En esta investigación doctoral se aborda la problemática del pronóstico de series temporales con una componente dominante de medias móviles no lineales (NLMA), mediante redes neuronales artificiales (ANN). El primer aporte de este trabajo es que se realiza una revisión sistemática de la literatura, que permite identificar que sólo el 7% de los modelos ANN seleccionados en los últimos 15 años cumplen con un proceso formal de construcción del modelo, y además sólo el 28% de ellos, consideran una estructura distinta a la autoregresiva. El segundo aporte es que se demuestra experimentalmente que las redes ARNN y NARMA no son capaces de capturar todo el proceso de series no lineales con componente de medias móviles (MA). El tercer aporte es que se formula un modelo no lineal basado en una red neuronal cuyas entradas son procesos MA, que se puede interpretar como un modelo no lineal de medias móviles, y que posee características deseables: no requiere la selección del número de capas ocultas ni de función de activación, es invertible localmente y los estimadores de sus parámetros son asintóticamente normales. El cuarto aporte está relacionado con la formulación de una estrategia formal de construcción para dicho modelo; el cual es validado con datos experimentales y reales, obteniendo muy buenos resultados en términos de exactitud del pronóstico.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados