However, the direct use of Ep measurements in irrigation scheduling is 

challenged because accurate values are only obtained through calibration 

and due to the strong influence of environmental conditions and canopy 

size on the resulting records. Both issues complicate the definition of water 

stress thresholds for triggering irrigation (Jones 2004; Ballester et al. 2013). 

Given that, the most common approach followed to detect the occurrence of 

water stress with sap flow methods consist of comparing the course of Ep in 

target trees with that of similar plants receiving enough irrigation to ensure 

no soil water limitations. Such an approach has been successfully applied in 
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a variety of fruit tree species (Tognetti et al. 2004; Ortuño et al. 2006; 

Ballester et al. 2013; Cuevas et al. 2013) and even implemented in 

experimental irrigation scheduling programs (Conejero et al. 2007; 

Fernández et al. 2008). Nonetheless, using over-irrigated reference trees 

might not be suitable in commercial orchards because excessive vegetative 

growth may occur on these plants over time. In addition, overwatering 

could lead to nutrient deficiencies due to excessive leaching losses. As an 

alternative to the use of well-irrigated trees, reference Ep rates can be 

calculated from simulation models (Pereira et al. 2006; Orgaz et al. 2007; 

Villalobos et al. 2013). The main difficulty in the implementation of those 

models lay in the fact that they require detailed microclimate data, as well 

as user-friendly techniques to determine plant leaf area or radiation 

interception.  

Besides the aforementioned approaches, several indirect strategies have 

been reported in order to evaluate water status from sap flow methods. For 

example, Fernández et al. (2001) and Nadezhdina et al. (2007) found subtle 

changes in the radial J profiles in response to variations in soil water 

content. In the light of those observations, the ratio of J in the inner/outer 

xylem was proposed as a water stress indicator. Nevertheless, subsequent 

research (Fernández et al. 2008) showed evidence on the unreliability of 

such an indicator. Another indirect water stress indicator is the nocturnal-

to-diurnal sap flow ratio. Both López-Bernal et al. (2010) and Ballester et 

al. (2013) showed that such ratio tends to increase with water stress 

severity. The validity of the nocturnal-to-diurnal sap flow ratio as a water 

status indicator is based on the premise that the nighttime refilling of 

internal water stores depleted during the previous day is higher in water 

stress plants. However, when soil water content is very low and/or actual 

nighttime Ep is high, these nocturnal refilling processes could be impeded, 

which limits the robustness of the indicator. 
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1.5. Using sap flow sensors to assess the occurrence of chilling stress in 

field trees 

Given the potential of heat pulse methods to provide insight into water 

relations, one of the chapters (Chapter 5) of the present thesis was devoted 

to their characterization in the particular case of field olive trees in winter. 

Previous studies conducted under controlled conditions with young plants 

of a number of species (including olive) has shown that the exposure to low 

(non-freezing) soil temperatures usually results in water stress symptoms, 

even in conditions of non-limited water supply to roots (Kramer 1940; 

Running and Reid 1980; Pavel and Fereres 1998; Wan et al. 2001). 

However, reported evidence on the so-called ‘chilling stress’ occurring at 

field conditions are still lacking to date. 

Chilling-induced disturbance in water relations is originated by an increase 

in the hydraulic resistance of the soil-plant continuum (R) which triggers 

temporal imbalances between root water uptake and actual Ep, which in 

turn lead to the development of shoot water deficits (Aroca et al. 2001; 

Wan et al. 2001). R can be determined from: 

� =
∆Ψ

�
 [1.2] 

with ∆Ψ representing the water potential gradient between the soil and the 

plant. Plant Ψ can be measured in leaves or shoots with the pressure 

chamber method while soil Ψ can be either estimated using soil sensors 

(e.g. tensiometers) or inferred from measurements of plant Ψ at predawn 

under the assumption that it will be equilibrated with soil Ψ by that time 

(Dichio et al. 2013). However, the determination of instantaneous Ep in situ 

poses a greater challenge, which may partly explain the aforementioned 

absence of literature data beyond the observations in young plants growing 

under controlled conditions (e.g. greenhouse, growth chambers, and 
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artificially heated/chilled pots). At this point, sap flow methods seem a 

promising tool for evaluating the occurrence and extent of chilling stress in 

field-grown tree species. Yielding Q estimates, sap flow methods allow to 

assess the effects of low temperatures on both R (Eq. 2), Gs (Villalobos et 

al. 2013) and the own Q.  

1.6. Objectives and outline of the thesis  

The general aim of this thesis is to contribute to explore the full potential of 

heat pulse sap flow systems, illustrating how such devices can be employed 

as a tool for monitoring the effects of deficit irrigation on tree functionality 

and to improve our understanding of water relations in fruit tree species. 

The specific objectives are: 

(i) To develop a simple methodology to estimate bulk net 

assimilation in fruit tree species from measurements conducted 

with sap flow systems. 

(ii) To develop a methodology that allows the monitoring of 

sapwood water content variations along with sap flux density 

using compensated heat pulse sensors 

(iii) To assess the potential impact of natural changes in sapwood 

water content on the accuracy of heat pulse methods  

(iv) To characterize water relations in winter for field olive trees 

using compensated heat pulse sensors 

The thesis is presented as chapters, which have the structure used by peer-

reviewed publications (the third and fourth chapters have been already 

published). Each chapter deals with one of the previously mentioned 

specific objectives. 

Chapter 2 describes a simple methodology based on the use of the imposed 

evaporation equation to derive bulk stomatal conductance to CO2 and net 
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assimilation values from meteorological and calibrated sap flow records at 

the canopy scale. The reliability of such methodology was tested in a long-

term field experiment including different irrigation treatments established 

in a mature hedgerow olive orchard in which the estimates of net 

assimilation were compared with both net ecosystem exchange, water 

potential and trunk diameter variations measurements. 

Chapter 3 reports a methodology that allows the estimation of relative 

variations in sapwood water content using compensated heat pulse sensors. 

The method, referred to as VSH-CHP, was tested in lab and field 

experiments, analyzing its feasibility to detect changes in water status. 

Chapter 4 attempts to characterize potential errors in sap flux density 

determinations with heat pulse methods that might arise when the natural 

variations in sapwood water content are disregarded. This objective was 

addressed by constructing desorption curves from sapwood samples of 

several fruit tree species, allowing to replace sapwood water content by 

water potential in the working equations of each heat pulse method. In 

doing so, data on diurnal and seasonal changes in water potential were used 

to assess the accuracy of sap flux density determinations in relation to 

species and heat pulse method. Besides that, a characterization of thermal 

properties was conducted for a wider number of fruit tree species and using 

several methodologies (including those typically applied when the heat 

ratio and Tmax heat pulse techniques are employed). The differences in 

thermal properties are analyzed in relation to the anatomical traits of each 

species and the several methodologies employed in the determinations. 

Finally, Chapter 5 is devoted to characterizing the course of field olive trees 

water relations in winter. To this end, measurements of water potential and 

sap flow were performed throughout two consecutive winters, deriving 

values of hydraulic resistance to sap ascent from soil to shoots and bulk 
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stomatal conductance to H2O. Their winter values were compared with 

those of spring, enabling us to assess the occurrence and extent of chilling 

stress in field trees.  
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Chapter 2  

Using sap flow measurements to estimate the effects of water 

stress on net assimilation in fruit orchards 

Summary 

The measurement of bulk net assimilation (A) in fruit tree species is 

hindered by the need for sophisticated and complex instrumentation despite 

it would be a target indicator for evaluating the effect of deficit irrigation on 

biomass production. The aim of this study is to present a simple alternative 

for estimating A from sap flow measurements and meteorological records. 

The proposed methodology was tested in a mature hedgerow olive orchard 

of 11.4 ha. Within the orchard an irrigation experiment was established in a 

small plot including three treatments: a full irrigated control (CI), a 

regulated deficit irrigation (RDI) and one additional treatment mimicking 

the customary orchard irrigation management (FI). Determinations of sap 

flow, water potential (Ψ) and trunk diameter variations (TDV) were 

conducted in the three treatments for three years. Also, measurements of net 

ecosystem exchange (NEE) were performed with an eddy covariance 

system in the centre of the orchard for the first season. On the one hand, our 

results showed a close agreement between the pattern of A in the FI 

treatment and that of NEE, indicating that our approach yields sound values 

and is suitable to monitor seasonal variations in A. On the other, we found 

differences in A between irrigation treatments which were generally 

coherent with the differences in irrigation applied, transpiration (Ep), Ψ and 

TDV, suggesting that the methodology was reliable to capture changes in A 

in response to mild water stress. Potential limitations arising from 

methodological assumptions are discussed. 
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2.1. Introduction 

At the present, and more so in the future, irrigated fruit tree culture in arid 

and semi-arid areas takes place under water scarcity. This context has 

driven to the development of deficit irrigation strategies (DI) with 

successful results for a wide number of fruit tree species (Mitchell and 

Chalmers 1982; Goldhamer and Viveros 2000; Moriana et al. 2003; Fereres 

and Soriano 2007). The correct application of DI requires an accurate 

knowledge of the effects of water shortage on tree performance, which has 

led to the search for robust and sensitive water stress indicators derived 

from plant-based measurements. Determinations of water potential (Ψ), 

canopy temperature, sap flow and trunk diameter variations are among the 

ones that have received more attention because of their clear physiological 

interpretation and/or ease of implementation and data recording (Jones 

2004; Fernández and Cuevas 2010). In an agronomical context, however, 

the ideal water stress indicator should go beyond physiological terms and 

show the direct effects of DI over biomass production and, ultimately, 

yield. In this regard, net assimilation rate (A) should be a target indicator, 

but its determination remains challenging. 

Leaf cuvette gas analyzers have been widely used to measure A in mature 

trees (Moriana and Fereres 2002), but scaling up such observations to the 

canopy level can lead to important errors. The use of large canopy 

chambers overcomes this deficiency (Pérez-Priego et al. 2010), but requires 

sophisticated instrumentation. Moreover, both approaches are labour-

intensive and non-automatable. The eddy covariance technique can also 

yield useful information at the orchard scale, provided the measurements 

are performed within large uniform flat plots. Unlike the formers, this 

approach is suitable for automation, which allows the user to obtain 

continuous estimates of the Net Ecosystem Exchange (NEE). However 



Chapter 2 

29 

 

NEE is not only dependent on A but also on the soil respiration of the plot, 

which in turn is affected by soil moisture and temperature (Law et al. 

2002). 

The objective of this study is to present and test a simple alternative 

methodology for estimating A from tree transpiration (Ep), whose 

estimation can be achieved by sap flow sensors allowing automatable and 

continuous recording. Besides that, the proposed approach was applied to a 

three year experiment in a super-intensive olive orchard with several 

irrigation treatments in order to assess its performance in relation to both 

eddy covariance measurements of NEE and the seasonal patterns of other 

classical water stress indicators. 

 

2.2. Materials and methods 

2.2.1. Theoretical framework 

Net assimilation (A) can be expressed as a function of the stomatal 

conductance to CO2 (Gc, µmol m-2 s-1) as: 

� = ���	� − 	�
  [2.1] 

where Ca is the CO2 concentration in the leaf boundary layer (set to 380 

µmol mol-1) and Ci is the CO2 concentration in the substomatal cavity. In 

the case of ventilated canopies, such as fruit orchards, the magnitude of 

bulk aerodynamic conductance is very low in relation to Gc, which results 

in a tight coupling of canopies to the atmosphere. Under these 

circumstances, Gc can be expressed as a function of Ep by inverting the 

imposed evaporation equation: 

�� =
��	


.�	
��
  [2.2] 
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Where VPD is vapour pressure deficit, P is atmospheric pressure (kPa) and 

1.6 is the ratio between the diffusion coefficients of CO2 and H2O in air.  

In this study, Ci was calculated as a constant fraction of Ca (termed β), so 

the working equation to deduce an equivalent of A from Ep can be written 

as: 

� =
��	


.�	
��
	��1 − β
  [2.3] 

In the case of olive (Olea europaea L.) trees, many studies show that β 

values typically range between 0.5 and 0.6 (Centritto et al. 2005; Díaz-

Espejo et al. 2006; Bacelar et al. 2007). We adopted the averaged value 

(β=0.58) reported by Díaz-Espejo et al. (2006) for mature olive trees 

growing under similar environmental conditions to those in our 

experiments. By assuming constant values for both Ca and β, the method 

only requires meteorological and sap flow records as inputs, achieving a 

maximum ease of implementation. Such assumptions, however, might 

affect the accuracy of the methodology. The magnitude of these likely 

errors is assessed below on the basis of field measurements and literature 

data. 

2.2.2. Experimental site 

The methodology was tested in a three year (2011, 2012, 2013) experiment 

performed in a 21.5 ha hedgerow olive (cv. ‘Arbequina’) orchard of 11.4 ha 

in ‘La Harina’ farm, which is located in Córdoba, Spain (37.8 º, 4.8 ºW, 

170 m altitude). The orchard was planted in 2005 with 4 x 1.5 m spacing. 

During the course of the experiments, the height of the canopy was ≈3.2 m 

and presented an average leaf area index of 1.5 m2 m-2. The soil was 

classified as a Vertisol (FAO classification) and the climate was 

Mediterranean, with 600 mm of average annual rainfall and around 1400 
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mm of average annual reference evapotranspiration (ET0). The particular 

patterns of meteorological variables (rainfall, temperature, relative 

humidity, wind speed and solar radiation) during the experiments were 

monitored at 10 min intervals with an automated weather station placed 

close to one of the orchard borders.  

Most of the experimental measurements were conducted in a 0.29 ha area 

that was established in one of the orchard corners. Such experimental area 

was arranged as a randomized complete block with four replications. 

Within each replication, three irrigation treatments were applied to separate 

plots of 40 trees in 4 adjacent rows. The treatments were: 

1. Control irrigation (CI): aimed to supply enough water to keep 

maximum evapotranspiration (ET) during all the irrigation season. 

To this end, irrigation doses were estimated as the difference 

between ET and rainfall, computing ET from the product of ET0 

and the crop coefficient. The later was set to 0.75, a value that was 

considered high enough to avoid water stress as evidenced by 

measurements of shoot Ψ (described below).  

2. Regulated deficit irrigation (RDI): the same water amounts as in CI 

were applied except for a midsummer period (typically July-

August) when it ranged from 30 to 50 % of that of CI, depending 

on the year. 

3. Farm management (FI): irrigation amount and frequency was that 

of the orchard habitual management.  

In all cases, irrigation was applied by three 2.2 L/h drippers per tree with a 

maximum frequency of three times a week. Further details concerning the 

water amounts and the irrigation periods for each treatment can be found in 

Figure 2.1.  
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2.2.3. Sap flow measurements 

Within one of the replication blocks, two of the central trees of each 

irrigation treatment were instrumented with sap flow sensors (one per tree) 

based on the compensated heat pulse method (Swanson and Whitfield 

1981) throughout the three irrigation seasons. The probes used were 

designed and produced in the IAS-CSIC laboratory in Córdoba, Spain and 

consist of a 4.8 W stainless steel heater of 2 mm diameter and two 

temperature sensors of the same diameter located 10 and 5 mm down- and 

upstream of the heater, respectively (Testi and Villalobos 2009). Each 

temperature probe has four embedded Type E (chromel–constantan wire) 

thermocouple junctions, spaced 10 mm along the needle, that were sampled 

separately to obtain heat-pulse velocities at 5, 15, 25 and 35 mm below the 

cambium at 15-min intervals. Sensors were installed at 50 cm height from 

the soil and the system was controlled by a datalogger (CR1000, Campbell 

Scientific Inc., Logan, UT, USA). Heat-pulse velocities were corrected for 

wounding effects according to Green et al. (2003) and converted to sap flux 

densities from water fractions that were obtained from core-sampling at the 

end of each measurement season. In addition, the ‘calibrated average 

gradient’ procedure (Testi and Villalobos 2009) was applied to calculate 

low sap velocities. Finally, sap flow values were deduced by integrating sap 

flux densities first across the trunk radius (using the radial velocity profile 

curve given by the probe) and then around the azimuth angle (Green et al. 

2003). 

To avoid errors associated to the natural azimuthal variability in sap flow 

rates (López-Bernal et al. 2010), the sap flow records were calibrated using 

the model of Villalobos et al. (2013), which allows the estimation of the 

daily transpiration (Ep,est, mm d-1) as a function of total daily solar radiation 

(Rsd, MJ m-2 d-1): 
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��,��� = 37.08	10��
����

���	
��


��

	
  [2.4] 

where f is the fraction of photosynthetically active radiation (PAR) 

intercepted by the canopy (dimensionless) and the coefficient 37.08 · 10-3 

incorporates the conversion of units for Joules of solar radiation to µmol 

quanta and from mol to kg of H2O. The parameters a (µE mol-1) and b (µE 

mol-1 kPa-1) were taken from Villalobos et al. (2013) and they are related to 

the radiation use efficiency and the species-specific response to VPD, 

respectively. Radiation interception was computed using the model of 

Mariscal et al. (2000). This model calculates the PAR transmittance, at any 

given time, in the nodes of a three-dimensional grid inside a prism. The 

prism, of selectable height and grid density is delimited by four adjacent 

trees. By spatial and time integration, the PAR intercepted during any given 

period can be calculated taking separately into account direct-beam 

radiation, diffuse radiation and scattering. Leaf area density, which is a 

required input for the model, was estimated from measurements of canopy 

transmittance conducted with a plant canopy analyzer (LAI-2000, Li-Cor, 

Lincoln, NE, USA). As the trees were regularly pruned each winter and the 

measurements of canopy transmittance were typically performed at the end 

of spring (before or soon after differences in irrigation between treatments 

were imposed), the estimated values of leaf area density were averaged and, 

hence, the same radiation interception was assumed for all the treatments.   

As the model is only valid for unstressed canopies, Equation 2.4 was 

applied for one single sunny day per season in which measurements of Ψ 

ensured no differences between treatments and good water status. 

Calibration coefficients for each tree were then computed as the ratio of 

measured sap flow values to Ep,est. Finally, the calibrated sap flow values 

from sunrise to sunset were used as estimates of Ep for the calculations of A 

with Eq. 2.3. 
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2.2.4. Comparison with eddy covariance measurements 

The net ecosystem exchange (NEE, µmol CO2 m
-2 s-1) of the orchard was 

measured with an eddy covariance system, installed at 6.0m height atop a 

mast (EC tower). The mast was placed far from the treatments sector, near 

the centre of the orchard, to ensure a minimum of 200 m and a maximum of 

285 m of fetch in the direction of the more frequent winds and no 

interference from the sector where the experimental blocks were located. 

The system consisted of a three-dimensional sonic anemometer (model 

CSAT3, Campbell Scientific Inc., Logan, Utah, USA) and an open path 

CO2/H2O analyzer (model LI7500, LI-COR Biosciences, Lincoln, 

Nebraska, USA), and took continuous measurements from 24 June 2011 

(DOY 175) to 27 September 2011 (DOY 270). Measurements of air 

temperature and relative humidity were taken close to the anemometer with 

a combined probe (model HMP45C, Vaisala, Helsinki, Finland). All the 

sensors were connected to a data logger (model CR1000, Campbell 

Scientific Inc., Logan, Utah, USA) that recorded all the measurements with 

a sampling rate of 10 Hz. Ca concentration was measured at two heights 

(0.3 and 3.0 m) with a closed-path CO2 analyzer (model LI-820, LI-COR 

Biosciences, Lincoln, Nebraska, USA) during the night to calculate CO2 

storage. 

The raw data were processed using Turbulent Knight 3 software (Mauder 

and Foken 2011) to calculate the NEE for 30-minute periods. All the 

relevant corrections were applied: coordinate rotation, spectral corrections, 

WPL corrections (Foken et al 2012). Finally, the NEE of daytime hours 

(filtered by net radiation > 50 W m-2) were integrated to obtain daily values 

in g CO2 m-2 d-1 which were compared with the estimates of A 

corresponding to FI trees in the separated experimental plot.  
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2.2.5. Other measurements and calculations 

Water potential (Ψ) was determined using a pressure chamber (Soil 

Moisture Equipment Corp., Santa Barbara, CA, USA). Values of predawn 

and midday Ψ were recorded twice a month from June to October for the 

three years. In each measurement, four sun-exposed shoots from the canopy 

top (with 1 to 3 leaf pairs attached) were sampled per treatment (shoots 

were always taken from one of the trees instrumented with sap flow 

probes). 

Trunk diameter variations (TDV) were monitored in 2011, 2012 and 2013 

with Linear Variable Differential Transducer dendrometers (LVDT; Model 

DF 2.5, Solartron Metrology, West Sussex, UK) mounted in a holder built 

of aluminium and ‘INVAR’. One tree per irrigation treatment (one of the 

two instrumented with sap flow probes) was instrumented. In 2012 trunk 

diameter variations were only recorded in two trees (CI and RDI). The 

sensors were attached in locations free of scars at about 0.4 m from the soil. 

The contact point of each dendrometer was glued to the surface of the 

living tissues of the bark with standard mastic for pruning wounds. 

Measurements were taken every 5 min and the system was controlled by a 

datalogger (CR1000, Campbell Scientific Inc., Logan, UT, USA). The daily 

values of maximum trunk diameter (MXTD) were used to give insight into 

the seasonal dynamics of trunk growth.  

The statistical treatment of the data (ANOVA and Tukey HSD test) was 

performed with the Statistix program (Statistix 9 for Windows, Analytical 

Software, Tallahassee, FL, USA). 
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Figure 2.1. Daily values of reference evapotranspiration (ET0, black line) and rainfall 

(grey bars) (panels A-C) and evolution of the cumulative irrigation applied to the 

treatments (CI = control, FI = farm irrigation, RDI = deficit irrigation) (panels D-F) 

during the three years of experiment. 

 

2.3. Results 

2.3.1. Seasonal changes in weather conditions and irrigation applied 

In 2011 and 2013 the study site was characterized by moderate to high 

precipitation in the period before starting differential irrigation between CI 

and RDI (367 mm in January-June, respectively), whereas rainfall was very 

scarce in 2012 (90 mm in January-June). In all cases the summer was dry 

and hot (almost null precipitation and mean ET0 of 6.2 mm d-1 in July-

August; Fig. 2.1). Seasonality and amounts of irrigation for each treatment 

are reported in Figure 2.1D-F. In the CI treatment, the total irrigation 

volume was comparable between 2011 and 2013 and higher in the case of 

2012, as a result of the early start of irrigation in the later. The remaining 
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treatments received lower irrigation doses than CI, with variability in the 

periods and severity of water restrictions depending on both each particular 

treatment and the year considered (see Figure 2.1D-F for further details).  

 

Figure 2.2. Seasonal course of net ecosystem exchange (NEE, black solid line), 

estimated net assimilation (A, gray solid line) and vapour pressure deficit (VPD, dotted 

line) for the summer of 2011. NEE was determined with an eddy covariance system 

placed in the centre of the orchard while values of A were deduced from the sap flow 

records of the two farm trees in the separate experimental plot. In all cases values 

correspond to daytime means. 
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Figure 2.2 presents the time series of daily NEE and A deduced from eddy 

covariance and sap flow measurements, respectively, as well as those of 

VPD. Both values of A and NEE showed moderately fluctuating patterns, 
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VPD whereas the minimum ones occurred in sunny days of high VPD. 
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Considering the whole period, the averaged values of A and NEE were 21.5 

and 16.3 g CO2 m-2 d-1, respectively. The values of A are plotted versus 

those of NEE in Figure 2.3, evidencing that both variables were tightly 

coupled. A linear regression analysis was performed, yielding both a good 

fit (r2 = 0.819), a slope close to the unit and a positive intercept. 

 

Figure 2.3. Plot of estimated net assimilation (A) versus net ecosystem exchange (NEE), 

deduced from sap flow and eddy covariance systems, respectively. Data correspond to 

daily values from 24 June 2011 (DOY 175) to 27 September 2011 (DOY 175). Dotted 

line indicates the 1:1 line. 
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midsummer, reaching midday values of -2.1, -2.7 and -2.4 MPa in 2011, 

2012 and 2013, respectively. With regard to FI, the Ψ values were similar 

to those of RDI in 2011 and typically intermediate, ranging between those 

measured for RDI and CI, in 2012 and 2013. 

Figure 2.4D-F depicts the time course of MXTD for each treatment and 

year, relative to the values recorded at dawn of DOY 170, considering these 

as zero. After differential irrigation was applied, the MXTD patterns 

rapidly varied between treatments with CI exhibiting the highest values. 

Meanwhile, water deprivation resulted in lower trunk growth for RDI and 

FI and even in moderate shrinkage during the summer of 2013. Besides 

that, both CI and RDI presented higher cumulative trunk growth in 2012 in 

relation to 2011 and 2013. For instance, CI grew 2.0, 4.0 and 1.7 mm in the 

period from DOY 170 to DOY 270 of 2011, 2012 and 2013, respectively.    

The seasonal course of Ep in CI trees (Fig. 2.4G-I) presented peaked 

patterns, with the values reaching a maximum between mid-June and mid-

July (DOY 165-200, Ep around 3.5-4.0 mm d-1) which was followed by a 

progressive decrease towards autumn. By contrast, A presented more erratic 

patterns (Fig. 2.4J-L), with the highest values (30-40 g CO2 m-2 d-1) in 

spring and autumn, as well as in some summer days with low evaporative 

demand. Considering the period from 19 June (DOY 170) to 27 September 

(DOY 270), the averaged A values resulted 24.8, 19.9 and 23.3 g CO2 m
-2 d-

1 in 2011, 2012 and 2013, respectively. With regard to the other treatments, 

they presented similar values of Ep and A to those of CI early in the season 

and lower ones coinciding with the periods of water deprivation. 
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Figure 2.4. Time course of predawn (closed symbols) and midday (open symbols) shoot 

water potential (Ψ, panels A-C), calibrated transpiration (Ep, panels D-F), estimated net 

assimilation (A, panels G-I) and maximum trunk diameter (MXTD, panels J-L) for the 

three irrigation treatments (CI = control, FI = farm irrigation, RDI = deficit irrigation) 

during the three years of experiment (left, middle and right panels correspond to 2011, 

2012 and 2013, respectively). 
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Figure 2.5. Course of net assimilation (A) estimated for the deficit irrigation (RDI) and 

the farm treatments (FI) in relation to that of the control (CI) throughout the three years 

of experiment (i.e. ratio of either RDI or FI values to those of CI). 
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The effects of deficit irrigation over A are better illustrated in Figure 2.5 by 

presenting the ratio of A values for each treatment to those of CI. In the first 

season, similar patterns of A were found both for FI and RDI, with the 

values decreasing to 75-85 % in relation to those of CI at midsummer. In 

2012, higher relative reductions were found, particularly in the case of RDI, 

which reached values around 60-70 % of those of CI prior to the irrigation 

recovery phase of September. Finally, in 2013 the relative A for RDI 

decreased gradually, reaching the lowest values in August (55-65 % of 

those of CI). Meanwhile, in FI the highest relative reductions appeared in 

early summer and September (around 60-65 % of CI).  

 

2.4. Discussion 

2.4.1. Methodological issues: sensitivity to changes in Ca and water 

stress 

The approach presented in this study is based on two theoretical 

assumptions which may compromise its validity. As a first issue, the 

proposed methodology assumes a constant Ca, neglecting its natural 

variations. It is known, for instance, that the diurnal courses of Ca present a 

sinusoid pattern, with the highest values prior to sunrise and the lowest 

during daytime as a result of the intrinsic photosynthetic activity of 

terrestrial vegetation (Baldocchi et al. 1981). In this regard, Figure 2.6 

illustrates the evolution of Ca (measured by the eddy covariance system at 3 

m height) throughout the daytime of a typical summer day (4 August 2011, 

DOY 216) in our experimental conditions. Ca ranged from 392 µmol mol-1 

at dawn to 373 µmol mol-1 in the late afternoon. The same figure shows the 

course of A in the CI treatment estimated by either considering or not such 

measured Ca variation, evidencing very slight differences between them. 
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The daily values of A deduced by integrating the whole daytime yielded 

19.7 and 19.9 g CO2 m-2 d-1 assuming a variable and a constant Ca, 

respectively. Furthermore, even if the eddy covariance measurements of Ca 

throughout the period between DOY 175 and DOY 270 are considered, the 

accumulated values of A only results 1.22 % higher than those obtained 

with a fixed Ca of 380 µmol mol-1 (22.4 versus 22.2 t CO2 ha-1). All this 

body of evidence indicates that assuming a sound constant Ca leads to 

negligible errors in the estimation of A.  

 

Figure 2.6. Diurnal time course (4 August 2011, DOY 216) of air CO2 concentration 

(Ca, dotted line) and estimated net assimilation (A) calculated either assuming (grey 

solid line) or not (black solid line) a variable Ca. In the former case a fixed value of 380 

µmol mol-1 was assumed for Ca. Data on A correspond to the average of the two control 

trees. 
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reported in many species (Brodribb 1996; Rosati et al. 2006) because 

stomatal closure is expected to produce a CO2 “supply” limitation of 

photosynthesis by causing Ci to become depleted (Kramer and Boyer 1995). 

From a theoretical point of view, Eq. 2.3 predicts that ignoring the 

consequent β variations would result in an underestimation of the A 

estimates under water stress conditions. This implies that the methodology 

might lose accuracy under changing water status but also that it would still 

be of some interest for detecting reductions in A in response to water 

deficits because the errors would tend to magnify the differences between 

well-watered and water-stressed conditions. However, the paradigm of β 

decreasing with water stress is not free of controversy and many studies 

argue that plants have evolved feedback and feedforward mechanisms to 

keep the importation and depletion of CO2 in balance, so that either Ci or β 

are conservative provided that the stress conditions develop gradually 

(Wong et al. 1979; Steduto et al. 2007). There has been considerable 

evidence showing that β tends to remain constant in fruit tree species such 

as almond (DeJong 1983; Marsal et al. 1997; Romero et al. 2004), hazelnut 

(Marsal et al. 2007) and orange trees (Pérez-Pérez et al. 2008), but 

exceptions can also be found (e.g. walnut, Rosati et al. 2006). 

In the particular case of olive trees, there are many reports showing β 

stability. For instance, Centritto et al. (2005) compared the effects of partial 

rootzone drying on gas exchange, reporting non-significant differences in β 

between two control treatments replacing the 100 % of the crop 

evapotranspiration (one of them applying partial rootzone drying) and a 

partial rootzone drying one irrigated with 50 % of the water supplied to the 

controls. Similarly, Bacelar et al. (2007) conducted a study in which β was 

measured in field olive trees irrigated with 100, 60, 30 and 0 % (rainfed) of 

the estimated local evaporative demand at several periods of a summer day. 

Their results showed no significant differences between irrigated treatments 
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with the exception of the 30 % treatment, which exhibited lower values at 

midday. On the contrary, rainfed trees showed lower values in the morning 

but not at midday. Finally, Villalobos et al. (2012) performed simultaneous 

measurements of gas exchange with large canopy chambers in well and 

deficit irrigated trees and found that the instant transpiration efficiency (i.e. 

the ratio of A to Ep) was always similar or only slightly higher for the later. 

As the differences in instant transpiration efficiency should be proportional 

to the differences in β (according to Eq. 2.3), the results of Villalobos et al. 

(2012) again suggest that, at most, water stress lead to very slight declines 

in β in the case of olive trees. Hence, applying Eq. 2.3 with a fixed β value 

should not result in a significant loss of accuracy under mild water stress 

conditions. Anyway, a better characterization of the relations between β and 

water status in relation to species and water stress severity deserves further 

research. 

2.4.2. Comparisons with eddy covariance measurements and literature 

data 

The close agreement between NEE and A patterns observed in Figure 2.2 as 

well as the good fit (r2=0.82) and the parallelisms with the 1:1 line 

presented in Figure 2.3 are indicative of the reliability of the proposed 

methodology to monitor A under field conditions. The higher values found 

for A were already expected, as NEE integrates the rates of A as well as 

those of soil and woody-organs respiration. Our results suggest that such 

respiration rates, deduced as the difference between A and NEE, were on 

average ≈5 g CO2 m-2 d-1, with slightly lower values appearing at 

midsummer (Fig. 2.2). In an irrigated olive (cv. ‘Arbequina’) orchard under 

similar environmental conditions, Testi et al. (2008) measured soil 

respiration both in the alley and in the permanently wet zones near the 

drippers in a summer day. The average values were 1.1 and 5.7 µmol CO2 



Using sap flow measurements to estimate bulk net assimilation 

46 

 

m-2 s-1 in the alley and beneath the canopy, respectively, both being rather 

constant throughout the day. If these values are weighted considering the 

soil wetted fraction and integrated along the daytime, a rate of soil 

respiration of 2.9 g CO2 m
-2 d-1 can be calculated. Although lower than our 

average estimates, the discrepancy can be perfectly attributed to the lower 

values of apparent respiration at midsummer in our experiment, to the fact 

that wood respiration is included into the NEE in Testi et al. (2008) and/or 

to differences in respiration rates between both orchards (400 trees ha-1 in 

Testi et. al, vs. 1667 trees ha-1 in this experiment). In any case, this 

comparison points out that our methodology yields, at least, fairly 

reasonable estimates of A.  

Searching for data on A rates to compare with our estimates is not an easy 

task. In the literature many works can be found reporting measurements of 

A conducted with leaf gas exchange analyzers in olive trees. Nevertheless, 

they are of little help because such measurements are frequently performed 

in sunlit leaves and the values expressed on a leaf area basis while our 

estimates correspond to the canopy level and are expressed on a soil area 

basis. Fortunately, determinations of bulk A based on the use of large 

canopy-chambers are also available for olive trees. Thus, Villalobos et al. 

(2012) used this technique for measuring A in a two year experiment in a 

mature olive orchard (cv. ‘Arbequina’) with two irrigation treatments: a full 

irrigated control and a deficit irrigated treatment applying 25 % of the 

control irrigation at midsummer. In the period of maximum differences in 

water status (i.e. DOY 215-250), the average diurnal values of A in the 

control were 12.0 g CO2 m
-2 d-1 in the first season and 19.0 g CO2 m

-2 d-1 in 

the second; and around 6.5 and 13.4 g CO2 m
-2 d-1 in the deficit irrigated 

treatment. The authors attributed the higher values in the second season to 

the renewal of leaves caused by pruning or/and to changes in the 

distribution of radiations patterns within the canopy. Returning to our data 
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and considering the period DOY 215-240 of 2013 (when our RDI treatment 

were the most similar to the aforementioned ones in terms of irrigation 

applied), our average daily A estimates (20.5 g CO2 m
-2 d-1 for CI and 12.0 

g CO2 m-2 d-1 for RDI, Fig. 2.4L) were not far from those obtained by 

Villalobos et al. (2012) in their second measurement season.   

2.4.3. Comparison with classical indicators of water status 

The seasonal patterns of Ψ, MXTD, Ep and A showed marked differences 

between treatments (Fig. 2.4 & 2.5) which were generally coherent with the 

amount and temporal distribution of irrigation (Fig. 2.1D-F). Thus, the 

irrigation applied to RDI during the summer period was much higher in 

2011 than in 2012 and 2013, and this led to higher Ψ, Ep and A in the 

former year. Moreover, 2013 was the year with the largest differences 

between treatments in the distribution and amount of irrigation, which also 

had a clear impact on the trends of Ψ, Ep and A. For instance, the delayed 

start of irrigation in early summer and the water deprivation imposed in 

autumn for FI (Fig. 2.1F) resulted in low values of Ψ, Ep and A in relation 

to those of CI in these periods, while  the greatest relative declines in RDI 

were observed by midsummer, just prior to the recovery phase in 

September. The general agreement found between the course of A and that 

of the other water stress indicators supports the feasibility of the proposed 

methodology to assess the effects of deficit irrigation on gas exchange and 

biomass accumulation. Besides that, the seasonal dynamics of MXTD were 

also affected by the imposed irrigation treatments: as the summer 

progressed, values of MXTD in the deficit treatments diverged from those 

of CI indicating a reduction in trunk growth (Fig. 2.4D-F). These results 

seem to be in accordance with several studies indicating the possibility of 

using the difference in MXTD between full and RDI trees as an early 

indicator of water stress (Fernández et al. 2011; Cuevas et al. 2013). 
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2.4.4. Final remarks 

This study presents a new simple methodology for estimating A in irrigated 

fruit trees using Ep and meteorological data as inputs. By deriving Ep from 

sap flow measurements, our approach overcomes some of the weaknesses 

associated to the traditional methods for measuring A: it is suitable for 

automation, the values are representative of the whole canopy and the use 

of instrumentation as complex and expensive as both canopy chambers and 

eddy covariance techniques is avoided. As a practical limitation, 

determining proper estimates of A requires either a large number of sensors 

per monitored tree (López-Bernal et al. 2010) or sap flow records to be 

calibrated, which require additional field measurements. Besides that, the 

reliability of the methodology might be compromised by some of the 

theoretical assumptions undertaken for simplicity and ease of 

implementation. In particular, by adopting a fixed value for β, Eq. 2.3 is 

prone to errors in those species with marked variations in Ci in response to 

changing water status. Nevertheless, that issue is not perfectly characterized 

and, as it tends to magnify the differences between well-irrigated and 

water-stressed trees, the methodology still remains valid for detecting the 

occurrence of decreases in A associated to limited water availability. The 

results of our field experiments demonstrate the suitability of the 

methodology to yield, at least, rough estimates of A as well as to capture its 

variations under mild water stress conditions in mature olive trees. Last but 

not least, it is worthy to stress that the use of A for assessing responses to 

DI in fruit trees poses a valuable asset which complements the information 

provided by other classical water stress indicators: as A represents a 

measure of biomass accumulation, it presents a direct agronomical 

interpretation. 
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Chapter 3  

Using the compensated heat pulse method to monitor trends 

in stem water content in standing trees 

Summary 

Studying the dynamics of stem water content (Fw) in living trees has an 

outstanding physiological interest but all the available techniques to 

measure Fw exhibit major drawbacks. In this work, we present a new 

methodology to estimate variations in Fw along with sap velocity using the 

compensated heat pulse technique (CHP). One lab experiment was 

performed on several wooden blocks obtained from three different tree 

species. Samples were slowly dried and their moisture loss was monitored 

by both gravimetric approaches and time-domain reflectometry (TDR) or 

CHP probes in order to contrast the validity of our methodology (VSH-

CHP) over a range of water contents. In addition, a field experiment was 

conducted to monitor Fw fluctuations in standing olive trees (Olea europaea 

L. cv. ‘Arbequina’) growing under three different irrigation regimes. In the 

lab test, the actual Fw values deduced gravimetrically differed from the 

estimates yielded by the VSH-CHP method. However, it could successfully 

track relative changes in the water stored for the range of Fw expected in 

living wood. Furthermore, the field experiment showed a seasonal change 

in Fw which was similar in shape and magnitude to those reported in the 

literature for olive and other Mediterranean tree species. On the other hand, 

differences in the seasonal patterns of Fw between irrigation treatments 

strongly corresponded with those of sap flow and some leaf water potential 

measurements. The results of this work suggest that the CHP technique 

could be employed to monitor the dynamics of both Fw and sap flow 
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simultaneously in standing trees and evidence that seasonal changes in Fw 

might be used as a long-term water status indicator. 
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3.1. Introduction 

The stem water content (Fw) of trees has been the subject of numerous 

studies for decades (Waring and Running 1978, Tyree and Yang 1990, 

Goldstein et al. 1998, Phillips et al. 2003). There is ample evidence that 

trees store water in sapwood during times of low evaporative demand and 

consume this water in transpiration when evaporative demand exceeds root 

water uptake. Therefore, the water stored is withdrawn and replenished in 

both daily and seasonal cycles, although the magnitude of the first is small 

compared with the latter. Thus, several studies have reported that the annual 

percentage change in Fw ranges from 8 % (0.50-0.46 cm3 cm-3, Pinus 

sylvestris, Irvine and Grace 1997) to 67 % (0.61-0.20 cm3 cm-3, Aesculus 

californica, Constantz and Murphy 1990) depending on species and 

environmental conditions (Constantz and Murphy 1990, Wullschleger et al. 

1996, Irvine and Grace 1997, Hernández-Santana et al. 2008; Nadler and 

Tyree 2008), whereas it rarely exceeds 10 % on a daily basis (Nadler and 

Tyree 2008).  

Water extraction from stems occurs when the soil water potential becomes 

progressively negative during a drought. Under these conditions the water 

stored allows the tree to maintain both higher transpiration and 

photosynthesis rates holding up stomatal closure, so it has been contended 

that Fw plays a biologically significant role (Goldstein et al. 1998, Cermák 

et al. 2007). Furthermore, some studies have proposed that measurements 

of Fw could be employed to detect water stress (Nadler et al. 2003, Nadler 

et al. 2006, Hernández-Santana et al. 2008) as the close contact between the 

bole and the ground led Fw to track changes in soil water potential more 

closely than leaf water potential (Tyree and Ewers 1991). However, 

measuring water content in standing trees still remains a challenging task.  
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The simplest technique of measuring stem water content is to collect stem 

cores and directly measure the water content by weighing tissue samples 

before and after drying. Such traditional gravimetric measurement is labor 

intensive, difficult to automate and harmful for the tree after repeated 

sampling. These shortcomings led to the development of new approaches 

such as gamma-ray attenuation (Edward and Jarvis 1983), nuclear magnetic 

resonance (Byrne et al. 1986, Van As et al. 2009), electrical conductivity 

(Nadler and Tyree 2008, Nadler et al. 2008) or time-domain reflectometry 

(TDR). The first one is not currently used because of the risk of exposure to 

radiation while nuclear magnetic resonance is expensive and remains 

difficult to apply in the field and electrical conductivity measurements 

present some drawbacks as the need to wait a long curing period after probe 

installation and the fact of being affected by salinity. Constantz and 

Murphy (1990) were the first using TDR in living trees and noted that the 

technology provided a rapid, automatable and accurate mean of measuring 

Fw. Since then, some authors have employed TDR methodology with 

different species (Wullschleger et al. 1996, Irvine and Grace 1997, 

Hernández-Santana et al. 2008). On the contrary, the TDR method is 

expensive, complicated and requires calibration, although Wullschleger et 

al. (1996) produced an empirical relationship which was valid for a wide 

range of species. During the revision process of this article, we have 

become aware of a work by Vandegehuchte and Steppe (2012a) developing 

a non-empirical heat pulse based method to determine simultaneously both 

sap flux density and the sapwood water content using four-needle sap flow 

sensors (referred to as Sapflow+). Results of both finite element modelling 

and lab experiments show that Sapflow+ can afford accurate estimates of 

sap flux density and also of water content (at least during periods of low 

velocities), but it was not yet tested in living trees.        
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In this paper we describe a new methodology to estimate Fw in standing 

trees using the compensated heat pulse technique (CHP). The CHP has 

been widely used to determine the dynamics of transpiration by measuring 

sap flow in conductive organs of woody plants (Swanson and Whitfield 

1981) and presents a great potential for irrigation scheduling (Fernández et 

al. 2001, 2008). In addition, this technique can also be used to detect water 

stress as the decline in tree transpiration (Fernández et al. 2001, Tognetti et 

al. 2004, 2005) and, more recently, López-Bernal et al. (2010) have 

suggested that the proportion of nocturnal to diurnal sap flow (N/D index) 

could also be another sensitive water status indicator.  

The main goals of this study are to develop a simple methodology based on 

the calculation of the volumetric specific heat (VSH-CHP) that allows 

estimating Fw along with sap velocity using CHP sensors and to test its 

feasibility for monitoring fluctuations in Fw of the woody parts of trees. In 

addition, we investigate if the Fw monitored by that method could be 

employed as a suitable indicator of water status in olive trees growing 

under different irrigation regimes. 

 

3.2. Material and Methods 

3.2.1. Theoretical framework of VSH-CHP 

The compensated heat pulse method (CHP) is based on the measurement of 

the temperature difference between sensors located above and below a 

heater inserted in the tree trunk (Swanson 1962). Marshall (1958) 

established the theoretical basis for this technique by deriving an analytical 

solution to the diffusion equation with coupled convective transport by sap 

within an infinite medium which has been recently adapted for anisotropic 
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conditions by Vandegehuchte and Steppe (2012b). That equation may be 

written as:   

∆� = �
 − �� = δ
�

����� !
���� �"#��$�!%�

���!
− ��� �"#��$�!%�

���!
�  [3.1] 

 (1)

where ∆T is the temperature difference between the down- and the up-

stream sensor (K), x1 and x2 are the distances from down- and up-stream to 

the heater respectively (m), H is heat input from heat pulse (J m-1), Dx is 

thermal diffusivity in the axial direction (m2 s-1 ), t is time since heat pulse 

applied (s), vh is heat pulse velocity (m s-1), ρc is volumetric specific heat, J 

m-3 K-1) and δ is the square root of the quotient between axial and tangential 

thermal conductivities (Kx and Ky, respectively; W m-1 K-1): 

δ = �&�

&�
  [3.2] 

Swanson and Whitfield (1981) showed that the heat pulse velocity is 

linearly related to the inverse of the time from the heat pulse emission until 

the temperature difference returns to its initial value (t0): �� =
#��#�
�!�

  [3.3] 

To avoid underestimations, heat-pulse velocities should be corrected for 

wounding effects (Swanson and Whitfield 1981, Green et al. 2003) before 

further calculations.  

The function ∆T (t) given by Eq. 3.1 reaches a minimum value before t0 as 

the upstream sensor is heated faster than the downstream one. We can 

calculate this minimum using the derivative of Eq. 3.1: 

'∆(
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= δ
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Eq. 3.4 is equal to zero at the time of the minimum (tn), so we arrive at the 

next equation: 
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Knowing vh - from Eq. 3.3 - we can compute Dx numerically from Eq. 3.5, 

and inverting Eq. 3.1 we arrive to: 

ρ
 = δ
�

����!�
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At this point some remarks should be made. First, any error in vh is taken up 

in Eqs. 3.5 and 3.6 so the correction for wounding effects becomes a crucial 

point for the accuracy of the methodology. Second, under isotropic 

conditions (i.e. Kx = Ky and so δ = 1) all the variables in Eq. 3.6 are known 

and ρc can be deduced. Finally, for zero heat pulse velocity the product 

4Dxtn depends only on geometrical characteristics (i.e. x1 and x2) as it is 

deduced from Eq. 3.5, so, for that condition, Eq. 3.6 can be simplified to: 

ρ
 = δ
)

"(��(�%�
  [3.7] 

 where γ can be calculated from H and the product 4Dxtn, which is a constant 

that depends only on x1 and x2 (see Eq. 3.5 for vh =0). For instance, when x1 = 

10 mm and x2 = 5 mm, 4Dxtn = 22.35 mm2
.  

The last step of the VSH-CHP methodology is the estimation of Fw, which 

can be determined from ρc as there is a relationship between both variables 

(Edwards and Warwick 1984): �� =
� � ��	
�
 


  [3.8] 

where cw is the water specific heat (J kg K-1), cs is the solid matrix specific 

heat and ρd and ρw are the basic densities of wood and water respectively 

(kg m-3).  

The presented framework is limited as there is not a basis to estimate δ 

which is a prerequisite to deduce ρc in Eq. 3.6.  By contrast, the 

methodology allows the monitoring of Fw from ρc estimates for isotropic 

conditions. In this work all the calculations of Fw assume δ = 1 and the 

errors arising from that assumption are discussed below. 
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3.2.2. Lab experiments 

Lab experiments were conducted employing wood samples from several 

plant species including olive (Olea europaea), plum (Prunus domestica) 

and fig (Ficus carica) trees. Plant material, consisting of tree stem segments 

of, at least, 20 cm diameter, was collected from different locations and 

dates (always in winter) near the city of Córdoba, Spain (37.8 ºN, 4.8 ºW, 

110 m altitude). These segments were cut using an industrial saw to obtain 

wooden blocks with cubic shapes of about 10 cm x 10 cm x 10 cm 

preserving the bark on one of their sides. In order to prevent moisture loss 

during transportation from the field to the lab, the samples were kept in 

plastic bags within isothermal boxes and, once they reached the lab, they 

were kept in cold conditions (4 ºC). The time from sample collection to the 

beginning of experiments was short (four days) for plum and fig tree 

samples and long (several months) for those of olive, which were immersed 

in water for three days before the experiment to ensure a high initial Fw. 

Lab experiments consisted of a drying process in which the moisture loss of 

the wooden blocks was simultaneously monitored employing gravimetric 

procedures (Fw,obs) and either the VSH-CHP methodology as detailed above 

(Fw,est) or the TDR-technique (see Table 3.1). The water-displacement 

method (based on the Archimedes principle) was employed for volume 

measurements before installing one sensor per wooden block on the side 

where the bark had been preserved. 

The CHP sensors were designed and produced in the IAS-CSIC laboratory 

in Córdoba, Spain, and consist of a 4.8 W stainless steel heater of 2 mm 

diameter and two temperature probes of the same diameter that are placed 

in holes drilled in the wood 10 and 5 mm down- and up-stream of the 

heater, respectively. Accurate vertical spacing and parallel drilling are 

achieved using a steel drill-bit guide. Each temperature probe has four 
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embedded Type E (chromel-constantan wire) thermocouple junctions, 

spaced 10 mm along the needle that were sampled separately to estimate 

heat-pulse velocity and volumetric specific heat at 5, 15, 25 and 35 mm 

below the cambium. However, only the mean of the two intermediate 

depths was taken into account to monitor the moisture content (Fw,est) as a 

precautionary measure to avoid possible heterogeneities in the heat applied. 

The system was controlled by a datalogger (CR1000, Campbell Scientific 

Inc., Logan, UT, USA) which performs measurement cycles at 15-minute 

intervals (for more details see Testi and Villalobos 2009). On the other 

hand, the TDR system (TDR 100) included 5 cm length probes and was 

also controlled by a datalogger (CR1000, Campbell Scientific Inc., Logan, 

UT, USA), measuring the apparent dielectric constant every 30 minutes.  

Table 3.1. Species, installed devices and drying temperature for each of the wooden 

blocks examined in lab experiments. 

Blocks Species Technique Temperature (ºC) 

1-4 Olive CHP 30 

5-8 Fig CHP 30 

9-11 Plum CHP 30 

12-15 Olive CHP 21 

16-19 Olive TDR 21 

 

The wooden blocks were dried for at least one week in either an oven at 30 

ºC or in the lab at a room temperature of 21 ºC (see Table 3.1). The mass of 

each block (with the sensors always kept in place) was measured frequently 

during the tests using a precision balance of ± 0.1 g resolution, especially at 

the beginning, when Fw loss was higher. Finally, CHP and TDR sensors 

were removed and weighted and the wooden blocks were dried at 105 ºC 
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until they achieved constant mass (wd). The sapwood water content Fw,obs 

was then calculated for every mass measurement as:  

��,*+� =
,��,	

�
-
  [3.9]     

where V is the fresh sample volume (m3) and wf the block weight after 

substracting the sensor mass (kg). These Fw,obs data were fitted to the best 

polynomial trend to obtain values each 15 minutes and they were compared 

with those of sapwood water content estimated from the VSH-CHP 

methodology (Fw,est).  

 

3.2.3. Field experiments 

The feasibility of using VSH-CHP to monitor changes in moisture storage 

in living trees was examined by monitoring Fw,est values during a long-term 

experiment which was conducted in an experimental olive (cv. 

‘Arbequina’) orchard located at the CIFA Experimental Station, Córdoba, 

Spain (37.8 ºN, 4.8 ºW, 110 m altitude) during 2006. The climate is 

Mediterranean and the soil is a Typic Xerofluvent of sandy loam texture 

exceeding 1.5 m in depth, with upper drained soil water content limit of 

0.23 m3 m-3 and lower soil water content limit of 0.07 m3 m-3 (López-

Bernal et al. 2010). The olive trees were planted in 1997, tree spacing was 7 

m x 3.5 m and irrigation was applied five days a week by drip, with seven 4 

l h-1 drippers per tree. From 2004 to 2006 Iniesta et al. (2009) conducted an 

experiment testing three different irrigation treatments, which started in 

2004 and finished in 2006: 

1. Control treatment (CI), which applied enough irrigation to keep the 

maximum estimated evapotranspiration. 
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2. Continuous Deficit Irrigation (CDI), which applied 25 % of water 

applied in the control, distributed throughout the irrigation season (typically 

from the end of May to the beginning of October). 

3. Regulated Deficit Irrigation (RDI), which applied the same total amount 

of irrigation as CDI, but with a midsummer deficit period without irrigation 

(typically from the beginning of July to the middle of September). 

Particularly, in 2006 the irrigation season started on 1 June (DOY 152) and 

finished on 17 October (DOY 290) and the midsummer period with no 

irrigation for RDI trees covered from 28 June (DOY 179) to 12 September 

(DOY 255).  

The experimental field was arranged as a randomized complete block with 

three replications, and each plot consisted of 12 olive trees in three adjacent 

rows. Both the two central trees of each plot (except two in the CI 

treatment) were instrumented with two CHP sensors per tree, at a height of 

30 cm over the soil (4 CI, 6 CDI and 6 RDI trees) in order to monitor the 

daily sap flow and Fw,est dynamics. As in the lab experiments, only the CHP 

outputs corresponding to the intermediate thermocouples junctions were 

taken into account in the Fw,est calculations. Irregularities associated with 

daily variations in the moisture content were avoided considering only the 

averaged Fw,est values from 0300 to 0500 GMT for each day. Mean values 

of Fw,est and sap flow were calculated for each irrigation treatment. Besides, 

the mean relative sap flow was calculated for deficit treatments (i.e. the 

ratio between either CDI or RDI sap flow and that of CI) in order to 

contrast differences in water status. Weather data were recorded by an 

automated weather station placed 500 m from the orchard and reference 

daily evapotranspiration was calculated following Allen et al. (1998).  
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3.3. Results 

3.3.1. Lab experiments 

Stem segments used in all experiments showed initial Fw,obs ranging from 

0.590 cm3 cm-3 (Block 4) to 0.447 cm3 cm-3 (Block 9) and a clear 

curvilinear decay throughout the tests. However, values of Fw,est ranged 

initially from 0.642 cm3 cm-3 (Block 15) to 0.391 cm3 cm-3 (Block 4) and 

later they were found to decrease only during a variable period of time after 

the beginning of the experiments (from one to four days) until a 

stabilization occurred. As a consequence, both values and trends of Fw,obs 

did not match closely those of Fw,est in the drying experiments as it is 

exemplified in Fig. 3.1 for one of the fig wooden blocks (Block 6).  

 

Figure 3.1. Evolution of sapwood water content values estimated by VSH-CHP 

methodology (Fw,est, solid line) and those gravimetrically obtained (Fw,obs, dashed line) 

during the drying process. The results correspond to one of the monitored wooden 

blocks of fig (Block 6). Fw,est values show a step reduction in parallel with those of 

Fw,obs followed by an stabilization which is not found for the gravimetrical data. 
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The similarities and differences between the gravimetrical and the 

calculated values of moisture content are presented in Fig. 3.2 for all 

samples plotting Fw,est against the interpolated Fw,obs. Although most of the 

sensors showed deviations from the 1/1 line (dashed line), all of them 

presented clear parallelisms to it for the higher moisture contents. This 

indicates that the relative reduction in Fw,obs measured during the first hours 

of drying was in good agreement with that detected by the VSH-CHP 

methodology. Fig. 3.1 also illustrates those results showing similar 

reductions in Fw,obs and Fw,est (0.102 cm3 cm-3 and 0.106 cm3 cm-3 

respectively) if only the first 45 h of drying test are considered.  

These findings were supported by a linear regression analysis between Fw,est 

and Fw,obs which was performed for each sample using only pair of data 

with Fw,obs greater than 75 % of the initial value of Fw,obs (Table 3.2). All 

correlations resulted statistically significant (P < 0.0001) with 

determination coefficients higher than 0.850 (except for the block 7). The 

slopes and the intercepts of the linear regression equations showed mean 

values of 0.993 and 0.003 respectively, which were very close to the 

theoretical optimum. On the other hand, the slope and intercept standard 

deviations were 0.229 and 0.107 respectively, indicating a large sensor 

variability which was not apparently related neither to species nor 

experimental conditions.  
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 Table 3.2. Linear regressions relating the sapwood water content 

F
w
,e
s
t (
c
m
3
 c
m
-3
)

0.2

0.3

0.4

0.5

0.6
F
w
,e
s
t (
c
m
3
 c
m
-3
)

0.2

0.3

0.4

0.5

0.6

F
w
,e
s
t (
c
m
3
 c
m
-3
)

0.2

0.3

0.4

0.5

0.6

F
w,obs (cm

3 cm-3)

0.2 0.3 0.4 0.5 0.6

F
w
,e
s
t (
c
m
3
 c
m
-3
)

0.2

0.3

0.4

0.5

0.6

Block 1

Block 2

Block 3 Block 4

Block 5 Block 6

Block 7

Block 8

Block 9

Block 10

Block 11

Block 13

Block 14

Block 15

Block 12



Chapter 3 

69 

 

calculated by VSH-CHP methodology to that gravimetrically estimated considering only 

the first phase of the drying process. Accordingly, only the data with Fw,obs greater than 

0.75 of the initial value of Fw,obs were taken into account. 

Block Slope Intercept r2 ρd (g cm
-3) 

1 1.064 -0.073 0.893 0.67 

2 0.902 -0.043 0.953 0.66 

3 0.922 -0.136 0.877 0.65 

4 0.769 -0.076 0.900 0.64 

5 1.311 0.024 0.875 0.41 

6 1.129 0.017 0.949 0.41 

7 0.652 0.172 0.756 0.41 

8 0.994 0.050 0.940 0.41 

9 0.920 0.094 0.968 0.56 

10 1.035 -0.043 0.947 0.58 

11 1.291 -0.040 0.957 0.56 

12 1.332 -0.193 0.933 0.62 

13 0.789 0.110 0.950 0.62 

14 0.610 0.186 0.872 0.63 

15 1.173 -0.009 0.869 0.62 

Mean 0.993 0.003 0.909  

SD 0.229 0.107 0.055  

 

Finally, the wooden blocks equipped with TDR sensors presented a 

curvilinear pattern between the monitored apparent dielectric constant (ε) 

and Fw,obs (Figure 3.3). The averaged ε values decreased from 22.93 to 

10.77 while those of Fw,obs ranged from 0.547 to 0.282 cm3 cm-3. Most of 

the variation in ε occurred when Fw,obs drecreased from 0.55 to 0.40 cm3 

cm-3.    
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Figure 3.3. Apparent dielectric constant versus gravimetrical wood water content 

(Fw,obs). Data were obtained from the olive wooden blocks 16, 17, 18 and 19 which 

were equipped with TDR probes.  

 

3.3.2. Field experiments 

The mean patterns of the calculated Fw,est  along the year 2006 are shown in 

Fig. 3.4. In general, the dynamics of Fw,est followed a sinusoid trend with a 

spring maximum and a late summer minimum by the end of the dry season. 

The mean Fw,est values for these extremes ranged between 0.548 and 0.488 

cm3 cm-3 respectively and the magnitude of this interval was slightly 

influenced by the irrigation treatment. Thus, RDI showed the highest 

seasonal Fw,est differences (0.546 – 0.478 cm3 cm-3) followed by CDI (0.548 

– 0.488 cm3 cm-3) and CI trees (0.550 – 0.497 cm3 cm-3).  
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Figure 3.4. Temporal variation in the estimated stem water content (Fw,est) in olive tree 

trunks under different irrigation regimes (CI: control, solid line; CDI: continuous deficit 

irrigation, dotted line; RDI: regulated deficit irrigation, dashed line) based on the VSH-

CHP methodology. Data correspond to the mean of four trees for CDI and RDI 

treatments, and of two for the control one. All trees were monitored by two sensors each 

at a height of 30 cm over the soil.  

 

A deeper analysis of the annual changes in moisture storage revealed 

decreasing trends in Fw,est for all irrigation treatments during summertime 

which were sharper for the deficit treatments (especially in RDI). By 

contrast, similar patterns were found in winter, spring and fall. Thus, from 

28 June (DOY 179) to 12 September (DOY 255) the mean Fw,est values 

were 0.523, 0.506 and 0.498 cm3 cm-3 for CI, CDI and RDI respectively 
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while, in the rest of the season they averaged 0.524, 0.521 and 0.519 cm3 

cm-3. 

 

Figure 3.5. Temporal variation in the relative tree Fw,est (top) and sap flow (bottom) of 

CDI (solid line) and RDI (dotted line) olive tree trunks referred to the control (i.e. the 

ratio between the value of either the CDI or RDI treatments and that of the control one) 

based on the VSH-CHP methodology. The values employed to obtain this graph include 

data from 4 CI, 6 CDI and 6 RDI trees which were monitored by two sensors each at a 

height of 30 cm over the soil.  
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On the other hand, sap flow trends were in good agreement with those of 

Fw,est, with differences among treatments concentrated during the irrigation 

season when control trees maintained high values of sap flow while those 

of deficit treatments showed a clear decline which was sharper during the 

midsummer. The similarities between Fw,est and sap flow patterns are 

illustrated in relative terms in Fig. 3.5. Thus, from 28 June (DOY 179) to 

12 September (DOY 255) CDI and RDI the mean sap flow values were 

0.46 and 0.33 times lower in relation to CI respectively. Finally, the short 

and step recovering trends found for RDI and CDI from 17 August (DOY 

229) were associated with a rainfall event of 47 mm. 

 

3.4. Discussion 

3.4.1. Lab experiments 

The trends in wood water stored calculated by VSH-CHP methodology did 

not match up the actual values of Fw. The main difference between these 

trends occurred as a consequence of an unexpected stabilization in Fw,est 

values (Fig. 3.1). In fact, the Fw,est – Fw,obs trends (Fig. 3.2) draw an analogy 

with the curvilinear relationships obtained by TDR between the apparent 

dielectric constant and the Fw,obs found in both our lab experiments (Fig. 

3.3) and the literature (Constantz and Murphy 1990, Wullschleger et al. 

1996, Irvine and Grace 1997). Thus, both the Fw,est and the apparent 

dielectric constant show little changes when the actual moisture contents 

are low. This may have been the result of heterogeneities in the drying 

process after losing the most part of the free water. Under these 

circumstances (fibre saturation point), the more strongly bound water could 

be leaving the outer portions of the wooden blocks faster than the inner 

parts (where the sensor measurements were made). However, both the 
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outer- and the innermost thermocouple junctions of the probes (not taken 

into consideration in further analysis to avoid heterogeneities in the heat 

applied) revealed identical Fw,est patterns to those of the intermediate depths 

(data not shown) suggesting that the drying process was spatially 

homogeneous throughout the volume of the blocks and, therefore, rejecting 

that hypothesis. An alternative explanation could be that the stabilization in 

Fw,est values might be due to changes in the local conditions of contact 

between wood tissue and CHP probes as wood shrinks with water 

withdrawal. Air may have replaced the air in the minuscule gaps between 

CHP probes and wood after the depletion of the free water. Such scenario 

would reduce the amount of heat reaching the thermocouple junctions 

resulting in a decrease in the maximum temperature difference between the 

down- and the upstream probes ((T1-T2)n) and in an overestimation of ρc 

and Fw,est according to Eq. 3.7.  As a final remark, some small cracks were 

originated during the drying processes indicating that changes in wood 

volume had taken place which may also be playing a role in the 

stabilization of Fw,est. Anyway, more research efforts are required on the 

subject if the causes of this phenomenon are to be clarified. 

The stabilization in Fw,est values resulted in an underestimation of the actual 

drop in moisture content (given by Fw,obs) during the second part of the 

drying tests. By contrast, the VSH-CHP methodology was able to track 

accurately relative variations in Fw,obs during the first hours of the trials 

which was supported by the similarity between Fw,est and Fw,obs slopes in 

Fig. 3.1, by the parallelisms with the 1/1 line in Fig. 3.2 and by the results 

of the linear regression analysis. Moreover, the slopes of the regression 

lines were close to 1 (Table 3.2), indicating that a decrease in the actual 

water content results in a reduction in Fw,est of the same magnitude. As 

mentioned in the previous section, the regression analysis included only 

those data with Fw,obs greater than 75 % of the initial value to avoid the 
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stabilization in Fw,est. This range of Fw,obs variation (i.e. 25 %) should cover 

the seasonal changes of Fw in most living trees. Standing olive trees, for 

example, present a seasonal range of Fw from 0.45 cm3 to 0.39 cm3 cm-3 

(i.e. 13.3 %) according to Nadler and Tyree (2008). As a consequence, it 

can be concluded that the VSH-CHP methodology might be useful to 

monitor relative Fw changes in living trees although its validity remains 

uncertain for those species and conditions presenting a seasonal range of Fw 

higher than 25 %. 

On the other hand, the variability found in the regression coefficients in 

Table 3.2 was not found to be influenced by neither tree species, trial 

conditions (summarized in Table 3.1) nor basic density (Table 3.2). In other 

words, even samples under the same experimental conditions presented 

differences in the slope and intercept of the linear regression between Fw,est 

and Fw,obs. Differences in the heat applied by each sensor (H in Eq. 3.6) 

were analyzed as a possible cause for those results. For this purpose, the 

electrical power absorbed by each probe was individually determined by 

precisely measuring the voltage and current passing through them during 

the firing of a heat pulse. Although these measurements revealed some 

differences among probes (standard deviation of 0.11 W around a mean 

power of 4.7 W at 23 ºC) their magnitude was insufficient to explain all the 

variability found in laboratory experiments. Small deviations with regard to 

the theoretical position of the thermocouple junctions may also be a source 

of sensor variability, although the sensors were installed using a steel drill-

bit guide to ensure parallelism. Again, differences in the interface 

conditions between wood and sensors may be playing a major role as a 

source of variability in Fw,est – Fw,obs relationships, but more research efforts 

are required to address that point. Consequently, calibration is almost 

impossible, as it would require a different equation to convert the Fw,est 

estimates in actual values of Fw for each scenario of sensor – wood. Hence, 
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the feasibility to obtain absolute estimates of Fw by the VSH-CHP 

methodology is questionable.  

 

3.4.2. Influence of anisotropy on VSH-CHP methodology 

All the calculations of Fw presented in this study were made assuming 

isotropic conditions. Such assumption is unrealistic as thermal conductivity 

is higher along than across the grain (Kx > Ky) (Maku 1954, Steinhagen 

1977). The origin of anisotropy lies in the histology of wood or, in other 

words, in the size, shape and orientation of the fibres, vessels and other 

cells that compose wood (Maku 1954). As a result, the degree of anisotropy 

should differ between species, individuals or even between stem portions of 

the same tree.  

Considering anisotropy introduce several implications for the VSH-CHP 

method. First of all, the coefficient δ in Eq. 3.6 is unknown and should 

present values greater than one. Consequently, the methodology is 

theoretically unable to determine precisely the actual Fw, and omitting 

anisotropy results in an underestimation of ρc and Fw. Secondly, the degree 

of anisotropy depends on the moisture content with δ increasing when 

wood dries (Siau 1971). Both issues should affect the feasibility of VSH-

CHP to monitor the exact magnitude of changes in Fw. 
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Table 3.3. Range of Fw,obs, Fw,est and Fw,corr between the extremes considered in the 

linear regression analysis for each sample. The values of δ needed to calculate Fw,corr 

are also shown and they were estimated using the equations of Siau (1971) and 

Vandegehuchte and Steppe (2012c).  

Block Fw,obs Fw,est δ Fw,corr 

 Initial Final Initial Final Initial Final Initial Final 

1 0.57 0.43 0.54 0.40 1.15 1.24 0.65 0.54 

2 0.58 0.43 0.48 0.36 1.15 1.24 0.58 0.49 

3 0.57 0.43 0.41 0.29 1.15 1.24 0.50 0.41 

4 0.59 0.44 0.38 0.28 1.14 1.23 0.46 0.39 

5 0.44 0.33 0.61 0.49 1.23 1.30 0.78 0.68 

6 0.47 0.35 0.55 0.44 1.21 1.29 0.69 0.60 

7 0.48 0.36 0.48 0.36 1.21 1.28 0.61 0.50 

8 0.50 0.38 0.54 0.44 1.20 1.27 0.67 0.59 

9 0.44 0.33 0.50 0.39 1.23 1.30 0.66 0.56 

10 0.45 0.34 0.43 0.29 1.23 1.30 0.57 0.43 

11 0.45 0.34 0.52 0.40 1.23 1.30 0.68 0.57 

12 0.52 0.39 0.48 0.36 1.18 1.26 0.60 0.51 

13 0.55 0.41 0.54 0.44 1.16 1.25 0.66 0.60 

14 0.52 0.39 0.51 0.43 1.18 1.26 0.64 0.59 

15 0.53 0.40 0.64 0.49 1.18 1.26 0.79 0.67 

Mean 0.51 0.38 0.51 0.39 1.19 1.27 0.64 0.54 

SD 0.05 0.04 0.07 0.07 0.03 0.02 0.09 0.09 

 

In an attempt to assess the impact of anisotropy on the results of our lab 

experiments the model of Siau (1971) with the corrected equations 

proposed by Vandegehuchte and Steppe (2012c) were applied to estimate 

the values of δ from Fw,obs data corresponding to the extremes considered in 

the linear regression analysis for each sample. These δ values were 

employed to deduce corrected wood water contents (Fw,corr). As expected, 

the results of these rough calculations (summarized in Table 3.3) show that 
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Fw,corr values are consistently higher than those of Fw,obs and Fw,est. 

Conversely, variations in θck in all samples are slightly higher than those of 

Fw,obs and Fw,est (on average 0.15 cm3 cm3 versus 0.12 and 0.12 cm3 cm-3 

respectively). Accordingly, if anisotropy is taken into account, the VSH-

CHP method fails to accurately estimate the change in Fw,obs but still can 

afford useful information in the relative monitoring of water content 

variations to some extent. On the other hand, Table 3.3 show minimal 

differences in δ between samples of the same species and experimental 

conditions indicating that the sensor variability found in the regression 

analysis (Table 3.2) is not a consequence of assuming δ =1 in Fw,est 

calculations. As a final remark, conclusions arising from the above analysis 

should be taken with caution, as it is founded on indirect estimations of δ. 

Therefore, it is obvious that anisotropy adds some uncertainty about the 

reliability of VSH-CHP, which deserves further research. 

 

3.4.3. Field experiments 

Field experiment showed the occurrence of substantial seasonal changes in 

Fw,est for all monitored trees. Annual variations in Fw,est revealed a typical 

pattern for all irrigation treatments, with maximum values at the end of 

spring followed by a progressive decline during the summer and a latter 

recovery associated with the end of the dry season and the occurrence of 

autumn rainfalls (Fig. 3.4, Iniesta et al. 2009). This pattern bears a close 

resemblance to those previously reported in the literature and determined 

by TDR under similar climatic conditions (Constantz and Murphy 1990, 

Hernández-Santana et al. 2008). The first found an annual percentage 

change in Fw ranging from 15 to 70 % depending on species while the latter 

obtained from 10 to 17 % of Fw seasonal variation for three consecutive 

years in melojo oak trees (Quercus pyrenaica). In addition, Nadler and 



Chapter 3 

79 

 

Tyree (2008) reported the annual Fw,est variation for different species 

including olive, which ranged 0.06 cm3 cm-3 with a maximum value of 0.45 

cm3 cm-3 (i.e. a 13.33 % of percentage change). Similarly, our results 

showed an average annual Fw,est variation of 0.060 cm3 cm-3 with a 

maximum average value of 0.548 cm3 cm-3 (i.e. a 9.5 % of percentage 

change). The good agreement found in the magnitude of the annual change 

in Fw is very encouraging as it indicates that the VSH-CHP methodology 

can successfully be employed in order to monitor Fw seasonal variations in 

living trees. On the contrary, the aforementioned absolute values of Fw,est 

resulted higher than those reported by Nadler and Tyree (2008) stressing 

again that the ability of the VSH-CHP methodology to provide actual 

values of Fw is uncertain at our actual stage of understanding.    

Large differences were found in Fw,est between irrigation treatments 

throughout the dry season which were in good agreement with tree sap flow 

patterns. During the summer, Fw,est showed a sharper decline in CDI and 

RDI than in CI trees due to water shortening (Iniesta et al., 2009), being 

RDI the treatment which reached the lowest values and shows the widest 

Fw,est seasonal range (Fig. 3.4, 3.5). For the same period, sap flow followed 

a similar trend, with significant differences between CI and deficit 

treatments and RDI being the one reaching the lowest values (Fig. 3.5). In 

addition, Iniesta et al. (2009) conducted some midday leaf water potential 

(Ψ) measurements for the same olive trees in 2006. Despite the scarce 

available data (only two measures in summer), differences between 

irrigation treatments can be clearly detected again, showing RDI the lowest 

Ψ values followed by CDI and CI. Finally, the three irrigation treatments 

showed no significant differences in both Fw,est, Ψ and sap flow values 

either after or before the irrigation season (Fig. 3.4, Iniesta et al. 2009). 

Both the decline in sap flow, Ψ and Fw,est patterns during the dry season 

indicate differences in water status between irrigation treatments which 
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were in good agreement with the irrigation applied and thus with the water 

availability. All this body of evidence indicate that Fw,est could be employed 

as a long-term water status indicator as it has been previously suggested by 

other authors (Nadler et al., 2003; Nadler et al., 2006; Hernández-Santana 

et al., 2008).  

 

3.5. Conclusions 

The present study shows a new alternative to track Fw trends in living trees 

by using the CHP technique. Our lab and field experiments support that the 

VSH-CHP method can successfully monitor relative changes in the water 

stored in a given sampling depth. The technique is rapid, easy to automate, 

provides simultaneous information about sap velocity and tree transpiration 

and, like TDR, is not too harmful for the tree. Nevertheless, it does not 

obtain actual values of Fw, calibration is not apparently possible, and its 

feasibility is uncertain for those trees with high seasonal changes in Fw 

which deserves further research. In addition, the methodology assumes that 

wood acts as an isotropic medium which is unrealistic and may slightly 

affect the accuracy of the technique. On the other hand, this work has 

presented new evidence on the validity of Fw as a long-term water stress 

indicator and has stressed that the CHP technique is a valuable tool to 

obtain information about the water status of trees. 
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Chapter 4  

Thermal properties of sapwood of fruit trees as affected by 

anatomy and water potential: errors in sap flux density 

measurements based on heat pulse methods 

Summary 

Sapwood thermal properties and water content (Fw) natural variations affect 

the accuracy of heat pulse sap flow methods, as they are typically set as 

constants or calculated during zero flow conditions. In a first experiment, a 

characterisation of both thermal properties and some of their determining 

anatomical and functional factors was conducted on several fruit tree 

species assessing the reliability of different methodologies. Besides that, a 

second experiment was carried out to evaluate the errors of heat pulse 

methods arising from ignoring Fw variations. To do so, desorption curves 

were constructed, allowing the substitution of Fw changes with those of 

water potential (Ψ).  Results of the first experiment showed considerable 

differences between species in both the thermal, anatomical and functional 

properties of sapwood. Apart from that, discrepancies between the methods 

applied to determine thermal properties were also found and their 

implications for some heat pulse methods are discussed. The analysis 

conducted for the second experiment indicated that large errors in sap flux 

density (J) determinations might occur when daily and seasonal variations 

of Ψ (and hence of Fw) are disregarded. The extent of these errors was 

influenced by the species and heat pulse technique. Thus, the Heat Ratio 

and Tmax were, respectively, the least and most vulnerable methods to 

errors in J determinations associated with changes in Fw. 
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4.1. Introduction 

Heat pulse sap flow methods have been developed to measure tree 

transpiration and water use, which is important in hydrology, 

ecophysiology, agronomy or forestry among other scientific disciplines. 

Given that they are based on the use of heat as a tracer, it is not surprising 

that sapwood thermal properties are crucial parameters for their theoretical 

frameworks. Despite this, little attention has been paid to characterizing 

thermal properties in a plant physiological context (Dupleix et al. 2013), 

with most available research focused on the use of dry wood as a 

construction material. 

The main sapwood thermal properties involved in sap flow research are 

thermal conductivity (K, W m-1 K-1), which describes its ability to transmit 

heat for a given temperature gradient, and volumetric specific heat (ρc, J m-

3 K-1), which describes its ability to store heat. The quotient of both 

variables is defined as thermal diffusivity (D, m2 s-1): 

� =
&

� 
  [4.1] 

On the other hand, wood is not isotropic, as both thermal conductivity and 

diffusivity along the grain (i.e. in the flow direction, Kx, Dx) are larger than 

across the grain (Ky, Dy) (Maku 1954). The degree of anisotropy (RK) can 

be evaluated from the ratio of Kx to Ky.  

Sapwood thermal properties are intimately connected with both structural 

and physical characteristics of the wood matrix. Thus, sapwood solid, liquid 

and gas fractions (Fs, Fw, Fg, respectively) are determining factors for 

thermal properties, a fact that is included in existing models (Siau 1971; 

Vandegehuchte and Steppe 2012a). In more depth, the Fs is mainly defined 

by the volume occupied by cell walls while the remaining space is divided 
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between Fw and Fg as a function of both the state of tension and the xylem 

traits determining its ability to retain water (e.g. diameter of lumen) (Tyree 

and Zimmermann 2002).  As a result, the natural changes in stem water 

potential (Ψ) occurring at both daily and seasonal scale should have an 

influence on Fw and, hence, on thermal properties and sap flow 

measurements.  

The present study is focused on those sap flow methods in which sap flux 

density (J, i.e. the sap volume per unit area and unit of time) is determined 

from the velocity of a short pulse of heat moving along xylem tissue 

through conduction and convection (vh). Among them, both the 

compensated heat pulse (CHP), the calibrated average gradient (CAG; Testi 

and Villalobos 2009) and the Sapflow+ (Vandegehuchte and Steppe 2012b) 

methods have the advantage that thermal properties are not required a priori 

for vh calculations. On the contrary, an estimate of Dx is a prerequisite for 

the Tmax (Cohen et al. 1981) and the heat ratio (HR, Burgess et al. 2001) 

methods. The latter applies a protocol to estimate Dx based on the 

implementation of either Siau (1971) or Vandegehuchte and Steppe (2012a) 

models from occasional measurements of Fw and dry density of sapwood 

(ρd) by core sampling. In doing so, the natural variation of Dx associated to 

Ψ and Fw changes are disregarded. On the other hand, the Tmax method 

estimates Dx by applying a theoretically correct equation, but is prone to 

errors as it is based on single point analysis. Moreover, such an equation is 

only valid for zero-flow conditions, so Dx is currently computed once a day 

at night, neglecting its diurnal variations.  

Finally, all the aforementioned methods require, once more, estimates of Fw 

and Fs for the conversion of vh into J. Edwards and Warwick (1984) 

developed the most frequently employed equation for this purpose: 

� = (��� + ��)�� [4.2] 
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where the factor k is assumed to be 0.441 within and between species for a 

temperature of 20 ºC (Becker and Edwards 1999). Fw and Fs are typically 

determined from single gravimetric measurements by core sampling which 

is harmful for the tree. Therefore, seasonal and daily variations in Fw are 

ignored although they might also induce large errors in the calculation of J. 

Only Sapflow+ is theoretically able to partly avoid this issue, as it allows 

for Fw determinations at low flow conditions (Vandegehuchte and Steppe 

2012b). 

The first aim of this study was to characterise sapwood thermal properties 

in the trunk of several fruit tree species as well as some of their determining 

factors, including Fs, Fw and Fg and some anatomical traits. Thermal 

properties were determined by different alternative methodologies, 

including the most common approaches applied in the case of HR and 

Tmax. In doing so, comparisons between such approaches were established. 

The second goal of this study was to assess potential impacts of natural 

changes in Ψ, and hence in Fw, on the accuracy of heat pulse methods for 

determining J. Two different experiments were designed to address each of 

these objectives. 

 

4.2. Materials and methods 

Experiments were conducted on mature individuals of different drip-

irrigated fruit tree species growing in some experimental orchards located 

at the CIFA Experimental Station, Córdoba, Spain (37.8ºN, 4.8ºW, 110 m 

altitude). 
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4.2.1. Experiment 1  

In June and July 2012, three trees of olive (Olea europaea L.; Oe), three of 

almond (Prunus dulcis (Mill) D.A. Webb; Pd), two of sweet orange (Citrus 

sinensis L.; Cs) and one of bitter orange (Citrus aurantium L.; Ca), 

pomegranate (Punica granatum L., Pg), kaki (Diospyros kaki Thunb.; Dk) 

and fig (Ficus carica L.; Fc) were selected to characterise their sapwood 

thermal, anatomical and functional properties. 

4.2.1.1. Measurements of basic density (ρd), Fs, Fw and Fg 

Wood cores of 2.5 cm diameter and 4 cm length were extracted from the 

tree trunk at breast height (one per tree) and transported to the lab in sealed 

plastic bags early in the morning (~06:00 GMT). Fresh weight (wf) and 

fresh volume (V) were subsequently measured (the latter applying the water 

displacement method, which is founded in the Archimedes principle). Then, 

wood samples were oven-dried until they achieved constant weight (wd). ρd 

was determined as the quotient between wd and V while Fw was calculated 

dividing the difference wf-wd by the product of V and water density (1000 

kg m-3). Then, Fs was estimated as the ratio of ρd to the basic density of cell 

walls (ρcw), which was assumed to be 1530 kg m-3 (Kollmann and Côté 

1968). Finally, Fg was deduced as 1-Fw-Fs.    

4.2.1.2. Determination of thermal properties 

Four different methods were applied to estimate sapwood thermal 

properties: 

• Siau (1971) classic model: it allows the calculation of Kx and Ky 

through empirical relationships from values of Fw and Fs:  �. = ���� + �1 − ���0.04186�21 − 20�1 − �� − ����  [4.3] 
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�/ = ���� + �1 − ���0.04186�12.2 − 11.3�1 − �� − ���  [4.4] 

where Kw is the thermal conductivity of water (0.5984 W m-1 K-1). 

Despite the fact that the meaning of Fw is misinterpreted in these 

equations (Vandegehuchte and Steppe 2012a), we have included this 

approach because it has been the most widely used methodology to 

determine thermal properties in the context of sap flow research to 

date. Input data were taken from the core-sampling and gravimetrical 

measurements described above. 

• Vandegehuchte and Steppe (2012a) model: this model is an 

improvement of the Siau (1971) classic model in which the equations 

are corrected, making it sound for determining Kx and Ky in living 

sapwood. Input data were the same as in the previous method. The 

equations are: �. = ����� − �
,01��+ 0.04186�21 − 20�
,01��  [4.5] �/ = ����� − �
,01��+ 0.04186�12.2 − 11.3��
,01��  [4.6] 

Where FV,FSP is the volumetric water content at fibre saturation point, 

which can be calculated as 0.2(ρd/1000)0.5 according to Roderick and 

Berry (2001). 

• Tmax method: each experimental tree was instrumented with sap flow 

probes (one per tree) for four days. The probes were designed and 

produced in the IAS-CSIC Laboratory in Córdoba, Spain, and consist 

of a 4.8 W stainless steel heater of 2 mm diameter and two 

temperature probes of the same diameter that are placed in holes 

drilled in the wood. Each temperature probe measured independently 

(once a second during cycles of 169 s) the temperature rise after a 2 s 

heat pulse at 5 and 15 mm below the cambium with two embedded 

Type E (chromel-constantan wire) thermocouple junctions. The 

system was controlled by a datalogger (CR1000, Campbell Scientific 

Inc., Logan, UT, USA) which performs measurement cycles at 15-min 



Chapter 4 

93 

 

intervals. Temperature probes were installed 5 mm apart from the 

heater in axial (vertical) and tangential (lateral) directions using a steel 

drill-bit guide to ensure the accuracy of the spacing and parallel 

drilling. The equation derived by Kluitenberg and Ham (2004), which 

accounts for finite pulse duration, was employed in the estimation of 

Dx and Dy using the time between the onset of the heat pulse and the 

maximum temperature rise recorded in the temperature probes (tm) as 

input: 

�� =
2�
�

�!


!�
3!
�!�4

��� � !

!
�!�

 !�
 [4.7] 

Where tp is heat pulse duration (s) and Li the distance to the heater in 

the “i” direction (mm). Only the tm records corresponding to 

measurement cycles from 03:00 to 4:45 GMT (both included) of four 

consecutive days were employed for determining Dx and Dy, as the 

approach is only valid for zero-flow conditions.  

• Knight et al. (2012) method: these authors presented a semianalytical 

solution that, accounting for probe radius and heat capacity, allows the 

calculation of sapwood thermal properties using dual heat pulse probes 

following an optimization process. In other words, the semianalytical 

solution applies varying values of K and ρc as inputs to produce 

temperature curve responses at a given distance to the heater. Thus, 

sapwood thermal properties can be deduced from the subset of K and 

ρc values achieving the best fit to measured temperature data. To do 

so, the temperature curves provided by the sap flow equipment 

described for the Tmax method were used. As for Eq. 4.7, the 

semianalytical solution of Knight et al. (2012) is only valid for zero-

flow conditions so, in order to minimize possible errors, again the data 

recorded between 03:00 and 04:45 GMT were considered for the 

determinations.  
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Except for the latter, in all approaches ρc was determined from data on ρd 

and Fw as in López-Bernal et al. (2012): 

ρ
 = ρ�
��� + 
�ρ5 [4.8] 

with ρw being density of water (1000 kg m-3) and cw and cs specific heat 

capacities of water (4186 J kg-1 K-1) and the wood matrix (1200 J kg-1 K-1), 

respectively. Finally, the calculated values of ρc, Kx and Ky were used to 

deduce Dx and Dy (Eq. 4.1) and RK. Note also that in the case of the Tmax 

method, it was Kx and Ky which were deduced (inverting Eq. 4.1) from the 

estimated values of Dx and Dy. 

4.2.1.3. Anatomical measurements 

Anatomical traits were measured at ~5 mm depth below the cambium from 

wood samples which were obtained from the exact location where sap flow 

probes had been installed. In other words, anatomical observations were 

carried out in the same wood in which thermal properties were measured 

with the outermost reading of sap flow probes. One sample per species was 

used. Transversal and tangential sections of 40-50 µm thick were obtained 

with a sliding microtome, non-permanent preparations were mounted with 

tolonium chloride and finally they were examined in an optical microscope 

(Nikon, Eclipse 80i, Japan). 

The cross-sectional area fraction occupied by each cell type was obtained 

by drawing the contour of rays (in tangential sections), vessels and axial 

parenchyma cells (in transverse sections) over a xylem area always greater 

than 3 mm2 using the program NIS-Elements D 2.30 (Nikon). In order to 

account for the differences between earlywood and latewood in the ring 

porous wood of almond, the sampling area of axial elements was extended 

in radial direction to cover a whole growth ring. The remaining fibre 
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fraction was then deduced. Assuming that cell structures are perfectly 

oriented in the axial (fibre, vessels and axial parenchyma) or radial (rays) 

directions, these cross-sectional area fractions of each cell type were 

considered to represent the volumetric fractions in wood.  

4.2.2. Experiment 2 

The aim of experiment 2 was to quantify the errors in J determined by heat 

pulse methods associated with the natural variations in Fw. To do so, 

desorption curves of sapwood (i.e. relationships between Ψ and Fw) were 

measured for some of the previously studied fruit tree species, allowing the 

prediction of Fw variations from those of Ψ. Desorption curves were 

employed to deduce the theoretical errors in J as a function of Ψ in relation 

to species and heat pulse method and some field data were used to illustrate 

the practical implications of ignoring Fw variations for calculating J. 

4.2.2.1. Desorption curves 

Desorption curves were constructed for olive, almond, fig, and sweet 

orange. Wood cores (2.5 cm diameter and 4 cm length) were extracted in 

summer 2013 from the same orchards in which measurements of thermal 

and anatomical properties were performed, in neighbouring trees to those 

previously studied. Wood samples were immersed in water immediately 

after their extraction for at least 24 h. Then, cores were sectioned 

perpendicularly to their longitudinal axis obtaining 3-4 wooden discs of 

about 1 cm thick whose volume was determined using the water 

displacement method. Hereafter a WP4-T dewpoint potentiometer 

(Decagon devices, Pullman, WA) was used to determine the water potential 

(Ψ) of the wooden discs, which were progressively air dried. The weight of 

samples was recorded immediately after each Ψ measurement. Once 

measurements were finished, samples were oven dried at 105 ºC until they 
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achieved constant weight to deduce both ρd and the Fw corresponding to 

each Ψ measurement. As shown below in the results section, the obtained 

desorption curves presented well-differentiated phases so piecewise linear 

equations of either 4 or 5 segments were fitted to the data pairs of Fw-Ψ to 

obtain continuous mathematical functions linking both variables (Fw(Ψ)). 

To give insight into the validity of the desorption curves, a small set of 

independent and additional field measurements of Ψ at dawn and midday 

with a pressure chamber (Soil Moisture Equipment Corp., Santa Barbara, 

CA, USA) were conducted in selected shoots from the same trees were 

samples were taken for the construction of desorption curves (with the 

exception of the fig tree because we were unable to measure Ψ due to the 

typical exudation of latex in this species). For midday measurements, the 

sampled shoots were previously covered with aluminium foil (around 6 h 

before measurements) in order to prevent transpiration and, in all cases, 

they were directly attached to the tree trunk. In doing so, the measured 

values of Ψ were assumed to represent those in the trunk xylem. This 

assumption was reasonable as long as the presence of low flows through the 

selected shoots, which may result from night-time transpiration or refilling 

processes, should only lead to very slight underestimations of Ψ because of 

both the low magnitude of these possible flows and the short path (low 

hydraulic resistance) between the point of insertion into the trunk and the 

point of measurement.      

4.2.2.2. Theoretical analysis of errors in J measurements by CHP, CAG 

and Sapflow+ as a function of Ψ 

For both CHP and CAG methods Fw is involved in J determinations as 

shown in Eq. 4.2, but its diurnal and seasonal variations are ignored. The 

same applies to Sapflow+ (Vandegehuchte and Steppe 2012b) with the 

particularity that, as it allows the determination of Fw under conditions of 
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low sap flow (which can be daily assumed at night), it minimizes the errors 

associated to seasonal variations in Fw. Equation 4.2 was rewritten using 

the Fw(Ψ) for each species in order to obtain piecewise expressions in 

which J were calculated as a function of Ψ (i.e. J(Ψ)). Then, the relative 

error in the determination of J (EJ, %) was calculated as:  

"6 = 7(8���)�7(8)

7(8)
100  [4.9] 

Where J(Ψref) and J(Ψ) are J calculated from either a preset value of Ψ 

(Ψref) or the actual value of Ψ, respectively. Therefore, Eq. 4.9 represents 

the deviations in the calculation of J that arise from assuming Ψ (and, hence 

Fw) as a constant with a value of Ψref under actually varying Ψ conditions. 

Hence, it is simulating what occurs in practice, as Eq. 4.2 is generally 

applied from single measurements of Fw. For the calculations, the value of 

Ψref was assumed to be the maximum of the range covered by the 

desorption curves (in all species around -0.6 MPa). 

4.2.2.3. Theoretical analysis of errors in J measurements by HR as a 

function of Ψ 

According to the HR working equation, vh is directly related to Dx, which is 

typically determined by applying both Eq. 4.8 and either Eq. 4.3 or Eq. 4.5 

from single destructive measurements of Fw and ρd (Burgess et al. 2001; 

Vandegehuchte and Steppe 2012a). Such values of Fw and ρd are also used 

further in Eq. 4.2 to obtain J. As Fw is involved in the calculation of Dx, an 

additional source of error has to be considered for the HR as compared to 

CHP, CAG and Sapflow+ methods. For this purpose, equations 4.8 and 4.5 

were modified by substituting Fw with Ψ -again using the Fw(Ψ) 

relationships for each species-, allowing the calculation of Dx as a function 

of Ψ. Then, the working equation of Burgess et al. (2001) was rewritten to 
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express vh as a function of Ψ (i.e. vh(Ψ)). Finally, combining the functions 

vh (Ψ) with those resulting from modifying Eq. 4.2, EJ can be calculated as:    

"6 = 7(8���)�7(8)

7(8)
100 =

[9:��:
(8���)]$�(8���)�[9:��:
(8)]$�(8)

[9:��:
(8)]$�(8)
100  [4.10] 

Where the value of Ψref was again assumed to be the maximum of the range 

covered by the desorption curves. 

4.2.2.4. Theoretical analysis of errors in J measurements by Tmax as a 

function of Ψ 

In the case of the Tmax method, Dx is again included in the working 

equation (Kluitenberg and Ham 2004): 

�� = ����

!�
�� 
1 −

!�
!

�+ #�

!
3!
�!�4
 [4.11] 

With tp being the heat pulse duration and x the distance between the 

temperature probe and the heater. The same procedure as in HR was 

applied to assess EJ as a function of Ψ with an exception: as vh is not 

linearly related to Dx (Eq. 4.11) the assessment of EJ is dependent on the 

values of x, tp and tm. Thus, a common configuration of x=10 mm and tp=1 s 

and a tm of 52 s were always assumed in the analysis, leading to vh around 

50 cm h-1 for the Ψref. Lastly, note that the theoretical EJ estimated for the 

Tmax method applies on a daily scale, as daily calculations of Dx are 

theoretically possible at night-time if conditions of zero-flow can be 

assumed (Kluitenberg and Ham 2004).    

4.2.2.5. Application to a field case 

Measurements of Ψ were performed in four dates from spring to autumn in 

2013 (DOYs 176, 211, 234 and 281; DOY=day of year) in a hedgerow 
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olive orchard located near Córdoba. The orchard had been planted in 2005 

with 4 x 1.5 m spacing over a soil classified as Vertisol according to the 

FAO classification. Trees were drip-irrigated and two irrigation treatments 

were applied in separate plots of 40 trees in 4 adjacent rows: 

1. Control irrigation (CI): enough water to sustain maximum 

evapotranspiration was supplied during all the irrigation season 

(from DOY 177 to DOY 295). To do so, the irrigation dose was 

calculated following the approach of Orgaz et al. (2006). 

2. Deficit irrigation (RDI): the water applied was a 30 % of that of CI 

from DOY 182 to DOY 243 and the same as CI for the rest of the 

irrigation season.   

Measurements of Ψ were performed with a pressure chamber (Soil 

Moisture Equipment Corp., Santa Barbara, CA, USA) at midday in non-

transpiring shoots directly attached to the tree trunk or main branches 

(shoots were covered with aluminium foil five hours before the 

measurements). One central tree per treatment (the same for the four dates) 

and four shoots per tree were sampled. In addition, predawn Ψ was 

measured on DOY 234. All these measured values of Ψ were used as input 

data for estimating the errors in sapflow arising from both seasonal and 

daily variations of Ψ (and hence of Fw) for the different methods using 

either Eq. 4.9 or Eq. 4.10. The required values of Ψref were taken either 

from the midday Ψ corresponding to the first measurement date (DOY 176) 

when seasonal EJ were assessed or from the predawn Ψ on DOY 234 for 

the analysis of daily EJ. 
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4.3. Results 

4.3.1. Experiment 1 

Variability between species in Fs, Fw and Fg of sapwood is presented in 

Figure 4.1A. Fs accounted for slightly less than half of the sapwood volume 

in all species except for the lighter fig wood, in which Fs was 0.26. With 

regard to the remaining sapwood space, Fg was very high for fig (0.31), 

very low for olive (0.03) and intermediate for the rest of species (around 

0.16). On the other hand, Fig. 4.1B shows the proportion of xylem occupied 

by each cell type for the studied species. Broadly speaking, slightly more 

than half of the xylem was comprised of fibre cells in all species while rays 

occupied between 0.16 and 0.28 of sapwood except for the case of almond, 

whose wide multiseriate rays accounted for 0.35. Greater differences were 

found in the proportions of axial parenchyma and vessels between species. 

Thus, the former was almost absent for almond while it occupied large 

xylem proportions (>0.15) for fig and the two orange species (in these three 

species most axial parenchyma cells appeared grouped in tangential bands) 

while the vessel fraction ranged from 0.04 (almond) to 0.21 (pomegranate).  

Figure 4.2 presents the thermal properties estimated following the approach 

of Vandegehuchte and Steppe (2012a) for the studied species. Both Kx and 

Ky were the highest and the lowest for olive and fig sapwood, respectively. 

For the rest of species, Kx was slightly below those of olive while Ky was 

closer to that of fig (Figure 4.2A). The resulting RK ranged from 1.68 to 

2.03, with the lowest values for fig and olive sapwood (Figure 4.2B). Apart 

from that, small differences between species were found in ρc except for 

the much higher values in the case of olive, which were in accordance with 

the greater Fw in this species (Fig. 4.1A). Thus, the latter yielded 3.03 J cm-

3 K-1, while the rest of species exhibited an average ρc of 2.43 J cm-3 K-1. 
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For almond, pomegranate and the two orange species the estimates of Dx 

ranged from 0.294 to 0.286 mm2 s-1 and lower values were observed in the 

case of olive, kaki and fig trees (0.252, 0.257 and 0.239 mm2 s-1, 

respectively). By contrast, the variability in Dy between species was 

negligible (values ranging from 0.141 to 0.146 mm2 s-1). Finally, within tree 

variability in thermal properties (represented by the error bars for olive, 

almond and sweet orange in Figure 4.2) was generally small as compared to 

that observed among species. 

 

Figure 4.1. A Volumetric fraction of sapwood occupied by solid (Fs), liquid (Fw) and 

gas (Fg) for the studied species. B Volumetric fraction of sapwood occupied by fibres, 

rays, axial parenchyma and vessels for the studied species. Oe=olive, Pd=almond, 

Cs=sweet orange, Ca=bitter orange, Pg=pomegranate, Dk=kaki, Fc=fig. 
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Figure 4.2. A Axial and tangential thermal conductivities (Kx and Ky), B anisotropy 

ratio (RK) and volumetric specific heat (ρc) for the studied species. Values were 

estimated following the Vandegehuchte and Steppe (2012) approach. Error bars 

showing standard errors are present for those species in which several trees were 

studied. Oe=olive, Pd=almond, Cs=sweet orange, Ca=bitter orange, Pg=pomegranate, 

Dk=kaki, Fc=fig.  
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Figure 4.3 and Table 4.1 illustrate the differences in estimated thermal 

properties as a function of the approach employed. The former represents 

the values of Kx and Ky estimated by the Siau (1971) (Fig. 4.3A), Tmax 

(Fig. 4.3B) and Knight et al. (2012) (Fig. 4.3C) approaches plotted against 

those obtained following Vandegehuchte and Steppe (2012a). On average, a 

good agreement was found between the values of Kx yielded by Siau 

(1971), Knight et al (2012) and Vandegehuchte and Steppe (2012a) 

approaches (Table 4.1 and Fig. 4.3A and 4.3C), while the Tmax method 

resulted in slightly lower values (Table 4.1, Fig. 4.3B). With regard to Ky, 

all methods showed systematically higher values than those estimated 

following the Vandegehuchte and Steppe (2012a) method, as evidenced 

both by the large differences shown in the Ky averages of Table 4.1 and by 

the fact that no points were found below the 1:1 line in Fig. 4.3. These 

results led to higher RK deduced from the latter approach as compared to 

the rest (Table 4.1). Besides, the application of the Knight et al. (2012) 

approach resulted in higher values of ρc than in the rest of methodologies 

(all of them based on Eq. 4.8). As a consequence, Dx values were the lowest 

and Dy estimates were close to those of Vandegehuchte and Steppe (2012a) 

when Knight et al. (2012) was applied (Table 4.1). 
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Figure 4.3. Plot of axial and tangential thermal conductivities (Kx, closed symbols and 

Ky, open symbols) estimated by both Siau (1971) (Eqs. 4.3 and 4.4), Tmax (combining 

Eqs. 4.7 and 4.8) and Knight et al. (2012) approaches versus those obtained from Eqs. 

4.5 and 4.6 (Vandegechuchte and Steppe 2012) (A, B and C panels, respectively). Each 

point represents one experimental tree. Dotted line indicates the 1:1 line. 
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Table 4.1. Values of thermal properties (axial and tangential thermal conductivities, Kx 

and Ky; anisotropy ratio, RK; volumetric specific heat, ρc; axial and tangential thermal 

diffusivities, Dx and Dy) in relation to the methodology applied. All values correspond to 

the average of all experimental trees.    

Method Vandegehuchte 

& Steppe (2012) 

Siau (1971) Tmax Knight et al. (2012) 

Kx (W m-1 K-1) 0.702 0.691 0.654 0.698 

Ky (W m-1 K-1) 0.369 0.449 0.429 0.412 

RK 1.90 1.54 1.52 1.69 

ρc (J cm-3 K-1) 2.58* 2.58* 2.58* 2.92 

Dx (mm2 s-1) 0.272 0.268 0.253 0.239 

Dy (mm2 s-1) 0.143 0.174 0.166 0.141 

* Values were obtained from those of Fw and ρd measured by core sampling. 

 

4.3.2. Experiment 2 

Desorption curves of olive, orange, almond and fig sapwood are shown in 

Figure 4.4 (panels A, B, C and D, respectively). In all cases, similar trends 

were observed, starting with a high capacitance region (large variations in 

Fw with little change in Ψ) for the highest Fw which was followed by a 

phase of very low capacitance (with little change in Fw but large variations 

in Ψ). Lastly, sapwood capacitance was partially recovered for Ψ values 

below those expected in living trees (below -4 MPa in all cases). For both 

olive and almond (Fig. 4.4A and 4.4C, respectively), the transition from the 

initial phase to the next took place sharply at Fw and Ψ around 0.40 L L-1 

and -1.0 MPa, respectively, while the change was more gradual in the case 
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of sweet orange sapwood (Fig. 4.4B). The desorption curve for fig (Fig. 

4.4D) was similar to those of olive and almond, but the first two phases 

occurred at higher Fw. Additionally, independent pairs of measurements of 

predawn and midday Fw and Ψ (the latter with a pressure chamber) were in 

good agreement with the trends observed using the WP4-T dewpoint 

potentiometer (see open symbols in Fig. 4.4A, 4.4B and 4.4C). 

 

Figure 4.4. Desorption curves for sapwood of olive (A), sweet orange (B), almond (C) 

and fig (D) trees. Closed symbols correspond to points in which water potential (Ψ) was 

measured using a WP4-T dewpoint potentiometer while open symbols were obtained 

from measurements of Ψ at predawn and midday in non transpiring shoots with a 

pressure chamber. Sample water content (Fw) was always gravimetrically determined (in 

the latter case from cores extracted at the same time that Ψ was measured).  

 

Almond
(C)

F
w
 (L L-1)

0.25 0.35 0.45 0.55 0.65

Ψ
 (
M
P
a
)

-10

-8

-6

-4

-2

0

Olive
(A)

F
w
 (L L-1)

0.25 0.35 0.45 0.55 0.65

Ψ
 (
M
P
a
)

-10

-8

-6

-4

-2

0

Orange
(B)

F
w
 (L L-1)

0.25 0.35 0.45 0.55 0.65

Ψ
 (
M
P
a
)

-10

-8

-6

-4

-2

0

Fig
(D)

F
w
 (L L-1)

0.25 0.35 0.45 0.55 0.65

Ψ
 (
M
P
a
)

-10

-8

-6

-4

-2

0

WP4-T

Pressure chamber



Chapter 4 

107 

 

 

Figure 4.5. Relative error in sap flux density (EJ) of compensated heat pulse (CHP), 

calibrated average gradient (CAG), sapflow+ (those three in solid line), heat ratio (HR, 

dashed line)) and Tmax (dotted line) methods in the sapwood of olive (A), sweet orange 

(B), almond (C) and fig (D) as a function of water potential (Ψ).  

 

Figure 4.5 presents the theoretical EJ as a function of Ψ in relation to heat 

pulse method and species. In general, all the EJ(Ψ) curves followed the 

same pattern, with high slopes for the higher Ψ that declined with 

decreasing Ψ. Differences between species were also evident, with lower EJ 

for almond and fig trees and higher for olive and orange. For instance, 

considering the CHP method and Ψ of -1 MPa, EJ was 14.9, 17.3, 6.6 and 

9.7 % for olive, sweet orange, almond and fig trees, respectively. In 

addition, heat pulse methods also differed between them, with EJ always 

being the highest for Tmax and the lowest for HR throughout the Ψ range. 
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Thus, considering again Ψ of -1 MPa and focusing on fig curves (Fig. 

4.5D), EJ were 9.7, 3.9 and 18.9 % for CHP/CAG/Sapflow+, HR and Tmax 

methods, respectively. 

 

 

Figure 4.6. A Seasonal course of midday sapwood water potential (Ψ) for the control 

(CI, closed symbols) and deficit irrigation (RDI, open symbols) treatments. B Seasonal 

relative errors in sap flux density (EJ) in relation to heat pulse method (circles for CHP 

and CAG, and triangles for HR) and irrigation treatment. The water applied to RDI was 

30 % of that of CI from DOY 182 to DOY 243 and the same as CI for the rest of the 

season.  

A

Day of year

160 180 200 220 240 260 280 300

M
id
d
a
y
 Ψ
 (
M
P
a
)

-2.5

-2.0

-1.5

-1.0

-0.5

CI

RDI

B

Day of year

160 180 200 220 240 260 280 300

E
J
 (
%
)

-10

-5

0

5

10

CI (CHP / CAG)

CI (HR)

RDI (CHP / CAG)

RDI (HR)



Chapter 4 

109 

 

 Figure 4.6 illustrate the potential EJ for the different heat pulse methods 

from the field data on seasonal variations of midday Ψ. In this regard, Fig. 

4.6A presents the measured values of Ψ for the two irrigation treatments 

showing that, while CI always maintained high midday Ψ (>-1.25 MPa) 

with a slight tendency to increase throughout the season, it decreased 

during the summer for RDI reaching a minimum value of -2.19 MPa on 

DOY 234. Such Ψ patterns were translated into the EJ trends shown in Fig. 

4.6B. Thus, when considering the case of CHP/CAG, J was overestimated 

up to 6.5 % at the end of the season in the case of CI whereas RDI 

exhibited a peaked pattern for EJ with a maximum underestimation in J of 8 

% on DOY 234. For both treatments, the HR would yield more accurate 

estimates of J than CHP/CHP as predicted EJ were always below 3.3 %.  

Table 4.2. Predawn and midday water potentials (Ψ) on a sunny day of midsummer 

(DOY 234) for the control (CI) and deficit irrigation treatments (RDI). Relative errors in 

sap flux density (EJ) at daily scale are estimated for different heat-pulse based methods 

taking the estimated predawn values of Fw and Dx as references (Eqs. 4.9 and 4.10).   

 CI RDI 

Predawn Ψ (MPa) -0.65 -0.96 

Midday Ψ (MPa) -1.14 -2.19 

EJ CHP, CAG, Sapflow+ (%) 15.1 7.7 

EJ HR (%) 6.9 3.3 

EJ Tmax (%) 22.46 12.4 

 

Finally, the effects of predawn-to-midday variations in Ψ on the accuracy 

of heat pulse methods are presented in Table 4.2. Despite a greater variation 

in Ψ measured for RDI, the higher values of Ψ in CI lead to higher EJ for all 
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heat pulse methods. Again the ranking of heat pulse methods accuracy 

remained equal independent of irrigation treatment, with the lowest and 

highest EJ for HR and Tmax, respectively. 

 

4.4. Discussion 

4.4.1. Characterisation of thermal properties and their determining 

factors 

Large variability between species was found in the partitioning of sapwood 

porosity into Fw and Fg (Fig. 4.1A). In most species water occupied around 

70 % of the porous space (i.e. the space excluding Fs), but olive and fig 

trees showed a different and opposed pattern: while the former operated 

close to saturation values (97 %), Fw only accounted for slightly more than 

half of the pore fraction in the latter species (58 %). However, the 

considerable amount of gas spaces found in most species is not new. 

Gartner et al. (2004) conducted a review of published data showing that Fg 

ranged from 7 to 40 % (26 %, on average) across 34 hardwood species. 

Also, the average proportions of fibre, axial parenchyma, rays and vessels 

(Fig. 4.1B) were in good agreement with those reported for a wide range of 

shrubs species of similar ρd by Martínez-Cabrera et al. (2009).  

Despite the central role of thermal properties for sap flow research, few 

efforts have been made to characterise them in living wood resulting in a 

surprising scarcity of reported data in the literature (Vandegehuchte and 

Steppe 2012a; Dupleix et al. 2013). To our knowledge, only the study of 

Turrell et al. (1967), in which thermal properties of several Citrus trees 

were determined by the steady-state method described in Griffiths and 

Kaye (1923), presents values of thermal properties for one of the species 



Chapter 4 

111 

 

studied here (sweet orange, Cs in Fig. 4.2). As compared to our results, 

these authors measured lower values for Kx (0.59 versus 0.68 W m-1 K-1), 

ρc (2.05 versus 2.40 J cm-3 K-1) and RK (1.38 versus 1.99). As Turrel et al. 

(1967) reported the same value for Fw (37 %) and slightly higher ρd, the 

most likely cause of discrepancies lays in the different measurement 

methodology applied.  

4.4.2. Contrast of methodologies for determining sapwood thermal 

properties 

In this study, sapwood thermal properties of seven fruit tree species were 

determined using various methods. Among them, the one proposed by 

Vandegehuchte and Steppe (2012a) (Eqs. 4.5 and 4.8) was chosen as the 

reference for assessing deviations in the most common protocols that have 

been applied for HR (Eqs. 4.3 and 4.8) and Tmax (Eqs. 4.7 and 4.8) to date.  

Considering only the results for the axial direction, the Siau (1971) 

approach yielded on average similar results to the reference with regard to 

Kx and Dx (Table 4.1). Nevertheless, substantial relative deviations of up to 

11 % were found for the trees with higher and lower Kx (olive and fig, Fig. 

4.3A) which can be ascribed to the misinterpretation of Fw in Eq. 4.3. This 

fact can lead to errors of the same relative magnitude in J determinations by 

HR as Dx is linearly related to vh (Burgess et al. 2001). Consequently, Eq. 

4.5 instead of Eq. 4.3 should be used when working with this sap flow 

method, as stressed by Vandegehuchte and Steppe (2012a).  

On the other hand, the estimates of Kx and Dx corresponding to the Tmax 

method were even further from those predicted by Vandegehuchte and 

Steppe (2012a) equations (up to 18 %, Fig. 4.3B). There might be several 

factors contributing to explain these large deviations including either the 

sensitivity of this method to scatter in the temperature data, small 
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misalignments of probes or even actual differences in thermal properties 

(the Fw and ρd required in Vandegehuchte and Steppe (2012a) protocol 

were taken 5 cm apart from the place in which probes had been installed). 

Moreover, Eq. 4.7 was derived under the assumptions of both zero probe 

radius and absence of heat convection (Kluitenberg and Ham 2004), so 

finite dimensions of the probes and nocturnal sap flow can also lead to 

deviations.  The second assumption, however, should only result in small 

overestimations of Dx and Dy (and hence in Kx and Ky). In fact, inverting 

Eq. 4.11 considering a nocturnal vh of 10 cm/h and our sensor specifications 

(x = 5 mm, tp = 2 s), relative errors in Dx and Dy are always below 5 % for 

the range of tm observed in this study (25 to 40 s). 

Apart from that, thermal properties were also determined from a 

semianalytical solution derived for dual heat pulse probes (Knight et al. 

2012), being the first time that this approach was applied in sapwood. The 

main strengths of this methodology are two: it accounts for finite probe 

radius and heat capacity, overcoming some of the incorrect assumptions 

implicit in the Tmax method, and it theoretically allows the determination 

of Fw making core sampling unnecessary. The application of such 

semianalytical solution yielded promising results (especially as compared 

to those of Tmax) on one hand, as relative deviations in Kx from the 

estimates of Eq. 4.5 were below 7 % except for one individual (Fig. 4.3C). 

However, the Knight et al. (2012) estimates of ρc were always slightly 

higher (13 %, on average) than those deduced from core sampling and Eq. 

4.8, leading as well to lower values for Dx (Table 4.1). Again, small 

misalignments of probes, low nocturnal sap flow rates or actual differences 

in thermal properties might be involved in the discrepancies found between 

the Knight et al. (2012) approach and the reference values.  
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As far as the tangential direction is concerned, all methods yielded higher 

values for Ky than those obtained following Vandegehuchte and Steppe 

(2012a) (Table 4.1, Fig. 4.3). This could be associated with any of the 

aforementioned theoretical and/or methodological problems that both the 

Siau (1971), Tmax and Knight et al. (2012) approaches present. However, 

the fact that all of them systematically overestimated Ky might also raise 

concerns about the accuracy of Eq. 4.6 for predicting Ky. Despite the fact 

that prediction of Ky or Dy is irrelevant for most heat pulse methods, it is 

still of some interest for some applications. For instance, the reliability of 

the VSH-CHP method (VSH is the acronym of Volumetric Specific Heat; 

i.e. ρc), which allows CHP to estimate relative variations in ρc and hence in 

Fw, is dependent on RK and its variations with Fw (López-Bernal et al. 

2012). As a result, ascertaining the origin of discrepancies in Ky between 

the methods deserves further research. 

4.4.3. Experiment 2: Implications of sapwood water potential 

variations for sap flux density measurements 

Heat pulse methods require values of Fs and Fw as they are involved in the 

calculation of both J (Eq. 4.2) and Dx, the latter only in the case of HR and 

Tmax (Burgess et al. 2001; Kluitenberg and Ham 2004). Although Fs 

should remain constant for a specific region of sapwood, Fw is known to 

vary periodically, with annual and daily changes of up to 70 and 18 %, 

respectively, depending on species and environmental conditions (Constant 

and Murphy 1990; Scholz et al. 2007). Despite this, Fw is usually measured 

once because of the harmful nature of core sampling, which implies that 

large errors might occur in J determinations. In the present study, we have 

assessed the impacts of natural changes in Fw on the accuracy of heat pulse 

methods by constructing desorption curves for four fruit tree species (Fig. 

4.4). In doing so, the prediction of EJ is expressed in relation to Ψ (Fig. 
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4.5), whose measurement pose lesser problems and is more extended and 

repeatable.  

For the typical range of Ψ found in living trees, our desorption curves 

presented an initial phase of high capacitance followed by a decline at 

moderate Ψ (on average around -1 MPa) in all cases (Fig. 4.4). These trends 

were similar to those previously found in other species and, moreover, our 

estimates of sapwood capacitance in both phases (0.33 kg L-1 MPa-1 and 

0.010 kg L-1 MPa-1) were close to the values reported in the literature 

(Griffin 1977; Tyree and Yang 1990). Besides that, the reliability of 

desorption curves was reinforced by the agreement with the independent set 

of measurements with pressure chamber and core sampling (Fig. 4.4A, 

4.4B and 4.4C).  

The high capacitance of the initial phase of desorption curves had a 

profound impact on the results of the analysis of errors as it resulted in 

large variations of Fw in the normal operating range of Ψ of trees with 

adequate water supply. For instance, this explains the fact that the EJ shown 

in Table 4.2 was higher for CI than for RDI trees, independently of the heat 

pulse method. Note, however, that this observation should not lead to the 

incorrect conclusion that error is always lower for water stressed trees as 

compared to well irrigated ones. If a monitored tree undergo periods of both 

good water status (high predawn Ψ) and water stress (low midday Ψ) its 

seasonal maximum EJ will be higher than that of a tree with a maintained 

good water status (high predawn Ψ and high midday Ψ) throughout the 

same period. Thus, in our field example, the overall seasonal EJ for CHP 

(calculated assuming a maximum predawn Ψ of -0.65 MPa for both 

treatments and the lowest midday Ψ shown in Fig. 4.6) yields 17 and 19 % 

for the CI and RDI tree, respectively.  
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As compared to the rest, Tmax and Sapflow+ present the advantage of 

allowing the determination of Dx and Fw (respectively) in conditions of zero 

flow. In this way, the errors arising from seasonal variations of Fw are, at 

least, partly neutralised. Nevertheless, both are vulnerable to daily 

variations in Fw, which still might lead to considerable deviations in the 

calculation of J as exemplified in Table 4.2. The case of Tmax is even 

trickier, as Eq. 4.7 led to additional errors in Dx as discussed above (see 

also Table 4.1).   

As it is clear from the results presented in Fig. 4.5, Fig. 4.6 and Table 4.2, 

substantial errors in J might arise when Fw variations are ignored for CHP, 

CAG, Sapflow+ and Tmax. On the contrary, HR appears to be less 

vulnerable than those as EJ were always lower than 10 %, independently of 

species and even considering the whole range of Ψ shown in Fig. 4.5. The 

reason behind such higher accuracy lay in both the inverse relationship 

between Dx and Fw (Dx decrease with increasing Fw and vice versa when 

the combination of Eqs. 4.1, 4.5 and 4.8 are considered) and the direct 

proportionality between vh and Dx (according to the working equation of 

Burgess et al. (2001)). In this regard, the direct effect of changes in Fw in 

Eq. 4.2 is partly compensated by their inverse impact on the calculation of 

vh, resulting in lower errors than those found for CHP, CAG or Sapflow+. 

Likewise, Tmax exhibited the highest errors because its working equation 

(Eq. 4.11) establishes an inverse link between Dx and vh, which results in 

Fw and vh changes going in the same direction.  

At this point, the question is how to deal with the variable Fw when 

working with heat pulse methods. As conducting multiple core sampling 

analysis is impractical, a possible alternative is to follow the same approach 

that in the present study: replace Fw by Ψ. However, obtaining desorption 

curves is time consuming and still requires taking some wood samples. 
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Moreover, the continuous monitoring of Ψ in the field is not possible with 

the extended method of the pressure chamber, which is an issue that may be 

overcome by using stem psychrometers instead. In this regard, the use of 

techniques allowing the continuous monitoring of Fw such as time domain 

reflectometry (Constant and Murphy 1990) looks appealing but these 

methods require additional equipment, can be difficult to interpret and 

struggle to account for the spatial variability of sapwood (Vandegehuchte 

and Steppe 2012b). On the other hand, when working with CHP sensors, 

occasional core sampling can be combined with the application of VSH-

CHP, which also theoretically allows to continuously monitor Fw (even 

under non zero flow conditions), although the accuracy of this methodology 

is slightly affected by changes in RK, which arise again from Fw variations 

(López-Bernal et al. 2012). Apart from that, another obvious option is to 

use HR (using Eq. 4.5 instead of the incorrect Eq. 4.3) whenever possible as 

it is less affected by Fw variations than the other heat pulse methods (Fig. 

4.5, Fig. 4.6, Table 4.2). Unfortunately, HR is unable to determine high J 

(Vandegehuchte and Steppe 2013). As a final remark, the time of day or 

date in which wood samples are taken for Fs and Fw determinations can 

have practical implications. For instance, if sampling is conducted by 

midday, the EJ will be concentrated on periods of low flows (late evening, 

night and early morning) minimizing the errors in the estimates of daily 

transpiration.   

 

4.5. Conclusions 

1) Large differences in thermal properties were found among the fruit 

tree species. Differences in anatomical traits and in Fs, Fw and Fg 

are also considerable, which explains the variation in thermal 

properties.  
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2) The use of the classical equations for determining Dx when 

applying the HR (Eq. 4.3) and the Tmax (Eq. 4.7) methods might 

lead to substantial errors (even greater than 10 % according to our 

results) affecting the accuracy of these heat pulse methods. These 

errors can be theoretically avoided by combining Eqs. 4.1, 4.5 and 

4.8 from ρd and Fw measurements. 

3) The semianalytical solution of Knight et al. (2012) seems a 

promising tool for sap flow research as it can be used to estimate 

seasonal variations in Fw and Dx. Nevertheless, it still deserves 

further investigation to address the origin of the discrepancies 

found in this study with the values of ρc and Dx deduced from Fw 

measurements and the application of Eqs. 4.1, 4.5 and 4.8.  

4) Ignoring seasonal and daily variations in Fw might result in large 

errors in calculated sap flux whose extent depends on the species 

and the heat pulse method. In this regard, the HR presents the 

lowest loss of accuracy followed by Sapflow+, CHP and CAG 

while Tmax is the most prone to high errors. 
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Chapter 5  

Low winter temperatures induce a disturbance of water 

relations in field olive trees 

Summary 

A disturbance of water relations in response to chilling have long been 

observed in potted plants growing under controlled conditions, but 

information is lacking for field plants. The aim of this study was to assess 

the effects of winter low temperatures on the water relations of mature olive 

trees. To this end, water potential, sap flux density, soil temperature and 

meteorological data were monitored in a hedgerow olive orchard near 

Córdoba, southern Spain, throughout two consecutive winters. Water stress 

symptoms were found in terms of midday Ψ despite adequate water supply 

and low evaporative demand. These effects were associated with changes in 

the soil-to-trunk hydraulic resistance (Rroot), which increased by December-

January to much higher values than those previously reported in the 

literature, particularly in the year of higher fruit load. The contribution of 

viscosity (η) to the observed Rroot dynamics was almost negligible as 

deduced from measurements of soil temperature, so the high winter values 

of Rroot were likely to have originated from other causes such as reductions 

in membrane permeability and root growth. The findings of this work raise 

new major issues that deserve further research such as the impact of the winter 

water stress on stomatal conductance and photosynthesis rates in mature 

olive trees.  
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5.1. Introduction 

The olive (Olea europaea L.) is an evergreen fruit tree species widely 

cultivated in the Mediterranean basin, whose climate is characterized by hot 

dry summers and cool wet winters. As the typical summer drought severely 

limits yield in traditional rainfed orchards and the water available for 

irrigated systems is scarce, extensive research has focused on the adaptation 

of olive trees to water limited conditions (Fernández et al. 1997; Moriana et 

al. 2003; Connor 2005; Tognetti et al. 2009; Boughalleb and Hajlaoui 2011; 

Torres-Ruiz et al. 2013). Scientific activity has led to the development of 

both irrigation scheduling techniques based on the actual water 

requirements (Orgaz et al. 2006; Testi et al. 2006), deficit irrigation 

strategies (Moriana et al. 2003; Iniesta et al. 2009) and plant based methods 

for a precise monitoring of water stress (Fernández and Cuevas 2010; 

López-Bernal et al. 2010; Fernández et al. 2011; López-Bernal et al. 2012). 

However, less attention has been paid to water relations beyond the dry 

season. 

Plant responses to low temperatures similar to those induced by water stress 

have long been reported (Kramer 1940). In addition, a number of studies 

have also shown that sensitivity to the so-called ‘chilling stress’ differs 

among species and even among cultivars (Kramer 1942; Aroca et al. 2001; 

Bloom et al. 2004). Under chilling conditions, temporal imbalances 

between root water uptake and transpiration take place, resulting in shoot 

water deficits. These effects are attributed to increased hydraulic resistance 

of the water pathway from soil to shoots (R) as water viscosity (η) increases 

with decreasing temperatures (Yamamoto 1995; Hertel and Steudle 1997; 

Cochard et al. 2000). However, there is also a body of evidence suggesting 

that this phenomenon is the consequence of an increase in root hydraulic 

resistance (Rroot) originating in the radial pathway of water from the soil-
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root interface to the xylem (Running and Reid 1980; Ameglio et al. 1990; 

Wan et al. 2001).  

Despite studies assessing the impact of chilling stress on the water relations 

of trees have been studied for decades (Kramer 1942; Running and Reid 

1980; Pavel and Fereres 1998; Norisada et al. 2005), actual observations 

under natural conditions are still lacking to date. To our knowledge, all 

studies have been conducted in either lab conditions (e.g. Running and Reid 

1980), growth chambers (e.g. Wan et al. 2001) or with plants growing 

outdoors that are exposed to localized warming or cooling (e.g. Norisada et 

al. 2005). Furthermore, the reported experiments have always been 

conducted with young seedlings growing in either pots or hydroponics. This 

might be inconvenient for extrapolating the results to mature field trees, as 

both architectural and anatomical root traits can be affected in those 

artificial conditions. In this regard, it is known that hydroponics can affect 

the development of root exodermis (Steudle 2000) and that both the 

morphology and physiology of root systems as well as root-to-shoot ratios 

are frequently altered in potted trees (Passioura 2006). Further uncertainties 

arise from the typical short duration of precedent experiments and the way 

in which trees were chilled. For instance, the chilling stress was frequently 

induced in previous studies by artificially decreasing the temperature of the 

soil or mineral solution, which contrasts with the fact that roots are exposed 

to higher temperatures than the canopy under field conditions. In the light 

of the above, the occurrence and extent of the chilling stress in mature trees 

growing in the field remain unknown.  

The only studies characterizing the effects of chilling on water relations of 

olive trees are those conducted with one-year-old potted trees by Pavel and 

Fereres (1998) and Pérez-López et al. (2010). The former found reductions 

in both stomatal conductance and stem and leaf water potentials whereas 
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they encountered increases in Rroot when trees were steadily exposed to soil 

temperatures below 6.4 ± 0.5 ºC. However, they did not observe the 

phenomenon under low night (2.5 ± 0.4 and 5.2 ± 0.4 ºC) but ambient day 

(16.2 ± 3.2 ºC) soil temperatures. On the other hand, the study of Pérez-

López et al. (2010) reported differences in sensitivity to soil chilling 

between six cultivars. 

This work describes the effects of low temperatures in two consecutive 

winters on a mature hedgerow olive orchard in Southern Spain. The main 

goal of this work was to characterize the seasonal patterns of water 

relations of field olive trees from autumn to spring ascertaining whether the 

exposure to the low winter temperatures result in similar alterations to those 

previously observed in young potted plants under controlled conditions or 

not.  

 

5.2. Materials and methods 

5.2.1. Experimental site 

The experiments were conducted in two consecutive winters (2011-2012 

and 2012-2013) from November to April in an olive (cv. Arbequina) 

hedgerow orchard located at the CIFA Experimental Station, Córdoba, 

Spain (37.8°N, 4.8°W, 110 m altitude). The olive trees were planted in 

1999 and they were renovated by pruning at ground level in 2008. Tree 

spacing was 3.5 m × 1.5 m. During the dry season (period spring-autumn), 

irrigation was applied with 2.3 L/h drippers supplying enough water to keep 

maximum evapotranspiration, which was calculated according to the 

approach of Orgaz et al. (2006). The soil is a Typic Xerofluvent of sandy 

loam texture exceeding 1.5 m in depth, with upper drained soil water 
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content limit of 0.23 m3m−3 and lower soil water content limit of 0.07 m3 

m−3 (Testi et al. 2004). Five trees in 2011-2012 and four in 2012-2013 were 

randomly selected for measurements, with 2011 being a year with high fruit 

load and 2012, one with low fruit load. During the experiment, the height of 

the canopy was 3 ± 0.5 m and trees presented an average leaf area index of 

1.2 m2 m-2 which was estimated from measurements of diffuse radiation 

interception performed with a Plant Canopy Analyzer (LAI-2000, Li-Cor, 

Lincoln, NE, USA). All the fruits of experimental trees were removed in 

late November before the first measurement date in both years.  

5.2.2. Measurements 

Measurements were performed on sunny days five times per season from 

late autumn to early spring. November 29, December 23, January 19, 

February 22 and March 22 in 2011-1012 season and November 28, 

December 22, January 29, February 15 and April 12 in 2012-2013 were the 

measurement dates.   

Water potential (Ψ) was determined using a pressure chamber (Soil 

Moisture Equipment Corp., Santa Barbara, CA, USA). Values of Ψ were 

recorded at predawn and midday in 2011-2012 while for the following 

winter we included measurements at 1.5 h intervals from 1 hour before 

sunrise until noon. Four sun-exposed shoots from the canopy top (with 1-3 

leaf pairs attached) were sampled per experimental tree in each 

measurement. In addition, Ψ of non-transpiring shoots directly attached to 

the tree trunk or main branches (Ψtrunk) were measured at midday (four 

shoots per tree were covered with aluminum foil five hours before the 

measurements) in all the experimental trees of 2012-2013 and two of the 

five trees in 2011-2012.  
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Experimental trees were instrumented with sap flow sensors (one per tree, 

always in the trunk at a height of 40 cm from the soil and below a main 

branch) based on the compensated heat pulse method (Swanson and 

Whitfield 1981). The probes used were designed and produced in the IAS-

CSIC laboratory in Córdoba, Spain and consist of a 4.8 W stainless steel 

heater of 2 mm diameter and two temperature probes of the same diameter 

located 10 and 5 mm down- and upstream of the heater, respectively (Testi 

and Villalobos 2009). Each temperature probe had four embedded Type E 

(chromel–constantan wire) thermocouple junctions, spaced 10 mm along 

the needle, that were sampled separately to obtain heat-pulse velocities at 5, 

15, 25 and 35 mm below the cambium at 15-min intervals. Sensors were 

installed at a height of 40 cm from the soil, and the system was controlled 

by a datalogger (CR1000, Campbell Scientific Inc., Logan, UT, USA). 

Further details concerning both data processing and sap flow calculations 

are described in detail in Villalobos et al. (2013).  

For the second winter (2012-2013) soil temperature was monitored with 

Type K (chromel-alumel) thermocouples. Temperature was recorded at 15-

min intervals and the equipment was controlled by a datalogger (CR1000, 

Campbell Scientific Inc., Logan, UT, USA). Three thermocouples were 

installed at 75 mm depth around one of the experimental trees: one close to 

the tree trunk (20 cm apart), another in the middle point between trees in a 

row (75 cm apart) and the last one in the central point of the alley between 

four trees. The averaged value was used to derive the seasonal course of 

root sap η from a: 

 � =
�.��	���

��
  (1) 

where T is the liquid temperature in K and η is in MPa s-1 (Roderick and 

Berry et al. 2001). 
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Meteorological data was recorded at 10-min intervals in an automated 

weather station placed 500 m from the orchard. 

5.2.3. Determination of stomatal conductance 

Midday values of canopy stomatal conductance (Gs, mol m-2 s-1) were 

calculated by inversion of the imposed evaporation equation: 

�� =
��	


��
  (2) 

where Ep (mol m-2 s-1) is the transpiration rate per m2 of soil (deduced from 

sap flow records and tree spacing), P is atmospheric pressure (kPa) and 

VPD is vapour pressure deficit (kPa).  

5.2.4. Determination of hydraulic resistances 

Apparent resistance (R, MPa m2 s mol-1) of the whole soil-plant continuum 

was deduced using Ohm`s law analogy from transpiration rate normalized 

by cross-sectional trunk area (Qn, mol m-2 s-1) and water potential gradient 

at midday in MPa: 

� =

��������

��
  (3) 

where predawn shoot Ψ was used as a surrogate of Ψsoil under the 

assumption that the former had equilibrated with the latter by that time 

(Dichio et al. 2013). On the other hand, Qn measurements were used as 

estimates of transpiration. Similarly, apparent Rroot (MPa m2 s mol-1) was 

computed as: 

����� =

�������	
����

��
   (4) 

where Ψtrunk values were taken from the midday Ψ measurements in non-

transpiring shoots directly attached to trunks. 
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5.2.5. Water balance 

A monthly water balance was applied to assess the occurrence of drought 

stress during the experiments. Changes in soil water content (SWC) were 

calculated as: 

���� = ���� + 	 − 
�  (5) 

where Peff is effective precipitation, I is the amount of irrigation applied and 

ET represents the orchard evapotranspiration. The first was calculated using 

the U.S. Bureau of Reclamation method from monthly rainfall values 

recorded by the meteorological station while the approach of Orgaz et al. 

(2006) was applied to estimate the later. The calculations were performed 

from January 2011 to the end of the experiments (May 2013) assuming that 

our soil was in the upper limit in the former. Such assumption was justified 

by the huge amount of rainfall recorded in December 2010 (> 300 mm).  

Once SWC was computed, it was expressed in relative terms for each month 

as: 

���� =
��������

���������
  (6) 

with SWCu and SWCl being the soil water content in the upper and lower 

limit, respectively. 

5.26. Statistics 

The statistical treatment of the data was performed with the Statistix 

program (Statistix 9 for Windows, Analytical Software, Tallahassee, FL, 

USA). The occurrence of significant variations in Ψ, Qn and R along each 
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measurement season was explored through a conventional analysis of 

variance (ANOVA), using the LSD test at P < 0.05 for mean comparisons. 

For those cases in which the assumptions of ANOVA could not be fulfilled, 

the Kruskal-Wallis test was employed. 

 

5.3. Results 

The two winters showed contrasting meteorological conditions. The first 

one (2011-2012, Fig. 5.1A) was particularly dry, with 189 mm of rainfall 

mainly concentrated in the beginning and end of the November-April 

period. Mean temperature was 10.7 oC and up to 27 days with minimum 

temperatures below 0 ºC were recorded for the same period (18 of these 

days on February). By contrast, the winter 2012-2013 was characterized by 

abundant and more uniformly-distributed precipitation and warmer 

temperatures with 760 mm of rainfall, 11.9oC of mean temperature and only 

6 days with frost in the November-April period (Fig. 5.1B).  

The evaporative demand was rather low for both winters as indicated by the 

course of midday VPD presented in Figure 5.2A-B. In this regard, marked 

differences between years were only evident by March. Values of midday 

VPD were lower in 2013, probably due to the abundant rainfall events 

recorded that month (Fig. 5.1B). Figure 5.2A-B also illustrates the results of 

the water balance by showing the values of RSWC at the beginning of each 

month. In general, high values were estimated throughout the two seasons, 

with RSWC remaining above 0.60 most of the time. Lower values were 

estimated only by 1-March-2012 (RSWC = 0.45) and 1-Apr-2012 (RSWC = 

0.54).  
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Figure 5.1. Maximun (Tmax) and minimum (Tmin) daily temperatures and daily 

precipitation recorded by a meteorological station during the experiments in 2011-2012 

(A) and 2012-2013 (B) winters. 
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Figure 5.2. Patterns of midday vapor pressure deficit (VPD; solid line) and relative soil 

water content (RSWC; dotted line with circles) (A and B), predawn (closed symbols) 

and midday (open symbols) stem water potentials (Ψ; C and D), sap flow rate 

normalized by cross-sectional sapwood area (Qn; E and F), midday bulk canopy 

stomatal conductance (Gs; G and H), and calculated hydraulic resistances (R; I and J) � 
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 for the days of measurement in both the winters 2011-2012 (left panels) and 2012-2013 

(right panels). The complete time course is presented for both Gs and VPD panels 

excluding those days with rainfall >0.3 mm. In Ψ, Qn and R panels, data are means ± 

standard errors (n=5 in 2011-2012 and n=4 in 2012-2013) of all monitored trees. 

Lowercase letters in panels A, B, C, D, I and J denote statistically significant (P < 0.05) 

differences between dates.  

 

The courses of predawn and midday Ψ during both 2011-2012 and 2012-

2013 winters are shown in Figure 5.2C-D. As compared to spring values 

(March 2012, April 2013), midday Ψ was significantly lower in the 

beginning of both winters (December-January), clearly below -2 MPa. In 

fact, values lower than -3 MPa were reached in the first season. Such low 

winter midday Ψ was not apparently accompanied by decreases in predawn 

Ψ. In fact, it remained > -0.35 MPa for both the whole experimental period 

in 2012-2013 and for the period between November and January in the first 

winter. Rather more negative predawn Ψ were measured in February 2012 

(-0.97 MPa) and March 2012 (-0.49 MPa), which was in accordance with 

the aforementioned trends of RSWC. In the former case, the low predawn 

Ψ might also be indirectly associated with the particularly low temperatures 

at the time of the measurements (air temperature was -1.7 ºC).   

Both midday Qn (Fig. 25.E-F) and Gs (Fig. 5.2G-H) were also lower in the 

central and colder period of the winter, when VPD was low (Fig. 5.2A-B). 

For both Qn and Gs, the transition from the low winter values to the high 

ones in spring was found to occur earlier in 2012-2013 than in 2011-2012. 

The final decrease in Gs observed in 2012-2013 (Fig. 5.2H) coincided with 

a period of high temperatures (Fig. 5.1B) and evaporative demand (note 

also the final rise in VPD in Fig. 5.2B).    

The courses of midday Qn, midday Ψ and predawn Ψ resulted in a peaked 

pattern for the computed R (Fig. 5.2I and 5.2J, bottom panels). For both 
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years, maximum values occurred in December and January but the 

maximum averaged values measured in 2011-2012 (5.9 MPa m2 s mol-1) 

were several-fold greater than those found in 2012-2013 (1.78 MPa m2 s 

mol-1). Interestingly, these maximum values did not perfectly coincide with 

the coldest periods of winter revealing that the time series of air and soil 

temperature were not clearly in phase with those of R (see Figures 5.1 and 

5.5). For instance, by mid February both R and midday Ψ decreased to 

values similar to those determined in late November despite the 

temperatures in the former month being similar or colder (especially in 

2012) than those of December or January (Fig. 5.1A and 5.1B), when R was 

the highest. Likewise, the periods with low predawn Ψ (Fig. 5.2C) and low 

RSWC (Fig. 5.2A) in February-March 2012 were not in phase with the peak 

of R recorded earlier (December-January) that winter. 

 

Figure 5.3. Daily shoot water potential (Ψ) as a function of sap flow rate normalized by 

cross-sectional sapwood area (Qn) for the five days of measurement in the 2012-2013 

season. The points represent the averaged values of the four instrumented trees for each 

simultaneous measurement of Qn and Ψ. Vertical and horizontal error bars correspond to 

standard errors.  
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Concerning the variability among individuals shown by the error bars in 

Fig. 5.2, trees behaved in a similar way in terms of predawn and midday Ψ 

(average CV close to 10 % in all cases) while differences in Qn were 

slightly higher (average CV of 22 % in 2011-2012 and 17 % in 2012-2013). 

Obviously, the variability in both Ψ and Qn led to large differences in R 

between individuals (CV=64 % in 2011-2012 and 20% in 2012-2013), but 

the differences between winter and spring values were still significant. 

The higher R values in winter were also evident analyzing the diurnal 

dynamics of Ψ conducted in the 2012-2013 season (Fig. 5.3). Computing R 

as the slope of the relationships Qn vs. Ψ yielded similar values to those 

calculated from midday measurements and followed the same pattern, with 

the slope being the steepest in absolute terms for December 22nd (1.74 MPa 

m2 s mol-1) and the lowest  for April 12th (0.23 MPa m2 s mol-1). Moreover, 

significant correlations (P < 0.01) and good fits (r2 > 0.90) between Qn and 

Ψ were always found independently of both the tree and the date. 

 

Figure 5.4 presents the diurnal trends of Ψ, Qn and Gs for two dates, one 

representing early winter (29 January 2013, when the estimates of R were 

high) and the other spring conditions (12 April 2013, when low values of R 

were deduced). Although predawn Ψ values (the first point in Fig. 5.4A) 

were high (> -0.3 MPa) and similar between the two compared dates, a 

sharp decline in Ψ was observed for the winter date in relation to that of 

spring. In terms of Qn, lower values were found in winter throughout the 

daytime, but they may be related to the lower evaporative demand in that 

date (the daytime average VPD was 0.57 kPa in the winter date and 1.03 

kPa in the spring one). Finally, the trends of Gs differed between the two 

dates in early morning but were rather similar in the afternoon.  
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Figure 5.4. Diurnal course of shoot water potential (Ψ; A), sap flow rate normalized by 

cross-sectional sapwood area (Qn; B) and bulk canopy stomatal conductance (Gs; C) for 

both a winter (29-January-2013, closed symbols) and a spring date (12-April-2013, open 

symbols). Values are the averaged values of the four instrumented trees. Standard errors 

are represented by the error bars in the case of A and avoided in the rest for the sake of 

clarity. 
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Figure 5.5. Temporal variation of both the whole soil-plant continuum hydraulic 

resistance (R; solid lines, closed symbols) and the soil-to-trunk hydraulic resistance 

(Rroot; dashed lines, open symbols) in 2011-2012 (circles) and 2012-2013 (triangles) 

seasons. In the former season the results correspond to the average of the two trees in 

which measurements of Ψ were performed in non-transpiring shoots. 
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R (∆R) of 20.8-fold and 6.7-fold were registered while those of Rroot yielded 

19.2-fold and 9.2-fold for 2011-2012 and 2012-2013 seasons, respectively. 

By contrast, the estimated seasonal changes in root sap η (∆η) in the second 

year were of a lesser magnitude, as illustrated in Figure 5.6. For instance, 

comparing the same pairs of dates η decreased from 1.32 10-9 in winter to 

1.02 10-9 MPa s in spring. Therefore, the estimated ∆η (i.e. 1.29-fold 

changes using again spring values as the reference) was rather low as 

compared to those of ∆Rroot (Fig. 5.5).  

 

Figure 5.6. Time course of apparent root sap viscosity (η, solid line) and midday soil 

temperature (dotted line) through the 2012-2013 season. 
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5.4. Discussion 

The results of the present work show that low winter temperatures result in 

a disturbance of water relations in mature olive trees. Regardless of the 

year, such disturbance was particularly evident in early winter (December-

January). By that time, our measurements of midday Ψ revealed lower 

values (below -2 MPa, Fig. 5.2C-D) than those usually found in well 

irrigated olive cv. Arbequina trees in summer (down to -1.5 MPa according 

to Iniesta et al. 2009), even though evaporative demand is substantially 

lower in winter. By contrast, the values of RSWC estimated from the water 

balance were fairly high (> 0.6 in December-January, Fig. 5.2A-B) in 

relation to the critical threshold from which a water stress-induced decrease 

in transpiration is expected for olive trees (0.45 according to Allen et al. 

1998). It is noteworthy that this threshold RSWC is reported for conditions 

of high evaporative demand and hence, its value is expected to be even 

lower in winter (Allen et al. 1998). In the same line, the predawn Ψ 

measurements yielded high values (> -0.35 MPa, Fig. 5.2C-D) in 

December-January, which were comparable to those found by other authors 

in well-irrigated olive trees in summer (Angelopoulus et al. 1996; Tognetti 

et al. 2009). Lower values of RSWC (0.45) and predawn Ψ (-0.95 MPa) 

were also observed in February 2012, probably as a consequence of the 

scant precipitation recorded that winter (Fig. 5.1A), but midday Ψ was not 

as low as in the precedent period (Fig. 5.2C). All this body of evidence 

indicates that the observed disturbance of water relations occurred under 

non-limiting soil water conditions and can be mainly attributed to the effect 

of early winter chilling temperatures.  

Our observations of low midday Ψ may indicate tissue dehydration which 

would be to some extent in consonance with the experiments of Charrier 

and Ameglio (2011) and Charrier et al. (2013). These authors worked with 
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two-years-old walnut trees and found that the low temperatures of winter 

induced a decrease in stem water content in relation to cold-deprived plants. 

Earlier reports about chilling responses in potted plants (e.g. Kramer 1940; 

Running and Reid 1980) have suggested that the alteration in water 

relations is triggered by changes in R leading to imbalances between 

transpiration and water uptake. Such circumstance was also observed in our 

study (Fig. 5.2I-J). Apart from that and agreeing with the observations of 

Pavel and Fereres (1998) in 1-year old olive trees growing in pots, our 

measurements provided evidence that the ∆R took place mainly in the soil-

root-trunk water pathway (Fig. 5.5). But, what was the actual cause of 

changes in Rroot in winter?  

The literature shows that ∆η is one of the main factors triggering ∆Rroot 

under chilling stress conditions (Kramer 1940; Cochard et al. 2000; 

Norisada et al. 2005). In this study, midday soil temperatures and the 

concomitant estimated root sap η differed little among the measurement 

dates of the second season (maximum ∆η around 1.4-fold; Fig. 5.6) as 

compared to Rroot (∆Rroot of 9.2-fold; Fig. 5.5). Therefore, our results 

suggest that the contribution of η to either ∆R or ∆Rroot was negligible, 

which is in agreement with the findings of other authors (Ameglio et al. 

1990; Pavel and Fereres 1998; Murai-Hatano et al. 2008; see also Table 

5.1). This analysis and its conclusions may be criticized because of the 

shallow depth at which the soil temperature measurements shown in Figure 

5.6 were conducted (75 mm), which does not represent the whole root 

system temperature. Nevertheless, our results are unlikely to underestimate 

the role of η because soil temperature variations (and hence those of η) are 

increasingly mitigated at greater soil depths. Furthermore, the contribution 

of η to the observed ∆R should be of minor importance from a theoretical 

point of view: in a hypothetical and exaggerated situation in which root sap 

temperature changed from 0 ºC in winter to 30 ºC in spring, the winter 
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value of η would hardly be twice the spring one, which is still far from the 

observed 11.4-fold ∆Rroot. 

 

Table 5.1. Maximum increases in hydraulic resistance (∆R, in n-folds increases) 

observed in the literature for woody species exposed to different temperature treatments. 

Equation 5.1 was applied to deduce the viscosity increments (∆η, in n-folds). Data from 

the present study are presented in the last two rows allowing comparisons. Values of η 

for the 2012-2013 season were estimated from midday soil temperature measurements.  

Study Species Temperature range 

(ºC) 

∆R 

(n-folds) 

∆η 

(n-folds) 

Running and Reid 

(1980)  

Pinus contorta 20.0-0.0 4.4 1.6 

Pavel and Fereres 

(1998) 

Olea europaea 11.5-4.6 3.6 1.2 

Cochard et al., 

(2000) ** 

Quercus robur 20.0-2.0 1.9 1.6 

Wan et al., (2001) * Populus 

tremuloides 

20.0-5.0 3.0 1.4 

Norisada et al., 

(2005) * 

Cryptomeria 

japonica 

33.2-5.0 2.2 2.0 

This experiment 

(2011-2012) 

Olea europaea  20.8  

This experiment 

(2012-2013) 

Olea europaea 21.5-10.7 6.7 1.3 

* ∆R measured in detopped  root systems using pressure chambers (i.e. ∆R = ∆Rroot) 

** ∆R measured in either root or shoot systems using the high flow pressure method 

 

  

Leaving aside the contribution of η, the most widespread hypothesis in the 

literature explaining the reported chilling-induced ∆Rroot lies in biological 
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and metabolic changes in the radial water pathway from the soil-root 

interface to the xylem. Those changes can be associated with either 

membrane permeability, through aquaporin activity (Murai-Hatano et 

al. 2008; Aroca et al. 2011) and/or suberin deposition in the root 

endodermis (Lee et al. 2005). The experiments of Pavel and Fereres (1998) 

in young olive trees showed ∆Rroot occurring in less than three days, 

sustaining the hypothesis of reduced membrane permeability as suberin 

deposition should take longer (Enstone and Peterson 1997). Nevertheless, 

they found much lower ∆R than those presented in this work (Table 5.1) 

which may point to additional factors (beyond both the cellular level and 

the short term) playing a role in our conditions. In this regard, the results 

observed in this study may be associated with alterations in root growth 

dynamics as they are affected by temperature as well (Kramer 1940; Wan et 

al. 1999; Pregitzer et al. 2000). In other words, low soil temperatures in 

winter may hinder root proliferation limiting the amount of absorbing roots, 

which, in turn, would lead to an increase in Rroot. This hypothesis is to some 

extent supported by the observations of Fernández et al. (1992), who, 

working with mature olive trees subjected to different irrigation treatments, 

found decreases in root density of variable magnitude (depending on the 

treatment and point of measurement) during the winter months. As a final 

remark, cavitation in root xylem vessels might have played a role in the 

observed ∆Rroot but there seem to be few arguments to support this 

explanation under our experimental conditions. On the one hand, freeze-

thaw-induced embolisms were unlikely because periods of frost (Fig. 5.1) 

were infrequent, mild (air temperatures not much below 0 ºC), short in time 

(hours), and, above all, they should have affected distal shoots and branches 

rather than trunks or roots, whose temperature must be closer to that of the 

soil. On the other hand, one could argue that the low Ψ measured in winter 

might have originated cavitations in the large vessels of main roots and 
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trunks, but it should also have occurred in main branches and again 

translated into increases in the trunk to shoot R (i.e. the difference between 

R and Rroot in Fig. 5.5) which were not clearly observed. 

An interesting result of the present study is the huge variability found in the 

degree of disturbance of water relations between winters. Thus, values of 

both minimum midday Ψ and ∆R were significantly lower and higher, 

respectively, in December 2011 - January 2012 than for the same months of 

2012-2013 (Fig. 5.2 and 5.5). It should be stressed again that such 

differences appeared under non-limiting soil water conditions as evidenced 

by both the high RSWC and high predawn Ψ recorded for both years (rather 

low RSWC and predawn Ψ were evident by February 2012, but it did not 

correspond to the period with the highest ∆R; Fig. 5.2). Apart from that, the 

differences between winters in the December/January temperatures were 

not very marked (on average the second winter was 1.4 ºC warmer in 

December-January, Fig. 5.1), which also points to a minor role of η as a 

cause for such observations. However, it is unknown whether such small 

difference in temperature leads to an equally small difference in membrane 

permeability or not. In this regard, many studies (e.g. Running and Reid 

1980; Ameglio et al. 1990) have shown that Rroot increases exponentially 

when root temperature falls below a threshold. Therefore, under certain 

circumstances, a small temperature decrease might result in a large ∆Rroot. 

Unfortunately, the relationship between Rroot and root temperature is 

unknown in the case of olive, so it is not possible to quantify if the 

temperature differences between winters lead to significant differences in 

Rroot. Finally, a reasonable hypothesis linking the inter-year differences in 

∆Rroot with the alternate bearing behavior of olive trees can also be 

formulated. The higher fruit load in the first year (16.5 t ha-1 in terms of 

fresh weight) could have resulted in lower carbon availability for root 
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turnover during winter, leading to the development of higher Rroot and lower 

Ψ in relation to the second one (when the yield was lower, 5.2 t ha-1).  

Regardless of the year being considered, our results revealed higher ∆R 

than those previously reported (Table 5.1). The fact that our estimated ∆R 

were higher than those reported by Pavel and Fereres (1998) in young olive 

plants suggests that the exposure to low temperatures might cause different 

effects between potted and field olive trees and underline that the reported 

responses with chilled young plants growing in controlled conditions are 

not necessarily the same that take place under natural conditions.  Such 

discrepancies might be ascribed to differences in structural patterns (e.g. 

root architecture) or in the duration and conditions of experiments. For 

instance, Pavel and Fereres (1998) measured ∆R in less than three days 

after trees were exposed to low soil temperatures, so long-term responses to 

chilling such as a decrease in the amount of absorbing roots, and 

suberization of endodermal cells are not expected to be captured. Moreover, 

additional factors typically absent in young trees but present in our 

experimental conditions (e.g. presence of fruits) might also play a role.  

Another intriguing observation arises when the patterns of R or Rroot (Fig. 

5.5) are compared with those of air or soil temperatures (Fig. 5.1 and 5.6). 

Under similar temperature conditions, both R and Rroot decreased 

significantly by February in relation to December-January. This 

phenomenon may be associated with acclimation processes allowing the 

trees to cope better with the low temperatures of the end of winter. In this 

context, it is well known that certain exposure to low temperatures provides 

protection against freeze and chilling stresses through changes in 

metabolism, most of them related to membrane lipids and proteins, and 

possibly including aquaporins (Fennel and Markhart 1998; Ahamed et al. 

2012). 
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Finally, this study shows that the water relations in mature olive trees are 

altered during winter through increased R, but it remains unclear if such 

alterations can affect canopy conductance and gas exchange. Figure 5.2G-H 

shows a decline in Gs in winter which apparently supports the hypothesis of 

the direct effects on stomatal aperture. Nevertheless, the low winter Gs 

found in this work may be related to different factors. For instance, 

photosynthesis rates could be limited by the low temperatures of winter 

inducing stomata to close, which would concur with the delay in the 

recovery of Gs in 2011-2012 versus 2012-2013.  

 

5.5. Conclusions 

This study show for the first time that winter low temperatures lead to a 

disturbance of water relations in field olive trees. Chilling induced an 

increase in R that resulted in midday Ψ falling to lower values than those 

expected for well-irrigated trees in summer, despite evaporative demand 

being substantially lower during our experiments. Apparently, 

measurements of predawn Ψ and estimates of RSWC indicated that this 

phenomenon took place under non-limiting conditions of soil water 

availability.  Besides that, our estimated chilling-induced increases in either 

R were higher than those previously reported for young potted trees 

growing under controlled conditions. This, along with additional findings, 

such as differences in the chilling effects between winters or the lags 

between the peaks of R and temperature suggest that the phenomenon is 

more complex and involves a greater number of factors in the case of 

mature trees. 
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Chapter 6  

General discussion and final remarks 

6.1. General discussion 

Because of their capacity to determine tree transpiration (Ep), sap flow 

methods are increasingly drawing attention from scientists belonging to 

different disciplines, including hydrology, ecology, forestry and agronomy. 

Apart from their suitability as research tools, in an agronomical context 

they are expected to play a central role in the development of smart 

irrigation control systems (Fernández et al. 2001). Therefore, understanding 

the limitations and exploring the full potential of these techniques have 

become of paramount importance. In this regard, the results presented in 

this thesis show that sap flow methods have a huge potential but they still 

face many challenges that should be better addressed.  

Many studies have focused on the effects of water stress on Ep and the 

possibility of using sap flow methods to derive indicators of water status 

(Jones 2004; Tognetti et al. 2004; Nadezhdina et al. 2007; Tognetti et al. 

2009; López-Bernal et al. 2010; Cuevas et al. 2013) and they have been 

also employed to quantify stomatal conductance (Gs) (Villalobos et al. 

2013). The aim of Chapter 2 was to go one step further and propose a 

methodology to estimate net assimilation (A) combining the information 

provided by sap flow methods and meteorological data. The measurement 

of A is of paramount interest, particularly for agronomists, because it 

represents a direct indicator of the biomass accumulation rate. Despite its 

importance, the existing measurement techniques are not easy to use. On 

the one hand, both leaf cuvette gas analyzers (Moriana and Fereres 2002) 

and large canopy chambers (Pérez-Priego et al. 2010; Villalobos et al. 

2012) are labour-intensive and time-consuming measuring devices. Besides 
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that, the former is challenged because scaling-up the measurements to the 

canopy-level is tricky, while the later requires complex instrumentation and 

its use is unwieldy under certain conditions (e.g. tall trees, hedgerow 

orchards). As an alternative, the eddy covariance technique allows for the 

monitoring of net ecosystem exchange (NEE, which integrates the balance 

between both raw assimilation and soil and plant respiration at the orchard-

level) and is suitable for automation, but it relies on strong assumptions on 

the turbulence structure and can only be applied for large, uniform and flat 

plots (Pérez-Priego 2011). In this context, the methodology described in 

Chapter 2 overcomes the aforementioned handicaps, as it is automatable 

and easy to implement, works at the canopy-level and does not require 

special orchard or tree characteristics. Furthermore, the results of our field 

experiments were promising: a close agreement was found between the 

estimates of A and independent measurements of NEE (Fig. 2.3), which 

suggests that the method is reliable to monitor, at least, rough estimates of 

A. The ‘at least’ in the previous sentence comes from the fact that our 

approach is not entirely flawless, as it both requires accurate Ep records and 

is prone to errors in those species exhibiting marked variations in the 

intercellular CO2 concentration (Ci) in response to changing water status. 

The development of user-friendly calibration procedures for sap flow 

methods and further research on the species-specific effects of water stress 

on Ci are, therefore, the two foundations for improving the accuracy and 

extending the validity of the proposed methodology in the future. 

Chapter 4 covered a mixture of issues and could be actually divided into 

two separate parts. On the one hand, a first section (Experiment 1) focused 

on the characterization of sapwood thermal properties for a number of fruit 

tree species. Thermal properties were determined through different 

methodologies including the model of Siau (1971) and its recently 

improved version (Vandegehuchte and Steppe 2012a) as well as two 
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thermometric methods based on the use of dual-probe sap flow sensors: the 

Tmax method (Cohen et al. 1981; Kluitenberg and Ham 2004) and the 

semi-analytical solution of Knight et al. (2012). Regardless of the 

methodology employed, large differences in thermal properties were found 

between species (Fig. 4.2), which were ascribed to differences in the 

physical and anatomical characteristics of sapwood (Fig. 4.1). From a 

practical viewpoint, however, the most transcendental result of this section 

laid in the differences observed between the methods employed for 

determining thermal properties, because both the Tmax (Cohen et al. 1981; 

Kluitenberg and Ham 2004) and the heat ratio methods (HR, Burgess et al. 

2001) require an estimate of thermal diffusivity in the axial direction (Dx) 

to proceed with the calculation of convective heat velocity (vh). In the 

former heat pulse method, Dx is calculated under zero flow conditions 

through Eq. 4.7 while the later typically estimates it applying the model of 

Siau (1971). Both approaches –and also that of Knight et al. (2012)- 

exhibited moderate deviations in relation to the most theoretically correct 

approach (i.e. the model by Vandegehuchte and Steppe (2012a)) (Fig. 4.3, 

Table 4.1). Such differences indicate, therefore, that the accuracy of both 

the Tmax and HR might be fairly compromised by the approach followed 

to determine Dx.     

On the other hand, both the second part of Chapters 4 (Experiment 2) and 

Chapter 3, dealed with the practical importance of measuring sapwood 

water content (Fw) for sap flow research. Apart from its value as an 

indicator of water status (Nadler et al. 2003; Nadler et al. 2006; Hernández-

Santana et al. 2008; Chapter 3), Fw is important because it is a prerequisite 

in the conversion from vh to sap flux density (J) in all heat-pulse methods 

(Eq. 1.1). Moreover, an estimate of Fw is needed to apply the models of 

Siau (1971) (Eqs. 4.3 and 4.4) and Vandegehuchte and Steppe (2012a) 
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(Eqs. 4.5 and 4.6), which, as mentioned above, represents a previous step in 

the calculation of vh by HR (Burgess et al. 2001).  

The available techniques for determining Fw in trees include gamma-ray 

attenuation (Edwards and Jarvis 1983), nuclear magnetic resonance (Byrne 

et al. 1986; Van As et al. 2009), electrical conductivity (Nadler and Tyree 

2008; Nadler et al. 2008), time domain reflectometry (TDR, Constantz and 

Murphy 1990; Wullschleger et al. 1996) and the traditional gravimetrical 

approach based on core sampling. While the first three show serious 

drawbacks that make them impractical for field measurements, TDR only 

yields sound results in expert hands and struggle to account for the spatial 

variability of sapwood. As a consequence, the labour-intensive core 

sampling method remains as the most widespread technique. Unfortunately, 

the harmful nature of this technique have led the users of heat pulse 

methods to perform a limited number of Fw determinations (typically only 

one) during the measurement period, which implies disregarding its 

possible variations. These circumstances have led several research teams to 

develop new techniques aimed to employ sap flow sensors for indirectly 

estimating Fw. Until now, three methodologies have been reported in the 

literature including those described in Vandegehuchte and Steppe (2012b), 

Knight et al. (2012) and the one presented in the Chapter 3 of this thesis. 

Their main strengths and weaknesses are discussed below and summarized 

in Table 6.1. 

Vandegehuchte and Steppe (2012b) presented a new heat pulse sap flow 

method referred to as Sapflow+. At the cost of a greater number of needles 

(four) per sensor, Sapflow+ allows for estimating simultaneously vh, 

volumetric specific heat (ρc) and thermal conductivities in both axial (Kx) 

and tangential (Ky) directions. Once ρc is known, the value of Fw can be 

deduced from Eq. (4.8). However, the methodology has not yet been tested 
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in standing trees and the results of a finite element modelling exercise 

demonstrated that accurate estimates of Fw are only yielded under low flow 

conditions (Vandegehuchte and Steppe 2012b). 

Table 6.1. Strengths and weaknesses of the available methods for estimating Fw using 

sap flow sensors. 

Method Strengths Weaknesses 

   

Sapflow+ 

(Vandegehuchte and 

Steppe 2012b) 

- Theoretically sound 

 

- Complex sensors 

- Not valid for high vh 

- Tests on living trees lacking 

 

Semi-analytical 

solution 

(Knight et al. 2012) 

- Applicable to any heat 

pulse sap flow system 

- Theoretically sound 

- Only valid when vh = 0 

- Questionable reliability 

(Chapter 4) 

 

 

VSH-CHP 

(Chapter 3) 

- Theoretically valid for 

any value of vh 

- Do not provide absolute values 

unless independent calibration 

is performed 

- Poor reliability for large Fw 

variations 

 

 

Knight et al. (2012) derived a semi-analytical solution that, accounting for 

probe radius and heat capacity, allows the calculation of sapwood thermal 

properties (including ρc, from which Fw can be deduced) using dual heat 

pulse probes. This methodology is, therefore, applicable to any heat-pulse 

sap flow method (provided that absolute temperatures are measured for 

each temperature probe), and considers for the first time in sap flow 

research that the finite volume occupied by probes present different heat 

capacity than that of the sapwood into which they are installed. By contrast, 
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the semi-analytical solution is limited by the fact that it was derived for 

zero-flow conditions. Chapter 4 (Experiment 1) shows the first tests of this 

methodology in living plants, restricting the determinations to the hours 

previous to dawn to ensure zero or negligible flows. In relation to 

gravimetrical approaches, the Knight et al. (2012)`s approach overestimated 

the values of ρc, and hence of Fw (Table 4.1). Although our results were not 

encouraging, it should be indicated that the discrepancies found might be 

attributed to low nocturnal sap flow rates, small misalignments of probes 

and/or actual differences in Fw between the points chosen for core sampling 

and those where probes were installed.  

Finally, the VSH-CHP method described in Chapter 3 was developed to use 

compensated heat pulse (CHP) sensors for concurrently measuring Fw and 

vh. Both lab and field experiments evidenced that VSH-CHP was suitable 

for monitoring relative variations in Fw. On the contrary, it was unable to 

provide absolute Fw values (Fig. 3.2), which is a serious limitation because 

calibration would require carrying out additional determinations through 

core sampling or TDR. Also, our lab experiments raised concerns about the 

reliability of the method on species with large temporal fluctuations in Fw. 

Finally, a further issue arises due to the fact that the working equation (Eq. 

3.6) of VSH-CHP includes the anisotropy ratio (RK, i.e. the ratio of Kx to 

Ky) as a constant, while both Siau (1971) and Vandegehuchte and Steppe 

(2012a) models predict changes in RK with Fw. Fortunately, this theoretical 

flaw is very likely to have a minimal impact on the accuracy of the method 

because both the expected variations of Fw in most living trees are generally 

small (Nadler and Tyree 2008) and it is the square root of RK (δ) which 

actually appears in Eq. 3.6. 

The three methods can be considered great technical advances in sap flow 

research, all being promising approaches to monitor seasonal changes in Fw 
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and hence in water status. By contrast, none of them seem practical for 

continuously providing accurate Fw values, which, as indicated above, 

would be of major interest for achieving a more correct calculation of J. 

Perhaps a combination of gravimetrical determinations with the VSH-CHP 

method may be a suitable alternative when working with CHP sensors, but 

it still deserves further research. Consequently, most users of heat pulse 

methods will continue measuring Fw through core sampling and assuming it 

constant for J calculations in forthcoming years.  

In this context, the second part of Chapter 4 (Experiment 2) provides an 

experimental assessment of the errors arising from ignoring the natural 

variations in Fw. To do so, desorption curves of sapwood were constructed 

for four fruit tree species from core samples (Fig. 4.4), enabling us to 

predict the relative errors in the calculation of J (EJ) as a function of 

varying water potential (Ψ) (Fig. 4.5), whose measurement pose lesser 

problems and is more extended and repeatable. As illustrated in both 

Figures 4.5 and 4.6 and Table 4.2, substantial EJ were deduced, and their 

magnitude depended on the heat pulse method and species considered. For 

instance, HR was the least vulnerable heat pulse method followed by 

Sapflow+, CHP and CAG, while Tmax was the one with the highest 

sensitivity to Ψ or Fw variations. Likewise, considering the same Ψ change, 

the predicted EJ were lower for almond than for olive, fig and orange (Fig. 

4.5).  

In short, the results of Chapter 4 (Experiment 2) suggest that the accuracy 

of heat pulse methods is significantly hindered by the assumption of 

constant Fw, even at daily scales (Table 4.2). As discussed in the final 

paragraph of section 4.4.3, several alternatives can be undertaken to cope 

with the EJ associated to Fw variations, but neither of them is actually free 

from drawbacks. At least, the errors in the daily estimates of Ep can be 
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substantially minimized if core sampling is conducted by midday because 

EJ will concentrate in periods of low flows (late evening, night and early 

morning). 

Finally, Chapter 5 presents a practical example of how sap flow sensors can 

improve our understanding of water relations. In particular, this chapter was 

devoted to study the dynamics of water status in mature olive trees over the 

course of two winters. Previous studies (Kramer 1940; Running and Reid 

1980; Pavel and Fereres 1998; Wan et al. 2001) conducted under controlled 

conditions with young plants of a number of species (including olive) had 

shown that the exposure to chilling soil temperatures frequently resulted in 

water stress symptoms, even in the abcense of soil water deficits. 

Nevertheless, there was no evidence that the phenomenon took place at 

field conditions so far. Such gap in the literature was probably associated 

with the difficulties of measuring sap flow (Q) in field plants under low 

evaporative demand conditions. This challenge was overcome in our study 

by the use of CHP sensors applying the calibrated average gradient 

procedure (CAG, Testi and Villalobos 2009).  

The results of Chapter 5 confirmed the occurrence of water stress 

symptoms in the absence of soil water deficits by early winter (Fig. 5.2). 

This was mainly evidenced by midday Ψ reaching lower values than those 

typically found in irrigated trees of the same cultivar in summer under a 

much higher evaporative demand (see e.g. Iniesta et al. 2009). In 

accordance with previous studies (Running and Reid 1980; Pavel and 

Fereres 1998; Wan et al. 2001; Aroca et al. 2011), the disturbance of water 

relations was attributed to an increase in the hydraulic resistance of the soil-

to-shoot continuum (R). Also, Figure 5.4 indicated that the largest 

proportion of such increase apparently occurred in the soil-to-trunk water 

pathway, which points to changes in membrane permeability and root 
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growth dynamics as the most likely causes behind it. Apart from these 

general observations, our study yielded some intriguing results that raise 

new questions about chilling stress responses in field trees. For example, 

Figures 5.2 and 5.4 illustrate that there was an enormous difference in the 

disturbance of water relations between the two years of study, and Table 

5.2 shows that, regardless of the year considered, our estimated increases in 

R were higher than any previously published report. These facts suggest 

that the reported effects of chilling on young potted trees may differ from 

those actually occurring in orchards. Another interesting result was the lag 

found between the maximum R values and the minimums of air and soil 

temperatures (Figures 5.1, 5.5), which might be indicative of acclimation 

processes allowing the trees to cope better with the low winter temperatures 

after a prolonged exposure to stressful conditions.  

To sum up, Chapter 5 provides the first evidences of chilling stress in 

mature olive trees and opens the door for further research on this topic in 

olive and other perennial fruit tree species. Some relevant questions to 

answer in future investigations include: What are the actual factors 

triggering the low temperature-induced ∆R in field trees? What is 

originating the inter-annual differences? Do field (olive) trees experience a 

real acclimation to low temperatures? Has the chilling stress a significant 

effect on gas exchange during winter? Are other perennial fruit tree species 

vulnerable to chilling stress? 

 

6.2. Conclusions 

1. A combined use of meteorological data and sap flow methods can 

provide a user-friendly alternative to determine canopy net assimilation in 

tree species. Nevertheless, the reliability of the proposed procedure is 
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uncertain for species with marked variations in leaf intercellular CO2 

concentration in response to changing water status and is constrained by the 

availability of accurate input data. 

2. Applying the methodology developed in Chapter 2, compensated heat 

pulse sensors can concurrently provide information about sapwood water 

content and sap flow dynamics. Although our lab and field experiments 

demonstrated the suitability of the method to monitor relative changes in 

sapwood water content, accurate absolute values cannot be obtained unless 

independent calibration is conducted. Besides that, the reliability of our 

approach is uncertain for those species exhibiting large temporal 

fluctuations in sapwood water content. 

3. The use of the classical equations for determining sapwood thermal 

diffusivity in the axial direction when applying the heat ratio and the Tmax 

heat pulse techniques might lead to deviations affecting the accuracy of 

these heat pulse methods. These errors can be theoretically avoided by 

using the model of Vandegehuchte and Steppe (2012a) from measurements 

of basic density and water content of sapwood. 

4. The accuracy of heat pulse methods is compromised by natural changes 

in sapwood water content. Ignoring seasonal and daily variations in 

sapwood water content might result in large errors in calculated sap flux 

density whose extent depends on the species and the heat pulse method. In 

this regard, the heat ratio method presents the lowest loss of accuracy 

followed by Sapflow+, compensated heat pulse and calibrated average 

gradient, while Tmax is the most prone to high errors.  

5. The low temperatures of winter result in a disturbance of water relations 

in mature olive trees under non-limiting conditions of soil water content. 

Such disturbance was evidenced by unforeseen low midday water potential 
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and triggered by an increase in the hydraulic resistance of the water 

pathway from soil to shoots. 

6. Compared to previous studies, our estimated increases in the soil-to-

shoot hydraulic resistance were higher than those found for young potted 

trees growing under controlled conditions. This, along with additional 

results such as the different chilling stress in the two years or the apparent 

lags between the peaks of soil-to-shoot hydraulic resistance and 

temperature suggest that the phenomenon is more complex and involves a 

greater number of factors in the case of mature trees.  
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