
Programa de Doctorado en Ingenieŕıa Mecatrónica

Departamento de Arquitectura de Computadores

Escuela de Ingenieŕıas Industriales

TESIS DOCTORAL

Accelerating Time Series Analysis

via Near-Data-Processing Approaches

Iván Fernández Vega

Abril de 2023

Dirigida por:

Óscar Plata,

Eladio Gutiérrez

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de
Málaga (RIUMA): riuma.uma.es

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

 https://orcid.org/0000-0001-6133-5670
AUTOR: Iván Fernández Vega

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD DE LA TESIS PRESENTADA

PARA OBTENER EL TÍTULO DE DOCTOR

D. Iván Fernández Vega

Estudiante del programa de doctorado Ingenieríıa Mecatrónica de la Universidad de Málaga,

autor de la tesis, presentada para la obtención del título de doctor por la Universidad de

Málaga, titulada: Accelerating Time Series Analysis via Near-Data-Processing Approaches

Realizada bajo la tutorización de Óscar G. Plata González y dirección de Óscar G. Plata González

y Eladio D. Gutiérrez Carrasco.

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de propiedad intelectual

ni los derechos de propiedad industrial u otros, conforme al ordenamiento jurídico vigente

(Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la

Ley de Propiedad Intelectual, regularizando, aclarando y armonizando las disposiciones legales

vigentes sobre la materia), modificado por la Ley 2/2019, de 1 de marzo.

Igualmente asumo, ante la Universidad de Málaga y ante cualquier otra instancia, la

responsabilidad que pudiera derivarse en caso de plagio de contenidos en la tesis presentada,

conforme al ordenamiento jurídico vigente.

En Málaga, a 24 de abril de 2023

Fdo.: Iván Fernández Vega

Doctorando

Fdo.: Óscar G. Plata González

Tutor

Fdo.: Óscar G. Plata González Fdo.: Eladio D. Gutiérrez Carrasco

Directores de tesis

CERTIFICADO AUTORÍA DIRECTORES

Dr. D. Óscar G. Plata González.

Catedrático del Departamento de Ar-

quitectura de Computadores de la Uni-

versidad de Málaga.

Dr. D. Eladio D. Gutiérrez Carrasco.

Profesor Titular del Departamento de

Arquitectura de Computadores de la

Universidad de Málaga.

CERTIFICAN:

Que la memoria titulada “Accelerating Time Series Analysis via Near-Data-

Processing Approaches”, ha sido realizada por D. Iván Fernández Vega bajo

nuestra dirección en el Departamento de Arquitectura de Computadores de la

Universidad de Málaga y constituye la Tesis que presenta para optar al grado de

Doctor en Ingenieŕıa Mecatrónica.

En Málaga, a 24 de abril de 2023

Dr. D. Óscar G. Plata González.

Codirector de la tesis.

Dr. D. Eladio D. Gutiérrez Carrasco.

Codirector de la tesis.

AUTORIZACI ́ON LECTURA DE LA TESIS

Los abajo firmantes declaran, bajo su responsabilidad, que autorizan la lectura
de la tesis del doctorando D. Iván Fernández Vega, con DNI , titulada
“Accelerating Time Series Analysis via Near-Data-Processing Approaches”.

En Málaga, a 24 de abril de 2023

Dr. D. Óscar G. Plata González.

Codirector de la tesis.

Dr. D. Eladio D. Gutiérrez Carrasco.

Codirector de la tesis.

INFORME DE UTILIZACI ́ON DE PUBLICACIONES
QUE AVALAN LA TESIS DOCTORAL

Dr. D. Óscar G. Plata González y Dr. D. Eladio D. Gutiérrez Carrasco, co-
directores de la tesis doctoral de D. Iván Fernández Vega, con DNI ,
titulada “Accelerating Time Series Analysis via Near-Data-Processing Approa-

ches”, declaran que ninguna de las publicaciones que avalan dicha tesis han sido
utilizadas en tesis doctorales anteriores.

En Málaga, a 24 de abril de 2023

Dr. D. Óscar G. Plata González.

Codirector de la tesis.

Dr. D. Eladio D. Gutiérrez Carrasco.

Codirector de la tesis.

.

A mi hermano Antonio

.

Agradecimientos

Sirvan estas ĺıneas para agradecer a todas aquellas personas y entidades que

de alguna manera han contribuido a que esta tesis haya sido posible.

En primer lugar, agradezco a mis directores de tesis, Óscar Plata y Eladio

Gutiérrez por darme la posibilidad de realizar esta tesis con ellos y unirme a

su grupo de investigación, Aldebarán. Este entorno ha servido para motivarme

y aspirar a generar resultados de calidad. Gracias por ayudarme a mejorar mi

autonomı́a en la generación de ideas y al mismo tiempo proveerme del feedback

y directrices necesarias para tomar el camino más exitoso desde el punto de vista

académico. Ha sido un verdadero placer compartir estos años con vosotros.

En segundo lugar, me gustaŕıa agradecer a mis compañeros por haber con-

tribúıdo a crear un ambiente ameno durante estos años. Especial mención merece

Ricardo, ha sido muy enriquecedor compartir grupo de investigación y tu feed-

back ha sido muy valioso. Por otro lado, José Carlos, Andrés, Rubén, Bernabé,

Fran, José Manuel, Denisa y Elena: los ratos que hemos pasado juntos y las

discusiones que hemos tenido sin duda han contribuido a generar nuevas ideas y

solventar los desaf́ıos que han ido aconteciendo. No me olvido de los técnicos,

Paco y Juanjo, ni de Carmen, cuyo suporte ha sido vital durante estos años.

Third, I would also like to really thank Prof. Onur Mutlu and from SAFARI

research group at ETH Zürich for giving me the opportunity of joining his group.

I find myself very fortunate of being part of this top-class environment. My two

stays there were extremely productive not only from the academic point of view

but also from a personal grow perspective. I really like that this collaboration

is still going on and hope to continue contributing to the group. I would also

like to thank Prof. Juan Gómez-Luna for mentoring me there over these years

at SAFARI, and both Christina Giannoula and Aditya Manglik, who more than

collaborators I consider as very good friends. I hope we continue collaborating

in the future with you in exciting and top-notch projects!

ii AGRADECIMIENTOS

En cuarto lugar, me gustaŕıa agradecer a mis padres, Antonio y Victoria, el

apoyo prestado durante estos años, el haberme inculcado el valor de las cosas y

el hacerme ver que la perseverancia son claves para conseguir los objetivos que

me propongo. Aunque mi hermano Antonio no pueda entender estas palabras,

también le agradezco a él haber estado ah́ı y de alguna manera influenciarme pos-

itivamente. También agradezco a mi abuelo Cristóbal, por transmitirme el buen

hacer, y al resto de mi familia en general. Por último, me gustaŕıa agradecerle a

Miriam estar a mi lado y apoyarme durante los episodios más dif́ıciles, tu cariño

ha sido clave y muy importante para mi.

Finalmente, también debo agradecer las fuentes de financiación que han con-

tribúıdo a esta tesis. En concreto, a los proyectos TIN2016-80920-R, PID2019-

105396RB-I00, UMA18-FEDERJA-197 y JA P18-FR-3433, y las Eurolab4HPC

y HiPEAC collaboration grants.

Abstract

The explosion of the Internet-Of-Things and Big Data era has resulted in

the continuous generation of a very large amount of data, which is increasingly

difficult to store and analyze [112]. Small sensors and devices produce a significant

portion of this data [200], which includes observations (e.g., temperature, voltage,

sound) sampled over time. Such a collection of data is also referred to as a time

series, a common data representation in almost every scientific discipline and

business application [167], for instance, epidemiology, genomics, neuroscience,

environmental sciences, and stock markets. Time series analysis (TSA) is an

useful set of tools that split the time series data into subsequences of consecutive

data points to extract valuable information. This information can be used, for

example, to filter out irrelevant subsequences or to find subsequences of interest.

In real-world applications, TSA can perform heart beat analysis on a mobile

medical device to predict a heart attack [118] or early earthquacke detection [41]).

In this thesis, we characterize state-of-the-art time series analysis algorithms

and find their bottlenecks in commodity architectures. Based on those bottle-

necks, we propose software and hardware solutions to accelerate time series anal-

ysis and make its computation as energy-efficient as possible. To this end, we

provide four contributions: PhiTSA, NATSA, MATSA and TraTSA.

First, we present PhiTSA. In this work, we optimize a state-of-the-art TSA

algorithm in a many-core processor with integrated 3D-stacked RAM (Intel Xeon

Phi). Our implementation exploits the underneath hardware as much as possible

by adding vectorization and the use of two memory technologies (slower/faster).

We use this implementation to identify the hotspots of the application, and we

find that 1) the arithmetic intensity of the algorithm is very low and 2) when

using the (faster) 3D-stacked memory, the performance increases significantly.

Based on that, we conclude that the algorithm is memory bound.

Second, we present NATSA. In this work, we propose a novel Processing-Near-

Memory accelerator based on 3D-stacked RAM that aims to reduce the memory

iv ABSTRACT

boundeness of TSA. The key idea is to place custom floating-point compute units

close to the memory stack, improving the bandwidth and reducing latency. By

reducing the generality of a CPU, NATSA provides the highest performance and

best energy-efficiency when compared to its baselines.

Third, we propose MATSA. In this work, we propose a Processing-Using-

Memory accelerator based on non-volatile memory cells that minimizes data

movement by performing in-situ computation. The key idea is to use the ac-

tual memory cells in conjunction with reconfigurable sense amplifiers to perform

the TSA computation. MATSA provides the highest performance end energy

efficient solution so far for a wide range of time series applications.

Finally, we present TraTSA. In this work, we study the TSA algorithms from

the software point of view, and find that floating-point operations are a big con-

tributor to the energy consumption. Based on that, we evaluate the potentials

of TSA when using a transprecision computing approach. Transprecision com-

puting enables the possibility of reducing the number of bits of the floating-point

operations while obtaining accurate results. To this end, we propose a transpre-

cision framework that demonstrates that TSA algorithms are good candidates

for reduced-precision computation.

Contents

Agradecimientos I

Abstract III

Contents IX

List of Figures XVI

List of Tables XVII

1.- Introduction 1

1.1. TSA Applications . 3

1.2. TSA Bottlenecks . 4

1.3. Thesis Motivation and Contributions 8

1.4. Thesis Structure . 10

2.- Background and Related Work 11

2.1. Time Series Analysis . 11

2.1.1. SCRIMP Implementation 14

2.1.2. SCAMP Implementation . 16

2.1.3. DTW Implementation . 17

2.2. Mitigating the Data Movement Bottleneck 19

v

vi CONTENTS

2.2.1. Processing-Near-Memory 19

2.2.2. Processing-Using-Memory 21

2.3. Transprecision Computing . 23

3.- PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA 27

3.1. Motivation and Key Idea . 27

3.2. Intel Xeon Phi Knights Landing 27

3.3. PhiTSA Optimizations of SCRIMP 29

3.3.1. Updating P and I . 30

3.3.2. Increasing Arithmetic Intensity 32

3.3.3. Memory Allocation Policy and Scalability 34

3.4. Evaluation . 35

3.4.1. Methodology . 35

3.4.2. Results . 35

Speedups . 35

Memory Bandwidth Results 38

Sensibility to Time Series Length and Window Size 40

Floating Point Performance 41

Real-World Applications . 41

4.- NATSA: A PNM Accelerator for TSA 45

4.1. Motivation and Key Idea . 45

4.2. NATSA Architecture . 46

4.2.1. NATSA Processing Units (PUs) 47

4.2.2. Workload Partitioning Scheme 48

4.2.3. Programming Interface . 49

4.3. Evaluation . 50

4.3.1. Methodology . 50

4.3.2. Workload . 52

CONTENTS vii

4.3.3. Results . 52

Performance of NATSA . 53

Power, Energy and Area Consumption 54

NATSA Design Space Exploration 56

Performance of General-Purpose Cores 56

Accuracy and Sensitivity to Subsequence Length 58

5.- MATSA: A PUM Accelerator for TSA 59

5.1. Motivation and Key Idea . 59

5.2. MATSA Architecture . 60

5.2.1. Overview . 60

5.2.2. MATSA Subarrays . 61

5.2.3. sDTW Challenges in NVM-PUM 62

5.2.4. Supported Operations . 63

5.2.5. Data Mapping . 64

5.2.6. Execution Flow . 65

5.2.7. System Integration . 66

5.3. Evaluation . 67

5.3.1. Methodology . 68

5.3.2. Workloads . 69

5.3.3. Results . 70

MATSA Characterization 70

MATSA Comparison . 72

6.- TraTSA: A Transprecision Framework for TSA 77

6.1. Motivation and Key Idea . 77

6.2. TraTSA Framework . 78

6.2.1. Overview of TraTSA . 78

6.2.2. Transprecision SCRIMP-CPU (TranSCRIMP) 80

viii CONTENTS

6.2.3. Transprecision SCAMP-CPU (TranSCAMP) 82

6.2.4. Transprecision SCAMP-FPGA (TranSCAMPfpga) 83

6.3. Top-K Accuracy Metric . 87

6.9. Evaluation . 88

6.9.1. Methodology . 88

6.9.2. Results . 90

Short Time Series Accuracy 90

Large Time Series Accuracy 100

TraTSA Performance . 104

Energy Savings . 105

7.- Conclusions 109

7.1. Future Work . 111

Appendices 113

A.- Resumen en español 113

A.1. Introducción . 113

A.1.1. Aplicaciones de AST . 115

A.1.2. Cuellos de Botella de AST 116

A.1.3. Motivación y Contribuciones de la Tesis 118

A.2. PhiTSA: Usando un Xeon Phi para Optimizar y Caracterizar AST 120

A.2.1. Idea y Motivación . 120

A.2.2. Contribuciones . 121

A.2.3. Evaluación . 121

A.3. NATSA: Un Acelerador PNM para AST 122

A.3.1. Idea y Motivación . 122

A.3.2. Propuesta . 123

CONTENTS ix

A.3.3. Evaluación . 123

A.4. MATSA: Un Acelerador PUM para AST 124

A.4.1. Contribuciones . 124

A.4.2. Evaluación . 124

A.5. TraTSA: Un Framework Transpreciso Para AST 125

A.5.1. Idea y Motivación . 125

A.5.2. Contribuciones . 125

A.5.3. Evaluación . 126

A.6. Conclusiones y Trabajo Futuro . 127

Bibliography 131

List of Figures

1.1. Example of TSA application. In this processing flow, TSA acts

as a filter to avoid most of the computation by selecting the rele-

vant subsequences (anomalies) and discarding the irrelevant ones

(expected behavior). 2

1.2. Memory bandwidth usage (bars) and normalized performance

(lines) of a parallel and vectorized version of SCRIMP [58] run-

ning on an Intel Xeon Phi 7210. 5

1.3. Roofline analysis of a parallel and vectorized version of

SCRIMP [58] running on an Intel Xeon Phi 7210. 6

1.4. Roofline analysis of a parallel version of DTW running on an Intel

Xeon Phi 7210. 6

2.1. Example of two subsequences, Ti,m and Tj,m, of a given time series

T . Distance di,j is calculated from these subsequences. When

calculating the matrix profile P , subsequences in the exclusion

zone of Ti,m are ignored. 11

2.2. A time series with some anomalies (discords) and its matrix profile

(MP). The anomalies appear as higher distance values in the profile. 12

2.3. Example of distance matrix (D), profile (P), and profile index (I).

Pi holds the minimum distance calculated in row Di, and Ii holds

the index j of the subsequence that has such distance. Cells in the

exclusion zone are coloured red. 13

xi

xii LIST OF FIGURES

2.4. Example of similarity calculation between two subsequences (blue

and green). The Euclidean approach in a) provides a low similarity

as it only compares each ith point of blue with each ith point of

green. However, DTW in b) succesfully matches the points of the

subsequences, thus finds the high similarity. 14

2.5. a) Warping matrix example for a reference time series R and a

query subsequence Q. The DTW distance between R and Q is

the minimum value of the last row of the matrix. b) Sakoe-Chiba

band. c) Itakura parallelogram. 18

2.6. Sample PNM architecture (I). Compute Units are placed close to

the HBM cube, connected via a short and wide interface. 20

2.7. Sample PNM architecture (II). UPMEM-based PNM system with

a host CPU, standard main memory, and PNM-enabled memory

(left), and internal components of a UPMEM PNM chip (right).

Figure taken from [183]. 20

2.8. a) Crossbar organization. b) Magneto-resistive cell. c) Recon-

figurable SA that performs in-memory operations based on the

voltage across the bitline when two cells are activated. 22

2.9. Overview of the floating-point types used for energy evaluation. . . 24

3.1. Intel Xeon Phi KNL overview [93]. 28

3.2. Calculation of the Matrix Profile P and the Matrix Profile index

I from the distance matrix. For each column (or row) Di we

calculate the minimum distance and the index of the subsequence

providing such minimum distance. 29

3.3. SCRIMP’s lock-based implementation to update the Matrix Profile

and the Matrix Profile index without potential conflicts. 31

3.4. SCRIMP’s expanded structure for Matrix Profile distances (top)

and indexes (bottom) in the privatization technique. 31

3.5. Privatization-based implementation of the SCRIMP computation. . 33

3.6. SCRIMP’s inner loops unrolling and vectorization. 34

3.7. SCRIMP speedup in the Intel Xeon Phi KNL, calculated using a

random time series of of 217 (131072) elements and a fixed window

size of 1024. 36

LIST OF FIGURES xiii

3.8. SCRIMP memory bandwidth utilization in the Intel Xeon Phi

KNL, using different configurations, normalized as percentage of

execution time. DDRo stands for DDR4 ordered and DDRr stands

for DDR4 random, while HBMo means HBM+DDR4 ordered and

HBMr means HBM+DDR4 random. 39

3.9. Average DDR4 bandwidth utilization, measured varying the num-

ber of threads in an execution of SCRIMP, using a random series

of 218 elements and a window of 1024. 39

3.10. Average HBM bandwidth utilization, measured varying the num-

ber of threads in an execution of SCRIMP, using a random series

of 218 elements and a window of 1024. 39

3.11. Seismology data. This dataset, which consists of approximately

40,000 elements, presents several peaks corresponding to earth-

quakes. The Matrix Profile is able to accurately identify them,

which are represented as higher values of distance for the corre-

sponding subsequences, as they are discords with respect to the

whole time series. 42

3.12. Penguin data. This dataset, which consists of approximately

110,000 elements, presents several motifs that can help a biolo-

gist to identify when the penguin is diving, for example. 43

3.13. Neuroscience data. This dataset, which consists of approximately

1,030,000 elements, presents several discontinuities which are rep-

resented in the graph as values of 0 for readability. The Matrix

Profile is able to obtain coherent results even with those disconti-

nuities, proof of robustness of the algorithm. 43

4.1. NATSA design and integration next to HBM memory. NATSA is

connected directly to the HBM interface. 46

4.2. Example of the diagonal scheduling scheme for two processing

units, denoted as PU0 (green) and PU1 (white). Arrows show

direction of computation. 49

4.3. Speedup with respect to the baseline platform (DDR4-OoO) using

double precision data. 53

4.4. Dynamic power consumption for simulated and real hardware plat-

forms. 54

4.5. Energy consumption for simulated and real hardware platforms. . . 55

xiv LIST OF FIGURES

4.6. Area comparison of different hardware platforms. 55

4.7. Speedup over the baseline DDR4-OoO and memory bandwidth

usage for general-purpose platforms. 57

4.8. ECG (left) and seismology (right) data along with their profiles,

using double and single precision, where events are easily visible. . 58

5.1. MATSA’s high-level Architecture and Data Mapping. Note that

modifications at Inter-Bank, Inter-Mat, and Inter-Subarray lev-

els with respect to common NVM devices are negligible, easing

fabrication and compatibility. 60

5.2. MATSA’s Reconfigurable Sense Amplifier. Latch register is reused

for Addition and Diagonal Copy operations. 62

5.3. Wavefront-based sDTW computation. In a, PEs are able to cal-

culate their matrix elements in parallel. In b, the pipeline is full

and PEs are also working on different queries. 66

5.4. MATSA integration. a) High-performance accelerator (PCIe

card). b) Portable accelerator (USB stick). c) Embedded acceler-

ator (small chip). 67

5.5. Execution time when varying cell read and write la-

tencies (ref size=128K, query size=8K, num queries=8K,

matsa cols=128K). 70

5.6. Execution energy when varying cell read and write en-

ergies (ref size=128K, query size=8K, num queries=8K,

matsa cols=128K). 71

5.7. Execution time when varying workload sizes (num queries=8K,

matsa cols=128K). 71

5.8. Execution energy when varying problem sizes (num queries=8K,

matsa cols=128K). 72

5.9. Execution time when varying MATSA sizes. 72

5.10. Execution times of MATSA-Embedded (num cols=32K) and

MATSA-Portable (num cols=256K) versus baselines for different

workload sizes (rd latency=5ns, wr latency=10ns). 73

LIST OF FIGURES xv

5.11. Execution energy consumption of MATSA-Embedded

(num cols=32K) and MATSA-Portable (num cols=256K)

versus baselines for different workload sizes (rd energy=50nJ,

wr energy=70nJ). 74

5.12. Execution times of MATSA-HPC versus baselines for different

workload sizes (rd latency=5ns, wr latency=10ns, num cols=1M). 74

5.13. Execution energy consumption of MATSA-HPC versus baselines

for different workload sizes (rd energy=50nJ, wr energy=70nJ,

num cols=1M) . 75

6.1. TraTSA overview and its components. The user provides a time se-

ries file (.txt) and a configuration file (.cfg) to the wrapper. Then,

the wrapper invokes matrix profile either in the CPU or in the

FPGA. Finally, the wrapper provides the user the transprecision

matrix profile (.csv) and some statistics (.stats). 79

6.2. Example of TraTSA’s cfg file. 79

6.3. Transprecision SCRIMP (TranSCRIMP) algorithm (transprecision

operations highlighted). 81

6.4. FPGA implementation overview. TranSCAMPfpga is composed of

six kernels optimized for a Xilinx Alveo U50 FPGA that compute

transprecision SCAMP algorithm using the data in the HBM. . . . 84

6.5. TranSCAMPfpga systolic array example. 86

6.6. FPGA implementation diagram. 86

6.7. TranSCRIMP Top-100 motif accuracy with respect to double. 91

6.8. TranSCRIMP Top-100 discord accuracy with respect to double. . . . 92

6.9. TranSCAMP Top-100 motif accuracy with respect to double. 93

6.10. TranSCAMP Top-100 discord accuracy with respect to double. . . . 94

6.11. TranSCAMP Song profile with respect to double. The horizontal

axis represents the index of the datapoints within the complete

time series and the vertical axis represents the amplitude of the

signal. 95

6.12. TranSCAMP ECG short profile with respect to double. The horizon-

tal axis represents the index of the datapoints within the complete

time series and the vertical axis represents the amplitude of the

signal. 96

xvi LIST OF FIGURES

6.13. TranSCAMP Power short profile with respect to double. The hori-

zontal axis represents the index of the datapoints within the com-

plete time series and the vertical axis represents the amplitude of

the signal. 96

6.14. TranSCAMP Seismology short profile with respect to double. The

horizontal axis represents the index of the datapoints within the

complete time series and the vertical axis represents the amplitude

of the signal. 97

6.15. TranSCAMP Human Activity profile with respect to double. The

horizontal axis represents the index of the datapoints within the

complete time series and the vertical axis represents the amplitude

of the signal. 98

6.16. TranSCAMP Penguin Behavior profile with respect to double. The

horizontal axis represents the index of the datapoints within the

complete time series and the vertical axis represents the amplitude

of the signal. 98

6.17. TranSCAMPfpga Top-1000 motif accuracy results with respect to

double precision using a recalculation factor of 64K elements. . . . 101

6.18. TranSCAMPfpga Top-1000 discord accuracy results with respect to

double precision using a recalculation factor of 64K elements. . . . 102

6.19. TranSCAMPfpga Top-1000 accuracy results with respect to double

precision when varying the recalculation factor. 103

6.20. EPG matrix profile when varying the recalculation factor using

TranSCAMPfpga for a given mantissa and exponent combination. . 104

6.21. Execution time for different platforms when computing Seismol-

ogy short, using a window size of 512 elements (exp. 7 man. 10). . 105

6.22. Normalized FPU energy using FPNew. 106

List of Tables

1.1. Time Series Analysis application examples 3

2.1. Overview of different NVM technologies [45]. 23

2.2. Floating-point bit counts, ranges and smallest numbers 24

3.1. SCRIMP execution on Intel Xeon Phi KNL versus STOMP on

NVIDIA Tesla K80‡. 38

3.2. Time for SCRIMP using only DDR4 in random order. 40

3.3. Time for SCRIMP using only DDR4 in sequential order. 40

3.4. Time for SCRIMP using HBM plus DDR4 in random order. 40

3.5. Time for SCRIMP using HBM plus DDR4 in sequential order. . . 40

3.6. GFLOP/s for SCRIMP with different configurations. 41

4.1. Synthetic time series for performance evaluation. 52

4.2. Execution time (in seconds) for single-precision and double-precision. 54

4.3. NATSA design components for 48 PUs. 56

5.1. MATSA design exploration parameters. 69

5.2. Workload parameters used in our evaluation. 69

6.1. TranSCAMPfpga kernel resource utilization 87

6.2. Time series dataset parameterization 90

6.3. Mixed precision Top-100 accuracy results 99

6.4. Energy consumption for different platforms when computing Seis-

mology short, using a window size of 512 elements (exp. 7 man.

10) . 105

xvii

1 Introduction

The explosion of the Internet-Of-Things and Big Data era has resulted in

the continuous generation of a very large amount of data, which is increasingly

difficult to store and analyze [112]. Small sensors and devices produce a significant

portion of this data [200], which includes observations (e.g., temperature, voltage,

sound) sampled over time. Such a collection of data is also referred to as a time

series, a common data representation in almost every scientific discipline and

business application [167], for instance, epidemiology, genomics, neuroscience,

environmental sciences, and stock markets. Time series analysis (TSA) splits the

time series into subsequences of consecutive data points to extract information.

To find subsequences of interest, TSA algorithms define a distance metric,

e.g., Euclidean Distance (ED) or Dynamic Time Warping (DTW). This distance

metric represents how similar are two given subsequences, meaning that the lower

the distance value is, the more similar are them. Based on the distance metric,

the algorithm classifies the subsequences that have low distance as motifs [148]

(similarities) and high distance as discords [100] (anomalies). This classification

is a critical step before further analysis via domain-specific algorithms or human

experts, enabling TSA as a tool of vital importance and generality .

TSA algorithms can be used to filter out those subsequences that match

an expected behavior, leaving only anomalies for the computationally expensive

domain-specific algorithm (e.g., [126]), i.e., only a small amount of critical data

that need to be further analyzed. One example is SquiggleFilter [50], a TSA-based

accelerator that processes the Mini-ION sequencer’s output and filters everything

except sequences of interest, pruning more than 85% of the computation. How-

ever, SquiggleFilter optimizations rely on a modified version of DTW that looses

generality to other applications. Figure 1.1 describes the filtering process based

on an example data flow for electrocardiogram data and a generic TSA algorithm.

1

2 Chapter 1. Introduction

TSA
Algorithm

Domain-specific
Algorithm

Raw Signals From A Sensor Filtering

AnomalyFurther Processing

DIAGNOSIS
=======
Premature
ventricular
contraction

Result

1) 2)

3)4)5)

Figure 1.1: Example of TSA application. In this processing flow, TSA acts as

a filter to avoid most of the computation by selecting the relevant subsequences

(anomalies) and discarding the irrelevant ones (expected behavior).

Key Motivation I: TSA is useful in many domains, but prior acceleration

proposals mostly rely on modifications of the algorithms that loose generality

Diving into the implementation point of view, we find that Matrix Profile [196]

(MP) is the state-of-the-art set of tools to perform TSA, which comprises of

both Euclidean Distance and Dynamic Time Warping algorithms. There are

several CPU-based, GPU-based and even FPGA-based MP implementations in

the literature [196, 86, 202, 204]. These CPU, GPU and FPGA approaches are

embarrassingly parallelizable, relying on simple arithmetic operations over data

to calculate distances. In this sense, the naive parallelization approach consists on

spreading all the distances to calculate across the computational resources since

–in principle– there are no dependencies between them. This scheme provides

almost the size of the time series fully independent execution flows, much higher

than typical core count in commodity CPUs and GPUs. In order to accelerate

parallel implementations of TSA under those architectures, increasing the core

count appears to be a promising approach.

With such opportunity in mind, we first characterize a MP implementation in

a many-core machine (Intel Xeon Phi KNL) and find that core count is not the

only bottleneck for TSA. Concretely, we observe that the scalability stops after

a certain number of cores and conclude that the performance and energy

efficiency of TSA algorithms are heavily burdened by data movement .

1.1. TSA Applications 3

This observation is based on 1) the low arithmetic intensity of the algorithm

and 2) the need to access large amounts of time series data from the memory.

In other words, the amount of computation per data access is not enough to

hide the memory latency, so the algorithm is memory bound in a conventional

CPU architecture. Within this context, Processing-Near-Memory (PNM) and

Processing-using-Memory (PUM) place computation closer to data, thus reduc-

ing the impact of data movement. Based on this, we consider PNM and PUM

architectures as promising approaches to accelerate TSA.

Key Motivation II: TSA is bottlenecked in conventional architectures by

1) the low core count with respect to the potential parallelism and 2) data

movement between memory and processing units

In the rest of this Introduction chapter, we further elaborate the two key

motivation points and present the contributions of this thesis.

1.1. TSA Applications

The first point of motivation of this thesis is based on the fact that TSA

constitutes one of the most important data mining primitives thanks to its gen-

erality in detecting anomalies and similarities for a wide range of applications.

Note that this desirable feature is enabled by the domain-agnostic nature of the

TSA algorithms, as their outputs are simple distance values. Table 1.1 presents

a few examples of TSA applications.

Field References Field Reference

Bioinformatics [51] Speech Recognition [25]

Robotics [175] Weather Prediction [131]

Neuroscience [51] Entomology [170]

Machine Learning [186] Geophysics [181]

Econometrics [83] Statistics [162]

Finance [182] Control Engineering [31]

Signal Processing [109] Pattern Recognition [189]

Communication [111] Medicine [88]

Astronomy [184] Social Networks [144]

Clustering [186] Classification [99]

Earthquakes [181] GPS Tracking [108]

Virtual Reality [169] Gesture Recognition [89]

Trajectories [24] Traffic Monitoring [119]

Table 1.1: Time Series Analysis application examples

4 Chapter 1. Introduction

In statistics, econometrics, meteorology, and geophysics, the primary goal of

time series analysis is prediction and forecasting. At the same time, in signal

processing, control engineering, and communication engineering, it is used for

signal detection and estimation. In data mining, pattern recognition, and ma-

chine learning, time series motif and discord discovery are used for clustering,

classification, anomaly detection, and forecasting. Finally, the most important

application of time series motif and discord discovery is clustering seismic data

and discovering earthquake pattern clusters from the continuous seismic record-

ing. Consequently, seismic clustering can be applied to earthquake relocation and

volcano monitoring to help improve earthquake and volcanic hazard assessments.

End-to-End Application Benefits of using TSA. TSA is critical for real-

life examples of end-to-end applications. For instance, [90] predicts circulatory

failure in intensive care units. In this scenario, 90% of the execution time is dom-

inated by TSA preprocessing, while the remainder 10% is used by the machine

learning-based application to perform the classification. We also find many other

real use case examples that can benefit from this approach, such as:

Earthquake detection [41]. TSA can process the data from a seismo-

graph and detect anomalies that can be further processed with complex

algorithms.

Electroencephalography [37]. Assuming an electroencephalograph that

is monitoring a patient, TSA can be used to detect anomalies and trigger

an alarm about that.

Virus Detection [50]. During the genome assembly process, basecalling

is a compute-intensive task that can be skipped for most queries using a

TSA-based filter.

Based on that, we conclude that TSA 1) is widely applicable and 2) its accelera-

tion significantly benefits the whole application execution time.

1.2. TSA Bottlenecks

The second point of motivation of this thesis is based on the fact that TSA

is bottlenecked in commodity architectures. To identify those bottlenecks, we

first develop an optimized and vectorized version of a state-of-the-art implemen-

tation of Matrix Profile. Then, we characterize it using a many-core machine

(Intel Xeon Phi KNL) that also includes High-Bandwidth-Memory (HBM) in

1.2. TSA Bottlenecks 5

conjunction with conventional DDR4. We first observe that while the hardware

thread count (256) of the Intel Xeon Phi is relatively high compared to lower

end machines, there are still way more independent executions flows (thousands,

millions) than threads. However, thread availability is not the only bottleneck for

TSA. In Figure 1.2, we present the performance results normalized to 1 thread

(lines) and utilized memory bandwidth (bars) of this Euclidean Distance based

implementation of MP, known as SCRIMP. We observe that, when using the

DDR4 memory, the performance of SCRIMP does not scale beyond 32 threads,

whereas the higher memory bandwidth provided by HBM enables SCRIMP to

scale up to 128 threads. This shows that SCRIMP’s performance saturates on

many-core architectures, because the achievable bandwidth saturates when the

number of threads increases.

1 2 4 8 16 32 64 128 256
Number of threads

0

100

200

300

B
an

d
w

id
th

(G
B

/s
)

DDR4

HBM

0

40

80

120

S
p

ee
d

u
p

Figure 1.2: Memory bandwidth usage (bars) and normalized performance (lines)

of a parallel and vectorized version of SCRIMP [58] running on an Intel Xeon

Phi 7210.

To understand the cause for this memory boundedness, we perform the next

experiment. We generate the roofline analysis for SCRIMP, as we show in Fig. 1.3,

and observe that the arithmetic intensity of SCRIMP is significantly low. This

fact confirms that the memory boundedness of SCRIMP is due to the low arith-

metic intensity of the algorithm, which leads processing cores to be underuti-

lized. Based on all these observations, we conclude that the performance of the

state-of-the-art CPU-based implementation of SCRIMP is heavily bottlenecked

by available memory bandwidth and data movement.

However, based on the similar operational simplicity of the TSA algorithms

and the huge amount of data to process, we hypothesize that the bottlenecks are

shared across other TSA approaches. To prove this statement, we also character-

ize a Dynamic-Time-Warping (DTW) implementation in the same architecture

as SCRIMP and discuss the bottlenecks in other platforms.

6 Chapter 1. Introduction

0 1 10 100 1000
Arithmetic Intensity (GFLOP/Byte)

10

100

P
er

fo
rm

an
ce

(G
F

L
O

P
S

)

x
SCRIMP

Memory-bound Compute-bound

L1 Bandwidth
Max: 1.06 TB/s

DDR4 Bandwidth
Max: 79.57 GB/s

Computing Peak:
139.46 GFLOPS

Figure 1.3: Roofline analysis of a parallel and vectorized version of SCRIMP [58]

running on an Intel Xeon Phi 7210.

0 1 10 100 1000
Arithmetic Intensity (INTOP/Byte)

10

100

P
er

fo
rm

an
ce

(G
IN

T
O

P
S

)

x

DTW

Memory-bound Compute-bound

L1 Bandwidth
Max: 1.06 TB/s

DDR4 Bandwidth
Max: 79.57 GB/s

Computing Peak:
144.63 GINTOPS

Figure 1.4: Roofline analysis of a parallel version of DTW running on an Intel

Xeon Phi 7210.

CPU platforms. We profile the performance of DTW using the same many-

core processor (Intel Xeon Phi 7210) as we used for SCRIMP, analyzing the

execution of 16K queries of 8K elements each that are compared against a ref-

erence sequence of 32K elements. Figure 1.4 presents the roofline plot for the

experiment.

First, we observe that DTW only exploits 41% of the system’s integer peak

performance, i.e., 59 GINTOPS out of 145 GINTOPS, and it presents low arith-

metic intensity (0.55 INTOP/Byte). Second, we find that the memory footprint

of the execution is ≈570MB. The total memory traffic generated during runtime

is ≈267 GB, putting the kernel above the DDR4 peak bandwidth most of the

execution time.

GPU platforms. We find that several prior works [201, 124, 35, 42, 53]

1.2. TSA Bottlenecks 7

propose to accelerate DTW using GPUs. However, these works rely on shared-

memory optimizations that only perform for certain small query sizes. For large

query sizes, these implementations either 1) do not work or 2) use high-latency

global-memory to hold the main data structures of DTW, which results in large

performance penalties. We develop a CUDA-based implementation that sup-

ports arbitrary sizes. Then, we analyze DTW using NVIDIA Visual Profiler and

observe that its GPU core utilization is below 50% of the theoretical peak per-

formance, and DTW execution is bottlenecked by a large number of accesses to

the global memory.

FPGA platforms. Several prior works propose [97, 98, 16] to accelerate

DTW using FPGAs. However, most of them have very limited onboard memory,

and data has to be moved over narrow buses. We develop our own HLS-based

FPGA implementation and find that 1) the number of computation units is not

enough to exploit the inherent parallelism of DTW, and 2) the compute units

spend most of their time waiting for the memory accesses to be served.

PNM/PUM platforms. One way of improving parallelism and reducing

data movement costs is to perform computation near memory or using the actual

memory cells. We analyze several approaches in those directions and detail their

benefits and drawbacks:

General-purpose PNM . This approach typically places small CPU cores in

the same die as DRAM. The main benefit of this scheme is that the archi-

tecture can be potentially used for general-purpose applications. However,

this comes at the cost of limited parallelism. We evaluate a general-purpose

PNM (upmem baseline) in 5.3.3, and our evaluations show that this archi-

tecture is compute bound when performing the DTW computation.

Specialized PNM . This approach typically places an ASIC accelerator in

the same die as DRAM. The main benefit of this approach is that the pro-

cessing elements are highly optimized for the target workload. However,

the data still needs to be moved from memory to the accelerator. Even

though an ASIC accelerator can be used in a PNM architecture, perfor-

mance would still be bottlenecked by data movement between memory and

the accelerator, similarly to general-purpose PNM.

SRAM-based PUM . This approach uses SRAM-based memory arrays to

perform in-situ computation (e.g., compute caches [10]). The main benefits

of this approach are the high levels of parallelism and reduced data move-

ment. Unfortunately, SRAM suffers from density and scalability issues [75],

along with being radiation vulnerable.

8 Chapter 1. Introduction

DRAM-based PUM . This approach uses DRAM-based memory arrays to

perform in-situ computation (e.g., SIMDRAM [79]). However, this ap-

proach involves internal data movement to perform the operations, as data

needs to be moved to specific compute-enabled rows before performing the

actual operations. Moreover, DRAM suffers from data volatility and de-

structive read problems.

After identifying which compute paradigm fits better for TSA, the selection

of the memory technology is crucial to ensure feasibility of the acceleration solu-

tions. For example, the PNM approach is usually based on DRAM technologies,

however high-bandwidth memories (e.g., HBM) are a must to ensure maximum

occupancy of the processing elements. When moving to PUM and using the

actual cells to perform the computation, it is possible to build accelerators us-

ing also DRAM technology, but in this case performance scaling is limited by

1) re-freshing times and specially by 2) the need of moving data to compute

enabled rows. Because of that, crossbar-based NVM technologies can overcome

those two issues, but it is challenging to support frequent write operations. This

is because NVM-based architectures usually suffer from significant latency and

energy penalties, and specially low endurance. However, emerging NVM tech-

nologies are a possible solution to overcome those drawbacks. We discuss deeper

into the memory technology selection on the Background Chapter.

1.3. Thesis Motivation and Contributions

The increasing demand for processing data puts on the table the necessity of

providing computing platforms that match the performance requirements. More-

over, energy consumption is a growing critical concern in those platforms. As we

show in Section 1.1, TSA is a useful tool to preprocess the immense amount of

data that are generated by contemporary devices, thus making the optimization

and energy efficiency of TSA as a matter of vital importance. This motivates

us to carefully study state-of-the-art TSA algorithms and propose solutions to

mitigate their bottlenecks.

In recent times, computer architecture community has identified data move-

ment between memory and processing units as the main bottleneck for scaling

up performance. This fact is also applicable to TSA, as we show in Section 1.2.

Based on that, platforms that place computation closer to data have been re-

visited and there are huge research efforts in this direction. We distinguish be-

tween Processing-Near-Memory, were compute units are placed physically closer

1.3. Thesis Motivation and Contributions 9

to memory, and Processing-using-Memory, where the actual memory cells are

used to perform computation.

The main goal of this thesis is to study if PNM and PUM architectures are

good candidates to accelerate TSA and make its computation energy-efficient.

Additionally, we study TSA from the algorithmic point of view, reducing the

number of floating-point bits required for computation and optimizing resources.

Our main contributions in this thesis and the related publications, which aim

to fulfil the goal of it, are the following:

PhiTSA [58]. We optimize and characterize state-of-the-art TSA algo-

rithms in a many-core Intel Xeon Phi KNL platform. We identify data

movement as a main bottleneck that 1) prevents from further acceleration

and 2) consumes most of the execution energy.

NATSA [57]. We propose a novel Processing-Near-Memory accelerator

for TSA, known as NATSA. This accelerator places custom floating-point

processing units close to High-Bandwidth-Memory, exploiting its memory

channels and the lower latency of accesses. NATSA significantly improves

performance and energy consumption with respect to commodity systems

when performing Euclidean Distance based TSA computation.

MATSA [Under Review]. We propose a novel Processing-Using-Memory

accelerator for TSA, known as MATSA. The key idea is to exploit magneto-

resistive memory crossbars to enable energy-efficient and fast time series

computation in memory while overcoming endurance issues of other non-

volatile memory technologies. MATSA: 1) leverages high levels of paral-

lelism in the memory substrate by exploiting column-wise arithmetic op-

erations, and 2) significantly reduces the data movement costs performing

computation using the memory cells. We perform a design space explo-

ration and demonstrate that our HPC version of MATSA greatly improves

performance and energy efficiency over server CPU, GPU and PNM.

TraTSA [56, 55]. We evaluate the benefits of applying Transprecision

Computing to TSA, where the number of bits dedicated to floating-point

operations is reduced. We develop TraTSA, a framework that enables tun-

ing the precision of the operations for every use case, maximizing the re-

source utilization of the arithmetic units. Using this approach, it is possible

to reduce the area required by the system, which enables the possibility of

including more arithmetic units thus improve performance and reduce en-

ergy consumption.

10 Chapter 1. Introduction

Additionally, this thesis has contributed to several publications related to the

mitigation of the data movement bottlenecks [69, 71, 82, 146, 68, 64].

1.4. Thesis Structure

The remainder of this thesis is structured in the following way. In Chapter 2

we provide some background and related work. In Chapter 3 we optimize and

characterize a state-of-the-art TSA algorithm in a many-core machine. In Chap-

ter 4 we present NATSA, a novel Processing-Near-Memory accelerator for TSA.

In Chapter 5 we present MATSA, a novel Processing-Using-Memory accelerator

for TSA. In Chapter 6 we present TraTSA, a framework to optimize the floating-

point operations involved in TSA computation. Lastly, Chapter 7 presents the

conclusions of this thesis.

2 Background and Related
Work

In this chapter, we present the some background to support the rest of the

thesis. First, we introduce time series analysis and its state-of-the art implemen-

tations. Second, we explain the key idea behind Processing Near/In Memory to

mitigate the data movement bottleneck. Finally, we provide some insights on

how transprecision computing can boost performance and energy efficiency.

2.1. Time Series Analysis

We begin our introduction to time series analysis by providing some basic

definitions. A time series T is a sequence of n data points ti, where 1 ≤ i ≤ n,

collected over time. Those data points are usually numeric values that can be

represented in any format (e.g., integers or floats). A subsequence of T , also

called a window, is denoted by Ti,m, where i is the index of the first data point,

and m is the number of samples in the subsequence, with 1 ≤ i, and m ≤ n− i.
Figure 2.1 shows an example time series with two subsequences highlighted.

0 100 200 300 400 500 600
0

20

D
at

a Ti,m Tj,m

Figure 2.1: Example of two subsequences, Ti,m and Tj,m, of a given time series

T . Distance di,j is calculated from these subsequences. When calculating the

matrix profile P , subsequences in the exclusion zone of Ti,m are ignored.

11

12 Chapter 2. Background and Related Work

Time series analysis algorithms usually try to find subsequences of interest,

like motifs (repeated patterns) or discords (anomalies). Multiple techniques exist

for time series motif and discord discovery [178, 148, 40, 174, 59, 194, 176, 135,

34, 142, 143, 123, 134, 197, 74, 180, 25]. In terms of precision, those approaches

can be classified as approximate [179] or exact [196]. Approximate algorithms

usually take less execution time than exact ones. However, for large time series,

an approximate algorithm can provide inaccurate results as they are based on

probabilistic assumptions. Moreover, the user has to set several (even not intu-

itive) parameters, trying to get results accordingly to the expected ones, a fact

which is not always possible. Taking the best of those two approaches, anytime

algorithms incrementally improve the result over the execution time. This means

that if the execution is interrupted before its completeness, a partial solution is

obtained. In case the anytime algorithm is executed until the end, the exact so-

lution is obtained. Based on that, we focus our attention on anytime algorithms.

The state-of-the-art exact and anytime set of tools for time series analysis is

matrix profile [196]. We show a naive example of a matrix profile execution in

Figure 2.2, where a sinusoidal time series (red one) presents some anomalies. The

output of the algorithm is another time series (the green one, known as profile),

which contains the distance (similarity) for every subsequence indexed by its first

element with respect to the most similar neighbor of the rest of the time series.

0

20

D
a
ta

0 100 200 300 400 500

Samples

0

5

M
P

Figure 2.2: A time series with some anomalies (discords) and its matrix profile

(MP). The anomalies appear as higher distance values in the profile.

The similarity between two subsequences Ti,m and Tj,m can be calculated

using the z-normalized Euclidean distance, which is defined as follows:

di,j =

√
2m

(
1− Qi,j −mµiµj

mσiσj

)
(2.1)

2.1. Time Series Analysis 13

where Qi,j is the dot product of Ti,m and Tj,m; µx and σx are the mean and

the standard deviation of the points in Tx,m, respectively. These statistics are

calculated in O(n) time [151], taking negligible time of the whole computation.

Using the distance in Eq. 2.1 (or another one), the matrix profile algorithm

solves the similarity search problem in three steps. First, it builds a symmetric

(n−m+ 1)× (n−m+ 1) matrix D, called distance matrix. Each cell in D, di,j ,

stores the distance between two subsequences, Ti,m and Tj,m. Second, it creates

an array P of size n−m+ 1, called profile. Each cell Pi in P keeps the minimum

distance recorded in the ith row of D. Third, it allocates an array I that is of

the same size as P , called profile index, such that Ii = j if Pi = di,j . This way,

P contains the minimum distances between subsequences, while I is the vector

of “pointers” to the location of these subsequences within the time series.

Fig. 2.3 depicts an example of the distance matrix D, the profile P , and

the profile index I. The neighboring subsequences of Ti,m are highly similar to

it (i.e., di,i+1 ≈ 0) due to overlapping between them. The algorithm excludes

these subsequences from the computation to avoid false positives, by defining an

exclusion zone (Figure 2.1) for each subsequence. It follows the approach in [202],

where the exclusion zone of Ti,m is Ti,m4 (i.e., ends at ti+m
4

of the time series).

d1,1 d1,2 d1,3 d1,4 ... d1,n-m+1

d2,1 d2,2 ... di,j

d3,1 ... d3,3

d4,1 d4,4

...

dn-m+1,1 dn-m+1,

n-m+1

min(D1)

min(D2) j | d2,j = P2

... ...

... ...

... ...

min(Dn-m+1)

j | d1,j = P1 j | d1,j = P1 D1

D2

D3

D4

...

Dn-m+1

Ti,m Tj,m P I

j | dn-m+1,j
= Pn-m+1

j | dn-m+1,j
= Pn-m+1

Figure 2.3: Example of distance matrix (D), profile (P), and profile index (I). Pi

holds the minimum distance calculated in row Di, and Ii holds the index j of the

subsequence that has such distance. Cells in the exclusion zone are coloured red.

There are several Euclidean-Distance-based implementations of matrix pro-

file, including STAMP [196], STOMP [86], SCRIMP [202] and SCAMP [203].

SCRIMP is the state-of-the-art CPU-based implementation. Prior acceleration

approaches to time series analysis [86, 202] mainly focus on accelerating STOMP

14 Chapter 2. Background and Related Work

and PreSCRIMP [202] on GPUs. SCAMP [203] is a framework that combines a

host (either a local machine or a server in a compute cluster) and workers that

follow the directions from the host (either other CPUs in the cluster or accelera-

tors such as GPUs). Recent proposals [13] have started to utilize Dynamic Time

Warping (DTW)-based solutions because of higher precision. Figure 2.4 shows

the key difference between the ED and DTW approaches, in which we compare

two similar-shape subsequences that are offset with a fixed constant. It can be

observed that the DTW algorithm offers better results as it compares a given

point with respect to several potential candidates (i.e., determines the best align-

ment). In contrast, ED executes point-to-point alignment that cannot determine

the best alignment in presence of an offset. ED can be considered as a special

case of DTW where the warping window is set to one element.

a) b)

Figure 2.4: Example of similarity calculation between two subsequences (blue

and green). The Euclidean approach in a) provides a low similarity as it only

compares each ith point of blue with each ith point of green. However, DTW in b)

succesfully matches the points of the subsequences, thus finds the high similarity.

The time series analysis implementations covered so far are embarrassingly

parallelizable, since the computation of different subsequence pairs is completely

independent. In the next subsections, we provide some details about 1) SCRIMP,

2) SCAMP and 3) DTW.

2.1.1. SCRIMP Implementation

The state-of-the-art CPU-based implementation of the matrix profile algo-

rithm is SCRIMP [202]. The key mechanism behind SCRIMP is that the dot

product in Eq. 2.1 can be calculated incrementally in the diagonals of D:

Qi,j = Qi−1,j−1 − ti−1tj−1 + ti+m−1tj+m−1 (2.2)

This property enables a huge reduction of the computational cost of the al-

gorithm, since it reduces the number of multiplications and additions needed.

2.1. Time Series Analysis 15

According to Eq. 2.2, except for the first dot product, the remaining cells of a

diagonal can be calculated using the values from the immediate upper left cells.

Algorithm 1, shows the pseudocode of a parallel version of SCRIMP. First,

it precalculates the means and standard deviations of every subsequence of the

time series (line 1), and initializes the profile vector (lines 2-3) to infinity. Second,

it computes the diagonals in a parallel manner (see Fig. 2.3) using the loop in

line 4. The variable nDiag is the number of diagonals of D assigned to each

thread. These diagonals can be ordered in the diag vector (line 5) a) randomly,

enabling the anytime property of the algorithm, or b) sequentially, discarding

the anytime property but allowing for optimizations [202] (e.g., exploiting data

locality of consecutive diagonals).

Algorithm 1 SCRIMP

1: µ, σ ← precalculateMeansDevs(T,m);

2: for i← 0 to size(P)− 1 do

3: Pi ←∞;

4: for idx← tid ∗ nDiag to (tid+ 1) ∗ nDiag − 1 do

5: i← 0; j ← diagidx;

6: q ← dotProduct(Ti,m, Tj,m);

7: d← dist(m, q, µi, σi, µj , σj);

8: if d < Pi then Pi ← d; Ii ← j;

9: if d < Pj then Pj ← d; Ij ← i;

10: i← i+ 1;

11: for j ← diagidx + 1 to size(P) do

12: q ← q + ti+m−1+ktj+m−1+k − ti−1+ktj−1+k;

13: d← dist(m, qsk, µi+k, σi+k, µj+k, σj+k);

14: if d < Pi then Pi ← d; Ii ← j;

15: if d < Pj then Pj ← d; Ij ← i;

16: i← i+ 1

The size of the distance matrix D can be huge for large time series, so it

is not convenient to store it in memory. For example, an earthquake sequence

from a seismograph, consisting of 24,000 elements [185], needs approximately

1.3 GB of memory using double precision floating point representation. However,

a 650,000 electrocardiogram (ECG) time series from the MIT-BIH arrhythmia

database [133] requires about 850 GB of memory. Furthermore, we need to

maintain the matrix profile P , the matrix profile index I and the time series T .

For these reasons, matrix profile algorithms are designed to store only the profile,

and the profile index arrays, and they compute the minimum di,j on the fly.

16 Chapter 2. Background and Related Work

For each diagonal, the algorithm first computes the dot product of the first

pair of subsequences in line 6 using the dotProduct function. Second, it calculates

the distance according to Eq. 2.1 (line 7). Third, it checks and replaces the

corresponding profile element with the new distance provided that the calculated

one is smaller (lines 8-9). Then, the algorithm exploits the dot product update

for the remaining elements in the diagonal with the following steps: 1) it adds

the previous dot product to new calculated terms one (line 12); 2) it computes

the new distance (line 13) and 3) performs the update if necessary (lines 14-15).

2.1.2. SCAMP Implementation

Whereas following a similar computation scheme than SCRIMP, SCAMP re-

places the sliding dot product with a mean-centered-sum-of-products in order

to reduce the floating-point rounding errors and the number of operations re-

quired [203]. The following equations can be precomputed in O(n−m+ 1) time,

with n−m+ 1 = l being the length of the matrix profile vector:

dfi =
Ti+m−1 − Ti−1

2
, 0 < i < l (2.3)

dgi = Ti+m−1 − µi + Ti−1 − µi−1, 0 < i < l (2.4)

ssqi =

∑m−1

k=0 (Tk − µ0)2, i = 0

ssqi−1 + (Ti+m−1 − µi + Ti−1 − µi−1)

(Ti+m−1 − Ti−1), 0 < i < l

(2.5)

σi =
√
ssqi, 0 ≤ i < l (2.6)

Eqs. 2.3 and 2.4 are terms used in the covariance update of Eq. 2.7, and the

standard deviation (L2-norm of subsequence Ti,m − µi) calculated in Eqs. 2.5

and 2.6 is used for the Pearson correlation coefficient depicted by Eq. 2.8. Note

the exclusion zone in the limits of Eq. 2.7 given by m
4 .

σi,j =

{∑m−1
k=0 (Tk − µ0)(Tk+j − µj), i = 0, m4 < j < l

σi−1,j−1 + dfidgj + dfjdgi, i > 0, m+4
4 < j < l

(2.7)

Pi,j =
σi,j
σiσj

(2.8)

Di,j =
√

2m(1− Pi,j) (2.9)

The matrix profile can be derived incrementally for each diagonal of the distance

matrix, Eq. 2.7, from the calculation of the covariance of two subsequences of the

2.1. Time Series Analysis 17

first row (first piece in Eq. 2.7). The Pearson correlation coefficient in Eq. 2.8

can be computed in fewer operations and it is more robust than the Euclidean

Distance used by SCRIMP. Eq. 2.9 calculates the distance from the Pearson

coefficient in O(1). Full derivations for Eq. 2.5 and Eq. 2.7 can be found in [203].

2.1.3. DTW Implementation

The Dynamic Time Warping (DTW) algorithm was first introduced by [26].

The key idea behind DTW is to compute the distance between a certain point

in a subsequence and a set of points in another subsequence, considering the

minimum distance found. This process is repeated for all the points of the first

subsequence, and the sum of all distances provides a similarity measure between

the subsequences. Let’s assume that we have two time series subsequences, Q

and R, of length n and m, respectively, where:

Q = q1, q2, ..., qi, ..., qn (2.10)

R = r1, r2, ..., rj , ..., rm (2.11)

To find how similar those two subsequences are (i.e., find the best alignment

between them), DTW constructs an n-by-m scoring matrix (S). We show an

example of this matrix in Figure 2.5 a. Each (ith, jth) cell of the matrix is filled

in two steps. First, the algorithm calculates the distance d(qi, rj) between the

two corresponding points of the subsequences. There are several approaches to

calculate such distance, while d(qi, rj) = abs(qi−rj) and d(qi, rj) = (qi−rj)2 are

the most common ones [26]. Second, the distance value is added to the minimum

of three neighboring cells, as follows:

si,j = d(qi, rj) +min(si−1,j−1, si−1,j , si,j−1) (2.12)

Once the matrix is computed using dynamic programming, the goal is to find

the best alignment (i.e., minimum accumulated cost), known as the warping path

(W). The warping path is a contiguous set of matrix cells that defines the best

mapping between Q and R, subject to some constraints [26]:

Boundary conditions: the warping path must start and finish in diagonally

opposite corner cells of the matrix.

Continuity : the permissible steps in the warping path are restricted to

adjacent cells.

18 Chapter 2. Background and Related Work

Monotonicity : the consecutive points in W must strictly increase with re-

spect to the time they were collected.

Several DTW implementations try to reduce the computation cost and mem-

ory footprint by restricting the DTW score matrix calculation using different

approaches, for instance, the Sakoe-Chiba band (Figure 2.5 b) and the Itakura

Parallelogram (Figure 2.5 c). However, these approaches only apply to scenar-

ios where the end-to-end sequences are quite similar and present small sequence

compressions and attenuations (time warps). In other words, they do not fit

well when the goal is to filter out irrelevant subsequences. In such scenarios,

there are usually many small queries to compare against a longer reference (set

of admissible patterns) and then detect the possible anomalies.

a) b)

c)

R

Q

Figure 2.5: a) Warping matrix example for a reference time series R and a query

subsequence Q. The DTW distance between R and Q is the minimum value of

the last row of the matrix. b) Sakoe-Chiba band. c) Itakura parallelogram.

Subsequence Dynamic Time Warping (sDTW). sDTW is a slightly

modified DTW algorithm that allows unbounded subsequence alignment. In the

DTW domain, the unbounded alignments are often referred to as open start and

open end, respectively. Using this approach, it is possible to align sequences of

different lengths (e.g., a small query over a larger reference). Algorithm 2 presents

the pseudocode of sDTW. First, it initializes the matrix S with zeros. Second,

it calculates the distance value of the top-left corner and then the remaining

elements of the first row, taking into account the previous values. Third, it fills

the remaining elements of the matrix using dynamic programming row by row.

Finally, it returns the minimum element of the last row of the S matrix, which

indicates the similarity between the query and the best alignment with (part of)

the reference.

2.2. Mitigating the Data Movement Bottleneck 19

Algorithm 2 Subsequence DTW (sDTW)

1: procedure sDTW(Q,R)

2: S ← zeros(N,M);

3: S[0, 0] = abs(Q[0]−R[0]);

4: for i← 1 to N do

5: S[i, 0]← S[i− 1, 0] + abs(Q[i]−R[0]);

6: for i← 1 to N do

7: for j ← 1 to M do

8: S[i, j]← abs(Q[i]−R[j]) +

9: min(S[i− 1, j − 1], S[i, j − 1], S[i− 1, j]);
return min(S[N, :])

2.2. Mitigating the Data Movement Bottleneck

Processing-Near-Memory and Processing-Using-Memory are two promising

hardware architectural paradigms to mitigate the data movement bottleneck. In

the first one, compute units are placed close to memory arrays, while in the latter

one compute units are the actual memory arrays. We discuss some details about

them in the following subsections.

2.2.1. Processing-Near-Memory

Processing-Near-Memory (PNM) is a promising paradigm to reduce the data

movement between CPUs and memory by placing simple general-purpose pro-

cessors [84, 11, 28] or application-specific accelerators [85, 199, 106, 33, 28, 12] in

or close to the logic layer of 3D-stacked memory. Generally, PNM can provide

performance benefits for memory-bound applications when they exhibit one or

more of the following major properties: 1) requiring higher memory bandwidth

than available in the system, 2) being sensitive to memory access latency [138],

or 3) performing irregular memory accesses, such that they cannot effectively

benefit from cache hierarchy of conventional CPU architectures.

Recent advances in die-stacking technologies have enabled the integration of

multiple layers of DRAM arrays in a single package. A 3D-stacked memory con-

sists of several memory dies, one on top of each other, connected using Through-

Silicon Vias (TSV) [114, 115]. PNM locates low-power processing units inside the

logic layer of 3D-stacked memory, to harness the significantly higher bandwidth

and the lower latency provided while consuming less energy. The most prominent

20 Chapter 2. Background and Related Work

3D-stacked memory technologies are High Bandwidth Memory (HBM) [94] and

Hybrid Memory Cube (HMC) [78], but there are several others [107, 67]. Fig-

ure 2.6 shows a typical PNM architecture where compute units are placed close

to an HBM cube, exploiting the lower latency and higher bandwidth.

HBM
cube

Compute
UnitsInterface

Figure 2.6: Sample PNM architecture (I). Compute Units are placed close to the

HBM cube, connected via a short and wide interface.

Processing-Near-Memory can also happen inside the memory chips. The first

commercially-available example is UPMEM [183] (Figure 2.7), where custom

general-purpose cores are placed near memory banks.

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bits

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

DPU-CPU

CP
U-D

PU

1

2

3

5

6

7

4

Figure 2.7: Sample PNM architecture (II). UPMEM-based PNM system with a

host CPU, standard main memory, and PNM-enabled memory (left), and internal

components of a UPMEM PNM chip (right). Figure taken from [183].

Inside each UPMEM PIM chip (Figure 2.7 (right)), there are 8 DPUs. Each

DPU has exclusive access to (1) a 64-MB DRAM bank, called Main RAM

(MRAM) Ê, (2) a 24-KB instruction memory, called Instruction RAM (IRAM)

Ë, and (3) a 64-KB scratchpad memory, called Working RAM (WRAM) Ì.

MRAM is accessible by the host CPU (Figure 2.7 (left)) for copying input data

(from main memory to MRAM) Í and retrieving results (from MRAM to main

2.2. Mitigating the Data Movement Bottleneck 21

memory) Î. These CPU-DPU and DPU-CPU data transfers can be performed

in parallel (i.e., concurrently across multiple MRAM banks), if the buffers trans-

ferred from/to all MRAM banks are of the same size. Otherwise, the data trans-

fers happen serially (i.e., a transfer from/to another MRAM bank starts after the

transfer from/to an MRAM bank completes). There is no support for direct com-

munication between DPUs. All inter-DPU communication takes place through

the host CPU by retrieving results from the DPU to the CPU and copying data

from the CPU to the DPU.

There is a vast literature [136, 66, 65, 85, 187, 10, 23, 38, 81, 103, 125, 160,

12, 159, 62, 49, 11, 63, 116, 28, 29, 30, 84, 106, 33, 80, 156, 121, 164, 149, 158,

163, 80, 157, 150, 36, 104, 105] that follows the PNM approach to overcome

the memory wall. In [49], ARM cores are used as PNM compute units to im-

prove data analytics operators (e.g., group, join, sort). IMPICA [85] is an PNM

pointer chasing accelerator. Tesseract [11] is a scalable PNM accelerator for par-

allel graph processing. TETRIS [63] is an PNM neural network accelerator. Lee

et al. [116] propose an PNM accelerator for similarity search. GRIM-Filter [106]

is an PNM accelerator for pre-alignment filtering [192, 18, 191, 20, 19] in genome

analysis [17]. Boroumand et al. [28] analyze the energy and performance impact

of data movement for several widely-used Google consumer workloads, providing

PNM accelerators for them. CoNDA [29] provides efficient cache coherence sup-

port for PNM accelerators. Finally, an PNM architecture [77] has been proposed

for MapReduce-style applications.

2.2.2. Processing-Using-Memory

Processing-Using-Memory architectures have been proposed to overcome the

memory wall challenges in current von-Neumann architectures [136], as they are

able to perform computation where data resides. Many prior works demonstrate

significant performance and energy efficiency improvements for machine learning

workloads using crossbars [132] by exploiting matrix-vector multiplication. Other

application domains can exploit bitwise operations [127, 110] to obtain similar

benefits. Figure 2.8 a shows a typical crossbar organization with memory cells

connected using bitlines and wordlines.

Bitwise PUM Mechanism. Applications that are not based on matrix-

vector multiplications (e.g., sDTW) require a flexible substrate to support the

required operations. Moreover, off-the-shelf crossbar substrates offer limited sup-

port for other operations. To overcome this challenge, MAGIC [127, 110] pro-

poses to decompose complex operations into simple Boolean functions (e.g., AND,

22 Chapter 2. Background and Related Work

º read path

write path

bitlines

w
or

d
li
n
es

a) b) c)

SA

R1

R2

RMem

EnR1

EnR2

EnMem

IN

Figure 2.8: a) Crossbar organization. b) Magneto-resistive cell. c) Reconfigurable

SA that performs in-memory operations based on the voltage across the bitline

when two cells are activated.

NOR, XOR) and make them supported in the substrate. The key idea is to ver-

tically map the operands (e.g., 32-bit integers) to the crossbars’ columns using

(typically) one bit per cell (e.g., each operand value takes 32 bits of a given

column). Then, the desired operation (e.g., addition) is decomposed on simple

bitwise ones (e.g., NOR) and performed bit by bit by sequentially activating

one cell of each operand at the same time. This provokes a difference in the

voltage over the bitline depending on the content of the activated cells. Then,

a modified sense amplifier generates the result based on that voltage difference

and thresholds, storing it in a cell of the same column. While this process is

inherently sequential (i.e., the latency is higher than a CMOS-based approach),

the 1) independence across columns and 2) the lack of data movement enable

an unprecedented parallelism and thus an overall higher throughput. Figure 2.8

c shows an example of a modified sense amplifier (SA) with different voltage

thresholds and the regular memory sensing threshold. While the throughput of

performing a single operation is lower than a CMOS-based solution, this approach

enables enormous parallelism as 1) all columns are working independently at the

same time and 2) data movement is eliminated.

Technology. The selection of the cell technology is crucial to ensure fea-

sibility of bitwise based accelerators. While it is possible to build them using

DRAM technology (e.g., SIMDRAM [79]), performance scaling is limited by 1)

refreshing times and specially by 2) the need of moving data to compute enabled

rows. Crossbar-based NVM technologies can overcome those two issues, but it

is challenging to support frequent write operations. This is because NVM-based

architectures usually suffer from significant latency and energy penalties, and

specially low endurance. However, emerging NVM technologies are a possible

solution to overcome those drawbacks. Table 2.1 presents NVM characteristics.

2.3. Transprecision Computing 23

Technology
Write/Read Energy

(per bit)
Write/Read Time

(per bit)
Endurance

(Write Cycles)

NAND Flash [73] 470pJ / 46pJ 200µs / 25.2µs 105

FRAM [177] 1.4nJ / 1.4nJ 120ns / 120ns 1015

STT-MRAM [39] 2nJ / 34pJ 250ns / 10ns 105

SOT-MRAM [22] 334pJ / 247pJ 1.4ns / 1.1ns > 1015

ReRAM [91] 1.1nJ / 525fJ 10µs / 5ns 105

PCM [113] 13.5pJ / 2pJ 150ns / 48ns 107

Table 2.1: Overview of different NVM technologies [45].

To help in the decision of what cell technology use for a potential accelerator,

both endurance and latencies have to be taken into consideration. In terms of

endurance, we note that both FRAM and SOT-MRAM are good candidates.

However, if we add latencies to the equation, we observe that SOT-MRAM is the

most promising one, as FRAM latencies are two orders of magnitude larger than

the first one. Magneto-Resistive RAM (MRAM)-based substrates (e.g., SOT-

MRAM) offer 1) higher density, 2) high endurance, 3) low latencies, and 4) they

are CMOS compatible [72, 188, 117, 21, 87]. Based on that, MRAM technologies

are promising architectural candidates for building PUM accelerators [193] where

data changes frequently. Figure 2.8 b shows the basic structure of a Spin-Orbit

Torque (SOT)-MRAM device, composed of a stack of Magnetic Tunnel Junctions

(MJTs). The key mechanism is based on the change of orientation of one of

the layers of the stack, which results in a variation in the device’s electrical

resistance. Several companies, like Samsung [96], are raising their interest in

these architectures, and real devices might be commercially available shortly.

2.3. Transprecision Computing

Transprecision Computing aims to boost energy efficiency and performance

by exploiting numeric truncation in both hardware and software. It enables

fine control over the precision of floating-point arithmetic in space and time

(where and when to use it). The key difference with approximate computing

is that transprecision guarantees the error (as the numeric precision and range

are known for a given configuration) while approximation provides uncertainty.

One example of this uncertainty occurs when reducing the refresh interval of

RAM to improve performance [95], since process variation makes the exact error

to be unknown. Based on that, transprecision leads to significant energy savings

and performance improvements without sacrificing overall quality of results.

24 Chapter 2. Background and Related Work

Transprecision computing can be applied to the entire algorithm by setting

fixed exponent and mantissa widths for every floating-point operation. However,

it is possible to change the precision to different parts of the code to find a trade-

off between the accuracy of the results and energy efficiency. Mixed precision

of double and single floating-point operations has been successfully used in the

past [32, 122] with a significant gain in performance.

Besides the IEEE-754 standard, transprecision computing allows the use of

arbitrary exponent and mantissa bit combinations. However, the design of ar-

bitrary precision floating-point units (FPUs) can be challenging and presents

difficulties when integrating in computing platforms. Because of this reason, al-

ready designed FPUs typically support a fixed number of exponent and mantissa

combinations. As an example, Fig. 2.9 shows the types [173] that we use in

TraTSA for the energy evaluation.

IEEE binary32 (single)

IEEE binary64 (double)

binary8IEEE binary16 (half)

bfloat16
sign bit exponent bit mantissa bit

Figure 2.9: Overview of the floating-point types used for energy evaluation.

Table 2.2 summarizes the bit count for each floating-point datatype, along

with the approximate range and smallest number that can be represented. Notice

that, while binary32 and binary16 have approximately the same range, the first

one provides narrower steps between numbers and more precision.

Table 2.2: Floating-point bit counts, ranges and smallest numbers

Type Exp Man Range (≈) Smallest (≈)

bin64 11 52 {−1.8 · 10308, 1.8 · 10308} 2.2 · 10−308

bin32 8 23 {−3.4 · 1038, 3.4 · 1038} 1.2 · 10−38

bin16 5 10 {−65504, 65504} 6.1 · 10−5

bfloat16 8 7 {−3.4 · 1038, 3.4 · 1038} 1.2 · 10−38

bin8 5 2 {−57344, 57344} 6.1 · 10−5

We find transprecision Floating-Point Units (FPU) already proposed in the

literature, which aim to take advantage of transprecision computing in terms

of energy, performance and area. The first silicon implementation of a 64-bit

2.3. Transprecision Computing 25

transprecision FPU can be found in [129], using 22nm technology node. This

FPU supports the floating-point types depicted in Fig. 2.9, and the key idea

behind it is to operate in scalars (64-bit) or in SIMD vectors of 2 elements (32-

bit), 4 elements (16-bit) or 8 elements (8-bit). The authors of such FPU evaluate

it integrated into a RISC-V core via simulation (but can be used in FPGAs or

ASICs) and obtain speedups up to 7.3× while reducing energy up to 7.94× with

respect to double precision approaches. The source code of this FPU (known as

FPnew) can be found in [8].

In contrast, transprecision libraries aim to enable transprecision software em-

ulation in commodity architectures. An example of CPU-based transprecision

emulation is FlexFloat [172], which is written in C. The main advantage of this

library is that it can be executed in almost any commodity platform, but it

presents a main drawback: the significant overhead introduced by the software

emulation. In this sense, we observe that the FlexFloat execution time increases

the native IEEE double execution time by 200× for a given computing platform.

One way to overcome this issue is the use of an FPGA architecture, including

custom-precision units from cpfp-FPGA [47] library, which is intended for High-

Level Synthesis (HLS). While not being a pure transprecision implementation

from the architectural point of view (e.g., data is stored using 32 bits in memory

and then converted to the desired width), it allows time-manageable evaluation

of large time series (millions of elements). The key motivation to consider the

FPGA acceleration is to avoid the emulation cost of the software-based one with

the use of dedicated transprecision hardware. Then, once evaluated the poten-

tials of a given algorithm using the FPGA, it is possible to design precision-tuned

custom accelerators for a given application (e.g., TSA) and exploit the reduction

in area, energy and exection time.

3
PhiTSA: Using a Xeon Phi
to Optimize and
Characterize TSA

3.1. Motivation and Key Idea

In this chapter we present PhiTSA, an optimized implementation of the

SCRIMP algorithm tailored for Intel Xeon Phi Knights Landing (KNL) pro-

cessors. This work is motivated by the opportunity that these architectures

provide in terms of parallelism, vectorization and different memory technologies.

Concretely, KNL includes two types of memory (i.e., DDR4 and HBM). This

is useful to 1) study the impact of memory bandwidth in performance and 2)

take advantage of the aggregated bandwidth. The key idea is to implement a

privatization-based parallel and vectorized version of SCRIMP. Then, we use

this optimized implementation to characterize the behaviour using Intel profiling

tools and find its bottlenecks.

3.2. Intel Xeon Phi Knights Landing

The Intel Xeon Phi based on the Knights Landing architecture (KNL) in-

cludes 64 Airmont cores (Atom) and up to 256 hardware threads (4 threads per

core). Figure 3.1 presents an overview of the platform. This processor features

16GB HBM integrated in the CPU chip, providing a much higher bandwidth

27

28 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

Figure 3.1: Intel Xeon Phi KNL overview [93].

than the external DDR4 modules. The HBM is based on Multi-Channel DRAM

(MCDRAM) and consists of four memory stacks with an aggregated peak band-

width of more than 450GB/s. The DDR4 memory, whose capacity is 192GB,

provides 6 channels with a peak raw bandwidth of 80GB/s.

The MCDRAM can be configured in three modes: 1) Flat, 2) Cache or 3)

Hybrid. The mode has to be selected at boot time. If the Flat mode is enabled,

the MCDRAM acts as a separate addressable space. In the Cache mode, the

MCDRAM is a transparent last-level cache. By setting the Hybrid mode, we

can take advantage of both modes. Hybrid mode allows us to use part of the

MCDRAM as addressable memory and the rest as cache. In this work, we select

the Flat mode, as our goal is to find a suitable data mapping using both the

MCDRAM and the DDR4 memories, and consequently aggregating bandwidth

and size of both memory spaces.

The cores are bonded in pairs conforming 32 tiles. Both cores in each tile

shares an L2-cache of 1MB. Tiles can be clustered in several NUMA configura-

tions. In this work, we use the Quadrant cluster, in which the array of tiles is

organized in four quadrants, each one connected to a MCDRAM controller. This

configuration reduces the L2-cache miss latency and the four blocks of MCDRAM

appear as contiguous memory spaces.

In terms of parallelism, KNL provides two approaches: 1) task/thread par-

allelism between the cores, and 2) data parallelism using the AVX-512 SIMD

extensions. These extensions allow computing 16 single or 8 double precision

3.3. PhiTSA Optimizations of SCRIMP 29

floating-point operations at the same time by means of two out-of-order vector

processing units (VPUs) that are available per tile. Based on that, the theoretical

peak performance of the KNL is 6 TFLOP/s in single precision and 3 TFLOP/s

in double precision.

3.3. PhiTSA Optimizations of SCRIMP

The first part of this work comprises the optimization of SCRIMP to exploit

the potential of the KNL platform as much as possible. We begin by analyzing

the SCRIMP algorithm (described in Section 2.1.1) from the parallelism point of

view. SCRIMP calculates distances between subsequences following diagonals of

the matrix, which we show in Figure 3.2. This is explained because of two reasons:

1) elements in a diagonal can be computed from previous elements of the same

diagonal with minimal calculations, and 2) calculating diagonals in random order

enables the possibility of getting an accurate partial result of the Matrix Profile.

Figure 3.2: Calculation of the Matrix Profile P and the Matrix Profile index I

from the distance matrix. For each column (or row) Di we calculate the minimum

distance and the index of the subsequence providing such minimum distance.

We find that SCRIMP is highly parallelizable because the computation of

the different diagonals can be carried out independently. The simplest way for

speeding up the algorithm in a many-core system is distributing the diagonals

among the executing threads. However, as diagonals have different length, such

assignment may lead to workload imbalance. We deal with this situation creating

a pool of diagonals to be processed, which consists in a list of indexes and the

30 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

size depends on the time series length. From the thread scheduling point of view,

it consumes 1% of the execution time. Every time a computing thread is idle,

it retrieves a diagonal from this pool (task queue) and processes it. This way,

threads are busy most of the time. We reduce the imbalance to those diagonals

at a minimum (i.e., this only happens at the end of the computation when few

of them remains to be processed).

When processing a diagonal, a thread calculates distances between subse-

quences and updates the Matrix Profile P and the Matrix Profile index I. Note

that both P and I are to be calculated per column. This way, it could be pos-

sible that two threads are computing concurrently two different distances in two

different diagonals, but with such distances belonging to the same column (i.e.

the same element in the profile and profile index). Thus, both threads may try

to update the same element in P and I simultaneously which may lead in incon-

sistencies if not managed properly (write-after-read data dependency). To deal

with these potential data conflicts, we consider two solutions: lock-based mutual

exclusion, and data privatization. We discuss them in the next subsection.

3.3.1. Updating P and I

We find that the two more promising approaches to solve potential concur-

rent updates to the P and I data structures are 1) lock-based mutual exclusion

and 2) privatizing the critical data. The performance of the first approach may

be impacted strongly by the synchronization pressure. On the other hand, al-

though the synchronization effort is negligible for privatization, it requires an

extra amount of memory. We analyze both possibilities in more detail next.

Atomics. We first develop an implementation based on atomics as a fine-

grained lock-based1 solution. In this way, once a thread has calculated the dis-

tance di,j , we acquire two locks before updating the positions P [i], P [j], I[i], and

I[j]. As we show in Figure 3.3, if a thread needs to update the Matrix Profile

P and the Matrix Profile index I (lines 12–15) with a new distance for a pair of

subsequences, it has to acquire the two locks (lines 4–11), one for the first posi-

tion and the other for the second position, releasing it after the update occurs

(lines 16–17). In case both locks cannot be acquired, they are released (line 9) to

prevent deadlocks. Note that this solution may lead to livelocks, but we rely on

the fairness of the OS scheduler to prevent this situation.

1Our implementation uses the functions test_and_set() and clear()from std::
atomics library available since C++11. We declare an array of type std::atomic_flag,
corresponding to each position of the Matrix Profile.

3.3. PhiTSA Optimizations of SCRIMP 31

void UpdateProfile(distance ,i,j)
{

int ack = 0;
while(!ack) {

if(! locks[j]. test_and_set ()) {
if(!locks[i]. test_and_set ())

ack = 1;
else

locks[j]. clear();
}

}
if (distance < profile[j])

profile[j] = distance; index[j] = i
if (distance < profile[i])

profile[i] = distance; index[i] = j
locks[j]. clear();
locks[i]. clear();

}

Figure 3.3: SCRIMP’s lock-based implementation to update the Matrix Profile

and the Matrix Profile index without potential conflicts.

Profile and index privatization. Second, we develop an implementation

based on privatizing the accesses to the shared data structures. Our goal is to

avoid the use of mutual exclusion methods, looking for performance boosting.

In this case, the use of synchronization between threads is minimal. This is

achieved by expanding [54] the Matrix Profile, creating a replica (row) per thread

as depicted in Figure 3.4. This is computationally safe as the performed operation

per iteration is commutative and associative, i.e., it is a reduction loop [76].

Figure 3.4: SCRIMP’s expanded structure for Matrix Profile distances (top) and

indexes (bottom) in the privatization technique.

32 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

Although shared, each replica can be seen as a private storage during the

calculation of the Matrix Profile, in such a way that each thread computes its

private Matrix Profile, storing the computed partial results in it. The only im-

perative synchronization is a barrier to wait for all threads to finish its private

computation. Once all threads have calculated their private Matrix Profiles, a

final reduction operation (per column) is carried out to compute the final results.

No synchronization is necessary in this stage because each thread is in charge

of a different column, so it can be done fully in parallel. Note that an analo-

gous approach is applicable to the Matrix Profile index, as shown in Figure 3.4.

The expansion involves to declare two matrices that can be accessed by threads:

private profile and profile index, as the code in Figure 3.5 shows.

Each thread updates the new distances in the profile corresponding to a row

based on their thread identifier (lines 16–24), and the final reduction stage is per-

formed in parallel with no synchronization (lines 27–37). Overall, this technique

increases the memory footprint linearly with the number of threads that we define

for the computation. However, it enables to increase performance significantly.

3.3.2. Increasing Arithmetic Intensity

Our analysis using Intel profiling tools warn about the low arithmetic inten-

sity exhibited by the SCRIMP algorithm. We tackle this by: 1) incrementing

the arithmetic intensity of the algorithm via vectorization, and 2) selecting the

most appropriate memory space (i.e., HBM or DDR4) for each variable in or-

der to benefit from the aggregated bandwidth offered by the KNL architecture.

In this sense, we find that the work of Khaldi et al. [101] explores the use of

HBM and DDR4 memories from an automatic perspective depending on the ap-

plication. However, our proposal focuses on the use of these memory spaces to

solve memory-bounded problems, such as the Matrix Profile, profiling which data

structures and variables fits better in each memory space.

Additionally to the thread parallelization of the algorithm, it is possible to

reduce the execution time even more taking advantage of the SIMD support

available in the KNL platform. For this purpose, several distance calculations

and updates have to be packed into groups instead of calculating and updating

them individually. In particular, we optimize the dot product calculation Qi,j of

Equation (2.1). It must be taken into account that there are data dependencies

between the calculation of consecutive elements of a single diagonal. Conse-

quently, this part of the computation is carried out in a non-vectorized unrolled

loop, and later used to calculate the non-dependent part of the computation that

3.3. PhiTSA Optimizations of SCRIMP 33

/* Expanding privatized structures */
double profile_exp[nThreads][ProfileLength];
int profileIndex_exp[nThreads][ProfileLength];
void SCRIMP () {

#pragma omp for schedule(dynamic)
for (j=0; j<numDiags; j++) {

for (i=j; i<diagLength; i++) {
/* distance is calculated here */
UpdateProfile(distance ,i,j,threadID);

}
}
#pragma omp barrier
FinalReduction ();

}
void UpdateProfile(distance , i, j, threadID) {

id = threadID;
if (distance < profile_exp[id][j]) {

profile_exp[id][j] = distance;
profileIndex_exp[id][j] = i;

}
if (distance < profile_exp[id][i]) {

profile_exp[id][i] = distance;
profileIndex_exp[id][i] = j;

}
}
void FinalReduction () {

#pragma omp for schedule(static)
for (col=0; col <ProfileLength; col ++) {

for(row =0; row <numThreads; row ++) {
if(profile_exp[row][col] < min_distance) {

min_distance = profile_exp[row][col];
min_index=profileIndex_exp[row][col];

}
}
profile[col] = min_distance;
profileIndex[col] = min_index;

}
}

Figure 3.5: Privatization-based implementation of the SCRIMP computation.

can be vectorized inside another loop.

Figure 3.6 shows how we perform SCRIMP’s computation in a vectorized

manner. First we pre-calculate the component of the value with no data de-

pendencies (lines 3–6) in a vectorized loop. After that, we can update the val-

ues, taking account of the dependencies and using an unrolled loop (lines 8–11).

Finally, we obtain distance values using the values previously pre-calculated,

again in a vectorized loop (lines 13–17). Note that the constant ARIT FACT is

architecture-dependent and it guides the compiler when generating the machine

34 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

while(j < (ProfileLength - ARIT_FACT))
{

#pragma omp simd
for(int k=0; k<ARIT_FACT; k++) {

Q[k] = /* Q value based on j*/;
}

#pragma unroll (ARIT_FACT - 1)
for(int k=1; k<ARIT_FACT; k++) {

Q[k] += Q[k-1];
}

#pragma omp simd
for(int k=0; k<ARIT_FACT; k++) {

/* ξ= some calculations based on j */
distances[k] = Q[k] + ξ;

}
j+= ARIT_FACT;

}

Figure 3.6: SCRIMP’s inner loops unrolling and vectorization.

code. In our case, this constant is set to eight, in order to take advantage of the

512-bit SIMD instructions (eight 64-bit double precision floating-point numbers

stored in a single vector register).

3.3.3. Memory Allocation Policy and Scalability

In order to gain advantage of the maximum memory bandwidth available

(HBM plus DDR4), our approach allocates the most frequently accessed vari-

ables in the HBM space, where the highest bandwidth is available. Specifically,

HBM stores the computed average and standard deviation for each subsequence

(parameters µ and σ in Equation (2.1)), as well as the privatized profile and

profile indexes structures. Note that the code changes required to allocate HBM

memory are minimal: Intel’s KNL libraries provides the hbw malloc functions to

allocate HBM, while a regular malloc allocates DDR4 memory. However, the

original time series and the final profile and profile indexes are allocated in the

DDR4 memory.

Using this approach, the DDR4 memory serves the time series to the threads

while the calculation of the diagonals is performed (only reads); and after that,

the DDR4 is used again to keep the final results obtained in the final reduc-

tion stage. In this way, both the HBM and DDR4 bandwidths are aggregated,

leading to an efficient memory exploitation, and saving space in the HBM. This

3.4. Evaluation 35

approach becomes more relevant in very large time series, because for shorter ones

there is no significant improvement from the execution time point of view, and

there is no need for saving space in the HBM space, being enough for those time

series. Moreover, when processing very large time series, where the privatized

structure of the whole series does not fit in the HBM space, we need to process

the time series in several chunks of diagonals. In this sense, we take advantage of

the DDR4 bandwidth and space for reading the original time series and storing

the final result that is going to be updated after every chunk is processed.

3.4. Evaluation

3.4.1. Methodology

We conduct our experiments in an Intel Xeon Phi 7210, which is installed in

a SuperMicro Superserver 5038K-i [7]. This architecture features a combination

of both HBM and DDR4 memory technologies, allowing programmers to allocate

data in any of them as required [166].

We compile the codes with the Intel C++ compiler version 18.0.2, enabling the

flag -O3 for the highest optimization and the flag -xHost to generate code with

the widest available instruction set (in this case, the AVX-512, when possible).

The results below correspond to the average of ten executions.

3.4.2. Results

Speedups

In this subsection, we present the experimental evaluation of our proposals.

First, we perform experiments related to speedup and memory bandwidth usage

with fixed time series length and fixed window size, using the different parallel

implementations described in Section 3.3. After that, we measure the mem-

ory bandwidth usage varying the number of threads in the implementation that

brought the best results from the performance point of view. Finally, we execute

our private-structure based implementation varying time series length, window

size and memory allocation policies allowing a comparison with previous works.

With respect to the speedup, we initially test our SCRIMP implementation

based on software-atomics. In this case, our goal is to study the scalability

with the number of threads. We calculate speedup with respect to the original

36 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

sequential version. Taking account of the Matrix Profile calculations, the nature

of the data does not affect the execution times, so there is no need to particularize

for a specific time series. In this sense, we use a random time series of 217

(131072) elements, and a fixed window size of 1024. Regarding the allocation of

the data, we use only the DDR4 space, because using the HBM memory in this

approach does not improve the performance of the execution. The explanation

to this is that the memory bandwidth usage of this implementation is very low

in comparison to the available bandwidth, as we show later.

Figure 3.7: SCRIMP speedup in the Intel Xeon Phi KNL, calculated using a

random time series of of 217 (131072) elements and a fixed window size of 1024.

Results of this experiment correspond with the lowest plot in Figure 3.7. As

expected, this implementation is far away from the ideal speedup. The maximum

speedup with this approach is only about 16 times faster than the original and

sequential version using 128 threads. Also, for obtaining similar execution times

than the sequential version, the atomic-based implementation needs 4 threads.

The explanation to this behaviour is that the atomic accesses to the common

profile structure slows down the thread because such atomics are implemented in

software. Also, this approach leads to a huge amount of cache traffic and waiting

time for the threads, which also contribute to slow down the execution.

The second experiment tests our implementation based on privatizing the

3.4. Evaluation 37

calculation of the Matrix Profile. As in the previous experiment, we use a random

time series of 217 elements and a fixed window size of 1024.

In this case, we evaluate four configurations. On the one hand, we test either

the combination of the HBM plus the DDR4 memory, or using the DDR4 memory

only. On the other hand, when computing the diagonals, we consider a random

order or the sequential one.

We present the speedup of these four configurations in Figure 3.7. Setting the

random order gives the advantage of the anytime property, which allows the user

to stop the computation in any part of it, having a partial (not exact) result. The

drawback of this approach is that it is expected a lower reuse of data in caches,

and that explains why computing diagonals in the sequential order results in a

better performance.

Furthermore, we can notice that both of the DDR4 cases (random and sequen-

tial order) obtain similar performance, growing significantly up to 16 threads and

even starting to decrease from 64 threads. This is a scenario of over-threading,

where increasing the non-payload part of the computation (more threads asking

for memory requests) brings lower performance. Thus, the DDR4 bandwidth is

not enough to serve the threads the data they need. In contrast, the HBM cases

keep improving with the number of threads, and from 16 threads they start to

be far from the DDR4 ones. Also, we have to take into account that the number

of physical cores in the target platform is 64, and an amount of threads beyond

this number imply the use of hyperthreading. This fact results in a lower perfor-

mance increment if compared with the case of a thread per actual core. Finally,

note that our single-thread execution is faster than the sequential implementation

from the authors of Matrix Profile (concretely, 2.6x faster), due to the increase

in the arithmetic intensity through taking advantage of vectorization (the use of

AVX-512 instructions) in most of the computations, as explained in section 3.3.2.

Finally, we compare our implementation with the GPU-STOMP implemen-

tation from authors of Matrix Profile [86]. We present the results in Table 3.1,

where we define a fixed window size of 256 elements and the same data type than

the GPU implementation (single precision). We compute diagonals in order by

256 threads and the implementation uses the HBM space. Note that the speedup

of SCRIMP in the Intel Xeon Phi tends to be lower with respect to GPU-STOMP

in larger series than in shorter ones. This is explained by the relationship between

the number of diagonals to compute and the number of processing elements. The

GPU provides higher data parellization lanes than the Xeon Phi, thus for large

datasets it is desirable to have as much as processing elements as possible in

conjunction with the high memory bandwidth.

38 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

Table 3.1: SCRIMP execution on Intel Xeon Phi KNL versus STOMP on NVIDIA

Tesla K80‡.

217 218 219 220 221

NVIDIA Tesla K80 10s 18s 46s 150s 555s

Intel Xeon Phi KNL 7210 0.98s 3.48s 13.51s 54.70s 222.61s

Speedup 10.20x 5.17x 3.40x 2.74x 2.49x

‡GPU results extracted from [86]

Memory Bandwidth Results

We measure the memory bandwidth of our implementation by using the Intel

VTune profiling tool [3]. Figure 3.8 shows the normalized execution time for

every bandwidth usage given a random time series of 218 elements, which allows

more accurate profiler results. We use a window size of 1024, 256 hardware

threads and the same five configurations than in the previous subsection. In the

atomic-based implementation, the memory usage is very low, since most of the

time the threads are competing for the locks. The two cases corresponding to

the DDR4-only implementations present a high memory bandwidth usage taking

account of the maximum of this type of memory. This maximum is not enough

for taking advantage of the sequential order of the diagonals.

With respect to the HBM plus DDR4 based implementations, we can notice

how whereas a random order of the diagonals uses a high memory bandwidth,

the sequential order nearly achieves the maximum for the HBM memory most of

the time.

In another set of experiments, we measure the bandwidth utilization of our

privatization-based implementations varying the number of threads, using the

same time series and parameters than in the previous experiment. With these

experiments we aim to test how is the memory bandwidth usage for different

number of threads.

We show the first experiment in Figure 3.9, where we use only the DDR4

memory and a sequential order for computing the diagonals. We observe that

the maximum bandwidth is obtained using 64 threads, which agrees with the

point where the speedup graph becomes plain, as shown in Figure 3.7.

We present the second experiment in Figure 3.10, where we use the combi-

nation of the HBM plus the DDR4 bandwidth and a sequential order for the

diagonals. In this case, the bandwidth starts to grow from the beginning until

3.4. Evaluation 39

Figure 3.8: SCRIMP memory bandwidth utilization in the Intel Xeon Phi KNL,

using different configurations, normalized as percentage of execution time. DDRo

stands for DDR4 ordered and DDRr stands for DDR4 random, while HBMo

means HBM+DDR4 ordered and HBMr means HBM+DDR4 random.

Figure 3.9: Average DDR4 band-

width utilization, measured varying

the number of threads in an execution

of SCRIMP, using a random series of

218 elements and a window of 1024.

Figure 3.10: Average HBM band-

width utilization, measured varying

the number of threads in an execution

of SCRIMP, using a random series of

218 elements and a window of 1024.

40 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

the maximum number of threads, where it achieves the theoretical maximum

bandwidth for non sequential accesses.

Sensibility to Time Series Length and Window Size

Tables from 3.2 to 3.5 show the sensibility of the implementations when vary-

ing the time series length and the window size. All of these tests use the number

of threads that achieves the best performance. To conduct these experiments, we

define random time series with representative sizes. In particular, we use time

series of 217, 218, 219, 220 and 221 elements as they are common values used in

the literature [202], as well as the most common window sizes (m).

Table 3.2: Time for SCRIMP using only

DDR4 in random order.

m 217 218 219 220 221

1024 5.65s 24.18s 119.70s 579.01s 2599.26s
2048 5.51s 23.84s 119.51s 590.99s 2615.70s
4096 5.32s 23.42s 118.71s 592.58s 2622.94s
8192 4.92s 22.54s 116.38s 586.66s 2637.59s
16384 4.21s 20.66s 111.77s 577.15s 2611.05s

Table 3.3: Time for SCRIMP using only

DDR4 in sequential order.

m 217 218 219 220 221

1024 5.62s 23.49s 104.26s 468.75s 2063.70s
2048 5.51s 23.29s 104.09s 472.22s 2100.94s
4096 5.32s 22.82s 103.97s 473.78s 2148.62s
8192 4.93s 21.94s 101.25s 474.86s 2088.82s
16384 4.24s 20.24s 97.98s 464.04s 2072.78s

Table 3.4: Time for SCRIMP using

HBM plus DDR4 in random order.

m 217 218 219 220 221

1024 1.99s 8.38s 37.37s 153.61s 568.52s
2048 2.17s 9.22s 40.72s 169.43s 614.55s
4096 2.17s 9.35s 41.03s 173.04s 631.99s
8192 2.03s 9.07s 40.43s 173.02s 639.72s
16384 1.82s 8.48s 39.14s 167.54s 637.03s

Table 3.5: Time for SCRIMP using

HBM plus DDR4 in sequential order.

m 217 218 219 220 221

1024 1.28s 4.88s 20.71s 88.19s 380.82s
2048 1.27s 4.86s 21.13s 90.09s 397.05s
4096 1.24s 4.88s 20.77s 90.17s 406.58s
8192 1.18s 4.79s 20.46s 91.64s 402.10s
16384 1.03s 4.48s 19.88s 90.43s 411.40s

Table 3.2 shows the results of executing SCRIMP with the DDR4 memory

and setting a random order for the diagonals. As the results suggest, there is not

a clear correlation between the window size and the execution time, but depends

on the number of elements that fits in caches.

In the case we use a sequential order for computing the diagonals, we obtain

similar execution times than in the previous case, as shown in Table 3.3. Taking

account that we use software prefetching for random and sequential order for the

diagonals, there is not significant performance benefits for short series, but for

bigger ones, we can achieve up to 25% of better execution times.

We also evaluate the combination of the HBM plus the DDR4 memories. If

3.4. Evaluation 41

we use the HBM memory for allocating the most used variables and a random

order for the diagonals, we obtain from 2.8x to 4.6x of speedup with respect to

only using the DDR4, depending on the window size and the time series length.

Larger time series obtain more benefit from the use of HBM than the smaller

ones, as shown in Table 3.4.

We show the experiments using the sequential order for the diagonals and the

combination of the HBM plus the DDR4 memory in Table 3.5. In this case, we

obtain up to 58% of better execution times than the same memory configuration

with random order for the diagonals.

Floating Point Performance

Table 3.6 summarizes the observed floating point operations per second that

our implementation can achieve. We obtain such results using the Intel Advisor

tool [1] using the same 218-element random time series used previously with a

window size of 1024 and 256 threads.

Table 3.6: GFLOP/s for SCRIMP with different configurations.

Configuration Random order Sequential order

for diagonals for diagonals

DDR4 only 18.49 GFLOP/s 18.70 GFLOP/s

HBM + DDR4 47.79 GFLOP/s 60.18 GFLOP/s

We observe that there is not significant benefit in terms of GFLOP/s between

computing in random or sequential order using only the DDR4 memory, because

the bandwidth is already saturated even with the sequential order and data lo-

cality is not exploited. In contrast, if combined both the DDR4 and the HBM

memory, there is a significant difference (around 20% of more throughput from

the FLOP/s viewpoint) between using or not random order for the diagonals, as

explained before. Nevertheless the results remain far away from the processor

peak performance, which is a common issue in memory bounded problems.

Real-World Applications

Lastly, we test our implementations taking as reference some of the datasets

used in [196], [86] and [202], which allows us to compare and validate the results.

These datasets come from real-world applications. We are interested in the exact

42 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

solution of the Matrix Profile, so our executions finish when SCRIMP converges

(no partial solutions). Exact solutions are specially relevant in problems such

as anomaly detection, which in some cases are detected at the final stage of the

execution.

The first case study we evaluate is seismology. We present it in Figure 3.11,

where the dataset (upper graph) consists of about 40,000 elements. Our multi-

threaded and vectorized implementation of SCRIMP returns the Matrix Profile

that we show in the lower graph, in which there are represented several peaks

corresponding with the most significant discords, where the distance of the cor-

responding subsequence is higher (the similarity with respect to the whole time

series is lower). Using a window size of 100 elements, our implementation of HBM

plus DDR4 memory allocation policy and sequential order for the diagonals took

only 0.25 seconds in obtaining the Matrix Profile, instead of 22.5 seconds of the

original sequential implementation.

Figure 3.11: Seismology data. This dataset, which consists of approximately

40,000 elements, presents several peaks corresponding to earthquakes. The Ma-

trix Profile is able to accurately identify them, which are represented as higher

values of distance for the corresponding subsequences, as they are discords with

respect to the whole time series.

Another application we use for testing our implementation is penguin data,

which consists of a dataset of 110,000 elements approximately, obtained from

an accelerometer. In Figure 3.12 we show the corresponding Matrix Profile of

the dataset, from which a biologist could infer when the penguin is diving or

walking, for example. In this case, the execution takes 0.93 seconds using our

implementation of HBM plus DDR4 memory allocation policy and sequential

3.4. Evaluation 43

order for the diagonals, instead of 39.53 seconds of the original sequential version,

using a window size of 800 elements.

Figure 3.12: Penguin data. This dataset, which consists of approximately 110,000

elements, presents several motifs that can help a biologist to identify when the

penguin is diving, for example.

Figure 3.13: Neuroscience data. This dataset, which consists of approximately

1,030,000 elements, presents several discontinuities which are represented in the

graph as values of 0 for readability. The Matrix Profile is able to obtain coherent

results even with those discontinuities, proof of robustness of the algorithm.

Finally, we evaluate a neuroscience dataset, which contains 1,030,000 elements

approximately, represented in the upper part of the Figure 3.13. Note that there

are several discontinuities (missing values) in the dataset, which are represented

44 Chapter 3. PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA

as a value of 0 in the graph for readability. The Matrix Profile algorithm can give

us a coherent results even with this outliers, which is a proof of the robustness of

the algorithm. Using our implementation of HBM plus DDR4 memory allocation

policy and sequential order for the diagonals, the Matrix Profile takes 81 seconds

to be calculated, whereas the original sequential implementation takes 15,108.12

seconds, using a window size of 5,400.

4 NATSA: A PNM
Accelerator for TSA

4.1. Motivation and Key Idea

We find that several CPU and GPU implementations of Matrix Profile have

been proposed in the literature. However, these acceleration efforts still require

transferring the time series data from the main memory to the CPU/GPU cores,

leading to the data movement bottleneck, as analyzed in the previous chapter

using PhiTSA. Processing-Near-Memory (PNM) is a promising approach to al-

leviate data movement by placing processing units close to memory. As a result,

PNM solutions have the potential to greatly improve system performance and en-

ergy efficiency when they are carefully designed with low-cost and low-overhead

near data processing cores for memory-bound applications.

Our goal in this work is to enable high-performance and energy-efficient time

series analysis for a wide range of applications, by minimizing the overheads

of data movement. This can enable efficient time series analysis on large-scale

systems as well as embedded and mobile devices, where power consumption is a

critical constraint (e.g., heart beat analysis on a mobile medical device to predict

a heart attack [118] or early earthquacke detection [41]). To this end, we propose

NATSA, the first Near-Data Processing Accelerator for Time Series Analysis.

The key idea behind NATSA (Figure 4.1) is to exploit modern 3D-stacked High

Bandwidth Memory (HBM) along with specialized custom processing units in the

logic layer of HBM, to enable energy-efficient and fast matrix profile computation

near memory, where time series data resides. NATSA supports a wide range of

time series applications thanks to matrix profile’s generality and flexibility.

45

46 Chapter 4. NATSA: A PNM Accelerator for TSA

4.2. NATSA Architecture

Our Near-Data Processing Accelerator for Time Series Analysis, NATSA, is

designed to 1) fully exploit the memory access parallelism and high memory

bandwidth offered by HBM, and 2) employ the required amount of computing

resources to provide a balanced solution. NATSA is built next to the HBM

memory and exploits the full HBM bandwidth available. NATSA consists of

multiple processing units (PUs) that efficiently compute the diagonals of matrix

profile in a parallel fashion. The PUs are designed to compute diagonals using a

vectorized approach to process a batch of elements of a diagonal at the same time.

Each PU includes energy-efficient floating-point units [60], bitwise operators, and

registers (See Table 4.3 in Section 4.3.3). Each PU communicates with HBM via

a controller connected to one of the 8 memory channels provided by HBM.

Dot Product

DPU

Dot Product

DPU

Dot Product
Reutilization

DPRU

Dot Product
Reutilization

DPRU

Distance
Calculation

DCU

Distance
Calculation

DCU

Profile
Update

PUU

Profile
Update

PUU

Dot ProductDot Product

DPUDPU

Distance
Calculation

Distance
Calculation

DCUDCU

Dot Product
Reutilization
Dot Product
Reutilization

Profile
Update
Profile
Update

control
unit

T

m

qi,j

σ

µ
m

PP

II

PP
II

PUUPUUDPUUDPUU

2

+
×

reg
ti,m
tj,m

≤
di,j

PPi

-×

×
ti

+

σi
÷

<<

-

-

×

×

σj

μi
μj

m

HBM
memory

NATSA
8-channel
interface

silicon
interposer

PUn

mm

qi+1,j+1

di,jdi,j

T qi,jqi,j

tj

ti+m
tj+mm

qi,j

qi,j

11

PPi,IIi

di,j,j
{

1KB Scratchpad Memory1KB Scratchpad Memory

Figure 4.1: NATSA design and integration next to HBM memory. NATSA is

connected directly to the HBM interface.

4.2. NATSA Architecture 47

4.2.1. NATSA Processing Units (PUs)

Each NATSA PU consists of four hardware components: the Dot Product Unit

(DPU), the Distance Compute Unit (DCU), the Profile Update Unit (PUU), and

the Dot Product Update Unit (DPUU), as we show in Figure 4.1. We share

the floating-point arithmetic operators (e.g., multipliers) among those hardware

components to minimize idle cycles and enable reusability. The control unit (1

in Figure 4.1) is a state machine that orchestrates the execution flow of a PU. The

multiplexers (2 in Figure 4.1) choose between the output of DPU and DPUU

based on a signal from the control unit, so that the DCU can take advantage

of Equation 2.2, starting from the second element of the diagonal all the way

down to the last. We replicate those hardware components to compute different

elements of a diagonal in parallel, using a vectorized approach. The diagonal

assignment is pre-calculated in the host CPU, which sends the indices of the to-

be-computed diagonals to each NATSA PU. Finally, each NATSA PU uses its

own 1KB scratchpad memory to temporarily store fixed-size auxiliary data, such

as the window size or configuration parameters.

The execution flow through the hardware components of a PU includes the

following six steps:

1. Dot product computation of the first element of the diagonal. The

DPU calculates the dot product between the first pair of subsequences of

the diagonal (Ti,m and Tj,m) by using the time series input T , and the

window size, m, which is used to signal the end of each subsequence. This

hardware component vectorizes the operation and outputs the result, qi,j ,

for the next step.

2. Euclidean distance computation of the first element of the diag-

onal. The DCU computes the first Euclidean distance of each diagonal

following Equation 2.1, using the dot product computed by the DPU qi,j .

The values of µ and σ are precomputed by the host CPU in negligible time

(O(n) [151]) with respect to the total execution time. This simplifies the

design of the PU.

3. First profile update. If the Euclidean distance calculated in the DCU,

di,j , is lower than that stored in the profile for both subsequences, the PUU

updates the profile vector and index vector, PP and II.

4. Dot product update. The dot product of the second and successive cells

in the diagonal is calculated from the previous cell. It is computed in the

DPUU by subtracting the first product and adding the new one to qi,j , as

48 Chapter 4. NATSA: A PNM Accelerator for TSA

shown in Equation 2.2. This hardware component is replicated to enable

vectorization and is pipelined with the DCU and the PUU.

5. Second and successive Euclidean distance computations. The DCU

computes again the Euclidean distance, but now it obtains qi,j from the

DPUU. The DPUU hardware component is replicated for vectorization of

the dot product update calculations.

6. Second and successive profile updates. The PUU updates the profile

vector and profile index vector, if needed. This hardware component is

replicated to perform several updates at a time.

4.2.2. Workload Partitioning Scheme

Computing the diagonals of the distance matrix may lead to load imbalance

among the PUs, because those diagonals have different lengths. To avoid this

imbalance, we propose a static partition scheduling scheme which depends only

on the size of the time series and the exclusion zone.

The way we tackle this problem is by assigning a set of pairs of diagonals to

each NATSA PU such that the sum of their elements is equal to the number of

cells of the main diagonal of the distance matrix minus the number of cells of the

exclusion zone, (n−m+ 1)−m/4.

Figure 4.2 illustrates an example with two PUs, PU0 and PU1, a distance

matrix for a time series of n = 13 cells, a window size of m = 4, and an exclusion

zone of 1 diagonal (crossed out rectangles). In this case, the number of elements

that each pair of diagonals assigned to a PU should have is (n−m+ 1)−m/4 =

10− 1 = 9. Comparing a subsequence with itself gives zero distance value. As a

consequence, the algorithm treats the main diagonal as exclusion zone and avoids

computing it. The first diagonal of non-zero values, which starts in column D2

and is represented with crossed out rectangles, belongs to the exclusion zone (see

Figure 2.3), so NATSA PUs also skip it.

Discarding the computation of the main diagonal and the diagonals in the

exclusion zone, both PUs have to compute the diagonals from columns D3 to D10.

To perform this efficiently and maintain the anytime property of SCRIMP, in the

first step, PU0 is assigned the first and last diagonal (9 elements in total), and

PU1 is assigned the second and the penultimate diagonal (totalling 9 elements as

well). In the second step, PU0 computes the third and the third-to-last diagonal,

whereas PU1 computes the fourth and fifth diagonals.

4.2. NATSA Architecture 49

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

D11 PU0 PU0 PU1 PU0 PU1 PU1 PU0 PU1 PU0

D2 PU0 PU1 PU0 PU1 PU1 PU0 PU1

D3 PU0 PU1 PU0 PU1 PU1 PU0

D4 PU0 PU1 PU0 PU1 PU1

D5 PU0 PU1 PU0 PU1

D6 PU0 PU1 PU0

D7 PU0 PU1

D8 PU0

D9

D10

Figure 4.2: Example of the diagonal scheduling scheme for two processing units,

denoted as PU0 (green) and PU1 (white). Arrows show direction of computation.

Our proposed scheduling scheme can be used in two ways: 1) Randomly order-

ing the indices of diagonals that each PU has to compute. Using this approach,

we are able to preserve the anytime property of the algorithm, since if the execu-

tion is interrupted, the user obtains a partial exploration of the whole time series

(i.e., events from any point of the time series can be detected). 2) Sequentially

ordering the indices of diagonals that each PU has to compute. This approach

violates the anytime property (i.e., only events up to the interruption point can

be detected), but allows for further optimizations (e.g., exploiting data locality

between consecutive diagonals).

Data mapping. Each PU has access to its corresponding portion of the

time series and statistic vectors, and works with replicated profile and profile

index vectors. This approach simplifies the overall architecture, enabling the

use of many PUs without having to synchronize between them. NATSA assigns

multiple diagonals to each PU with the specific scheduling scheme described in

this section.

4.2.3. Programming Interface

In this section, we introduce the API to invoke NATSA from a host processor.

While conventional loosely-coupled accelerators (e.g., GPUs or FPGAs) have

their own memory, where data must be transferred to from the host’s memory,

NATSA is a tightly-integrated PNM accelerator, located between the host CPU

50 Chapter 4. NATSA: A PNM Accelerator for TSA

and main memory. Thus, there is no need to transfer any data between the

host memory and the accelerator memory, as loosely-coupled accelerators require.

The user is responsible for 1) allocating the time series (T) and 2) providing the

window length (m). NATSA will provide the user the profile vector (P) and

profile index vector (I) in return. The size of the exclusion zone (m
4 by default)

can be also passed as a parameter (exc).

Algorithm 3 outlines the NATSA API. First, NATSA function precalculates the

statistics (µ, σ) (line 2) in the host CPU and allocates the private vectors (PP, II)

to NATSA’s PUs (line 3).

Algorithm 3 NATSA API

1: function P, I ← NATSA(T,m, exc, conf)

2: µ, σ ← precalculateMeanDev(T,m)

3: PP, II ← allocatePrivateProfiles(T,m, exc)

4: idx← diagonalScheduling(T,m, exc)

5: start accelerator(T,m, exc, conf, idx, PP, II)

6: P, I ← reduction(PP, II)

Second, NATSA function implements the diagonal scheduling scheme presented

in the previous section, setting the diagonals to be computed by each PU in idx

(line 4). Third, it initiates the accelerator (line 5), which starts the computa-

tion, and the host CPU waits for all the processing units to finish. Once the

computation finishes, the host CPU performs the final reduction of the private

vectors (line 6) and the user can find the results in the P and I vectors. The conf

argument (line 1), besides holding configuration parameters for the accelerator,

allows for future extensions, such as using other distance metrics (e.g., Pearson

correlation [203]).

4.3. Evaluation

4.3.1. Methodology

In this subsection we describe the simulation environment and the workload

we use to evaluate the performance of NATSA.

We simulate general-purpose cores using an in-house integration of ZSim [155],

whose front-end is Pin [128], with Ramulator [107] [152]. ZSim is a simulator

which can model 1) general purpose cores (both in-order and out-of-order cores),

4.3. Evaluation 51

and 2) the conventional cache hierarchy. Ramulator is a cycle-level and extensi-

ble DRAM simulator that provides a wide variety of memory models, including

DDR4 [92] and HBM [114]. We use McPAT [120] for power estimations.

For the NATSA accelerator, we use the gem5 [27] and Aladdin [161] integra-

tion developed in [168]. Aladdin provides performance, area, and power estima-

tions for a system-on-chip accelerator by requiring the equivalent C implemen-

tation of the accelerator design. Aladdin estimates the performance, power, and

area of the accelerator within 0.9%, 4.9%, and 6.6% compared to that provided

by RTL flows, but over 100× faster [161]. As Aladdin does not model the memory

subsystem, we need to simulate it using gem5.

For a fair comparison, we evaluate our baseline platform (see the evaluated

platforms below) in both ZSim and gem5 frameworks using the same workload

(see Section 4.3.2). We obtain up to 10% simulated time reduction using ZSim

with respect to gem5 (i.e., the baseline system performs slightly better with

ZSim). As a consequence, the performance benefits of NATSA with respect to

the baseline simulated using gem5, would be even higher. However, we choose

ZSim since simulations of manycore systems with ZSim are orders of magnitude

faster than gem5 simulations [155], and this allows for the evaluation of general-

purpose core platforms with large time series. For both general-purpose cores

and accelerators, we obtain the power consumption of the memory system using

the Micron Power Calculator [4], which we feed with the bandwidth usage from

Ramulator and gem5, respectively.

Using these simulation environments, we define several representative hard-

ware platforms for the evaluation:

DDR4-OoO (Baseline): A conventional DDR4-based system with eight

four-wide out-of-order cores at 3.75GHz, intended for HPC. Each core has

32KB private L1 instruction/data caches and a private 256KB L2 cache.

The cores share an 8MB L3 cache. The main memory is a dual channel

16GB DDR4-2400 with 38.4GB/s of memory bandwidth.

DDR4-inOrder: A conventional architecture using 64 in-order cores at

2.5GHz, intended for power-constrained environments. Each core has only

a single level of private 32KB instruction/data caches. The main memory

is the same DDR4 as in the baseline system. We use this simple core-

cache configuration to compare with the following PNM general-purpose-

core system.

HBM-OoO: An PNM architecture with eight four-wide out-of-order cores

at 3.75GHz, intended for HPC. Each core has 32KB private L1 instruc-

52 Chapter 4. NATSA: A PNM Accelerator for TSA

tion/data caches and a private 256KB L2 cache. The main memory is a

4GB 3D-stacked HBM2 that provides a throughput of 256GB/s.

HBM-inOrder: An PNM architecture with 64 in-order cores at 2.5GHz,

intended for power-constrained environments. Each core has a single level

of private 32KB instruction/data caches. The main memory is a 4GB 3D-

stacked HBM2 that provides a throughput of 256GB/s.

NATSA: Our PNM accelerator with 48 PUs at 1GHz. Each PU has access

to a private scratchpad memory of 1KB. The main memory is the same 4GB

3D-stacked HBM2 as in the HBM-OoO and HBM-inOrder platforms.

4.3.2. Workload

We use two real datasets and five synthetic datasets to evaluate the perfor-

mance of NATSA against state-of-the-art architectures. The two real datasets are

electrocardiogram (ECG) and seismology data obtained from [171] and [195]. We

use these real datasets to 1) verify the correctness of the matrix profile computed

by NATSA (the same approach used in [195]) and 2) evaluate the effect of us-

ing single-precision versus double-precision (see Section 4.3.3). We generate the

five synthetic datasets of different representative lengths [202] for performance

evaluation using MATLAB, as shown in Table 4.1.

Table 4.1: Synthetic time series for performance evaluation.

Time Series rand 128K rand 256K rand 512K rand 1M rand 2M

Length (n) 131072 262144 524288 1048576 2097152

4.3.3. Results

In this section, we first evaluate NATSA’s performance, comparing it to the

general-purpose platforms (DDR4-OoO, DDR4-inOrder, HBM-OoO, and HBM-

inOrder). Second, we compare NATSA to both simulated and real architectures

(e.g., many-core CPUs and GPUs [86]) in terms of power consumption and area.

Third, we present a design space exploration of NATSA. Fourth, we analyze the

performance of general-purpose cores and their bottlenecks. Finally, we evaluate

SCRIMP in terms of precision and sensitivity to subsequence lengths (m).

4.3. Evaluation 53

Performance of NATSA

We evaluate the performance of two NATSA designs using single-precision

(SP) and double-precision (DP), respectively. We present normalized perfor-

mance of NATSA-DP with respect to the baseline platform (DDR4-OoO) in Fig-

ure 4.3, using double-precision data. NATSA achieves significant performance

improvements, up to 14.2× (9.9× on average) over the baseline system for large

time series, and 6.3× over HBM-inOrder for all sizes. We observe that NATSA’s

speedup increases as the time series length becomes larger. This is because the

arithmetic intensity decreases when the ratio of time series length (n) to window

size (m) increases. Dot product update causes the first dot product to take a

significant part of the computation for shorter diagonals (lower n to m ratio).

The cache hierarchy of the baseline system accelerates the first dot product.

Conversely, a greater n to m ratio results in longer diagonals with the first dot

product being less significant with respect to the total execution time, reducing

the observed benefits of a cache hierarchy.

rand 128K rand 256K rand 512K rand 1M rand 2M
Time Series Datasets

5

10

15

S
p

ee
d

u
p

DDR4-OoO

DDR4-inOrder

HBM-OoO

HBM-inOrder

NATSA-DP

Figure 4.3: Speedup with respect to the baseline platform (DDR4-OoO) using

double precision data.

We evaluate the performance of the single-precision NATSA design.1 Ta-

ble 4.2 presents the average execution time for the analyzed datasets. NATSA-

SP, which provides higher performance with similar area cost to NATSA-DP,

outperforms NATSA-DP by up to 1.75×, DDR4-OoO-DP by up to 24.9× and

HBM-inOrder-DP by up to 11.1× for large time series.

We conclude that NATSA provides the highest performance compared to

modern general-purpose platforms.

1We note that NATSA experiments are carried out with the gem5-Aladdin simulation frame-
work, and the other platforms are evaluated with the ZSim-Ramulator framework (baseline
system included). As mentioned in Section 4.3.1, simulated times are slightly shorter for ZSim,
so the actual gains of NATSA would likely be even greater what we report.

54 Chapter 4. NATSA: A PNM Accelerator for TSA

Table 4.2: Execution time (in seconds) for single-precision and double-precision.

Config
Dataset

rand 128K rand 256K rand 512K rand 1M rand 2M

DDR4-OoO-DP 14.72 77.55 414.55 2089.05 9810.30
DDR4-OoO-SP 6.46 44.47 207.85 1106.36 5206.75
HBM-inOrder-DP 14.95 64.20 262.33 1071.03 4347.38
HBM-inOrder-SP 8.16 35.68 130.23 625.27 2466.69
NATSA-DP 2.47 10.37 42.45 171.72 690.65
NATSA-SP 1.41 5.91 24.19 97.84 393.45

Power, Energy and Area Consumption

Power and Energy Consumption. We compare the power and energy

consumption of NATSA versus other existing hardware platforms in Figures 4.4

and 4.5. We use McPAT and Micron Power Calculators to evaluate energy con-

sumption for the general-purpose platforms, getting the number of stalls and

bandwidth usage from ZSim-Ramulator. For NATSA, we add Aladdin’s energy

estimations to the values obtained from the Micron Power Calculator. We also

obtain energy measurements from real executions on GPUs using NVVP [6] and

on CPUs using PCM [2], to compare NATSA with real platforms.

Figure 4.4 shows the dynamic power consumption of each simulated or real

hardware platform. We observe that NATSA has the lowest power consumption,

and most of its power is consumed by memory.

Xeon Phi
KNL

Tesla
K40c

GTX
1050

HBM
OoO

DDR4
OoO

HBM
inOrder

DDR4
inOrder

NATSA
0

50

100

150

200

P
ow

er
(W

at
ts

)

53.77 42.93 34.97 24.13 21.45

Memory Caches Cores

Figure 4.4: Dynamic power consumption for simulated and real hardware plat-

forms.

Figure 4.5 shows the energy consumption of each simulated or real plat-

form, for the computation of a time series of 524,288 elements (rand 512K) using

double-precision. To calculate the energy consumption, we compute the power-

delay product with the measured instantaneous power consumption and the ex-

4.3. Evaluation 55

ecution time. NATSA reduces energy consumption by 27.2× (19.4× on average)

over the baseline platform (DDR4-OoO), and by 10.2× over an PNM architecture

with general-purpose cores (HBM-inOrder). NATSA consumes 1.7×, 4.1×, and

11.0× less energy than an NVIDIA Tesla K40c GPU [145], NVIDIA GTX 1050

GPU [5], and Intel Xeon Phi KNL [165], respectively. We conclude that NATSA

is the most energy-efficient evaluated platform for matrix profile.

HBM
OoO

DDR4
OoO

DDR4
inOrder

Xeon Phi
KNL

HBM
inOrder

GTX
1050

Tesla
K40c

NATSA
0

60K

120K

180K

240K

300K

E
n

er
gy

(J
ou

le
s)

273709

223550

118083
92869 86260

34826
14384 8439

Memory Caches Cores

Figure 4.5: Energy consumption for simulated and real hardware platforms.

Area. We provide a scaled area comparison in Figure 4.6. We observe that

NATSA requires 9.6×, 7.9×, 3×, and 1.8× less area than an Intel Xeon Phi KNL

(14nm), NVIDIA Tesla K40c (28nm), Intel Core i7 (32nm), and NVIDIA GTX

1050 (14nm).

0 25 50 75 100 125
Width (mm)

0

10

20

30

L
en

gt
h

(m
m

)

N
A

T
S

A NVIDIA

GTX
1050

Intel
Core i7
2600K

NVIDIA

Tesla
K40c

Intel
Xeon Phi

7210

NVIDIA

RTX
2080ti

Figure 4.6: Area comparison of different hardware platforms.

We conclude that NATSA (at 45nm technology node) is the platform that

requires the least area, while using the largest technology node (i.e., 45nm) com-

pared to other evaluated architectures. Using a more recent and smaller tech-

nology node (e.g., 15nm instead of 45nm) could additionally reduce NATSA’s

energy consumption by 4× and area by 3× [154].

56 Chapter 4. NATSA: A PNM Accelerator for TSA

NATSA Design Space Exploration

We explore the key design choices of NATSA so that we deploy the exact

number of PUs that saturate the memory bandwidth available, while minimizing

the area and power consumption of the accelerator. We evaluate the use of HBM

memory,2 where we find that 48 PUs make the accelerator balanced between

memory bandwidth and compute parallelism, as 64 PUs result in a memory-

bound accelerator, whereas 32 PUs a compute-bound one. Table 4.3 details

the design parameters of NATSA for HBM. NATSA has 48 PUs which run at

a frequency of 1GHz, fabricated at 45nm process. Implementations of NATSA

with lower technology nodes would provide smaller area footprint and improved

energy efficiency. Table 4.3 shows the components in a PU depending on the data

precision: 1) double-precision (DP), and 2) single-precision (SP).

Table 4.3: NATSA design components for 48 PUs.

Parameter/Component PU-DP NATSA-DP PU-SP NATSA-SP

Mem. bandwidth (GB/s) 5 240 5 240
Peak power (W) 0.1 4.8 0.08 3.84
Area (mm2) 1.62 77.76 1.51 72.48

FP Multipliers/Adders 16/14 768/672 64/36 3072/1728
Integer Adders 16 768 64 3072
Bitwise Operators 2 96 2 96
Registers 108 5184 267 12816

Performance of General-Purpose Cores

We evaluate the speedup over the baseline (DDR4-OoO) and memory band-

width usage of SCRIMP, calculated using the ZSim-Ramulator framework for

the DDR4-OoO, DDR4-inOrder, HBM-OoO and HBM-inOrder platforms using

double-precision time series of different lengths (n), in Figure 4.7.

We report execution time of the baseline (DDR4-OoO) on top of the respec-

tive performance bars in Figure 4.7. Based on these results, we make three

key observations. First, the DDR4-OoO platform does not use the peak avail-

able bandwidth of DDR4 (i.e., 38.4GB/s). We reinforce this observation with

our HBM-OoO evaluation which replaces DDR4 with higher bandwidth HBM.

HBM-OoO platform improves performance by only 7%, which means that provid-

2We also explore the use of DDR4 memory, where 8 PUs are enough to saturate the available
memory bandwidth and the performance obtained is similar to the DDR4-inOrder platform (4%
difference).

4.3. Evaluation 57

1

2
S

p
ee

d
u

p

14
.7

s

77
.6

s

41
4.

6s

20
89

.1
s

98
10

.3
s

DDR4-OoO DDR4-inOrder HBM-OoO HBM-inOrder

rand 128K rand 256K rand 512K rand 1M rand 2M
Time Series Datasets

0

25

50

M
em

or
y

B
an

d
w

id
th

G
B

/s

Figure 4.7: Speedup over the baseline DDR4-OoO and memory bandwidth usage

for general-purpose platforms.

ing more bandwidth does not significantly affect performance. This is because

both platforms are compute-bound when executing SCRIMP. Second, the 64

lightweight cores of DDR4-inOrder slightly outperform the 8 complex cores of

DDR4-OoO when n ≥ 1048576 elements (i.e., rand 1M dataset). This is be-

cause shorter time series can fit in the L3 cache. For long time series, the higher

parallelism provided by the in-order platform enables higher memory-level paral-

lelism [140, 137, 70, 139, 138, 141] and higher memory bandwidth demand, where

DDR4 bandwidth becomes a bottleneck, resulting in a memory-bound system.

Third, the HBM-inOrder platform provides up to 2.25× speedup over the baseline

(DDR4-OoO), and consumes only 17% of the HBM’s peak bandwidth with the

largest dataset evaluated. In this case, even though performance is improved, the

application is still compute-bound and simple PNM general-purpose cores cannot

fully exploit the bandwidth provided by HBM (256GB/s)3 for the largest dataset

we evaluate, which means that large datasets can be comfortably accommodated.

We conclude that general-purpose platforms provide less performance than

NATSA’s design as they do not effectively exploit the memory bandwidth.

3Based on the memory bandwidth usage and McPAT, we estimate that a general-purpose
based architecture would need 128 OoO cores (area 688mm2, TDP 1137W, 18nm) or 384 in-
order cores (area 164mm2, TDP 126W, 18nm) to take full advantage of the maximum bandwidth
provided by HBM.

58 Chapter 4. NATSA: A PNM Accelerator for TSA

Accuracy and Sensitivity to Subsequence Length

Accuracy. We explore how the accuracy of the SCRIMP implementation is

affected by changing the precision of the data representation. We use real data

obtained from [171] and [195], as discussed in Section 4.3.2. Figure 4.8 presents

the output obtained for an electrocardiogram (ECG) and for seismology data

using two precision values. We observe that events are still detectable even when

reducing the precision from double to single precision. This observation can be

exploited to improve performance and reduce energy consumption, by operating

on smaller arithmetic units and less memory footprint.

0

1

2

3

A
m

p
lit

u
d

e

100K 100.5K 101K 101.5K
Data Points (ECG)

0

4

8

12

P
ro

fil
e

double

single

0

20

40

60

103K 103.2K 103.4K 103.6K
Data Points (Seismology)

5.0

5.8

6.6

7.4

Figure 4.8: ECG (left) and seismology (right) data along with their profiles, using

double and single precision, where events are easily visible.

Sensitivity to the subsequence length. We finally perform a sensitivity anal-

ysis to the subsequence length (m). We observe that, when the proportion be-

tween m and n is less than two orders of magnitude, the performance of SCRIMP

in all platforms is significantly affected by m. For example, when increasing m

from 1,024 to 16,384 in a time series of 131,072 elements, the execution time of

SCRIMP reduces by 41%. However, when the time series length is large enough

compared to the subsequence length, performance of SCRIMP is affected by a

smaller amount. For instance, when increasing m from 1,024 to 16,384 in a time

series of 2,097,152 elements, the execution time of SCRIMP reduces by 13%. This

is because the computation of the first element of each diagonal involves the dot

product calculation without any reutilization.

5 MATSA: A PUM
Accelerator for TSA

5.1. Motivation and Key Idea

TSA is widely applicable to many domains, while there is no previous pro-

posal that satisfy the requirements of the application to provide a highly-efficient

solution for power constraint scenarios. We conclude justifying the need for a

NVM-based PUM TSA accelerator since 1) TSA is widely applicable to many

domains and 2) there is no previous proposal that satisfy the requirements of

TSA to enable an efficient solution.

In contrast to commodity architectures, a PUM architecture based on Non-

Volatile Memories (NVM) constitutes a promising solution to accelerate TSA,

since it since it 1) enables high parallelism, 2) reduces data movement costs, 3)

can provide better scalability than its competitors due to massive parallelism,

4) is CMOS-compatible, and 5) overcomes the data volatility problem. We find

that the main drawback of NVM technologies are their lack of mature, being

difficult to evaluate. To tackle with this issue, we perform sensitivity studies in

our evaluation for different NVM technologies.

In this chapter, we present MATSA, the first MRAM-based Accelerator for

Time Series Analysis. The key idea is to exploit magneto-resistive memory cross-

bars to enable energy-efficient and fast time series computation in memory while

overcoming endurance issues of other non-volatile memory technologies. MATSA

provides the following key benefits: 1) it leverages high levels of parallelism in

the memory substrate by exploiting column-wise arithmetic operations, and 2) it

59

60 Chapter 5. MATSA: A PUM Accelerator for TSA

significantly reduces the data movement costs performing computation using the

memory cells.

Compared to NATSA, which moves compute units closer to data, MATSA

goes one step forward in the way to solve the memory wall by placing computation

exactly where data resides.

5.2. MATSA Architecture

In this section, we present 1) the mechanism of MATSA, that enables high-

performance and energy-efficient TSA, and 2) how MATSA is integrated in com-

modity systems.

5.2.1. Overview

[0]

[8]

[8,0]

[7,0]

aux

[1]

[7]

[7,1]

[6,1]

[7,0]

aux

S[i,j]

S[i-1,j]

S[i,j-1]

[2]

[6]

[6,2]

[5,2]

[6,1]

aux

[3]

[5]

[5,3]

[4,3]

[5,2]

aux

[4]

[4]

[4,4]

[3,4]

[4,3]

aux

[5]

[3]

[3,5]

[2,5]

[3,4]

aux

[6,0]S[i-1,j-1] [5,1] [4,2] [5,3] [6,2]

[6]

[2]

[2,6]

[1,6]

[2,5]

aux

[7,1]

[7]

[1]

[1,7]

[0,7]

[1,6]

aux

[8,0]

[...]

[...]

[...]

[...]

[...]

aux

[...]

[...]

[...]

[...]

[...]

aux

[...]

[...]

[...]

[...]

[...]

aux

[...] [...] [...]

[...]

[...]

[...]

[...]

[...]

aux

[...]

[...]

[...]

[...]

[...]

[...]

aux

[...]

Q[i]

R[j]

...

...

...

...

...

...

...

25
6

ro
w

s

256 columns

Inter-Bank

Inter-Mat

Inter-Subarray Compute Subarray

Bank

Bank

Bank

Bank

GRB

I/O

Ctrl

… …
MAT MAT MAT

MAT

G
R

D

MATMAT

Ctrl GRB

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

LRB LRB

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

Compute
Subarray

D
riv

er

Ctrl

LRB LRB

GRB

G
R

D

Ctrl

… …

aux

GBL

GWL

r_
a
d
d
r

c
_

a
d
d
r

-

-

Figure 5.1: MATSA’s high-level Architecture and Data Mapping. Note that

modifications at Inter-Bank, Inter-Mat, and Inter-Subarray levels with respect

to common NVM devices are negligible, easing fabrication and compatibility.

MATSA is an MRAM-based Accelerator for Time Series Analysis designed to

substitute the main processing unit (e.g., CPU or µcontroller) when performing

subsequence Dynamic Time Warping (sDTW). This way, MATSA improves the

energy efficiency of the entire system. MATSA implements sDTW since 1) it

is more robust than Euclidean Distance based ones for most of scenarios (See

Background Chapter) and also 2) sDTW’s computation flow fits better the PUM

paradigm. Figure 5.1 presents an overview of our proposed architecture. MATSA

is composed of one or several chips divided into multiple banks. Banks that belong

to the same chip share buffers and I/O interfaces and work in a lock-step approach

based on an integrated global controller (Ctrl) that orchestrates the flow. Each

5.2. MATSA Architecture 61

bank is composed of several Multiple Memory Matrices (MATs). The MATs

share a Global Row Buffer (GRB) and are connected to a Global Row Decoder

(GRD). We place a Local Row Buffer (LRB) for every pair of subarrays. MATs

are composed of several memory subarrays.

Each memory subarray is composed of magnetoresistive devices (e.g., SOT-

MRAM cells) that are connected to the Write Word Lines (WWL), Write Bit

Lines (WBL), Read Word Lines (RWL), Read Bit Lines (RBL), and Source

Lines (SL). The memory cells perform the sDTW computation in combination

with reconfigurable Sense Amplifiers (SAs). We place a MATSA controller (Ctrl)

next to each subarray, which is in charge of orchestrating the data flow and

activating the subarrays to perform the sDTW computation properly. We discuss

the system integration of MATSA in Subsection 5.2.7.

5.2.2. MATSA Subarrays

MATSA subarrays are comprised of non-volatile memory cells following a

conventional crossbar organization that can work either in regular memory or

compute mode. This is a desirable feature since our design consists of 1) subarrays

that buffer the data pending to be processed and 2) subarrays that perform the

actual computation. Adjacent subarrays are connected using pass gates and

auxiliary columns (purple one in Figure 5.1) to enable the flow at this level of

the hierarchy.

Memory subarrays. MATSA subarrays in regular memory mode support

both read and write data operations. To perform a write operation, MATSA first

invokes the Memory Row Decoder (MRD) to activate the proper WL. Second,

the corresponding WD applies the voltage difference needed to switch the cell to

the BL and SL (which induces a resistance change in the MJT accordingly). To

perform a read operation, MATSA first invokes the MRD to activate the proper

WL in the write operation, while the MCD is in charge of connecting the proper

BL to its SA. Then, the sense amplifier interprets the voltage value across the

path, compares it against a reference voltage, and produces the output result

(logic ’1’ or ’0’).

Compute subarrays. MATSA subarrays working in compute mode perform

bit-wise operations (e.g., NOR) for operands belonging to the same column. This

enables the parallel execution of many operations at the same time since columns

in the same subarray work synchronously. The key idea is to select two or three

operands simultaneously using the MRD. This produces an equivalent resistance

that depends on the content of the selected cells and modifies the sensing volt-

62 Chapter 5. MATSA: A PUM Accelerator for TSA

age across such column accordingly. We include a redesigned reconfigurable sense

amplifier (Figure 5.2) per column, from which MATSA’s Ctrls can select different

thresholds depending on the operations. For example, assuming that the desired

operation is the majority of three operands, Ctrl activates the three correspond-

ing rows and sets EnMaj to logic ’1’. Then, if the equivalent resistance of the

activated cells in such column is below RMaj, the result produced by the SA will

be logic ’1’, or logic ’0’ otherwise. Most operations are performed in a single cycle

thanks to the gates added to SAs.

XOR

Q

Q
GRB

CLR

D

Carry and
DC Latch

NOR

RAND

SA

SA

BL

ROR

RMaj

RMem

DCOut

Sum

Carry

DCIn

BL/DC Sel

EnAND

EnNOR

EnMaj

EnMem

Reconfigurable
SA Module

Figure 5.2: MATSA’s Reconfigurable Sense Amplifier. Latch register is reused

for Addition and Diagonal Copy operations.

The execution flow of MATSA is orchestrated by a hierarchy of controllers

implemented as finite state machines (FSMs). In particular, MATSA comprises 1)

a global controller that orchestrates inter-bank communication, 2) several inter-

mat controllers that take care of the inter-mat communications, and 3) subarray

controllers that activate the memory rows and drive Reconfigurable SAs according

to sDTW’s algorithm.

5.2.3. sDTW Challenges in NVM-PUM

Using an NVM-PUM architecture to accelerate sDTW raises two main chal-

lenges: 1) accessing neighboring columns and 2) column-wise parallelism.

Accessing neighboring columns. Each sDTW’s calculated value depends

on two cells from the j− i column (S[i−1, j−1] and S[i, j− i]). We address this

issue by introducing a novel single cycle and parallel diagonal copy operation.

5.2. MATSA Architecture 63

Column-wise parallelism. Ensuring that columns can work independently

and at the same time is critical for sDTW performance. We address this issue

by introducing a novel data mapping and execution flow based on wavefront

execution.

5.2.4. Supported Operations

To support the sDTW algorithm, MATSA implements the following in-

memory operations:

Row Copy. The key idea behind this mechanism is to perform consecutive

memory read and write operations in the same cycle. In the first half cycle,

the corresponding subarray’s MRD activates the source row that is read by

the LRB. After that, the data is stored in the destination row in the second

half cycle. This mechanism works at MAT and bank levels using the Global

Row Buffer (GRB) to accelerate the copy operations across the hierarchy.

Diagonal Row Copy. A diagonal copy occurs when the source and desti-

nation cells belong to adjacent columns. To enable such a feature, MATSA

leverages the available registers in the sense amplifiers and the interconnec-

tions between them. The operation is performed in two steps. First, each

SA reads the source value of its own column. Second, each SA takes the

value of its left SA neighbor and writes it to its own column. This operation

is performed in parallel when the source and destination rows are common

for a given set of cells.

Addition/Subtraction. MATSA implements bit-serial addition/subtrac-

tion across columns. It computes bit-by-bit operations from the LSB of the

two operands until the MSB. Every bit position takes two memory cycles,

further divided into four steps. In the first step, the SAs use the two bit

cells activated in the same bit lines as input operands and calculate Sum

taking into account the stored carry in the register available in the SA. In

the second step, the SAs write back the Sum value to the corresponding

cell. In the third step, the SAs calculate the new Carry based on a major-

ity function. In step four, SAs write the result in a reserved cell in their

register.

Absolute value. To calculate the absolute value, MATSA first checks the

sign bit, leading to two possible scenarios: 1) if the number is positive, no

change is needed; otherwise, 2) if the number is negative, MATSA inverts

64 Chapter 5. MATSA: A PUM Accelerator for TSA

the bits of the number and adds ’1’ to the result using the addition operation

(similar to 2’s complement).

Minimum value. To calculate the minimum value between three elements,

MATSA performs two comparisons based on the subtraction operation.

First, it calculates the difference between two of the numbers. Second,

it checks the resulting sign from the previous step and selects one of the

two numbers for comparison against the third. The final comparison sign

determines the overall minimum.

5.2.5. Data Mapping

We design MATSA’s data mapping to leverage the parallel column-wise com-

putation support in MRAM. This organization requires that the operands have

to be mapped to the same column. There are three basic structures involved

in the sDTW computation: 1) reference, 2) queries, and 3) the warping matrix.

The size of the warping matrix can be huge: O(NM). However, we are inter-

ested in the distance value (i.e., no need to store the alignment), which can be

computed by iterating over a single vector that holding the current row of the

warping matrix. To do so, we define the s vector, but we note that each s vector

element (which has to be mapped to different crossbar column) requires access-

ing previous s vector values that are mapped to another different columns (i.e.,

S[i−1, j−1], S[i−1, j−1]). To overcome this challenge, we propose to add three

temporal s vector in the crossbar array, which are updated accordingly for each

step of the computation: S[i− 1, j− 1], S[i− 1, j] and S[i, j− i] (see Figure 5.1).

Overall, our optimization reduces the memory footprint from O(MN) to O(4N).

Each subarray’s column is composed of 256 cells sliced in the following way (e.g.,

using int32 as datatype):

Reference elements (R[j]). We vertically map each reference element

to 32 cells of a column. If 1) the number of available columns is bigger

than the number of elements in reference, we replicate the reference to

multiple columns to increase parallelism (distributing the queries between

them). If 2) the number of available columns is lower than the number of

elements in reference, we divide the sDTW matrix and complete processing

in successive sequential batches.

Query elements (Q[i]). We vertically map each query element to 32

cells of a column. New query elements are introduced on the left side of

the crossbar, and they are right-shifted in each successive step (see Section

5.2.6).

5.2. MATSA Architecture 65

Current s vector (S[i, j]). We vertically map each element of the

s vector to 32 cells of a column, being aligned with the reference. The query

element is computed in a given step of the algorithm (i and j indexes).

Temporal s vectors (S[i-1, j-1], S[i-1, j] and S[i, j-1]). We

vertically map the three temporal vectors that enable independence to 32

cells of a column, in alignment with the reference and query elements that

are computed in a given step of the algorithm.

Aux Cells. Each column is provided with a slice of 64 cells that are used

to hold the partial results during the execution flow, as explained in the

next subsection.

We note that MATSA’s design requires internal data movement. For typi-

cal reference sizes, data movement happens at the inter-subarray level. If the

reference is big enough, a hierarchy of paths enable its computation efficiently.

5.2.6. Execution Flow

MATSA’s execution flow follows a wavefront [48] approach, which reflects the

computation pattern in dynamic programming applications. The motivation is

that sDTW’s matrix has to be computed in the wavefront manner due to inter-cell

dependencies. Figure 5.3 shows how we tackle this challenge.

The key idea is to perform the computation diagonally by assigning a diagonal

element to each processing element (PE), and use the diagonal row copy operation

to communicate between processing elements (columns) and get the surrounding

values. This approach 1) enables parallelism while computing a given query and

2) creates a pipeline where several queries are being processed. The execution

flow iterates over the following steps until queries remain.

1. Distance calculation. Calculation of dist(Q[i], R[j]), which provides the

first partial result P1. This process implies several substeps depending on

the selected distance metric, (e.g., subtraction → absolute value).

2. Minimum. Calculation without storing the result of min(S[i − 1, j −
1], S[i− 1, j], S[i, j − 1]), which produces the value for the next step S1.

3. Addition. Calculation of the addition between the minimum value selected

in the previous step (S1) and the partial result P1.

66 Chapter 5. MATSA: A PUM Accelerator for TSA

[5,0]

[0,0]

[4,0]

[2,0]

[3,0]

[6,0]

[5,1]

[0,1]

[4,1]

[2,1]

[3,1]

[6,1]

[5,2]

[0,2]

[4,2]

[2,2]

[3,2]

[6,2]

[5,3]

[0,3]

[4,3]

[2,3]

[3,3]

[6,3]

[5,4]

[0,4]

[4,4]

[2,4]

[3,4]

[6,4]

[5,5]

[0,5]

[4,5]

[2,5]

[3,5]

[6,5]

[1,0] [1,1] [1,2] [1,3] [1,4] [1,5]

[5,6]

[0,6]

[4,6]

[2,6]

[3,6]

[6,6]

[1,6]

[5,7]

[0,7]

[4,7]

[2,7]

[3,7]

[6,7]

[1,7]

[5,0]

[0,0]

[4,0]

[2,0]

[3,0]

[6,0]

[5,1]

[0,1]

[4,1]

[2,1]

[3,1]

[6,1]

[5,2]

[0,2]

[4,2]

[2,2]

[3,2]

[6,2]

[5,3]

[0,3]

[4,3]

[2,3]

[3,3]

[6,3]

[5,4]

[0,4]

[4,4]

[2,4]

[3,4]

[6,4]

[5,5]

[0,5]

[4,5]

[2,5]

[3,5]

[6,5]

[1,0] [1,1] [1,2] [1,3] [1,4] [1,5]

[5,6]

[0,6]

[4,6]

[2,6]

[3,6]

[6,6]

[1,6]

[5,7]

[0,7]

[4,7]

[2,7]

[3,7]

[6,7]

[1,7]

Currently
assigned
to a PE

Already
computed

a) b)

Needs to be
computed

Figure 5.3: Wavefront-based sDTW computation. In a, PEs are able to calculate

their matrix elements in parallel. In b, the pipeline is full and PEs are also

working on different queries.

4. Diagonal Copy. Copying the S[i, j] vector into the S[i, j−1] vector shifted

by one to the right.

5. Diagonal Copy. Copying the S[i − 1, j] vector into the S[i − 1, j − 1]

vector shifted by one to the right.

6. Vertical Copy. Copying the S[i, j] vector into the S[i− 1, j] vector.

7. Diagonal Copy. Copying the Q[i] vector into the same Q[i] vector but

shifted one position to the right.

5.2.7. System Integration

Physical Device. MATSA is designed to work synergistically with the main

processing unit (e.g., CPU) to efficiently accelerate TSA. We propose three dif-

ferent versions of MATSA (see Figure 5.4) to meet the requirements of each

environment:

1. MATSA-Embedded. A small chip intended to be integrated in edge

devices (e.g., sensors).

5.3. Evaluation 67

2. MATSA-Portable. A USB-based accelerator intended for use in desktops

and laptops computers, similar to Intel Neural Compute Stick [14].

3. MATSA-HPC. A high-performance PCIe-based accelerator intended to

be integrated into servers.

MATSA
Controller

Buffers

M
A
TS
A

μ
C
tr

MA

TSA

a) b)

c)

Figure 5.4: MATSA integration. a) High-performance accelerator (PCIe card).

b) Portable accelerator (USB stick). c) Embedded accelerator (small chip).

Programming Interface. To enable efficient use of MATSA by the pro-

grammers, we expose an API (Listing 5.1) that invokes the accelerator based

on the input data in a supported DTYPE (int8, int16, int32, int64, fp32 or

fp64), the selected mode (query filtering or self join) and the distance metric

(abs diff or square diff). The user can optionally define an anomaly threshold,

which provides a boolean array in return with the positions of the anomalies set

to true.

void matsa(DTYPE *ref , DTYPE *queries , uint32_t *ref_size ,
uint32_t *query_sizes , uint32_t n_queries , char *mode ,
char *dist_metric , DTYPE anomaly_thres , bool *anomalies ,
DTYPE *distances)

Listing 5.1: MATSA’s host interface function.

5.3. Evaluation

In this section, we present the evaluation of MATSA which comprises 1) a

self-characterization and 2) a comparison with different baselines in terms of

performance and energy.

68 Chapter 5. MATSA: A PUM Accelerator for TSA

5.3.1. Methodology

We compare several representative (simulated and real) hardware platforms

for the evaluation.

(Simulated) CPU-ARM (cpuarm): A portable-class platform based on

an 4-core ARM CPU running at 2.5GHz, 32KB L1 caches and an 8GB

LPDDR4 memory.

CPU-i7 (cpui7): A desktop-class platform based on an 6-core (12 threads)

Intel i7 x86 CPU running at 3.2GHz, 64KB L1 caches, 256KB L2 caches,

12MB L3 cache and a 64GB DDR4 memory.

CPU-Xeon (cpuxeon): A server-class platform based on two 18-core (36

threads) Intel Xeon Gold x86 CPUs running at 3GHz, 32KB L1 caches,

1MB L2 caches, a 24.75 MB L3 cache and a 768GB DDR4 memory.

GPU (gpu): An NVIDIA Tesla V100-SXM2 board equipped with 32GB

of HBM memory.

FPGA (fpga): An Alveo U50 board equipped with 872K LUTs and 8GB

on-board HBM memory.

UPMEM (upmem): A server-class platform based on PNM-enabled mem-

ory that is equipped with 2560 DPUs running at 425MHz [46, 71].

MATSA-Embedded (matsa-embedded): An ultra low-power version of

our accelerator, consisting of 128 compute-enabled crossbars.

MATSA-Portable (matsa-portable): A balanced energy/performance

version of our accelerator, consisting of 1024 compute-enabled crossbars.

MATSA-HPC (matsa-hpc): A high-performance version of our acceler-

ator, consisting of 4096 compute-enabled crossbars.

Baselines. To evaluate our cpuarm platform, we use ZSim [155] and Ra-

mulator [107, 152] for performance and McPAT [120] for energy consumption

evaluations. For the cpui7 and cpuxeon platforms, we obtain the performance

from the average of five executions (as we find that the divergence between them

is negligible), and energy consumption using rapl-tools [102]. All the above CPU-

based platforms execute the same parallel OpenMP C implementation of sDTW.

To evaluate the performance of upmem, we implement sDTW for this platform.

Further, we replicate the reference time series across all DPUs and distribute the

5.3. Evaluation 69

queries among them. For the energy measurements, we use an estimation tool

provided by UPMEM [183]. To evaluate the performance of fgpa, we develop a

custom HLS-based implementation of sDTW comprising six compute units that

exploit the HBM bandwidth, and obtain the energy consumption using the xbutil

tool [190]. Finally, we evaluate the performance of gpu by developing a custom

CUDA-based implementation of sDTW that exploits the HBM bandwidth via

coalescing, and obtain the energy consumption using the nvidia-smi tool.

Parameter Values

Crossbar Size (cells) 256x256

Number of Crossbars 128, 256, 512, 1024, 2048, 4096

Read Latency (ns) 1, 3, 5, 10, 20

Write Latency (ns) 1, 3, 5, 10, 20

Read Energy (pJ) 20, 50, 100

Write Energy (pJ) 30, 70, 400

Table 5.1: MATSA design exploration parameters.

MATSA. To evaluate the performance and energy of MATSA, we perform

a sensitivity analysis of the latency and energy of MRAM devices. We create

a custom analytical-based simulator based on sDTW’s execution flow and its

required operations. We feed this simulator with the workload parameters along

with MATSA characteristics (memory cell latency/energy, etc.) and obtain the

execution time and total energy from it. We present the parameter range we use

in our evaluation in Table 5.1, going from conservative to optimistic ones based

on the MRAM technology trends [153].

5.3.2. Workloads

We evaluate both MATSA and our baselines using the workload sizes listed

in Table 5.2. We cover a wide combination of reference sizes and query sizes

to better understand the tradeoffs in MATSA design aligned with real datasets

parameters [179].

Parameter Values

Reference Size 64K, 128K, 256K, 512K

Query Size 4K, 8K, 16K, 32K

Number of Queries 4K, 8K, 16K, 64K

Table 5.2: Workload parameters used in our evaluation.

70 Chapter 5. MATSA: A PUM Accelerator for TSA

5.3.3. Results

MATSA Characterization

We perform a design space exploration of MATSA taking into consideration

performance parameters of the cells (i.e., read/write latencies and energies).

Read/Write Latencies. We evaluate how changing the read/write latencies

affects the execution time and present the results in Figure 5.5. We observe

that, increasing read latency by 10× incurs a 4.7× execution time penalty, while

increasing the write latency incurs a 6.5× penalty.

r1
-w

1
r1

-w
3

r1
-w

5
r1

-w
10

r1
-w

20
r3

-w
1

r3
-w

3
r3

-w
5

r3
-w

10
r3

-w
20

r5
-w

1
r5

-w
3

r5
-w

5
r5

-w
10

r5
-w

20
r1

0-
w

1
r1

0-
w

3
r1

0-
w

5
r1

0-
w

10
r1

0-
w

20
r2

0-
w

1
r2

0-
w

3
r2

0-
w

5
r2

0-
w

10
r2

0-
w

20

Latencies

0
200
400
600
800

E
xe

cu
ti

o
n

ti
m

e
(s

)

Figure 5.5: Execution time when varying cell read and write latencies

(ref size=128K, query size=8K, num queries=8K, matsa cols=128K).

Key Observation 1: using a low write latency memory technology is crucial

for MATSA’s design

Read/Write Energies. We evaluate how the total execution energy varies

with the per word write/read energy, and show the results in Figure 5.6. We

observe here that the contributions of read energy and write energy are similar,

thus both of them have to be carefully taken into consideration.

Key Observation 2: write energy contributes only 19% more than read en-

ergy to the total energy

Workload sizes. First, we evaluate how the execution time varies with

different workloads sizes (i.e., ref size and query size) and present the results in

Figure 5.7. Second, we evaluate how the execution energy varies with different

workload sizes and present the results in Figure 5.8. We observe that both the

reference size and the query size contribute equally to the execution time and

energy. This happens because the total number of operations needed is directly

5.3. Evaluation 71

proportional to ref size×query size.

r2
0-

w
30

r2
0-

w
70

r2
0-

w
40

0

r5
0-

w
30

r5
0-

w
70

r5
0-

w
40

0

r1
00

-w
30

r1
00

-w
70

r1
00

-w
40

0

Energies

0
10000
20000
30000
40000
50000

E
xe

cu
ti

o
n

en
er

g
y

(J
)

Figure 5.6: Execution energy when varying cell read and write energies

(ref size=128K, query size=8K, num queries=8K, matsa cols=128K).

65
53

6-
40

96

65
53

6-
81

92

65
53

6-
16

38
4

65
53

6-
32

76
8

13
10

72
-4

09
6

13
10

72
-8

19
2

13
10

72
-1

63
84

13
10

72
-3

27
68

26
21

44
-4

09
6

26
21

44
-8

19
2

26
21

44
-1

63
84

26
21

44
-3

27
68

52
42

88
-4

09
6

52
42

88
-8

19
2

52
42

88
-1

63
84

52
42

88
-3

27
68

Problem size

0
500

1000
1500
2000
2500
3000

E
xe

cu
ti

o
n

ti
m

e
(s

)

54
97

Figure 5.7: Execution time when varying workload sizes (num queries=8K,

matsa cols=128K).

Key Observation 3: total execution time and energy are proportional both

to the ref size and the query size

MATSA sizes. We evaluate how the execution time varies when chang-

ing the number of MATSA’s compute-enabled columns in Figure 5.9. MATSA

provides almost-ideal scaling.

Key Observation 4: inherent independence across columns enables almost-

ideal scaling when increasing # of columns

72 Chapter 5. MATSA: A PUM Accelerator for TSA

65
53

6-
40

96

65
53

6-
81

92

65
53

6-
16

38
4

65
53

6-
32

76
8

13
10

72
-4

09
6

13
10

72
-8

19
2

13
10

72
-1

63
84

13
10

72
-3

27
68

26
21

44
-4

09
6

26
21

44
-8

19
2

26
21

44
-1

63
84

26
21

44
-3

27
68

52
42

88
-4

09
6

52
42

88
-8

19
2

52
42

88
-1

63
84

52
42

88
-3

27
68

Problem size

0
20000
40000
60000
80000

100000

E
xe

cu
ti

o
n

en
er

g
y

(J
)

17
45

14

Figure 5.8: Execution energy when varying problem sizes (num queries=8K,

matsa cols=128K).

32768 65536 131072 262144 524288 1048576
#columns

0
100
200
300
400
500
600
700
800

E
xe

cu
ti

o
n

ti
m

e
(s

)

1374

Figure 5.9: Execution time when varying MATSA sizes.

Endurance. Assuming that MATSA is built using 5ns rd/wr cells and runs

24/7 for 10 years, we estimate that (on average) each cell will be written on the

order of 4 × 109 times. Based on that, magnetoresistive technologies as STT-

MRAM or SOT-MRAM are good candidates to build MATSA [52]. In contrast,

ReRAM would not provide enough writing cycles.

MATSA Comparison

In this section, we compare the performance and energy of three versions of

MATSA with the corresponding baselines.

MATSA-Embedded. We first compare the performance of MATSA-

Embedded (32K compute-enabled columns) with cpuarm, cpui7 and fpga and

present the results in Figure 5.10. We observe that MATSA-Embedded outper-

5.3. Evaluation 73

forms the cpuarm by 30×, the cpui7 by 1.3× and the fpga by 8×1. Second,

we compare the energy consumption of MATSA-Embedded with the baselines in

Figure 5.11. We observe that MATSA-Embedded reduces the energy consump-

tion by 45× with respect to the cpuarm baseline, by 10× with respect the cpui7

baseline and by 24× with respect to the fpga baseline.

MATSA-Portable. We first compare the performance of MATSA-Portable

(256K compute-enabled columns) with cpuarm, cpui7 and fpga and show the

results in Figure 5.10. We observe that MATSA-Embedded outperforms the

cpuarm baseline by 241×, the cpui7 baseline by 10× and the fpga baseline by

64×. Second, we compare the energy consumption of MATSA-Portable with the

baselines in Figure 5.11.

131072-1024

131072-16384

262144-1024

262144-16384

524288-1024

524288-16384

Input Configuration

103
104
105
106

E
xe

cu
ti

o
n

ti
m

e
(s

)

cpuarm cpui7 fpga matsa-embedded matsa-portable

Figure 5.10: Execution times of MATSA-Embedded (num cols=32K) and

MATSA-Portable (num cols=256K) versus baselines for different workload sizes

(rd latency=5ns, wr latency=10ns).

Key Observation 5: Both MATSA-Embedded and MATSA-Portable im-

prove performance and energy with respect to cpuarm, cpui7 and fpga

MATSA-HPC. We first compare the performance of MATSA-HPC with

cpuxeon, gpu and upmem and present the results in Figure 5.12. We observe that

MATSA-HPC outperforms cpuxeon by 7.3×, gpu by 6.15× and upmem by 6.3×.

Second, we compare the energy consumption of MATSA-HPC with the base-

lines in Figure 5.13.

1The reader may wonder how the performance of the cpui7 baseline can be better than the
fpga one. The main reason for that is the cache memory in the CPU baseline, which is large
enough to hold the main data structures of the algorithm, whereas the FPGA’s scratchpad
memory is smaller and the data structures have to be HBM located. Thus, HBM latency lags
the FPGA behind the CPU baseline.

74 Chapter 5. MATSA: A PUM Accelerator for TSA

131072-1024

131072-16384

262144-1024

262144-16384

524288-1024

524288-16384

Input Configuration

104

105

106

107

E
ne

rg
y

(J
)

cpuarm cpui7 fpga matsa-embedded matsa-portable

Figure 5.11: Execution energy consumption of MATSA-Embedded

(num cols=32K) and MATSA-Portable (num cols=256K) versus baselines

for different workload sizes (rd energy=50nJ, wr energy=70nJ).

131072-1024

131072-16384

262144-1024

262144-16384

524288-1024

524288-16384

Input Configuration

102

103

104

E
xe

cu
ti

o
n

ti
m

e
(s

)

cpuxeon gpu upmem matsa-hpc

Figure 5.12: Execution times of MATSA-HPC versus baselines for different work-

load sizes (rd latency=5ns, wr latency=10ns, num cols=1M).

We note that MATSA-HPC is 11× more energy-efficient than cpuxeon, 4.21×
more energy-efficient than gpu and 2.6× more energy-efficient than upmem. We

note that cpuxeon is bottlenecked by 1) the limited parallelism (# of cores) and

2) memory hierarchy. Our gpu baseline provides high parallelism, but it is limited

by data movement from and to memory. The PNM-based upmem baseline provides

high parallelism and closeness to memory, but it is compute-bound for this ap-

plication. Finally, MATSA-HPC provides huge parallelism, in-situ computation

and high throughput, being a balanced solution.

Key Observation 6: MATSA-HPC provides better performance and energy

consumption than cpuxeon, gpu and upmem baselines.

5.3. Evaluation 75

131072-1024

131072-16384

262144-1024

262144-16384

524288-1024

524288-16384

Input Configuration

104

105

106

107
E

ne
rg

y
(J

)
cpuxeon gpu upmem matsa-hpc

Figure 5.13: Execution energy consumption of MATSA-HPC versus baselines for

different workload sizes (rd energy=50nJ, wr energy=70nJ, num cols=1M)

Key Observation 7: MATSA-Embedded, MATSA-Portable and MATSA-

HPC reduce the energy consumption in a similar way with respect to a given

baseline. This fact is explained because the main difference between the three

MATSA versions is the increment in the number of columns (i.e., SIMD lanes).

As a result, while execution time is reduced, the instantaneous power is incre-

mented by the same factor, thus total energy consumed is similar.

6 TraTSA: A Transprecision
Framework for TSA

6.1. Motivation and Key Idea

In this work, we evaluate the latest Euclidean-based implementations of ma-

trix profile (SCRIMP [202] and SCAMP [203]) and find that a huge number of

floating-point (FP) arithmetic operations are needed in order to analyze even

short time series. In this sense, transprecision computing [130] has recently

emerged as a promising approach to 1) improve energy efficiency, 2) provide bet-

ter performance, 3) reduce area footprint, and 4) reduce memory bandwidth by

tolerating some loss of accuracy in computed results. This paradigm reduces the

number of bits for the exponent and the mantissa in FP operations in a flexible

way, depending on the requirements of the application. It is well known that FP

operations are a major contributor (≈50%) [173] to the energy consumption in

modern computing platforms. Thus, transprecision has the potential to provide

an efficient design with the required precision by the application.

Our goal in this work is to provide a set of tools to jumpstart the research niche

of transprecision time series analysis, to achieve high-performance and energy-

efficient computing for a wide range of applications. This way, new platforms

can be designed that benefit from reduced-bit-count FP operations tailored to

each application (e.g., using a transprecision Floating-Point-Unit (FPU), like

FPNew [8]). This opens up the opportunity to detect important events on mobile

and embedded devices, where energy is a critical concern. Those devices can be

used, for example, to prevent ecological disasters or medical issues (e.g., for early

earthquake detection [15] or to predict a heart attack [118]).

77

78 Chapter 6. TraTSA: A Transprecision Framework for TSA

To this end, we introduce TraTSA, the first transprecision framework for time

series analysis. TraTSA provides fast and user-friendly transprecision matrix

profile computing thanks to its CPU and FPGA implementations. We evaluate

TraTSA with use cases of real datasets from different domains and sizes, analyzing

the trade-offs between arithmetic precision and result accuracy using a proposed

metric. Additionally, we present the energy savings of a real transprecision FPU.

6.2. TraTSA Framework

In this section we present an overview of the TraTSA framework and then

describe its main components.

6.2.1. Overview of TraTSA

TraTSA is a Transprecision Framework for Time Series Analysis developed

as a tool 1) to perform design exploration of accelerators and 2) to tune current

implementations. This way, computer architects can define the exact number of

floating-point bits for exponent and mantissa, which potentially saves area and

improves performance while reducing energy consumption. We build TraTSA

framework based on matrix profile and using 1) the FlexFloat library to imple-

ment transprecision CPU versions of SCRIMP and SCAMP, 2) the cpfp-FPGA

library to implement a transprecision FPGA implementation of SCAMP1 and 3)

Python to create a user-friendly wrapper.

We present TraTSA’s overview in Figure 6.1. The INPUT and OUTPUT

blocks in the figure represent TraTSA’s wrapper. This wrapper is in charge of 1)

interpreting the configuration file (i.e., exponent and mantissa widths, selected

CPU or FPGA backend, window size, among others) and obtaining the time

series file provided by the user; 2) invoking the corresponding execution backend,

and 3) collecting the results providing them to the user after proper formatting.

We present a simple example of TraTSA’s configuration file in Figure 6.2, which

is based on a custom format. The stats file follows a similar format to that

provided by the FlexFloat [172] library.

1We do not consider implementing a transprecision FPGA version of SCRIMP since SCAMP
provides better numeric stability and, as a consequence, more robustness to reduced preci-
sion (see Section 6.9.2), being more amenable to transprecision approaches. However, due
to the high-similar computation schemes of both algorithms, it is feasible to implement
TranSCRIMPfpga with modest effort.

6.2. TraTSA Framework 79

I
N
P
U
T

O
U
T
P
U
Tcpfp

FPGA

Flex
Float
CPU

Flex
Float
CPU

Flex
Float
CPU

Flex
Float
CPU

HBM

TranSCRIMP / TranSCAMP

TranSCAMPfpga

Time
Series

File
(.txt)

Config
File

(.cfg)

Transp
Matrix
Profile
(.csv)

Stats
File

(.stats)

HBM

D
D
R
4

Figure 6.1: TraTSA overview and its components. The user provides a time series

file (.txt) and a configuration file (.cfg) to the wrapper. Then, the wrapper invokes

matrix profile either in the CPU or in the FPGA. Finally, the wrapper provides

the user the transprecision matrix profile (.csv) and some statistics (.stats).

7 16 # distance_exponent distance_mantissa
7 16 # dotproduct_exponent dotproduct_mantissa
7 16 # statistics_exponent statistics_mantissa
7 16 # profile_exponent profile_mantissa
1024 # window_size
0 # backend (0= TranSCRIMP ,1= TranSCAMP ,2= TranSCAMPfpga)

Figure 6.2: Example of TraTSA’s cfg file.

TraTSA, being easily extensible to support additional algorithms, includes

the following backends:

TranSCRIMP. TranSCRIMP is a CPU C++ parallel transprecision implemen-

tation of SCRIMP algorithm. This implementation provides configurable

precision arithmetic which is emulated via software using the FlexFloat

library.

TranSCAMP. TranSCAMP is a CPU C++ parallel transprecision implemen-

tation of SCAMP algorithm. This implementation provides configurable

precision arithmetic which is emulated via software using the FlexFloat

library.

TranSCAMPfpga. TranSCAMPfpga is an FPGA HLS-based implementation

80 Chapter 6. TraTSA: A Transprecision Framework for TSA

of SCAMP algorithm. This implementation provides configurable precision

arithmetic which is implemented via hardware using the cpfp-FPGA library.

As we evaluate TranSCAMPfpga using a Xilinx Alveo U50 FPGA board, it

is trivial to port it to other Alveo models.

The key benefit of TraTSA is to provide a transprecision framework being

1) portable enough to be executed in different execution environments according

to the analysis requirements (i.e., length of the time series or if the user has

access to an FPGA or not), and 2) flexible enough to allow the possibility of

exploring a wide range of exponent and mantissa combinations for any dataset.

In this sense, both TranSCRIMP and TranSCAMP are designed to be used with

time series of modest sizes (below 200K elements) and executed in commodity

CPUs (desktops or high-end servers) due to the overheads of custom-precision

types in those platforms. In contrast, TranSCAMPfpga is able to compute series

of up to several million elements in manageable time thanks to the transprecision

hardware support, at the cost of requiring an FPGA. Both CPU and FPGA

backends can work simultaneously and join compute power.

6.2.2. Transprecision SCRIMP-CPU (TranSCRIMP)

TranSCRIMP is a CPU transprecision implementation of SCRIMP based on

FlexFloat library. The key idea of SCRIMP [202] is to minimize the computation

by exploiting the fact that the dot product can be updated incrementally for

subsequences in the diagonal of the distance matrix, D (see Figure 2.3). Conse-

quently, the dot product can be expressed as follows:

Qi,j = Qi−1,j−1 − Ti−1Tj−1 + Ti+m−1Tj+m−1 (6.1)

The baseline implementation for our transprecision SCRIMP algorithm,

TranSCRIMP in Figure 6.3, is a vectorized-parallel version presented in [58]. It first

precomputes the mean and standard deviation of each time series subsequence

(line 1), and initializes the matrix profile array (line 3). Then, the distances be-

tween pairs of subsequences are calculated following the diagonals of the distance

matrix (lines 4-26). The for loop is fully parallelized, with each thread computing

a random subset of diagonals provided by their indices in the diag array in line 5.

For the first element of the diagonal, we need to compute the dot product of

the first pair of subsequences (line 6) in parallel. The rest are updated following

Equation 6.1. For the proper vectorization of the dot product update, the algo-

rithm separates the calculation of the diagonal in several steps: 1) the products

6.2. TraTSA Framework 81

1: µ, σ ← computeMeanDev(T,m); . precalculation of statistics

2: vectFact← 8/sizeof(datatype); . 8 bytes (double) by the size of the

transprecision datatype

3: P ←∞; . matrix profile array initialization

4: for idx← tid ∗ numDiag to (tid+ 1) ∗ numDiag − 1 do . parallel for

5: i← 0; j ← diagidx; . diag array contains the diagonals assigned to each

thread

6: q ← dotProduct(Ti,m, Tj,m); . compute dot product for the first diagonal

element (SIMD)

7: d← dist(m, q, µi, σi, µj , σj); . compute distance for the first element of

diagonal

8: if d < Pi then . update matrix profile and index arrays

9: Pi ← d; Ii ← j;

10: if d < Pj then . distance matrix is symmetric

11: Pj ← d; Ij ← i;

12: i← i+ 1;

13: for j ← diagidx to size(P) do

14: for k ← 0 to vectFact− 1 do . compute new dot product elements in

parallel (SIMD)

15: qsk ← ti+m−1+ktj+m−1+k − ti−1+ktj−1+k;

16: qs0 ← qs0 + q . update with the first dot product of the diagonal

17: for k ← 1 to vectFact− 1 do . update remaining dot products

(sequentially)

18: qsk ← qsk + qsk−1;

19: q ← qsvectFact−1; . store last dot product for next iteration

20: for k ← 0 to vectFact− 1 do . compute distances in parallel (SIMD)

21: dsk ← dist(m, qsk, µi+k, σi+k, µj+k, σj+k);

22: if dsk < Pi+k then . update matrix profile and index arrays

23: Pi+k ← dsk; Ii+k ← j + k;

24: if dsk < Pj+k then

25: Pj+k ← dsk; Ij+k ← i+ k;

26: i← i+ vectFact;

Figure 6.3: Transprecision SCRIMP (TranSCRIMP) algorithm (transprecision op-

erations highlighted).

82 Chapter 6. TraTSA: A Transprecision Framework for TSA

in Equation 6.1 are calculated in parallel for vectFact elements of the diagonal

(lines 14-15); 2) the previous dot product, q, is added to the element calculated

in step 1) (line 16); 3) the subsequent dot products are updated sequentially us-

ing the previous ones (lines 17-18) saving the last one in q for the next iteration

of the diagonal (line 19); 4) distances are calculated in parallel (lines 20-21); and

5) the profile is updated in parallel as well (lines 22-25).

The vectorization factor, vectFact, is given by the transprecision datatype

width with respect to that of double precision (line 2). We highlight the lines of

code which are to be executed using the transprecision approach. The algorithm

is able to work in either one precision configuration or a mixed-precision one,

thus the green (lower precision) and red (higher precision) marks.

Rather than using only double and single precision, we define a high and a

low precision that can be set to any possible exponent and mantissa configura-

tion, which provides further accuracy analysis opportunities. For the algorithms

involved in this study, we store the time series codified with high precision and

both the matrix profile and the precalculated statistics with low precision. For

TranSCRIMP, Figure 6.3 shows the lines of code that works with high precision

highlighted in red, and those which work with low precision highlighted in green.

The dot product calculations use high precision as they may require a larger nu-

meric range. Distance calculation as well as calculations with means and standard

deviations are performed with less precision.

6.2.3. Transprecision SCAMP-CPU (TranSCAMP)

TranSCAMP is a CPU transprecision implementation of SCAMP based

on FlexFloat library. Whereas following a similar computation scheme to

TranSCRIMP, TranSCAMP replaces the sliding dot product with a mean-centered-

sum-of-products in order to reduce the floating-point rounding errors and the

number of operations required [203]. The following equations can be precom-

puted in O(n−m+ 1) time, with n−m+ 1 = l being the length of P :

dfi =
Ti+m−1 − Ti−1

2
, 0 < i < l (6.2)

dgi = Ti+m−1 − µi + Ti−1 − µi−1, 0 < i < l (6.3)

6.2. TraTSA Framework 83

ssqi =

∑m−1

k=0 (Tk − µ0)2, i = 0

ssqi−1 + (Ti+m−1 − µi+

+ Ti−1 − µi−1)(Ti+m−1 − Ti−1)
0 < i < l

(6.4)

σi =
√
ssqi, 0 ≤ i < l (6.5)

Equations 6.2 and 6.3 are terms used in the covariance update of Equation 6.6,

and the standard deviation (L2-norm of subsequence Ti,m − µi) calculated in

Equations 6.4 and 6.5 are used for the Pearson correlation coefficient depicted by

Equation 6.7. Note the exclusion zone in the limits of Equation 6.6 given by m
4 .

σi,j =

{∑m−1
k=0 (Tk − µ0)(Tk+j − µj), i = 0, m4 < j < l

σi−1,j−1 + dfidgj + dfjdgi, i > 0, m+4
4 < j < l

(6.6)

Pi,j =
σi,j
σiσj

(6.7)

Di,j =
√

2m(1− Pi,j) (6.8)

The matrix profile can be derived incrementally for each diagonal of the dis-

tance matrix, Equation 6.6, from the calculation of the covariance of two sub-

sequences of the first row (first piece in Equation 6.6). The Pearson correlation

coefficient in Equation 6.7 can be computed in fewer operations and it is more

robust than the Euclidean Distance used by SCRIMP [203]. Equation 6.8 cal-

culates the distance from the Pearson coefficient in O(1). For TranSCAMP, we

compute the covariance in Equation 6.6 at high precision, which may have a

large numeric range depending on the series. The correlation in Equation 6.7,

which varies between -1 and 1, is computed at low precision.

6.2.4. Transprecision SCAMP-FPGA (TranSCAMPfpga)

TranSCAMPfpga is an FPGA transprecision implementation of SCAMP based

on the cpfp-FPGA library. We include TranSCAMPfpga as part of TraTSA’s

backend to speed up the evaluation of transprecision time series analysis in those

research environments where FPGAs are available. TranSCAMPfpga is tuned for a

Xilinx Alveo U50 FPGA board, which includes High-Bandwidth-Memory (HBM)

84 Chapter 6. TraTSA: A Transprecision Framework for TSA

[94]. However, thanks to the C++-based HLS implementation, it is easy to port

to higher-end Alveo boards or, with modest effort, to other FPGA platforms, as

Intel Altera. We present an overview of TranSCAMPfpga in Figure 6.4, including

the kernels inside the two SLRs (Super Logic Regions) of the FPGA and the

HBM memory.

Xilinx Alveo U50 FPGA (XCU50)

8GB High
Bandwidth
Memory
(HBM)

SLR0SLR1

8-wide
SIMD
Units
and
Regs

8-wide
SIMD
Units
and
Regs

8-wide
SIMD
Units
and
Regs

8-wide
SIMD
Units
and
Regs

8-wide
SIMD
Units
and
Regs

8-wide
SIMD
Units
and
Regs

Figure 6.4: FPGA implementation overview. TranSCAMPfpga is composed of six

kernels optimized for a Xilinx Alveo U50 FPGA that compute transprecision

SCAMP algorithm using the data in the HBM.

We develop TranSCAMPfpga using Xilinx Vitis 2020.2 and a C++ HLS ap-

proach. Our implementation consists of 1) a host side code, and 2) an FPGA

side code (kernels), that compute matrix profile in a parallel-vectorized manner.

To avoid the use of synchronization primitives, each kernel has exclusive access

to its private matrix profile.

On the one hand, the host code, which is executed in the host CPU, is in

charge of 1) allocating the corresponding data structures in the FPGA and trans-

ferring the input vectors (i.e., time series and statistic data) from the host to the

HBM cubes of the FPGA via PCI-Express, 2) defining the parallel scheduling

partitioning, 3) invoking the FPGA, 4) transferring the output vectors (i.e., ma-

trix profiles) from the HBM cubes of the FPGA to the host via PCI-Express, and

5) performing the final matrix profile reduction.

On the other hand, the FPGA code is an HLS-based implementation that

performs the transprecision computation of SCAMP. This FPGA implementa-

tion, intended for the evaluation of large time series (i.e., millions of elements),

includes the possibility of defining a recalculation interval to reduce the accu-

mulated errors across diagonals due to lower precision arithmetic. Concretely,

instead of reusing the previous covariance to calculate the current one, it per-

forms the complete centered-sum-of-products at certain interval. Regarding to

6.2. TraTSA Framework 85

performance, we tune this FPGA implementation to benefit as much as possible

from the available resources of the FPGA, exploiting the following techniques:

Parallelization across kernels. Instead of having a huge kernel that

computes the whole matrix profile of the given time series, we create several

kernels (six in the case of the Alveo U50) which allows performing diagonal-

level parallelization. Additionally, the use of six kernels efficiently exploits

the HBM memory as accesses can be overlapped.

Vectorization inside kernels. Instead of calculating one diagonal at a

time, each kernel computes a set of diagonals (512) which allows exploiting

loop unrolling techniques via arithmetic operator replication, and reusing

data via systolic arrays. Figure 6.5 illustrates an example of the main ad-

vantage of vectorization using five diagonals. We notice that for the first

elements of all diagonals, values of data structures need to be brought from

the HBM memory. However, for the rest of the rows of all diagonals (as all

diagonals increase i index at the same time), we only need to bring from

memory one data value (the last one), regardless of the vectorization width.

This can be achieved thanks to the systolic array approach, where previ-

ously fetched data are pushed forward to the next row while the new data

value is read from memory at the same time. This operation is performed

in parallel and takes only one step for all elements of the systolic array.

Wide memory accesses. We pack data that is requested from memory

to improve the efficiency of the bus (i.e., bringing 512 bits in each request)

while performing burst accesses at the same time.

We present TranSCAMPfpga’s execution flowchart in Figure 6.6, which com-

prises an external loop that iterates over diagonals in batches of 512, and an

inner loop to go over those diagonals following a SIMD approach. Notice that

the calculate covariances module is shared among two steps of the execution,

which allows to save hardware resources as it is not used in all iterations of the

diag calculation loop.

Finally, Table 6.1 shows the total resource utilization numbers by

TranSCAMPfpga kernels in the Alveo U50 board. According to our observations

using Vitis Profiler, the main bottleneck for the performance of this implemen-

tation is data movement. This means that increasing the number of arithmetic

operations does not improve performance because 1) global clock frequency is

reduced to enable proper functionality, and 2) those additional arithmetic oper-

ations require increasing the number of memory ports, which leads to routing

errors due to network congestion.

86 Chapter 6. TraTSA: A Transprecision Framework for TSA

j increases

i in
crea

ses

Data read from
HBM memory

Data already
in FPGA

Figure 6.5: TranSCAMPfpga systolic array example.

diag_calculation

adjust_offset calculate_covariances

start new
pool of 512
diagonals

calculate_
covariances

initialize
profile

diag_calcu
lation

krnl_scamp

burst read
from

memory

adjust_
offset

calculate
correlations

calculate
profile
updates

recalc_
factor?

updat
cov

calc_
cov

systolic
array shift
and write

slice 512
input bits
in 32-bit
chunks

adjust
offset

if needed

convert to
cpfp values

initialize
covariances
vector to 0

calculate covariances
using time series input

and mean values

Figure 6.6: FPGA implementation diagram.

6.3. Top-K Accuracy Metric 87

Table 6.1: TranSCAMPfpga kernel resource utilization

Parameter Available Used Parameter Available Used

LUT 752672 308184 (41%) URAM 640 0 (0%)

REG 1586939 494199 (31%) BRAM 1164 714 (61%)

LUTm 389324 5802 (1.5%) DSP 5936 828 (14%)

6.3. Top-K Accuracy Metric

Time series motifs [40] and discords [100] have been used for more than 15

years in the field of data mining for their capacity to find time series subsequences

with special significance. In this section, we define these special subsequences and

propose a metric to measure the accuracy in the detection of motifs and discords

from two time series. Concretely, we next present the definitions of the motif and

the Top-K motifs of a time series.

Definition 6.4. The motif M1 of a time series T is the unordered pair of sub-

sequences {Ti,m, Tj,m} which is the most similar among all possible pairs:

M1 = {Ti,m, Tj,m} ⇔ dist(Ti,m, Tj,m) ≤ dist(Tu,m, Tv,m)

∀i, j, u, v; i 6= j, u 6= v.

�

Definition 6.5. The Top-K motifs M1,K of a time series T is the set of the first

K motifs:

M1,K =

{
MK ∪M1,K−1, K > 1

M1, K = 1

being MK the motif (M1) of the time series T \M1,K−1,∀K > 1. �

We can define the discord and the Top-K discords of a time series in a similar

way:

Definition 6.6. The discord D1 of a time series T is the unordered pair of

subsequences {Ti,m, Tj,m} which is the most dissimilar among all possible pairs:

D1 = {Ti,m, Tj,m} ⇔ dist(Ti,m, Tj,m) ≥ dist(Tu,m, Tv,m)

∀i, j, u, v; i 6= j, u 6= v.

�

88 Chapter 6. TraTSA: A Transprecision Framework for TSA

Definition 6.7. The Top-K discords D1,K of a time series T is the set of the

first K discords:

D1,K =

{
DK ∪D1,K−1, K > 1

D1, K = 1

being DK the discord (D1) of the series T \D1,K−1,∀K > 1. �

Being MI1,K and DI1,K the Top-K sets of unordered pair of indices {i, j}
of the unordered pair of subsequences in M1,K and D1,K , respectively, we define

the Top-K Motif/Discord Accuracy in the following way:

Definition 6.8. The Top-K Motif (Discord) Accuracy AM (AD) of a time series

T with respect to another time series TT is the number of coincidences among

the unordered pairs in MIT1,K and MITT
1,K (DIT1,K and DITT

1,K):

AMT→TT
1,K = |MIT1,K ∩MITT

1,K |

ADT→TT
1,K = |DIT1,K ∩DITT

1,K |

�

Definition 6.8 is pointless when T and TT are time series from different appli-

cations. However, it can be useful when we want to know the degree of coincidence

of the matrix profile of a time series and that of the same time series codified with

less precision or affected by a transform operator. We can get to know if, after

a transformation of the original time series, the matrix profile ends up unveiling

the same motifs and discords, or a significant subset of them.

6.9. Evaluation

6.9.1. Methodology

We evaluate TraTSA’s TranSCRIMP, TranSCAMP and TranSCAMPfpga back-

ends in terms of accuracy, performance and energy savings. First, we com-

pute the reference SCRIMP and SCAMP matrix profiles with double and sin-

gle floating-point precisions using the native C++ implementations. Second, we

use the FlexFloat [172] library on an Intel Xeon Phi 7210 “Knights Landing”

manycore processor [93] with 64 cores and 256 threads to evaluate TranSCRIMP

and TranSCAMP on relatively short2 time series (<200K elements). Third, we

2Notice that both SCRIMP and SCAMP perform profile calculations (Pi) based on a previ-
ous result along the diagonals (dot product and covariance, respectively). In such scenarios, it

6.9. Evaluation 89

use the cpfp-FPGA library on a Xilinx Alveo U50 FPGA board to evaluate

TranSCAMPfpga for larger time series (>200K elements). Fourth, we present

performance comparisons between TranSCAMP and TranSCAMPfpga using differ-

ent computing platforms. Finally, we compare the energy consumption in two

ways. On the one hand, we study the benefits of the hardware-based solution

(TranSCAMPfpga) against the software emulation one (TranSCAMP). To do so, we

obtain the Joules consumed by the FPGA using Xilinx’s xbutil [43] tool, and

we use rapl-tools [102] to obtain the Joules consumed by the CPU implementa-

tions. On the other hand, we use a transprecision FPU [129], evaluated as part of

RISC-V processors and suitable for FPGAs and ASICs, to estimate the potential

benefits of a transprecision FPU with respect to a double-precision FPU, which

are based on the operation breakdown statistics and the energy per operation

numbers given in [129].

We use real-data time series and the Top-K Accuracy metric of Definition 6.8

to evaluate TraTSA. Table 6.2 summarizes the parameters of the time series

we use for the experiments. Song corresponds to the song London Bridge is

Falling Down [195] converted into Mel-frequency Cepstral Coefficients, which are

commonly used in speech recognition [147]. ECG short and ECG are extracted

from an electrocardiogram signal from the European ST-T Database [171]. We

select the 180000 and 1800000 first samples of the V4 electrode from ECG 0103,

respectively. Power short and Power are two time series extracted from fridge-

freezer power consumption numbers collected over a whole year in a set of UK

households [195]. Seismology short and Seismology are two time series of seismic

data collected by a seismograph in a geologically active region of the Long Valley

Caldera, California [195]. We analyze the first 180000 and 1727990 samples of

the original series, respectively. Human Activity comprises a time series with

information of the optical flow of an actor performing activities, from picking

up an object to talking on a mobile phone [195]. Penguin Behavior is a time

series of penguin magnetometer telemetry [9]. Speech is an speech recorded time

series where Ivan Fernandez (myself) reads a fragment (2 mins) of El Quijote

book sampled at 16KHz. IMU is a time series extracted from the calibration

of an Inertial-Measurement-Unit used in robotics [205]. Finally, EPG is insect

electrical penetration graph data from [13].

is possible that accumulated errors provide mismatching results for large time series. However,
as production implementations of SCRIMP and SCAMP are based on a tiled approach where
the dot product or covariance is calculated from scratch for each 128K-512K elements of the
diagonal, our evaluation and conclusions are also valid for time series of larger sizes. This is
the main reason we include a recalculation factor in TranSCAMPfpga.

90 Chapter 6. TraTSA: A Transprecision Framework for TSA

Table 6.2: Time series dataset parameterization

Time series n m Max Min Scale

Song 20234 200 6.69 -56.48 1.00

ECG short 180000 500 2.60 0.32 1.00

Power short 180000 1325 14.0 0.00 0.10

Seismology short 180000 50 6.96 -1.86 0.01

Human Activity 7997 120 2.51 -1.90 1.00

Penguin Behavior 109842 800 0.52 -0.21 1.00

Speech 1933944 16384 0.98 -1.00 1.00

ECG 1800000 512 3.39 -1.64 1.00

Power 1754985 1536 14.00 0.00 0.10

Seismology 1727990 64 23.29 -23.34 0.10

IMU 1756230 256 1.65 -2.87 1.00

EPG 2000000 16384 72.26 -61.30 10.00

6.9.2. Results

Short Time Series Accuracy

We use the Top-K Accuracy metric of Definition 6.8 to evaluate our proposals.

The value of K will depend on the number of significant events of a given time

series, which will be eventually determined by a domain expert.

One way of setting K is defining a profile threshold for both motifs and dis-

cords. Figures 6.7 and 6.8 present the Top-100 motif/discord accuracy with

respect to double for a wide range of configurations of exponent and mantissa

in TranSCRIMP, respectively. In contrast, Figures 6.9 and 6.10 present the same

metrics in TranSCAMP, respectively. In most cases, single precision (8,23) pro-

vides 100% accuracy with respect to double precision. As can be noticed, most

of the plots follow a square-like shape where the accuracy decreases dramatically

after a given combination of exponent and mantissa. This may occur whether

one or both of the following scenarios appear: 1) the range of the exponent has

been exceeded; 2) the precision provided by the mantissa is not enough for the

calculations.

Comparing both algorithms, we can observe that SCAMP is more robust and

presents a better numeric stability than SCRIMP for all the datasets. This fact

can be noticed for Penguin Behavior, where a slight decrease in the length of

the mantissa makes SCRIMP fail in detecting events, while SCAMP provides

more margin in this reduction. We find an outlier scenario for the time series

Power short in Figure 6.9, where accuracy seems to decrease when the number

6.9. Evaluation 91

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Song

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

ECG short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Seismology short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Human Activity

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Penguin Behavior

Figure 6.7: TranSCRIMP Top-100 motif accuracy with respect to double.

of mantissa bits increases from 20 to 23. The reason behind it is that, for this

time series, there are several motifs with exactly the same profile value. Because

of that, our sorting algorithm induces some order differences when comparing

the transprecision version with respect to the reference one. However, from the

92 Chapter 6. TraTSA: A Transprecision Framework for TSA

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

0
20
40
60

80

100

Song

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
D

is
.

0
20
40
60

80

100

ECG short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power short

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

%
T

op
-1

00
D

is
.

0
20
40
60

80

100

Seismology short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Human Activity

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
D

is
.

0
20
40
60

80

100

Penguin Behavior

Figure 6.8: TranSCRIMP Top-100 discord accuracy with respect to double.

practical point of view, the accuracy of the mantissa 23 is as good as the mantissa

20 since all motifs are present in both of them. We conclude that SCAMP is a

better candidate for transprecision computing since it provides similar accuracy

with lower bit count requirements for the exponent and mantissa.

6.9. Evaluation 93

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Song

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

ECG short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Seismology short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Human Activity

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Penguin Behavior

Figure 6.9: TranSCAMP Top-100 motif accuracy with respect to double.

We also evaluate how the profile is affected when reducing the exponent/man-

tissa bit count using TranSCAMP. Figure 6.11 presents the transprecision profile

for the Song dataset and several exponent/mantissa combinations (i.e., (7,13),

(7,10), (5,13), (5,7) in the figures) with respect to a double-precision profile.

94 Chapter 6. TraTSA: A Transprecision Framework for TSA

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

0
20
40
60

80

100

Song

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

ECG short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power short

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Seismology short

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Human Activity

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
M

ot
.

0
20
40
60

80

100

Penguin Behavior

Figure 6.10: TranSCAMP Top-100 discord accuracy with respect to double.

We observe that for combinations of (5,13), (7,13) and (7,10) the profile is well-

preserved (i.e., both curves overlap). We need to reduce the FP bit count to a

lower value (e.g., (5,7)) to find mismatching results. We notice that, while in

this (5,7) scenario the profile is somehow conserved with an offset, the profile

6.9. Evaluation 95

index is not providing the exact matches with respect to the reference (double)

solution. This fact is explained because there are potentially many values very

close to each other along the profile, which can lead to high chances of profile

index interchanging even if profile values slightly differ from the double-precision

reference.

10000 10100 10200

12

14

Song(7,13)

MP Double

MP Trans.

10000 10100 10200

12

14

Song(7,10)

MP Double

MP Trans.

10000 10100 10200

12

14

Song(5,13)

MP Double

MP Trans.

10000 10100 10200

10.0

12.5

15.0
Song(5,7)

MP Double

MP Trans.

Figure 6.11: TranSCAMP Song profile with respect to double. The horizontal axis

represents the index of the datapoints within the complete time series and the

vertical axis represents the amplitude of the signal.

Figure 6.12 shows the transprecision profile with respect to double for the

ECG short dataset. We observe that in this case the value of the mantissa plays

a crucial role, since reducing it to a value lower than 13 bits leads to mismatching

results (i.e., the transprecision curve is not shown at all since it contains NaN

values). This fact is explained because the ECG short dataset is a very regular

and monotonic time series, where profile values are smaller and mantissa becomes

more relevant than exponent.

Figure 6.13 shows the transprecision profile with respect to double for the

Power short dataset. We notice that the profile is well conserved for the (7,13),

(7,10) and (5,13) exponent and mantissa combinations. However, the transpreci-

sion profile diverges from the oracle solution using lower bit counts, as shown in

the (5,7) scenario. This dataset also benefits from larger mantissas since it fol-

lows a regular pattern, this explains why the (5,13) combination provides better

results (i.e., the transprecision profile is better preserved) than the (7,10) one.

96 Chapter 6. TraTSA: A Transprecision Framework for TSA

10000 10100 10200

2

3

ECG short(7,13)
MP Double

MP Trans.

10000 10100 10200

2

3

ECG short(7,10)
MP Double

MP Trans.

10000 10100 10200

2

3

ECG short(5,13)
MP Double

MP Trans.

10000 10100 10200

2

3

ECG short(5,7)
MP Double

MP Trans.

Figure 6.12: TranSCAMP ECG short profile with respect to double. The horizontal

axis represents the index of the datapoints within the complete time series and

the vertical axis represents the amplitude of the signal.

10000 10100 10200

30

32

Power short(7,13)
MP Double

MP Trans.

10000 10100 10200

30

32

Power short(7,10)
MP Double

MP Trans.

10000 10100 10200

30

32

Power short(5,13)
MP Double

MP Trans.

10000 10100 10200

20

30

Power short(5,7)
MP Double

MP Trans.

Figure 6.13: TranSCAMP Power short profile with respect to double. The hori-

zontal axis represents the index of the datapoints within the complete time series

and the vertical axis represents the amplitude of the signal.

6.9. Evaluation 97

Figure 6.14 shows the transprecision profile with respect to double for the

Seismology short dataset. We observe a similar behavior to that in the Song

dataset. While (7,13), (7,10) and (5,13) transprecision profiles are well-conserved

with respect to double, lower mantissa bit count (e.g., 7 bits) leads to mismatching

results and divergence.

10000 10100 10200

5.5

6.0

6.5

Seismology short(7,13)

MP Double

MP Trans.

10000 10100 10200

5.5

6.0

6.5

Seismology short(7,10)

MP Double

MP Trans.

10000 10100 10200

5.5

6.0

6.5

Seismology short(5,13)

MP Double

MP Trans.

10000 10100 10200

4

6

Seismology short(5,7)

MP Double

MP Trans.

Figure 6.14: TranSCAMP Seismology short profile with respect to double. The

horizontal axis represents the index of the datapoints within the complete time

series and the vertical axis represents the amplitude of the signal.

Figure 6.15 shows the transprecision profile with respect to double for the

Human Activity dataset. We notice that this dataset presents a higher sensitivity

to mantissa bit count, since even with 13 bits the profile does not match perfectly.

However, as evaluated with the Top-K metric, the overall accuracy of the results

is not affected in a higher degree than the other datasets, since peaks in the profile

are distinguishable among them.

Figure 6.16 shows the transprecision profile with respect to double for the

Penguin Behavior dataset. This dataset presents a similar behavior to the

Power short one, as they have similar numeric ranges (i.e., exponent/mantissa

of (7,13), (7,10) and (5,13) provide well-conserved profiles while (5,7) fails).

We also evaluate a mixed-precision approach for TranSCRIMP and TranSCAMP

to further tune the bit counts required in different parts of those algorithms. In

this set of experiments, we restrict the exponent/mantissa configurations to the

98 Chapter 6. TraTSA: A Transprecision Framework for TSA

1000 1100 1200

9

10

11

Human Activity(7,13)
MP Double

MP Trans.

1000 1100 1200

9

10

11

Human Activity(7,10)
MP Double

MP Trans.

1000 1100 1200

9

10

11

Human Activity(5,13)
MP Double

MP Trans.

1000 1100 1200

9

10

11

Human Activity(5,7)
MP Double

MP Trans.

Figure 6.15: TranSCAMP Human Activity profile with respect to double. The

horizontal axis represents the index of the datapoints within the complete time

series and the vertical axis represents the amplitude of the signal.

1000 1100 1200

26

28
Penguin Behavior(7,13)

MP Double

MP Trans.

1000 1100 1200

26

28
Penguin Behavior(7,10)

MP Double

MP Trans.

1000 1100 1200

26

28
Penguin Behavior(5,13)

MP Double

MP Trans.

1000 1100 1200
0

20

Penguin Behavior(5,7)
MP Double

MP Trans.

Figure 6.16: TranSCAMP Penguin Behavior profile with respect to double. The

horizontal axis represents the index of the datapoints within the complete time

series and the vertical axis represents the amplitude of the signal.

6.9. Evaluation 99

ones available in FPNew due to space limitations. Table 6.3 shows the results

using mixed-precision for TranSCRIMP and TranSCAMP. We obtain better results

with TranSCAMP for most datasets, as expected. It is worth noting the case of

Penguin Behavior, where TranSCRIMP is not able to detect any of the events while

TranSCAMP finds near 100% of them with the (8/23, 5/10) configuration.

Overall, our evaluation shows that the mixed-precision configurations pro-

vide better accuracy results than using only one reduced precision configuration

throughout the code. The experiments suggest that a mixed configuration of

(8/23, 5/10) can be used for the majority of the applications analyzed in this

work. In this sense, we can observe that SCAMP results for Song present 70%

accuracy for a 5/10 configuration (see Figures 6.9 and 6.10), whereas the accuracy

increases to 95% using (8/23, 5/10) mixed precision (see Table 6.3). The rest of

the series present a similar behavior with SCAMP: 0% accuracy for ECG with

the 5/10 configuration, while up to 99% discord accuracy with the (8/23, 5/10)-

mixed-precision configuration; 0% motif and 7% discord accuracy for Power with

the 5/10 configuration, whereas 81% motif and 65% discord accuracy with mixed

precision; and so on. SCRIMP presents a similar pattern as well.

Table 6.3: Mixed precision Top-100 accuracy results

TranSCRIMP TranSCAMP

T
High Low Accuracy Accu. ±10 Accuracy Accu. ±10
E/M E/M Mot/Disc Mot/Disc Mot/Disc Mot/Disc

S
o
n
g 8/23 8/7 14/9 16/31 54/86 100/97

” 5/10 38/0 99/0 95/99 100/100
” 5/2 0/0 0/0 1/0 1/0

E
C

G

8/23 8/7 0/1 0/1 0/51 0/56
” 5/10 10/57 10/60 25/99 30/100
” 5/2 0/0 0/0 0/0 0/0

P
o
w

e
r 8/23 8/7 47/31 67/95 39/25 78/99

” 5/10 68/92 96/100 81/65 100/100
” 5/2 0/0 0/0 0/0 0/0

S
e
is

. 8/23 8/7 3/17 55/21 0/3 0/6
” 5/10 7/68 86/70 12/40 15/45
” 5/2 0/0 0/0 0/0 0/0

H
u
m

. 8/23 8/7 72/24 80/63 91/84 99/92
” 5/10 100/85 100/97 100/98 100/99
” 5/2 0/3 0/4 0/0 0/1

P
e
n
g
. 8/23 8/7 0/0 0/0 15/89 85/98

” 5/10 0/0 0/0 81/99 100/99
” 5/2 0/0 0/0 0/0 0/0

100 Chapter 6. TraTSA: A Transprecision Framework for TSA

We observe that the (8/23, 5/2)-mixed-precision configuration does not yield

meaningful results for any of the analyzed datasets, since the low bit count for

the mantissa (only two bits) does not provide enough resolution for the correla-

tion calculations. It can be noticed that detecting discords (anomalies) is more

accurate than detecting motifs (similarities). This can be due to the fact that

similarities are low values of the profile which require more precision than dis-

cords, that typically are higher ones. This fact takes more relevance in very

monotonic time series, where most of the subsequences are similar to each other

(e.g., the beats in an electrocardiogram – ECG).

The number of detected events and its significance must be eventually de-

termined by a domain expert. Thus, we can think that presenting a time series

subsequence to an expert, in its context, and moved slightly to the left/right

might end up with the expert coming to the same conclusion as if the subse-

quence did not move. For that reason we introduce the concept of Accuracy ±10

(see Table 6.3), which is the accuracy calculated for the motif/discord indices

ranging in a ±10 interval. Using this metric the accuracy peaks 100% for most

of the datasets.

Mixed precision configurations are aimed at balancing the trade-off between

accuracy and performance (time/energy) of the matrix profile algorithms. We can

reach high peaks of accuracy with the (8/23, 5/10) configuration while reducing

time and energy consumption as described in Section 6.9.2.

Large Time Series Accuracy

We evaluate the accuracy of the larger time series using TranSCAMPfpga. To

this end, we run the larger time series (between 1M and 2M elements) using the

Alveo U50 FPGA, and evaluate the results using the Top-1000 accuracy metric

(i.e., increasing K proportionally to time series length). We calculate time series

statistics using double precision in the host side, which increases accuracy while

it does not significantly affect the total execution time (statistics only take <1 sec

using 1 thread in an Intel Xeon Gold for 2M data points). This fact is particularly

important in large time series, since statistics are calculated in an accumulative

manner and single precision is not enough to avoid errors.

From the algorithmic point of view, TranSCAMPfpga differs from TranSCAMP in

that 1) TranSCAMPfpga includes the possibility to recalculate the covariance value

from scratch after certain number of elements of a diagonal, and 2) TranSCAMP

allows us to define mixed-precision configurations. The first feature resets the

accumulated error due to calculation reuse across the diagonal, which increases

6.9. Evaluation 101

accuracy in most datasets and allows to potentially evaluate time series of ar-

bitrary length. We leave the mixed-precision evaluation of TranSCAMPfpga for

future work.

Figures 6.17 and 6.18 show the results for motifs and discords, respectively.

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Speech

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
0

M
ot

.

0
20
40
60

80

100

ECG

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
0

M
ot

.

0
20
40
60

80

100

Seismology

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

IMU

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
0

M
ot

.

0
20
40
60

80

100

EPG

Figure 6.17: TranSCAMPfpga Top-1000 motif accuracy results with respect to

double precision using a recalculation factor of 64K elements.

102 Chapter 6. TraTSA: A Transprecision Framework for TSA

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

0
20
40
60

80

100

Speech

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
0

D
is

.

0
20
40
60

80

100

ECG

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

Power

Exponent 2345678
M

an
tis

sa
7

10
13

16
20

23

%
T

op
-1

00
0

D
is

.

0
20
40
60

80

100

Seismology

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

0
20
40
60

80

100

IMU

Exponent 2345678

M
an

tis
sa

7
10

13
16

20
23

%
T

op
-1

00
0

D
is

.

0
20
40
60

80

100

EPG

Figure 6.18: TranSCAMPfpga Top-1000 discord accuracy results with respect to

double precision using a recalculation factor of 64K elements.

We observe that TranSCAMPfpga follows a similar behavior than the results

obtained for its CPU counterpart implementation (TranSCAMP in Figures 6.9 and

6.10). We make several observations here. First, analyzing the larger time se-

ries, we observe that single precision still provides almost 100% accuracy for all

6.9. Evaluation 103

datasets when helped by covariance recalculation. Moreover, there is still margin

to reduce the exponent and mantissa bit count below single precision depending

on the application. Second, we find that the top part of the cubes are smaller in

those series where the window size is larger (e.g., Speech or EPG). This fact is

explained because larger window sizes have to deal with larger numbers, which

may be out of the range of representation during calculations. And third, those

datasets that present a randomness component (e.g., IMU) benefit from lower

exponent and mantissa combinations, since the average distance is higher and

there is no need for high precision to distinguish them.

We also evaluate the effect of changing the recalculation on the accuracy.

Figure 6.19 shows the % of Top-1000 accuracy for the analyzed datasets with

different exponent and mantissa combinations. We analyze recalculation factors

of every 64K and 256K elements of the diagonal against turning this feature off.

0

25

50

75

100

%
T

op
-1

00
0

A
cc

u
r. Speech(7,20)

Motifs

Discords

ECG(7,13) Power(5,16)

16
K

64
K

25
6K off

Recalc. Factor

0

25

50

75

100

%
T

op
-1

00
0

A
cc

u
r. Seismo.(6,16)

16
K

64
K

25
6K off

Recalc. Factor

IMU(5,13)

16
K

64
K

25
6K off

Recalc. Factor

EPG(6,20)

Figure 6.19: TranSCAMPfpga Top-1000 accuracy results with respect to double

precision when varying the recalculation factor.

We observe that 64K elements is the sweet-spot since it provides even better

results than lower ones (e.g., 16K) without having great impact on performance.

Lower recalculation factors imply significant impact on performance as dot prod-

uct has to be calculated more frequently. In contrast, turning this feature off for

series of ≈ 2M elements leads to mismatching results. We note that a recalcula-

tion factor of 16K for the Seismology time series leads to a counterintuitive result.

The explanation behind it relies on the fact that the seismology time series is a

104 Chapter 6. TraTSA: A Transprecision Framework for TSA

very periodic and regular time series without significant complexity (and, as a

consequence, many motifs and discords are highly similar). This scenario, previ-

ously observed in [44], induces a random component when generating the Top-K

comparison that takes special relevance when using the lower recalculation factor

for this type of time series.

We show an example of modifying the recalculation factor in Figure 6.20,

where we present the matrix profile of the EPG dataset with respect to the

double-precision one. Notice that while recalculation factors of 16K and 64K

provide accurate results (i.e., the curves overlap), a factor of 256K makes the

profile always be close to 0 while turning this feature off leads to a NaN scenario.

0 100 200
+1.7×106

168.1

168.2

168.3

EPG(6,20) rf=16K

MP Double

MP Trans.

0 100 200
+1.7×106

168.1

168.2

168.3

EPG(6,20) rf=64K

MP Double

MP Trans.

0 100 200
+1.7×106

166

168

EPG(6,20) rf=256K

MP Double

MP Trans.

0 100 200
+1.7×106

168.1

168.2

168.3

EPG(6,20) rf=off

MP Double

MP Trans.

Figure 6.20: EPG matrix profile when varying the recalculation factor using

TranSCAMPfpga for a given mantissa and exponent combination.

TraTSA Performance

We evaluate the performance of TraTSA when running in different com-

puting platforms. We focus our attention on comparing TranSCAMP versus

TranSCAMPfpga, since SCAMP provides more accurate results than SCRIMP

for a wider range of datasets.

Figure 6.21 presents the execution times obtained when computing the Seis-

mology short series using a window of 512 elements and an exponent/mantissa

6.9. Evaluation 105

combination of 7/10. Our FPGA execution times also include the memory trans-

fers from and to the FPGA. As can be noticed, TranSCAMPfpga in an Alveo U50

integrated in the Xeon Gold 6154 platform outperforms TranSCAMP in commodity

servers by 22.75× when using a 72-core Xeon Gold, and by 52.65× when using a

64-core Intel Xeon Phi KNL. Compared to desktop computers, TranSCAMPfpga

outperforms an Intel i7-8700 by 126× and by 313× an Intel i5-4570.

5000

10000

Core2Quad
Q9400

i5
4570

i7
8700

XeonPhi
7210

XeonGold
6154

Alveo
U50

0

500

1000

10
38

7

58
89

23
76

99
0

42
8

18
.8

E
xe

cu
ti

on
T

im
e

(s
)

Figure 6.21: Execution time for different platforms when computing Seismol-

ogy short, using a window size of 512 elements (exp. 7 man. 10).

Energy Savings

Emulated vs Hardware Transprecision. First, we show an energy con-

sumption comparison in Table 6.4 for the platforms in Figure 6.21. As expected,

the FPGA solution not only provides benefits in terms of performance but also

reduced energy consumption. According to our measurements, the Alveo U50

consumes 0.47KJ when running TranSCAMPfpga, taking into account the memory

transfers and idle time of the host CPU. This is way less than the CPU evaluated

platforms, where, for example, the most efficient one, which is the Xeon Gold

server, takes 82KJ (174× more than the FPGA). This fact demonstrates that

hardware-based solutions are way more efficient than the emulated ones.

Table 6.4: Energy consumption for different platforms when computing Seismol-

ogy short, using a window size of 512 elements (exp. 7 man. 10)

i5 i7 XeonPhi XeonGold Alveo
Platform 4570 8700 7210 6154 U50

Energy 180KJ 127KJ 132KJ 82KJ 0.47KJ

Transprecision FPU. Second, we present in Figure 6.22 the normalized

energy consumption of a) TranSCRIMP with respect to SCRIMP double, b)

106 Chapter 6. TraTSA: A Transprecision Framework for TSA

TranSCAMP with respect to SCAMP double and c) TranSCAMP with respect to

TranSCRIMP with different precisions, respectively. As the energy is calculated

with respect to the number of FPU operations performed by the algorithms, the

proportion holds independently of the time series. We can observe a 60% energy

reduction when using single precision instead of double for both algorithms. Fur-

thermore, we can not only expect a reduction in time for this configuration due

to an improved use of the memory hierarchy, but also because of SIMD capabili-

ties, allowing two single precision elements computed at a time. We observe that

single precision provides the same accuracy than double in the majority of cases

(see Figures 6.7, 6.8, 6.9, 6.10, 6.17 and 6.18).

0.00

0.25

0.50

0.75

1.00
a) TranSCRIMP

0.00

0.25

0.50

0.75

1.00
b) TranSCAMP

Double
Single

Single

SIM
D

Mixed
8/7

Mixed
8/7

SIM
D

Mixed
5/10

Mixed
5/10

SIM
D

0.00

0.25

0.50

0.75

1.00
c) TranSCAMP w.r.t TranSCRIMP

Figure 6.22: Normalized FPU energy using FPNew.

It is possible to reduce the energy consumption even further using mixed

precision. Our TransSCRIMP and TranSCAMP mixed precision configurations can

yield up to 50% and 25% energy reduction over the single precision approach

respectively. The savings for TranSCRIMP are more pronounced since there are

more operations computed in low precision. The dot product is computed in high

precision but the distance in Equation 2.1 is calculated in low precision. How-

ever, the distance in TranSCAMP is given by the Pearson correlation coefficient

6.9. Evaluation 107

in Equation 6.7 which entails fewer operations. We confirm this fact when com-

paring TranSCAMP with respect to TranSCRIMP in plot c) of Figure 6.22, where

TranSCAMP reduces the energy consumption between 18% and 40% for the same

given precision. There are also a significant number of comparisons computed

in low precision in both algorithms, although the energy cost of this operation

is not as high as that of multiplications or sums, so the savings are not so high

either. In contrast, the SIMD support of the FPU yields roughly the same energy

numbers but opens the opportunity to improve the performance even more (up

to 4 ops at a time).

7 Conclusions

Time series analysis algorithms are a critical workload for many important

applications (e.g., to predict a heart attack or to analyze household power con-

sumption). In this thesis, we study and characterize state-of-the-art time series

analysis algorithms and find that they are bottlenecked by data movement in

conventional architectures. Our final goal is to accelerate and make time se-

ries analysis computation as fast and energy-efficient as possible. To do so, we

propose hardware and software solutions moving computation closer to memory,

based on latest trends in computer architecture. This thesis makes four major

contributions, as described next.

1 Optimization and Characterization. Chapter 3 presents novel implemen-

tation of an state-of-the-art time series analysis algorithm tuned for an Intel Xeon

Phi KNL architecture, provided with HBM. In this implementation we exploit

multi-threading, vectorization, and the use of aggregated HBM plus DDR4 mem-

ory bandwidth. First, we propose the parallelization of the processing of diagonals

in the algorithm, dynamically distributing their computation across the cores in

a many-core machine. Secondly, we use privatization and reduction techniques to

avoid unnecessary thread synchronization and improve the scalability. Finally, we

propose the distribution of data across DDR4 and HBM, allocating private and

more frequently accessed data in HBM and shared read-only data in DDR4. Our

experiments show that our approach can improve performance in up to 190x with

respect to sequential execution using the Intel Xeon Phi KNL. Furthermore, our

techniques present better scalability than traditional lock-based synchronization

mechanisms. This chapter is associated with the following publication:

Fernandez, I., Villegas, A., Gutierrez, E., & Plata, O. (2019). Accelerating

time series motif discovery in the Intel Xeon Phi KNL processor. The Journal

of Supercomputing, 75(11), 7053-7075.

109

110 Chapter 7. Conclusions

2 Processing-Near-Memory Accelerator. Chapter 4 presents NATSA, the

first Near-Data-Processing (NDP) accelerator for time series analysis. NATSA 1)

exploits the memory bandwidth of high-bandwidth memory (HBM) to analyze

time series data at scale for a wide range of applications, 2) improves energy

efficiency and execution time by using specialized low-power arithmetic units

close to HBM memory, and 3) provides a novel workload scheduling scheme to

prevent load imbalance and preserve the anytime property. NATSA outperforms

the hardware platforms we evaluate in terms of performance, energy consumption

and area requirements. This chapter is associated with the following publication:

Fernandez, I., Quislant, R., Gutiérrez, E., Plata, O., Giannoula, C., Alser, M.,

Gómez-Luna, J., & Mutlu, O. (2020, October). NATSA: A Near-Data Pro-

cessing Accelerator for Time Series Analysis. In 2020 IEEE 38th International

Conference on Computer Design (ICCD) (pp. 120-129). IEEE.

3 Processing-Using-Memory Accelerator. Chapter 5 presents MATSA,

the first MRAM-based Accelerator for Time Series Analysis. The key idea is to

exploit magnetoresistive crossbars to enable energy efficient and fast time series

computation in-memory. MATSA provides the following key benefits: 1) sig-

nificantly increases parallelism exploiting column-level bitwise operations, and 2)

reduces the overheads of data movement by performing computation in the mem-

ory cells. We evaluate three versions of MATSA to match the requirements of

different environments and perform a design space exploration. MATSA signif-

icantly improves performance and energy over commodity and PNM platforms.

This chapter is associated with the following under-review publication:

Fernandez, I., Manglik, A., Giannoula, C., Quislant, R., Ghiasi, N. M., Gómez-

Luna, J., Gutiérrez, E., Plata, O., & Mutlu, O. (2022). Accelerating Time

Series Analysis via Processing using Non-Volatile Memories. arXiv preprint

arXiv:2211.04369.

4 Transprecision Framework. Chapter 6 studies how time series analy-

sis benefits from a transprecision approach, and introduces TraTSA, a frame-

work that allows defining the exact needed precision according to the require-

ments of the specific application. The proposed TranSCRIMP, TranSCAMP and

TranSCAMPfpga implementations will help the community to design energy-

efficient time series analysis solutions based on transprecision RISC-V proces-

sors, FPGAs or ASICs while minimizing area and power requirements. Our

FPGA-based solution is 22.75× faster than a 72-core Xeon server thanks to the

hardware transprecision support and the use of optimization techniques. Ad-

ditionally, we study how matrix profile algorithms can benefit from an already

7.1. Future Work 111

presented transprecision FPU. In this sense, our analysis reveals that, for a va-

riety of applications, the energy consumption of the matrix profile algorithms

is reduced up to 3.3× compared with double precision while obtaining accurate

results. This chapter is associated with the following publications:

Fernandez, I., Quislant, R., Gutierrez, E., & Plata, O. (2020, September).

Energy-Efficient Time Series Analysis Using Transprecision Computing. In

2020 IEEE 32nd International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD) (pp. 83-90). IEEE.

Fernandez, I., Quislant, R., Gonzalez-Navarro, S., Gutierrez, E., & Plata, O.

(2022). TraTSA: A Transprecision Framework for Efficient Time Series Anal-

ysis. Journal of Computational Science, 63, 101784.

7.1. Future Work

To conclude this thesis, we would like to propose the following future research

lines inspired on our work.

As mentioned in Chapter 3, the main bottleneck to accelerate time series

analysis in commodity systems is data movement. This limitation occurs be-

tween main memory and processing units, and can be mitigated via Processing-

Near-Memory or Processing-Using-Memory approaches. However, these scenar-

ios assume that data is already located and properly arranged in main memory.

Time series usually comprise large amounts of input data that can potentially

be hosted in storage devices. The communication of those storage devices with

main memory is usually slower than the one between main memory and the pro-

cessing units. Based on that, our first proposed research line is to explore

Processing-In-Storage approaches to further optimize and accelerate

the time series analysis computation.

As mentioned in Chapter 6, another way to alleviate the impact of data move-

ment is to reduce the amount of data to move. One way to do so is the use of

transprecision computing, reducing the number of bits that operands take in

memory and also when performing the actual operations. While we evaluate how

SCRIMP and SCAMP algorithms benefit from this approach, there are many

other algorithms (e.g., DTW) that could be good candidates. Based on that,

our second proposed research line is to explore transprecision comput-

ing approaches in other time series analysis algorithms, reducing the

amount of data to move during computation.

Apéndice A
Resumen en español

A.1. Introducción

La explosión de la era del Internet de las Cosas y del Big Data ha dado lugar a

la generación continua de una cantidad muy grande de datos, que cada vez es más

dif́ıcil de almacenar y analizar [112]. Los pequeños sensores y dispositivos produ-

cen una parte importante de estos datos [200], que incluyen observaciones (por

ejemplo, temperatura, voltaje o sonido) muestreadas a lo largo del tiempo. Esta

colección de datos también se conoce como serie temporal, una representación de

datos común en casi todas las disciplinas cient́ıficas y aplicaciones empresaria-

les [167], por ejemplo, la epidemioloǵıa, la genómica, la neurociencia, las ciencias

ambientales o los mercados de valores. El análisis de series temporales (AST)

divide las series temporales en subsecuencias de puntos de datos consecutivos

para extraer información valiosa.

Para encontrar subsecuencias de interés, los algoritmos de AST definen una

métrica de distancia, por ejemplo, la distancia euclidiana (ED) o la deformación

temporal dinámica (dynamic time warping en inglés, o DTW). Esta métrica de

distancia representa el grado de similitud de dos subsecuencias dadas, lo que sig-

nifica que cuanto menor sea el valor de la distancia, más similares son. Basándose

en la métrica de distancia, el algoritmo AST clasifica las subsecuencias que tienen

una distancia baja como motivos [148] (similitudes) y una distancia alta como

discordantes [100] (anomaĺıas). Esta clasificación es un paso cŕıtico antes del análi-

sis posterior mediante algoritmos espećıficos del dominio o expertos humanos, aśı

que AST es una herramienta de vital importancia y generalidad .

114 Apéndice A. Resumen en español

Los algoritmos de AST pueden utilizarse para filtrar aquellas subsecuencias

que coinciden con un comportamiento esperado, dejando sólo las anomaĺıas para

el algoritmo espećıfico del dominio, que es computacionalmente costoso (por ejem-

plo, [126]), es decir, sólo una pequeña cantidad de datos cŕıticos que necesitan ser

analizados más a fondo. Un ejemplo es SquiggleFilter [50], un acelerador basado

en AST que procesa la salida del secuenciador Mini-ION y filtra todo excepto las

secuencias de interés, reduciendo el cómputo en más de un 85 %. Sin embargo, las

optimizaciones de SquiggleFilter se basan en una versión modificada de DTW que

pierde generalidad para otras aplicaciones. La Figura 1.1 describe el proceso de

filtrado basado en un flujo de datos de ejemplo para datos de electrocardiograma

y un algoritmo AST genérico.

Punto de Motivación I: El AST es útil en muchos dominios, pero las pro-

puestas de aceleración anteriores se basan principalmente en modificaciones de

los algoritmos que pierden generalidad.

Profundizando en el punto de vista de la implementación, encontramos que

Matrix Profile [196] (MP) es el conjunto de herramientas del estado del arte para

realizar AST, que comprende tanto algoritmos de distancia euclidiana como de

deformación temporal dinámica. Hay varias implementaciones de MP basadas en

CPU, GPU e incluso FPGA en la literatura [196, 86, 202, 204]. Estos enfoques

de CPU, GPU y FPGA son extremadamente paralelizables, usando simples ope-

raciones aritméticas sobre los datos para calcular las distancias. En este sentido,

el enfoque de paralelización más sencillo consiste en repartir todas las distan-

cias a calcular entre los recursos computacionales ya que -en principio- no hay

dependencias entre ellos. Este esquema proporciona tantos flujos de ejecución

como subsecuencias tengan las series temporales de forma totalmente indepen-

diente, lo que es mucho más que el número de núcleos disponibles en las CPUs y

GPUs comerciales. Para acelerar las implementaciones paralelas de AST en esas

arquitecturas, aumentar el número de núcleos parece ser un enfoque prometedor.

Con esta oportunidad en mente, primero caracterizamos una implementación

de MP en una máquina multinúcleo (Intel Xeon Phi KNL) y descubrimos que el

número de núcleos no es el único cuello de botella para AST. Concretamente, ob-

servamos que la escalabilidad se detiene a partir de un cierto número de núcleos

y concluimos que el rendimiento y la eficiencia energética de los algorit-

mos de AST se ven fuertemente afectados por el movimiento de datos.

Esta observación se basa en 1) la baja intensidad aritmética del algoritmo y 2)

la necesidad de acceder a grandes cantidades de datos de series temporales desde

la memoria. En otras palabras, la cantidad de cálculo por acceso a los datos no

es suficiente para ocultar la latencia de la memoria, por lo que el algoritmo está

A.1. Introducción 115

limitado por la memoria en una arquitectura de CPU convencional. En este con-

texto, el Procesamiento-Cercano-Memoria (Processing-Near-Memory en inglés,

o PNM) y el Procesamiento-Utilizando-Memoria (Processing-Using-Memory en

inglés, o PUM) sitúan el cálculo más cerca de los datos, reduciendo aśı el impacto

del movimiento de datos. Basándonos en esto, consideramos que las arquitecturas

PNM y PUM son enfoques prometedores para acelerar el AST.

En las arquitecturas convencionales, el AST se ve limitado por: 1) el escaso

número de núcleos con respecto al paralelismo potencial y 2) el movimiento de

datos entre la memoria y las unidades de procesamiento.

A.1.1. Aplicaciones de AST

El primer punto de motivación de esta tesis se basa en que el AST consti-

tuye una de las primitivas de mineŕıa de datos más importantes gracias a su

generalidad en la detección de anomaĺıas y similitudes para una amplia gama

de aplicaciones. Nótese que esta caracteŕıstica deseable es posible gracias a la

naturaleza agnóstica del dominio de los algoritmos de AST, ya que sus resulta-

dos son simples valores de distancia. La Tabla 1.1 presenta algunos ejemplos de

aplicaciones de AST.

En estad́ıstica, econometŕıa, meteoroloǵıa y geof́ısica, el objetivo principal del

análisis de series temporales es la predicción y el pronóstico. Al mismo tiempo,

en el procesamiento de señales, la ingenieŕıa de control y la ingenieŕıa de comu-

nicaciones, se utiliza para la detección y estimación de señales. En la mineŕıa

de datos, en el reconocimiento de patrones y en el aprendizaje automático, el

descubirmiento de motivos y de discordancias se utilizan para la agrupación, la

clasificación, la detección de anomaĺıas y la previsión. Por último, la aplicación

más importante del descubrimiento de motivos y discordancias en las series tem-

porales es la agrupación de datos śısmicos y el descubrimiento de conjuntos de

patrones de terremotos a partir del registro śısmico continuo. En consecuencia, el

agrupamiento śısmico puede aplicarse a la reubicación de terremotos y a la moni-

torización de volcanes para ayudar a mejorar las evaluaciones de riesgos śısmicos

y volcánicos.

Beneficios de usar AST en aplicaciones completas. AST es fundamen-

tal para ejemplos reales de aplicaciones de extremo a extremo. Por ejemplo, [90]

predice el fallo circulatorio en las unidades de cuidados intensivos. En este es-

cenario, el 90 % del tiempo de ejecución está dominado por el preprocesamiento

de el AST, mientras que el 10 % restante es utilizado por la aplicación basada

116 Apéndice A. Resumen en español

en el aprendizaje automático para realizar la clasificación. También encontramos

muchos otros ejemplos de casos de uso reales que se benefician de AST.

Detección de terremotos [41]. El AST puede procesar los datos de un

sismógrafo y detectar anomaĺıas que pueden ser procesadas posteriormente

con complejos algoritmos.

Electroencefalograf́ıa [37]. Suponiendo un electroencefalógrafo que está

monitoreando a un paciente, el AST puede ser utilizada para detectar ano-

maĺıas y activar una alarma al respecto.

Detección de virus [50]. Durante el proceso de ensamblaje del genoma,

el basecalling es una tarea intensiva de computación que puede ser omitida

para la mayoŕıa de las lecturas utilizando un filtro basado en AST.

A.1.2. Cuellos de Botella de AST

El segundo punto de motivación de esta tesis se basa en el hecho de que el

AST tiene cuellos de botella en las arquitecturas comerciales. Para identificar esos

cuellos de botella, primero desarrollamos una versión optimizada y vectorizada

de una implementación del estado del arte de Matrix Profile. A continuación, la

caracterizamos utilizando una máquina multinúcleo (Intel Xeon Phi KNL) que

también incluye memoria de alto ancho de banda (HBM) junto con DDR4 con-

vencional. En primer lugar, observamos que, aunque el número de hilos hardware

(256) del Intel Xeon Phi es relativamente alto en comparación con las máquinas

de gama baja, sigue habiendo muchos más flujos de ejecuciones independientes

(miles o millones) que hilos. Sin embargo, la disponibilidad de hilos no es el único

cuello de botella de AST. En la Figura 1.2, presentamos los resultados de rendi-

miento normalizados a 1 hilo (ĺıneas) y el ancho de banda de memoria utilizado

(barras) de esta implementación de MP basada en la distancia euclidiana, co-

nocida como SCRIMP. Observamos que, cuando se utiliza la memoria DDR4, el

rendimiento de SCRIMP no escala más allá de 32 hilos, mientras que el mayor

ancho de banda de memoria proporcionado por la HBM permite a SCRIMP esca-

lar hasta 128 hilos. Esto demuestra que el rendimiento de SCRIMP se satura en

arquitecturas multinúcleo, ya que el ancho de banda alcanzable se satura cuando

aumenta el número de hilos.

Para entender la causa de esta limitación de la memoria, realizamos el siguien-

te experimento. Generamos el análisis de la ĺınea de techo para SCRIMP como

mostramos en la Figura 1.3. Observamos que la intensidad aritmética de SCRIMP

es significativamente baja. Este hecho confirma que la limitación de memoria de

A.1. Introducción 117

SCRIMP se debe a la baja intensidad aritmética del algoritmo, que hace que los

núcleos de procesamiento estén infrautilizados. Basándonos en todas estas obser-

vaciones, llegamos a la conclusión de que el rendimiento de la implementación de

SCRIMP basada en la CPU de última generación se ve fuertemente limitado por

el ancho de banda de la memoria disponible y el movimiento de datos.

Sin embargo, basándonos en la similar simplicidad operativa de los algoritmos

de AST y en la enorme cantidad de datos que hay que procesar, planteamos la

hipótesis de que los cuellos de botella son compartidos por otros enfoques de AST.

Para demostrar esta afirmación, también caracterizamos una implementación de

DTW en la misma arquitectura que SCRIMP y analizamos los cuellos de botella

en otras plataformas.

Plataformas CPU. Perfilamos el rendimiento de DTW utilizando el mis-

mo procesador multinúcleo (Intel Xeon Phi 7210) que utilizamos para SCRIMP,

analizando la ejecución de 16K consultas de 8K elementos cada una que se com-

paran con una secuencia de referencia de 32K elementos. La Figura 1.4 presenta

el gráfico roofiline del experimento. Observamos que DTW sólo explota el 41 %

del rendimiento máximo de enteros del sistema, es decir, 59 GINTOPS de 145

GINTOPS, y presenta una baja intensidad aritmética (0.55 INTOP/Byte). En

segundo lugar, comprobamos que la huella de memoria de la ejecución es de apro-

ximadamente 570 MB. El tráfico total de memoria generado durante el tiempo de

ejecución es de ≈267 GB, lo que sitúa al núcleo por encima del ancho de banda

máximo de la DDR4 la mayor parte del tiempo de ejecución.

Plataformas GPU. Encontramos que varios trabajos anteriores [201, 124,

35, 42, 53] proponen acelerar DTW usando GPUs. Sin embargo, estos traba-

jos se basan en optimizaciones de memoria compartida que sólo funcionan para

ciertos tamaños de consulta pequeños. Para tamaños de consulta grandes, estas

implementaciones o bien 1) no funcionan o bien 2) utilizan memoria global de

alta latencia para mantener las estructuras de datos principales de DTW, lo que

resulta en grandes penalizaciones de rendimiento. Nosotros desarrollamos una

implementación basada en CUDA que admite tamaños arbitrarios.

Plataformas FPGA. Varios trabajos anteriores proponen [97, 98, 16] ace-

lerar el DTW utilizando FPGAs. Sin embargo, la mayoŕıa de ellas tienen una

memoria integrada muy limitada, y los datos tienen que moverse por buses es-

trechos. Desarrollamos nuestra propia implementación de FPGA basada en HLS

y descubrimos que 1) el número de unidades de cálculo no es suficiente para ex-

plotar el paralelismo inherente de DTW, y 2) las unidades de cálculo pasan la

mayor parte de su tiempo esperando a que se sirvan los accesos a la memoria.

Plataformas PNM/PUM. Una forma de mejorar el paralelismo y reducir

118 Apéndice A. Resumen en español

los costes de movimiento de datos es realizar el cálculo cerca de la memoria o

incluso utilizándola para realizar los cálculos. Analizamos varios enfoques en esas

direcciones y detallamos sus ventajas e inconvenientes.

PNM de propósito general . Este enfoque suele colocar pequeños núcleos de

CPU en la misma matriz que la DRAM. La principal ventaja de este esque-

ma es que la arquitectura puede utilizarse potencialmente para aplicaciones

de propósito general. Sin embargo, esto tiene el coste de un paralelismo li-

mitado. Evaluamos una PNM de propósito general (upmem baseline) en la

Subsección 5.3.3, y nuestras evaluaciones muestran que esta arquitectura

está limitada por el cómputo cuando realiza el cálculo DTW.

PNM especializado. Este enfoque suele colocar un acelerador ASIC en la

misma matriz que la DRAM. La principal ventaja de este enfoque es que

los elementos de procesamiento están altamente optimizados para la carga

de trabajo objetivo. Sin embargo, los datos siguen teniendo que pasar de

la memoria al acelerador. Aunque se puede utilizar un acelerador ASIC

en una arquitectura PNM, el rendimiento seguiŕıa sufriendo un cuello de

botella por el movimiento de datos entre la memoria y el acelerador, de

forma similar a la PNM de propósito general.

PNM basado en SRAM . Este enfoque utiliza matrices de memoria basadas

en SRAM para realizar cálculos in situ (por ejemplo, compute caches [10]).

Las principales ventajas de este enfoque son los altos niveles de paralelismo

y la reducción del movimiento de datos. Lamentablemente, la SRAM sufre

problemas de densidad y escalabilidad [75], además de ser vulnerable a la

radiación.

PUM basada en DRAM . Este enfoque utiliza matrices de memoria basadas

en DRAM para realizar cálculos in situ (por ejemplo, SIMDRAM [79]). Sin

embargo, este enfoque implica el movimiento interno de datos para realizar

las operaciones, ya que los datos deben moverse a filas espećıficas habilitadas

para el cálculo antes de realizar las operaciones en śı mismas. Además, la

DRAM sufre problemas de volatilidad de datos y de lectura destructiva.

A.1.3. Motivación y Contribuciones de la Tesis

La creciente demanda de procesamiento de datos pone sobre la mesa la nece-

sidad de proporcionar plataformas informáticas que se ajusten a los requisitos de

rendimiento. Además, el consumo de enerǵıa es una preocupación cŕıtica creciente

en esas plataformas. Como se indica en la Sección 1.1, el AST es una herramienta

A.1. Introducción 119

útil para preprocesar la inmensa cantidad de datos que generan los dispositivos

contemporáneos, por lo que la optimización y la eficiencia energética del AST es

una cuestión de vital importancia. Esto nos motiva a estudiar cuidadosamente los

algoritmos AST más avanzados y a proponer soluciones para mitigar sus cuellos

de botella.

En los últimos tiempos, la comunidad de arquitectos de ordenadores ha identi-

ficado el movimiento de datos entre la memoria y las unidades de procesamiento

como el principal cuello de botella para aumentar el rendimiento. Este hecho

también es aplicable a la AST, como mostramos en la Sección 1.2. A partir de

ah́ı, se han revisado las plataformas que sitúan el cálculo más cerca de los datos

y se están realizando grandes esfuerzos de investigación en esta dirección. Distin-

guimos entre Procesamiento-Cercano-Memoria (PNM, por sus siglas en inglés),

donde las unidades de cálculo se sitúan f́ısicamente más cerca de la memoria,

y Procesamiento-Utilizando-Memoria (PUM, por sus siglas en inglés), donde las

celdas de memoria en śı mismas se utilizan para realizar el cálculo.

El objetivo principal de esta tesis es estudiar si las arquitecturas PNM y

PUM son buenas candidatas para acelerar el AST y hacer que su cálculo sea

energéticamente eficiente. Además, estudiamos el AST desde el punto de vista

algoŕıtmico, reduciendo el número de bits de coma flotante necesarios para el

cálculo y optimizando los recursos.

Nuestras principales aportaciones en esta tesis y en las publicaciones relacio-

nadas, que pretenden cumplir el objetivo de la misma, son las siguientes:

PhiTSA [58]. Optimizamos y caracterizamos los algoritmos de AST más

avanzados en una plataforma KNL Xeon Phi multiúcleo. Identificamos el

movimiento de datos como el principal cuello de botella que 1) impide una

mayor aceleración y 2) consume la mayor parte de la enerǵıa de ejecución.

NATSA [57]. Proponemos un novedoso acelerador de Procesamiento-

Cercano-Memoria para AST, conocido como NATSA. Este acelerador co-

loca unidades de procesamiento de punto flotante personalizadas cerca de

la memoria de gran ancho de banda, explotando sus canales de memoria

y la menor latencia de los accesos. NATSA mejora significativamente el

rendimiento y el consumo de enerǵıa con respecto a los sistemas básicos al

realizar el cálculo del AST basado en la distancia euclidiana.

MATSA [En revisión]. Proponemos un novedoso acelerador de

Procesamiento-Usando-Memoria para AST, conocido como MATSA. La

idea clave es explotar los crossbars de la memoria magnetorresistiva pa-

ra permitir un cálculo de series temporales rápido y eficiente desde el punto

120 Apéndice A. Resumen en español

de vista energético en la memoria, superando al mismo tiempo los proble-

mas de durabilidad de otras tecnoloǵıas de memoria no volátil. MATSA:

1) aprovecha los altos niveles de paralelismo en el sustrato de la memoria

explotando las operaciones aritméticas por columnas, y 2) reduce significa-

tivamente los costes de movimiento de datos al realizar cálculos utilizando

las celdas de memoria. Realizamos una exploración de los parámetros de

diseño y demostramos que nuestra versión HPC de MATSA puede mejo-

rar enormemente el rendimiento y la eficiencia energética con respecto a la

CPU del servidor, la GPU y el PNM.

TraTSA [56, 55]. Evaluamos las ventajas de aplicar el cálculo transpreciso

a AST, donde se reduce el número de bits dedicados a las operaciones de

punto flotante. Desarrollamos TraTSA, un framework que permite afinar

la precisión de las operaciones para cada caso de uso, maximizando la uti-

lización de recursos de las unidades aritméticas. Utilizando este enfoque,

es posible reducir el área requerida por el sistema, lo que permite la posi-

bilidad de incluir más unidades aritméticas y aśı mejorar el rendimiento y

reducir el consumo de enerǵıa.

Además, esta tesis ha contribuido a varias publicaciones relacionadas con el

tema principal de la misma [69, 71, 82, 146, 68, 64].

A.2. PhiTSA: Usando un Xeon Phi para Opti-

mizar y Caracterizar AST

A.2.1. Idea y Motivación

En este apartado presentamos PhiTSA, una implementación optimizada del

algoritmo SCRIMP adaptada a los procesadores Intel Xeon Phi Knights Lan-

ding (KNL). Este trabajo está motivado por la oportunidad que ofrecen estas

arquitecturas en términos de paralelismo, vectorización y diferentes tecnoloǵıas

de memoria. Concretamente, KNL incluye dos tipos de memoria (es decir, DDR4

y HBM). Esto es útil para 1) estudiar el impacto del ancho de banda de la me-

moria en el rendimiento y 2) aprovechar el ancho de banda agregado. La idea

clave es implementar una versión paralela y vectorizada de SCRIMP basada en

la privatización. A continuación, utilizamos esta implementación optimizada para

caracterizar el comportamiento utilizando las herramientas de perfilado de Intel

y encontrar sus cuellos de botella.

A.2. PhiTSA: Usando un Xeon Phi para Optimizar y Caracterizar AST 121

A.2.2. Contribuciones

La primera parte de este trabajo comprende la optimización de SCRIMP para

explotar al máximo el potencial de la plataforma KNL. Comenzamos analizan-

do el algoritmo SCRIMP (descrito en la Sección 2.1.1) desde el punto de vista

del paralelismo. SCRIMP calcula las distancias entre subsecuencias siguiendo las

diagonales de la matriz, que mostramos en la Figura 3.2. Esto se explica por

dos razones 1) los elementos de una diagonal se pueden calcular a partir de los

elementos anteriores de la misma diagonal con un mı́nimo de cálculos, y 2) el

cálculo de las diagonales en orden aleatorio permite la posibilidad de obtener un

resultado parcial exacto del perfil de la matriz. Cuando se procesa una diagonal,

un hilo calcula las distancias entre subsecuencias y actualiza el perfil de la matriz

P y el ı́ndice del perfil de la matriz I. De esta manera, podŕıa ocurrir que dos

hilos estén calculando simultáneamente dos distancias diferentes en dos diagona-

les diferentes, pero con dichas distancias pertenecientes a la misma columna. Las

posibles actualizaciones concurrentes de las estructuras de datos P e I pueden

resolverse mediante la exclusión mutua o la privatización de los datos cŕıticos. El

rendimiento del primer enfoque puede verse muy afectado por la presión de la sin-

cronización. Por otro lado, aunque el esfuerzo de sincronización es insignificante

para la privatización, requiere una cantidad extra de memoria. Tras resolver las

actualizaciones concurrentes de nuestra implementacion, procedemos a aumen-

tar la intensidad aritmética de nuestras implementaciones utilizando operaciones

vectoriales. Por último, proponemos la distribución de los datos en los espacios

de memoria DDR4 y HBM asignando datos privados y de acceso más frecuente

en HBM y datos compartidos de sólo lectura en DDR4.

A.2.3. Evaluación

En la evaluación de este trabajo realizamos experimentos relacionados con el

aumento de velocidad y el uso del ancho de banda de memoria con una longitud

de serie temporal y un tamaño de ventana fijos, utilizando las diferentes imple-

mentaciones paralelas descritas en la Sección 3.3. A continuación, medimos el uso

del ancho de banda de memoria variando el número de hilos en la implementación

que ha dado los mejores resultados de rendimiento. Finalmente, ejecutamos nues-

tra implementación basada en la estructura privada variando la longitud de la

serie temporal, el tamaño de la ventana y las poĺıticas de asignación de memoria,

lo que permite una comparación con trabajos anteriores.

Los experimentos demuestran que nuestro enfoque basado en privatización

puede mejorar el rendimiento en hasta 190× con respecto a la ejecución secuen-

122 Apéndice A. Resumen en español

cial (que no aprovecha la vectorización ni el espacio HBM) utilizando un Xeon

Phi 7210 de 64 núcleos (KNL). Además, nuestras técnicas presentan una mejor

escalabilidad que los mecanismos de sincronización de sincronización basados en

bloqueos. Por último, la implementación que utiliza tanto la HBM y DDR4 es

capaz de superar en 5 veces a la solución basada únicamente en DDR4, lo que

demuestra las ventajas de HBM para los problemas de ancho de banda limitado.

A.3. NATSA: Un Acelerador PNM para AST

A.3.1. Idea y Motivación

En la literatura se han propuesto varias implementaciones de CPU y GPU de

matrix profile. Sin embargo, estos esfuerzos de aceleración siguen requiriendo la

transferencia de los datos de las series temporales desde la memoria principal a

los núcleos de la CPU/GPU, lo que conduce al cuello de botella del movimiento

de datos, como se analizó en la contribución anterior utilizando PhiTSA. El pro-

cesamiento cerca de la memoria (PNM) es un enfoque prometedor para aliviar el

movimiento de datos colocando las unidades de procesamiento cerca de la memo-

ria. Como resultado, las soluciones PNM tienen el potencial de mejorar en gran

medida el rendimiento del sistema y la eficiencia energética cuando se diseñan

cuidadosamente con núcleos de procesamiento cercanos a los datos de bajo coste

y baja sobrecarga para aplicaciones ligadas a la memoria.

El objetivo de este trabajo es el de permitir un análisis de series temporales

de alto rendimiento y eficiencia energética para una amplia gama de aplicaciones,

minimizando los costes generales del movimiento de datos. Esto puede permitir

un análisis eficiente de series temporales en sistemas a gran escala, aśı como en

dispositivos embebidos y móviles, donde el consumo de enerǵıa es una restric-

ción cŕıtica (por ejemplo, el análisis de los latidos del corazón en un dispositivo

médico móvil para predecir un ataque al corazón [118] o la detección temprana

de terremotos [41]). Para ello, proponemos NATSA, el primer acelerador para el

análisis de series temporales utilizando un enfoque cercano a la memoria. La idea

clave de NATSA (Figura 4.1) es explotar la moderna memoria de alto ancho de

banda (HBM) apilada en 3D junto con unidades de procesamiento especializadas

en la capa lógica de la HBM, para permitir un cálculo rápido y eficiente energéti-

camente cerca de la memoria, donde residen los datos de las series temporales.

NATSA admite una amplia gama de aplicaciones de series temporales gracias a

la generalidad y flexibilidad de matrix profile.

A.3. NATSA: Un Acelerador PNM para AST 123

A.3.2. Propuesta

Nuestro acelerador de procesamiento de datos para el análisis de series tem-

porales, NATSA, está diseñado para 1) explotar plenamente el paralelismo de

acceso a la memoria y el gran ancho de banda de la memoria que ofrece la HBM,

y 2) emplear la cantidad necesaria de recursos computacionales para proporcionar

una solución equilibrada. NATSA se localiza junto a la memoria HBM y aprove-

cha todo el ancho de banda de la HBM disponible. NATSA consta de múltiples

unidades de procesamiento (PUs) que computan eficientemente las diagonales del

perfil de la matriz de forma paralela. Las PUs están diseñadas para calcular las

diagonales utilizando un enfoque vectorial para procesar un lote de elementos

de una diagonal al mismo tiempo. Cada PU incluye unidades de punto flotante

energéticamente eficientes [60], operadores a nivel de bits y registros (véase la

Tabla 4.3 en la Sección 4.3.3). Cada PU se comunica con la HBM a través de un

controlador conectado a uno de los 8 canales de memoria de la HBM.

El cálculo de las diagonales de la matriz de distancia puede provocar un

desequilibrio de la carga entre las PU, porque esas diagonales tienen longitudes

diferentes. Para evitar este desequilibrio, proponemos un esquema de programa-

ción de particiones estáticas que sólo depende del tamaño de la serie temporal y

de la zona de exclusión. La forma en que abordamos este problema es asignando

un conjunto de pares de diagonales a cada PU NATSA tal que la suma de sus

elementos sea igual al número de celdas de la diagonal principal de la matriz de

distancia menos el número de celdas de la zona de exclusión, (n−m+ 1)−m/4.

A.3.3. Evaluación

Rendimiento de NATSA. NATSA consigue mejoras significativas en el

rendimiento, hasta 14,2× (9,9× de media) respecto al sistema de referencia para

series grandes, y 6,3× respecto a HBM-inOrder para todos los tamaños.

Potencia y consumo de enerǵıa. NATSA reduce el consumo de enerǵıa

en 27,2× (19,4× de media) respecto a la plataforma de referencia (DDR4-OoO),

y en 10,2× respecto a una arquitectura PNM con núcleos de propósito general

(HBM-inOrder). NATSA consume 1,7×, 4,1× y 11,0× menos enerǵıa que una

GPU NVIDIA Tesla K40c [145], una GPU NVIDIA GTX 1050 [5] y un Intel

Xeon Phi KNL [165], respectivamente. Llegamos a la conclusión de que NATSA

es la plataforma evaluada más eficiente energéticamente para perfil de matriz.

124 Apéndice A. Resumen en español

A.4. MATSA: Un Acelerador PUM para AST

La siguiente parte de esta tesis versa sobre el estudio de un acelerador para

series temporales basado en el uso de las celdas de memoria (PUM). A diferencia

de las plataformas comerciales, una arquitectura PUM constituye una solución

prometedora para acelerar AST, ya que 1) permite un alto paralelismo, 2) reduce

los costes de movimiento de datos, 3) puede proporcionar una mejor escalabilidad

que sus competidores debido al paralelismo masivo, 4) es compatible con CMOS, y

5) supera el problema de la volatilidad de los datos. Encontramos que el principal

inconveniente de esas tecnoloǵıas NVM es su falta de madurez, siendo dif́ıciles

de evaluar. Para solucionar este problema, realizamos estudios de sensibilidad en

nuestra evaluación para diferentes tecnoloǵıas NVM.

A.4.1. Contribuciones

MATSA es el primer Acelerador basado en MRAM para el análisis de se-

ries temporales. La idea clave es explotar las barras transversales de la memoria

magnetorresistiva para permitir un cálculo de series temporales rápido y eficiente

desde el punto de vista energético en la memoria, superando al mismo tiempo

los problemas de resistencia de otras tecnoloǵıas de memoria no volátil. MATSA

ofrece las siguientes ventajas clave: 1) aprovecha los altos niveles de paralelismo

en el sustrato de la memoria explotando las operaciones aritméticas por colum-

nas, y 2) reduce significativamente los costes de movimiento de datos al realizar

el cálculo utilizando las celdas de memoria.

A.4.2. Evaluación

En nuestra evaluación considramos tres versiones de MATSA adaptadas a

diferentes entornos de computación (dispositivos embebidos, ordenadores de so-

bremesa y clusters HPC) para mostrar la generalidad de nuestro diseño. Ca-

racterizamos el rendimiento de MATSA utilizando la latencia de la celda y el

consumo de enerǵıa basado en las tendencias del estado de la técnica en las ca-

racteŕısticas de los dispositivos MRAM [198, 61]. Nuestra evaluación muestra

que MATSA-HPC mejora el rendimiento en 7,35×/6,15×/6,31× y la eficiencia

energética en 11,29×/4,21×/2,65× respecto a las plataformas de clase servidor

basadas en CPU, GPU y UPMEM, respectivamente.

A.5. TraTSA: Un Framework Transpreciso Para AST 125

A.5. TraTSA: Un Framework Transpreciso Para

AST

A.5.1. Idea y Motivación

Tras proponer nuestros aceleradores cercanos o en la propia memoria, eva-

luamos las últimas implementaciones de Matrix Profile basadas en el método

euclidiano (SCRIMP [202] y SCAMP [203]) y descubrimos que se necesita un

gran número de operaciones aritméticas en coma flotante (FP) para analizar in-

cluso series temporales cortas. En este sentido, la computación transprecisa ha

surgido recientemente como un enfoque prometedor para 1) mejorar la eficiencia

energética, 2) proporcionar un mejor rendimiento, 3) reducir la huella de área y

4) reducir el ancho de banda de la memoria tolerando cierta pérdida de precisión

en los resultados calculados. Este paradigma reduce el número de bits para el ex-

ponente y la mantisa en las operaciones FP de forma flexible, dependiendo de los

requisitos de la aplicación. Es bien sabido que las operaciones FP contribuyen en

gran medida (≈50 %) [173] al consumo de enerǵıa en las plataformas de cómputo

modernas. Por lo tanto, la transprecisión tiene el potencial de proporcionar un

diseño eficiente con la precisión requerida por la aplicación.

Nuestro objetivo en este trabajo es proporcionar un conjunto de herramientas

para impulsar el nicho de investigación del análisis de series temporales basado en

computación transprecisa, con el fin de lograr una computación de alto rendimien-

to y eficiencia energética para una amplia gama de aplicaciones. De este modo,

se pueden diseñar nuevas plataformas que se beneficien de las operaciones FP de

recuento reducido de bits adaptadas a cada aplicación (por ejemplo, utilizando

una unidad de puntos flotantes (FPU) transprecisa, como FPNew [8]). Esto abre

la oportunidad de detectar eventos importantes en dispositivos móviles y empo-

trados, donde la enerǵıa es una preocupación cŕıtica. Estos dispositivos pueden

utilizarse, por ejemplo, para prevenir desastres ecológicos o problemas médicos

(por ejemplo, para la detección temprana de terremotos [15] o para predecir un

ataque al corazón [118]).

A.5.2. Contribuciones

Para ello, introducimos TraTSA, el primer framework de transprecisión para

el análisis de series temporales. TraTSA proporciona un cálculo de perfiles matri-

ciales usando computación transprecisa rápido y fácil de usar gracias a sus imple-

mentaciones en CPU y FPGA. Evaluamos TraTSA con casos de uso de conjuntos

126 Apéndice A. Resumen en español

de datos reales de diferentes dominios y tamaños, analizando las compensacio-

nes entre la precisión aritmética y la exactitud de los resultados utilizando una

métrica propuesta. Además, presentamos el ahorro de enerǵıa de una FPU de

transprecisión real.

TraTSA es un framework basado en Transprecision para Time Series Analysis

desarrollado como una herramienta 1) para realizar la exploración del diseño de

los aceleradores y 2) para afinar las implementaciones actuales. De este modo,

los arquitectos de ordenadores pueden definir el número exacto de bits de punto

flotante para el exponente y la mantisa, lo que potencialmente ahorra área y

mejora el rendimiento, al tiempo que reduce el consumo de enerǵıa. Construimos

el framework TraTSA basado en el perfil matricial y utilizando 1) la biblioteca

FlexFloat para implementar versiones de transprecisión para CPU de SCRIMP y

SCAMP, 2) la biblioteca cpfp-FPGA para implementar una versión transprecisa

para FPGA de SCAMP, y 3) Python para crear un wrapper de fácil uso.

El beneficio clave de TraTSA es proporcionar un framework de desarrollo para

transprecisión siendo 1) lo suficientemente portátil para ser ejecutado en diferen-

tes entornos de ejecución de acuerdo con los requisitos de análisis (es decir, la

longitud de la serie temporal o si el usuario tiene acceso a una FPGA o no), y 2) lo

suficientemente flexible para permitir la posibilidad de explorar una amplia gama

de combinaciones de exponente y mantisa para cualquier conjunto de datos. En

este sentido, tanto TranSCRIMP como TranSCAMP están diseñados para ser utiliza-

dos con series temporales de tamaños modestos (por debajo de 200K elementos)

y ejecutados en CPUs comerciales (ordenadores de sobremesa o servidores de

gama alta) debido a los sobrecostes de los tipos de precisión personalizados en

dichas plataformas. En cambio, TranSCAMPfpga es capaz de computar series de

hasta varios millones de elementos en un tiempo manejable gracias al soporte

hardware de transprecisión, a costa de requerir una FPGA. Tanto el backend de

la CPU como el de la FPGA pueden trabajar simultáneamente y unir la potencia

de cálculo.

A.5.3. Evaluación

En nuestra evaluación comparamos los algoritmos de SCRIMP y SCAMP. Los

resultados concluyen que SCAMP es más robusto y presenta una mejor estabi-

lidad numérica que SCRIMP para todos los conjuntos de datos. Este hecho se

aprecia para el conjunto de datos Penguin Behavior, donde una ligera disminución

de la longitud de la mantisa hace que SCRIMP falle en la detección de eventos,

mientras que SCAMP proporciona más margen en esta reducción. Encontramos

A.6. Conclusiones y Trabajo Futuro 127

un escenario at́ıpico para la serie temporal Power short en la Figura 6.9, donde

la precisión parece disminuir cuando el número de bits de la mantisa aumenta de

20 a 23. La razón es que, para esta serie temporal, hay varios motivos con exacta-

mente el mismo valor de perfil. Por ello, nuestro algoritmo de ordenación induce

algunas diferencias de orden al comparar la versión de transprecisión con respecto

a la de referencia. Sin embargo, desde el punto de vista práctico, la precisión de

la mantisa 23 es tan buena como la de la mantisa 20, ya que todos los motivos

están presentes en ambas. Concluimos que SCAMP es un mejor candidato para el

cálculo de transprecisión, ya que proporciona una precisión similar con menores

requisitos de recuento de bits para el exponente y la mantisa.

A.6. Conclusiones y Trabajo Futuro

Los algoritmos de análisis de series temporales son una carga de trabajo cŕıti-

ca para muchas aplicaciones importantes (por ejemplo, para predecir un ataque

al corazón o para analizar el consumo eléctrico de los hogares). En esta tesis,

estudiamos y caracterizamos los algoritmos de análisis de series temporales más

avanzados y descubrimos que el movimiento de datos en las arquitecturas con-

vencionales les supone un cuello de botella. Nuestro objetivo final es acelerar y

hacer que el cálculo de análisis de series temporales sea lo más rápido y eficiente

energéticamente posible. Para ello, proponemos soluciones de hardware y softwa-

re que acerquen el cálculo a la memoria, basándonos en las últimas tendencias en

arquitectura de ordenadores. Esta tesis realiza cuatro contribuciones principales,

que se describen a continuación.

1 Optimización y caracterización. El Caṕıtulo 3 presenta una novedosa

implementación de un algoritmo de análisis de series temporales de última gene-

ración ajustado para una arquitectura Intel Xeon Phi KNL, provista de HBM.

En esta implementación explotamos el multihilo, la vectorización y el uso de la

HBM agregada más el ancho de banda de la memoria DDR4. En primer lugar,

proponemos la paralelización del procesamiento de las diagonales en el algorit-

mo, distribuyendo dinámicamente su cómputo entre los núcleos de una máquina

multinúcleo. En segundo lugar, utilizamos técnicas de privatización y reducción

para evitar la sincronización innecesaria de hilos y mejorar la escalabilidad. Por

último, proponemos la distribución de los datos entre DDR4 y HBM, asignando

los datos privados y de acceso más frecuente en HBM y los datos compartidos

de sólo lectura en DDR4. Nuestros experimentos muestran que nuestro enfoque

puede mejorar el rendimiento hasta 190 veces con respecto a la ejecución secuen-

cial utilizando el KNL Intel Xeon Phi. Además, nuestras técnicas presentan una

128 Apéndice A. Resumen en español

mejor escalabilidad que los mecanismos tradicionales de sincronización basados

en bloqueos. Este caṕıtulo está asociado a la siguiente publicación:

Fernandez, I., Villegas, A., Gutierrez, E., & Plata, O. (2019). Accelerating

time series motif discovery in the Intel Xeon Phi KNL processor. The Journal

of Supercomputing, 75(11), 7053-7075.

2 Acelerador de procesamiento en memoria cercana. El Caṕıtulo 4 pre-

senta NATSA, el primer acelerador de procesamiento de datos cercanos (PNM)

para el análisis de series temporales. NATSA 1) aprovecha el ancho de banda de la

memoria de gran ancho de banda (HBM) para analizar datos de series temporales

a escala para una amplia gama de aplicaciones, 2) mejora la eficiencia energética y

el tiempo de ejecución mediante el uso de unidades aritméticas especializadas de

bajo consumo cerca de la memoria HBM, y 3) proporciona un novedoso esquema

de programación de la carga de trabajo para evitar el desequilibrio de la carga

y preservar la propiedad anytime. NATSA supera a las plataformas de hardware

que evaluamos en términos de rendimiento, consumo de enerǵıa y requisitos de

área. Este caṕıtulo está asociado a la siguiente publicación:

Fernandez, I., Quislant, R., Gutiérrez, E., Plata, O., Giannoula, C., Alser, M.,

Gómez-Luna, J., & Mutlu, O. (2020, October). NATSA: A Near-Data Proces-

sing Accelerator for Time Series Analysis. In 2020 IEEE 38th International

Conference on Computer Design (ICCD) (pp. 120-129). IEEE.

3 Acelerador de Procesamiento en Memoria. El Caṕıtulo 5 presenta

MATSA, el primer acelerador basado en MRAM para el análisis de series tempo-

rales. La idea clave es explotar las barras transversales magnetorresistivas para

permitir un cálculo de series temporales en memoria rápido y eficiente desde el

punto de vista energético. MATSA ofrece las siguientes ventajas clave: 1) aumen-

ta significativamente el paralelismo explotando las operaciones a nivel de columna

y 2) reduce los gastos generales del movimiento de datos realizando el cálculo en

las celdas de memoria. Evaluamos tres versiones de MATSA para ajustarnos a los

requisitos de diferentes entornos y realizamos una exploración del espacio de di-

seño. MATSA mejora significativamente el rendimiento y la enerǵıa con respecto

a las plataformas commodity y PNM. Este caṕıtulo está asociado a la siguiente

publicación en revisión:

Fernandez, I., Manglik, A., Giannoula, C., Quislant, R., Ghiasi, N. M., Gómez-

Luna, J., ... & Mutlu, O. (2022). Accelerating Time Series Analysis via Proces-

sing using Non-Volatile Memories. arXiv preprint arXiv:2211.04369.

A.6. Conclusiones y Trabajo Futuro 129

4 Framework de transprecisión. El Caṕıtulo 6 estudia cómo el análisis de se-

ries temporales se beneficia de un enfoque de transprecisión, e introduce TraTSA,

un framework que permite definir la precisión exacta necesaria según los requi-

sitos de la aplicación espećıfica. Las implementaciones propuestas TranSCRIMP,

TranSCAMP y TranSCAMPfpga ayudarán a la comunidad a diseñar soluciones de

análisis de series temporales energéticamente eficientes basadas en procesadores

RISC-V con soporte transpreciso, FPGAs o ASICs minimizando los requisitos de

área y potencia. Nuestra solución basada en FPGA es 22,75× más rápida que

un servidor Intel Xeon de 72 núcleos gracias al soporte de transprecisión por

hardware y al uso de técnicas de optimización. Además, estudiamos cómo los

algoritmos de Matrix Profile pueden beneficiarse de una FPU de transprecisión

ya presentada. En este sentido, nuestro análisis revela que, para una variedad de

aplicaciones, el consumo de enerǵıa de los algoritmos de Matrix Profile se reduce

hasta 3,3× en comparación con la doble precisión mientras se obtienen resultados

precisos. Este caṕıtulo está asociado a las siguientes publicaciones.

Fernandez, I., Quislant, R., Gutierrez, E., & Plata, O. (2020, September).

Energy-Efficient Time Series Analysis Using Transprecision Computing. In 2020

IEEE 32nd International Symposium on Computer Architecture and High Per-

formance Computing (SBAC-PAD) (pp. 83-90). IEEE.

Fernandez, I., Quislant, R., Gonzalez-Navarro, S., Gutierrez, E., & Plata, O.

(2022). TraTSA: A Transprecision Framework for Efficient Time Series Analy-

sis. Journal of Computational Science, 63, 101784.

Para concluir esta tesis, nos gustaŕıa proponer las siguientes ĺıneas de inves-

tigación futuras inspiradas en nuestro trabajo.

Como se menciona en el Caṕıtulo 3, el principal cuello de botella para acele-

rar el análisis de series temporales en sistemas commodity es el movimiento de

datos. Esta limitación se produce entre la memoria principal y las unidades de

procesamiento, y puede mitigarse mediante enfoques de Procesamiento-Cercano-

Memoria o Procesamiento-Usando-Memoria. Sin embargo, estos escenarios asu-

men que los datos ya están localizados y ordenados adecuadamente en la memoria

principal. Las series temporales suelen incluir grandes cantidades de datos de en-

trada que pueden alojarse en dispositivos de almacenamiento. La comunicación

de esos dispositivos de almacenamiento con la memoria principal suele ser más

lenta que la existente entre la memoria principal y las unidades de procesamiento.

Basándonos en esto, nuestra primera ĺınea de investigación propuesta es

explorar enfoques de Procesamiento en Almacenamiento para optimi-

zar y acelerar aún más el cálculo del análisis de series temporales.

130 Apéndice A. Resumen en español

Como se menciona en el Caṕıtulo 6, otra forma de aliviar el impacto del

movimiento de datos es reducir la cantidad de datos a mover. Una forma de

hacerlo es el uso de la computación transprecisa, reduciendo el número de bits que

toman los operandos en la memoria y también al realizar las operaciones reales.

Aunque evaluamos cómo los algoritmos SCRIMP y SCAMP se benefician de

este enfoque, hay muchos otros algoritmos (por ejemplo, DTW) que podŕıan ser

buenos candidatos. En base a esto, nuestra segunda ĺınea de investigación

propuesta es explorar enfoques de computación transprecisa en otros

algoritmos de análisis de series temporales, reduciendo la cantidad de

datos a mover durante el cálculo.

Bibliograf́ıa

[1] Intel Advisor website. software.intel.com/en-us/advisor. Accessed 16

Mar. 2019. (Cited on page 41)

[2] Intel Processor Counter Monitor. https://github.com/opcm/pcm. Acces-

sed 23 September 2020. (Cited on page 54)

[3] Intel VTune website. software.intel.com/en-us/vtune. Accessed 25

November 2019. (Cited on page 38)

[4] Micron Power Calculator. www.micron.com/support/

tools-and-utilities/power-calc. Accessed 23 September 2020.

(Cited on page 51)

[5] NVIDIA GTX 1050 Specs. https://www.nvidia.com/en-in/geforce/

products/10series/geforce-gtx-1050/. Accessed 23 September 2020.

(Cited on pages 55 and 123)

[6] NVIDIA Visual Profiler. https://developer.nvidia.com/

nvidia-visual-profiler. Accessed 23 September 2020. (Cited on

page 54)

[7] Superserver 5038k-i specs. www.supermicro.com/products/system/

tower/5038/SYS-5038K-I.cfm. Accessed 22 November 2019. (Cited on

page 35)

[8] FPnew Source Code. https://github.com/pulp-platform/fpnew, 2021.

(Cited on pages 25, 77 and 125)

[9] Penguin Data. https://www.cs.ucr.edu/~eamonn/MatrixProfile.html,

2021. (Cited on page 89)

131

software.intel.com/en-us/advisor
https://github.com/opcm/pcm
software.intel.com/en-us/vtune
www.micron.com/support/tools-and-utilities/power-calc
www.micron.com/support/tools-and-utilities/power-calc
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1050/
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1050/
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
www.supermicro.com/products/system/tower/5038/SYS-5038K-I.cfm
www.supermicro.com/products/system/tower/5038/SYS-5038K-I.cfm
https://github.com/pulp-platform/fpnew
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

132 BIBLIOGRAFÍA

[10] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy,

David Blaauw, and Reetuparna Das. Compute Caches. In HPCA, 2017.

(Cited on pages 7, 21 and 118)

[11] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung

Choi. A Scalable Processing-In-Memory Accelerator for Parallel Graph

Processing. In ISCA, 2015. (Cited on pages 19 and 21)

[12] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-Enabled

Instructions: A Low-Overhead, Locality-Aware Processing-In-Memory Ar-

chitecture. In ISCA, 2015. (Cited on pages 19 and 21)

[13] S. Alaee, K. Kamgar, and E. Keogh. Matrix Profile XXII: exact discovery

of time series motifs under DTW. In IEEE 16th International Conference

on Data Mining (ICDM), 2020. (Cited on pages 14 and 89)

[14] Oleksandra Aleksandrova and Yevgen Bashkov. Face recognition systems

based on Neural Compute Stick 2, CPU, GPU comparison. In ATIT, pages

104–107. IEEE, 2020. (Cited on page 67)

[15] Richard M Allen, Qingkai Kong, and Robert Martin-Short. The MyShake

Platform: a global vision for earthquake early warning. Pure and Applied

Geophysics, 177:1699–1712, 2020. (Cited on pages 77 and 125)

[16] Miquel L Alomar, Vincent Canals, Nicolas Perez-Mora, Vı́ctor Mart́ınez-

Moll, and Josep L Rosselló. FPGA-based stochastic echo state networks for

time-series forecasting. Computational intelligence and neuroscience, 2016,

2016. (Cited on pages 7 and 117)

[17] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata

Ghose, Can Alkan, and Onur Mutlu. Accelerating Genome Analysis: A

Primer on an Ongoing Journey. IEEE Micro, 2020. (Cited on page 21)

[18] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can

Alkan. Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence

Alignment. Bioinformatics, 2019. (Cited on page 21)

[19] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu,

and Can Alkan. GateKeeper: A New Hardware Arch. for Accelerating Pre-

alignment in DNA Short Read Mapping. Bioinformatics, 2017. (Cited on

page 21)

BIBLIOGRAFÍA 133

[20] Mohammed Alser, Taha Shahroodi, Juan Gomez-Luna, Can Alkan, and

Onur Mutlu. SneakySnake: A Fast and Accurate Universal Genome Pre-

Alignment Filter for CPUs, GPUs, and FPGAs. arXiv, 2019. (Cited on

page 21)

[21] Mohamed M Sabry Aly, Mingyu Gao, Gage Hills, Chi-Shuen Lee, Greg

Pitner, Max M Shulaker, Tony F Wu, Mehdi Asheghi, Jeff Bokor, Franz

Franchetti, et al. Energy-efficient abundant-data computing: The N3XT

1,000 x. Computer, 48(12):24–33, 2015. (Cited on page 23)

[22] Antaios. Spin-Orbit Torque MRAM. Technical Report. Antaios, 51 Avenue

Jean Kuntzmann, 38830 Montbonnot – France. 3 pages. https://www.

antaios.fr/IMG/pdf/web_site_sot_whitepaper.pdf. 2020. (Cited on

page 23)

[23] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung

Kim. Chameleon: Versatile and Practical Near-DRAM Acceleration Arch.

for Large Mem. Sys. In MICRO, 2016. (Cited on page 21)

[24] Samet Ayhan and Hanan Samet. Time series clustering of weather obser-

vations in predicting climb phase of aircraft trajectories. In IWCTS, pages

25–30, 2016. (Cited on page 3)

[25] Arvind Balasubramanian, Jun Wang, and Balakrishnan Prabhakaran. Dis-

covering Multidimensional Motifs in Physiological Signals for Personalized

Healthcare. JSTSP, 2016. (Cited on pages 3 and 12)

[26] Donald J Berndt and James Clifford. Using dynamic time warping to

find patterns in time series. In KDD workshop, volume 10, pages 359–370.

Seattle, WA, USA:, 1994. (Cited on page 17)

[27] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,

Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,

Somayeh Sardashti, et al. The gem5 Simulator. Comp. Arch. News, 2011.

(Cited on page 51)

[28] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarun-

gnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies,

Parthasarathy Ranganathan, and Onur Mutlu. Google Workloads for Con-

sumer Devices: Mitigating Data Movement Bottlenecks. ASPLOS, 2018.

(Cited on pages 19 and 21)

[29] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Bran-

don Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar,

https: //www.antaios.fr/IMG/pdf/web_site_sot_whitepaper.pdf
https: //www.antaios.fr/IMG/pdf/web_site_sot_whitepaper.pdf

134 BIBLIOGRAFÍA

Krishna T Malladi, Hongzhong Zheng, et al. CoNDA: Efficient Cache Co-

herence Support for Near-Data Accelerators. In ISCA, 2019. (Cited on

page 21)

[30] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon

Lucia, Nastaran Hajinazar, Kevin Hsieh, Krishna T Malladi, Hongzhong

Zheng, and Onur Mutlu. LazyPIM: Efficient Support for Cache Coherence

in Processing-In-Memory Architectures. arXiv, 2017. (Cited on page 21)

[31] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M.

Ljung. Time Series Analysis: Forecasting and Control. Wiley-Interscience,

2015. (Cited on page 3)

[32] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Sta-

nimir Tomov. Using mixed precision for sparse matrix computations to

enhance the performance while achieving 64-bit accuracy. ACM Transac-

tions on Mathematical Software, 34, 2008. (Cited on page 24)

[33] Damla Senol Cali, Gurpreet S Kalsi, Zülal Bingöl, Can Firtina, Lavan-

ya Subramanian, Jeremie S Kim, Rachata Ausavarungnirun, Mohammed

Alser, Juan Gomez-Luna, Amirali Boroumand, et al. GenASM: A High-

Performance, Low-Power Approximate String Matching Acceleration Fra-

mework for Genome Sequence Analysis. In MICRO, 2020. (Cited on pa-

ges 19 and 21)

[34] Nuno Castro and Paulo Azevedo. Multiresolution motif discovery in time

series. In Proceedings of the 2010 SIAM international conference on data

mining, pages 665–676. SIAM, 2010. (Cited on page 12)

[35] Kai-Wei Chang, Biplab Deka, Wen-Mei W Hwu, and Dan Roth. Efficient

pattern-based time series classification on GPU. In 2012 IEEE 12th Inter-

national Conference on Data Mining, pages 131–140. IEEE, 2012. (Cited

on pages 6 and 117)

[36] Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moinud-

din K Qureshi, and Onur Mutlu. Low-Cost Inter-Linked Subarrays (LISA):

Enabling Fast Inter-Subarray Data Movement in DRAM. In HPCA, 2016.

(Cited on page 21)

[37] Guangyuan Chen, Guoliang Lu, Zhaohong Xie, and Wei Shang. Anomaly

detection in eeg signals: a case study on similarity measure. Computational

intelligence and neuroscience, 2020, 2020. (Cited on pages 4 and 116)

BIBLIOGRAFÍA 135

[38] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,

Yu Wang, and Yuan Xie. PRIME: A Novel Processing-In-Memory Arch. for

Neural Network Computation in ReRAM-Based Main Memory. In ISCA,

2016. (Cited on page 21)

[39] Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee,

Hon-Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-Hung

Shen, et al. 13.3 a 22nm 32Mb embedded STT-MRAM with 10ns read

speed, 1M cycle write endurance, 10 years retention at 150 c and high

immunity to magnetic field interference. In 2020 IEEE International Solid-

State Circuits Conference-(ISSCC), pages 222–224. IEEE, 2020. (Cited on

page 23)

[40] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic Discovery of

Time Series Motifs. In SIGKDD, 2003. (Cited on pages 12 and 87)

[41] Annemarie Christophersen, Natalia I. Deligne, Anca M. Hanea, Lauriane

Chardot, Nicolas Fournier, and Willy P. Aspinall. Bayesian network mo-

deling and expert elicitation for probabilistic eruption forecasting: Pilot

study for Whakaari/White Island, New Zealand. Frontiers in Earth Scien-

ce, 6:211, 2018. (Cited on pages iii, 4, 45, 116 and 122)

[42] Igor M Coelho, Vitor N Coelho, Eduardo J da S Luz, Luiz S Ochi, Frede-

rico G Guimarães, and Eyder Rios. A GPU deep learning metaheuristic

based model for time series forecasting. Applied Energy, 201:412–418, 2017.

(Cited on pages 6 and 117)

[43] Xilinx Corporation. Xilinx board utility (xbutil). https://xilinx.

github.io/XRT/master/html/xbutil.html, 2022. (Cited on page 89)

[44] Hoang Anh Dau and Eamonn Keogh. Matrix profile V: A generic technique

to incorporate domain knowledge into motif discovery. In Proceedings of

the 23rd ACM SIGKDD international conference on knowledge discovery

and data mining, pages 125–134, 2017. (Cited on page 104)

[45] Tim Daulby, Anand Savanth, Alex S Weddell, and Geoff V Merrett. Com-

paring NVM technologies through the lens of Intermittent computation. In

Proceedings of the 8th International Workshop on Energy Harvesting and

Energy-Neutral Sensing Systems, pages 77–78, 2020. (Cited on pages xvii

and 23)

[46] Fabrice Devaux. The true processing in memory accelerator. In 2019 IEEE

Hot Chips 31 Symposium (HCS), pages 1–24. IEEE Computer Society,

2019. (Cited on page 68)

https://xilinx.github.io/XRT/master/html/xbutil.html
https://xilinx.github.io/XRT/master/html/xbutil.html

136 BIBLIOGRAFÍA

[47] Roberto DiCecco, Lin Sun, and Paul Chow. FPGA-based training of con-

volutional neural networks with a reduced precision floating-point library.

In International Conference on Field Programmable Technology (ICFPT),

2017. (Cited on page 25)

[48] Antonio J Dios, Angeles Navarro, Rafael Asenjo, Francisco Corbera, and

Emilio L Zapata. A case study of the task-based parallel wavefront pattern.

In Applications, Tools and Techniques on the Road to Exascale Computing,

pages 65–72. IOS Press, 2012. (Cited on page 65)

[49] Mario Paulo Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Us-

tiugov, Javier Picorel Obando, Babak Falsafi, Boris Grot, and Dionisios

Pnevmatikatos. The Mondrian Data Engine. In ISCA, 2017. (Cited on

page 21)

[50] Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-Yu

Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy. Squig-

glefilter: An accelerator for portable virus detection. In MICRO, pages

535–549, 2021. (Cited on pages 1, 4, 114 and 116)

[51] André E X Brown, Eviatar Yemini, Laura J Grundy, Tadas Jucikas, and

William Schafer. A dictionary of behavioral motifs reveals clusters of genes

affecting Caenorhabditis elegans locomotion. Proceedings of the National

Academy of Sciences of the United States of America, 110, 2012. (Cited on

page 3)

[52] Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and Shoji Ikeda. Recent

progresses in STT-MRAM and SOT-MRAM for next generation MRAM.

In 2020 IEEE Symposium on VLSI Technology, pages 1–2. IEEE, 2020.

(Cited on page 72)

[53] Taban Eslami and Fahad Saeed. Fast-GPU-PCC: A GPU-Based Techni-

que to Compute Pairwise Pearson’s Correlation Coefficients for Time Se-

ries Data-fMRI Study. High-throughput, 7(2):11, 2018. (Cited on pages 6

and 117)

[54] P. Feautrier. Array expansion. In Int’l. Conf. on Supercomputing (ICS’88),

pages 429–441, 1988. (Cited on page 31)

[55] Ivan Fernandez, Ricardo Quislant, Sonia Gonzalez-Navarro, Eladio Gutie-

rrez, and Oscar Plata. TraTSA: A transprecision framework for efficient

time series analysis. Journal of Computational Science, page 101784, 2022.

(Cited on pages 9 and 120)

BIBLIOGRAFÍA 137

[56] Ivan Fernandez, Ricardo Quislant, Eladio Gutierrez, and Oscar Plata.

Energy-efficient time series analysis using transprecision computing. In

2020 IEEE 32nd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD), pages 83–90. IEEE, 2020. (Ci-

ted on pages 9 and 120)

[57] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina

Giannoula, Mohammed Alser, Juan Gómez-Luna, and Onur Mutlu. NAT-

SA: A near-data processing accelerator for time series analysis. In 2020

IEEE 38th International Conference on Computer Design (ICCD), pages

120–129. IEEE, 2020. (Cited on pages 9 and 119)

[58] Ivan Fernandez, Alejandro Villegas, Eladio Gutierrez, and Oscar Plata.

Accelerating Time Series Motif Discovery in the Intel Xeon Phi KNL Pro-

cessor. The Journal of Supercomputing, 2019. (Cited on pages xi, xi, 5, 6,

9, 80 and 119)

[59] Pedro G Ferreira, Paulo J Azevedo, Cândida G Silva, and Rui MM Brito.

Mining Approximate Motifs in Time Series. In International Conference

on Discovery Science, 2006. (Cited on page 12)

[60] Sameh Galal and Mark Horowitz. Energy-Efficient Floating-Point Unit De-

sign. IEEE Transactions on Computers, 2010. (Cited on pages 46 and 123)

[61] William J Gallagher, Eric Chien, Tien-Wei Chiang, Jian-Cheng Huang,

Meng-Chun Shih, CY Wang, Christine Bair, George Lee, Yi-Chun Shih,

Chia-Fu Lee, et al. Recent progress and next directions for embedded

MRAM technology. In 2019 Symposium on VLSI Circuits, pages T190–

T191. IEEE, 2019. (Cited on page 124)

[62] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical Near-Data

Processing for In-Memory Analytics Frameworks. In PACT, 2015. (Cited

on page 21)

[63] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyra-

kis. TETRIS: Scalable and Efficient Neural Network Acceleration with 3D

Memory. In ASPLOS, 2017. (Cited on page 21)

[64] Nika Mansouri Ghiasi, Nandita Vijaykumar, Geraldo F Oliveira, Lois Oro-

sa, Ivan Fernandez, Mohammad Sadrosadati, Konstantinos Kanellopoulos,

Nastaran Hajinazar, Juan Gómez Luna, and Onur Mutlu. ALP: Allevia-

ting CPU-Memory Data Movement Overheads in Memory-Centric Systems.

IEEE Transactions on Emerging Topics in Computing, 2022. (Cited on pa-

ges 10 and 120)

138 BIBLIOGRAFÍA

[65] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna,

and Onur Mutlu. Processing-In-Memory: A Workload-Driven Perspective.

IBM Journal of Research and Development, 2019. (Cited on page 21)

[66] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungni-

run, and Onur Mutlu. Enabling the Adoption of Processing-In-Memory:

Challenges, Mechanisms, Future Research Directions. arXiv, 2018. (Cited

on page 21)

[67] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and

Onur Mutlu. Demystifying Complex Workload-DRAM Interactions: An

Experimental Study. In SIGMETRICS, 2019. (Cited on page 20)

[68] Christina Giannoula, Ivan Fernandez, Juan Gómez Luna, Nectarios Kozi-

ris, Georgios Goumas, and Onur Mutlu. SparseP: Towards efficient sparse

matrix vector multiplication on real processing-in-memory architectures.

Proceedings of the ACM on Measurement and Analysis of Computing Sys-

tems, 6(1):1–49, 2022. (Cited on pages 10 and 120)

[69] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios

Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Ko-

ziris, Georgios Goumas, and Onur Mutlu. Syncron: Efficient synchroni-

zation support for near-data-processing architectures. In HPCA, pages

263–276. IEEE, 2021. (Cited on pages 10 and 120)

[70] A. Glew. MLP yes! ILP no! In ASPLOS, 1998. (Cited on page 57)

[71] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,

Geraldo F Oliveira, and Onur Mutlu. Benchmarking a new paradigm: An

experimental analysis of a real processing-in-memory architecture. arXiv

preprint arXiv:2105.03814, 2021. (Cited on pages 10, 68 and 120)

[72] Alessandro Grossi, Cristian Zambelli, Piero Olivo, Paolo Pellati, Michele

Ramponi, Christian Wenger, Jeremy Alvarez-Herault, and Ken Mackay. An

automated test equipment for characterization of emerging MRAM and

RRAM arrays. IEEE Transactions on Emerging Topics in Computing,

6(2):269–277, 2016. (Cited on page 23)

[73] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Eitan

Yaakobi, Paul H Siegel, and Jack K Wolf. Characterizing flash memory:

Anomalies, observations, and applications. In Proceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture, pages 24–

33, 2009. (Cited on page 23)

BIBLIOGRAFÍA 139

[74] Sankalp Gulati, Joan Serra, Vignesh Ishwar, and Xavier Serra. Mining

Melodic Patterns in Large Audio Collections of Indian Art Music. In SITIS,

2014. (Cited on page 12)

[75] Saransh Gupta, Mohsen Imani, and Tajana Rosing. Exploring processing

in-memory for different technologies. In Proceedings of the 2019 on Great

Lakes Symposium on VLSI, pages 201–206, 2019. (Cited on pages 7 and 118)

[76] E. Gutiérrez, O. Plata, and E. L. Zapata. A compiler method for the

parallel execution of irregular reductions in scalable shared memory multi-

processors. In Int’l. Conf. on Supercomputing (ICS’00), pages 78–87, 2000.

(Cited on page 31)

[77] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,

Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li.

NDC: Analyzing the Impact of 3D-stacked Memory+Logic Devices on Ma-

pReduce Workloads. In ISPASS, 2014. (Cited on page 21)

[78] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukho-

padhyay, Sudhakar Yalamanchili, and Hyesoon Kim. Demystifying the Cha-

racteristics of 3D-stacked Memories: A case Study for Hybrid Memory Cu-

be. In IISWC, 2017. (Cited on page 20)

[79] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis Ferrei-

ra, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose,

Juan Gómez-Luna, and Onur Mutlu. SIMDRAM: a framework for bit-serial

SIMD processing using DRAM. In Proceedings of the 26th ACM Internatio-

nal Conference on Architectural Support for Programming Languages and

Operating Systems, pages 329–345, 2021. (Cited on pages 8, 22 and 118)

[80] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. Accele-

rating Dependent Cache Misses with an Enhanced Memory Controller. In

ISCA, 2016. (Cited on page 21)

[81] Milad Hashemi, Onur Mutlu, and Yale N Patt. Continuous Runahead:

Transparent Hardware Acceleration for Memory Intensive Workloads. In

MICRO, 2016. (Cited on page 21)

[82] Jose M Herruzo, Ivan Fernandez, Sonia González-Navarro, and Oscar Pla-

ta. Enabling fast and energy-efficient FM-index exact matching using

processing-near-memory. The Journal of Supercomputing, 77(9):10226–

10251, 2021. (Cited on pages 10 and 120)

140 BIBLIOGRAFÍA

[83] E. Philip Howrey. The role of time series analysis in econometric model

evaluation. Evaluation of Econometric Models, pages 275–307, 1980. (Cited

on page 3)

[84] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler.

TOM: Enabling Programmer-Transparent Near-Data Processing in GPU

Systems. In ISCA, 2016. (Cited on pages 19 and 21)

[85] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating Pointer Cha-

sing in 3D-stacked Memory: Challenges, Mechanisms, Evaluation. In ICCD,

2016. (Cited on pages 19 and 21)

[86] Yan Hu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Mi-

chael Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn

Keogh. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to

Break the One Hundred Million Barrier for Time Series Motifs and Joins.

In ICDM, 2016. (Cited on pages 2, 13, 37, 38, 41, 52 and 114)

[87] Yiming Huai, Yuchen Zhou, Ioan Tudosa, Roger Malmhall, Rajiv Ran-

jan, and Jing Zhang. Progress and outlook for STT-MRAM. In 2011

IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), pages 235–235. IEEE, 2011. (Cited on page 23)

[88] Lal Hussain, Wajid Aziz, Jalal S. Alowibdi, Nazneen Habib, Muhammad

Rafique, Sharjil Saeed, and Syed Zaki Hassan Kazmi. Symbolic time series

analysis of electroencephalographic (EEG) epileptic seizure and brain dy-

namics with eye-open and eye-closed subjects during resting states. Journal

of Physiological Anthropology, 36(1), 2017. (Cited on page 3)

[89] Shah Muhammed Abid Hussain and ABM Harun-ur Rashid. User inde-

pendent hand gesture recognition by accelerated DTW. In ICIEV, pages

1033–1037. IEEE, 2012. (Cited on page 3)

[90] Stephanie L Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas

Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor,

Bastian Rieck, et al. Early prediction of circulatory failure in the intensive

care unit using machine learning. Nature medicine, 26(3):364–373, 2020.

(Cited on pages 4 and 115)

[91] Pulkit Jain, Umut Arslan, Meenakshi Sekhar, Blake C Lin, Liqiong Wei,

Tanaya Sahu, Juan Alzate-Vinasco, Ajay Vangapaty, Mesut Meterelliyoz,

BIBLIOGRAFÍA 141

Nathan Strutt, et al. 13.2 A 3.6 Mb 10.1 Mb/mm 2 embedded non-volatile

ReRAM macro in 22nm FinFET technology with adaptive forming/set/re-

set schemes yielding down to 0.5 V with sensing time of 5ns at 0.7 V. In

2019 IEEE International Solid-State Circuits Conference-(ISSCC), pages

212–214. IEEE, 2019. (Cited on page 23)

[92] JEDEC JESD79-4C. DDR4 SDRAM standard. www.jedec.org/

standards-documents/docs/jesd79-4a. Accessed 23 September 2020.

(Cited on page 51)

[93] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon Phi Pro-

cessor High Performance Programming: Knights Landing Edition. Morgan

Kaufmann, 2016. (Cited on pages xii, 28 and 88)

[94] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim,

Hanho Jin, and Keith Kim. HBM DRAM Technology and Architecture. In

IMW, 2017. (Cited on pages 20 and 84)

[95] Matthias Jung, Deepak M Mathew, Christian Weis, and Norbert Wehn.

Approximate computing with partially unreliable dynamic random access

memory—Approximate DRAM. In 2016 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–4. IEEE, 2016. (Cited on page 23)

[96] Seungchul Jung, Hyungwoo Lee, Sungmeen Myung, Hyunsoo Kim,

Seung Keun Yoon, Soon-Wan Kwon, Yongmin Ju, Minje Kim, Wooseok

Yi, Shinhee Han, et al. A crossbar array of magnetoresistive memory devi-

ces for in-memory computing. Nature, 601(7892):211–216, 2022. (Cited on

page 23)

[97] Amin Kalantar, Zachary Zimmerman, and Philip Brisk. FA-LAMP: FPGA-

accelerated learned approximate matrix profile for time series similarity

prediction. In 2021 IEEE 29th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 40–49. IEEE,

2021. (Cited on pages 7 and 117)

[98] Seongyoung Kang, Jinyeong Moon, and Sang-Woo Jun. FPGA-accelerated

time series mining on low-power IOT devices. In 2020 IEEE 31st Interna-

tional Conference on Application-specific Systems, Architectures and Pro-

cessors (ASAP), pages 33–36. IEEE, 2020. (Cited on pages 7 and 117)

[99] Eamonn Keogh and Shruti Kasetty. On the need for time series data mining

benchmarks: A survey and empirical demonstration. Data Min. Knowl.

Discov., 7(4):349–371, 2003. (Cited on page 3)

www.jedec.org/standards-documents/docs/jesd79-4a
www.jedec.org/standards-documents/docs/jesd79-4a

142 BIBLIOGRAFÍA

[100] Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding

the most unusual time series subsequence: algorithms and applications.

Knowledge and Information Systems, 11(1):1–27, 2007. (Cited on pages 1,

87 and 113)

[101] Dounia Khaldi and Barbara Chapman. Towards automatic HBM allocation

using LLVM: a case study with knights landing. In Third Workshop on the

LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages 12–20, 2016.

(Cited on page 32)

[102] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and

Zhonghong Ou. Rapl in Action: Experiences in Using RAPL for Power

Measurements, 2018. (Cited on pages 68 and 89)

[103] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Sai-

bal Mukhopadhyay. Neurocube: A Programmable Digital Neuromorphic

Architecture with High-density 3D Memory. In ISCA, 2016. (Cited on

page 21)

[104] Jeremie S Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM

latency PUF: Quickly Evaluating Physical Unclonable Functions by Ex-

ploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM

Devices. In HPCA, 2018. (Cited on page 21)

[105] Jeremie S Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu.

D-RaNGe: Using Com. DRAM Devices to Generate True Random Numb.

with Low Lat. and High Throughput. In HPCA, 2019. (Cited on page 21)

[106] Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata

Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur

Mutlu. GRIM-Filter: Fast seed Location Filter. in DNA Read Mapping

Using PIM Technologies. BMC Genomics, 2018. (Cited on pages 19 and 21)

[107] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A Fast and

Extensible DRAM Simulator. CAL, 2015. (Cited on pages 20, 50 and 68)

[108] Anna Klos, Machiel S Bos, and Janusz Bogusz. Detecting time-varying

seasonal signal in GPS position time series with different noise levels. GPS

solutions, 22(1):1–11, 2018. (Cited on page 3)

[109] S. A. P. Kumar and P. K. Bora. Time series analysis and signal processing.

In Conf. on Computational Intelligence and Signal Processing, pages 24–24,

2012. (Cited on page 3)

BIBLIOGRAFÍA 143

[110] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nim-

rod Wald, Eby G Friedman, Avinoam Kolodny, and Uri C Weiser.

Magic—memristor-aided logic. IEEE Transactions on Circuits and Sys-

tems II: Express Briefs, 61(11):895–899, 2014. (Cited on page 21)

[111] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization

of network-wide anomalies in traffic flows. In IMC, pages 201–206. ACM,

2004. (Cited on page 3)

[112] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael

Hoffmann. Industry 4.0. Business & information systems engineering,

6(4):239–242, 2014. (Cited on pages iii, 1 and 113)

[113] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting

phase change memory as a scalable DRAM alternative. In Proceedings of

the 36th annual international symposium on Computer architecture, pages

2–13, 2009. (Cited on page 23)

[114] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H.

Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim,

J. Lee, K. W. Park, B. Chung, and S. Hong. 25.2 A 1.2V 8GB 8-channel

128GB/s High-Bandwidth Memory (HBM) Stacked DRAM with Effective

Microbump I/O Test Methods using 29nm Process and TSV. In ISSCC,

2014. (Cited on pages 19 and 51)

[115] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Manabi

Khan, and Onur Mutlu. Simultaneous Multi-Layer Access: Improving 3D-

Stacked Memory Bandwidth at Low Cost. TACO, 2016. (Cited on page 19)

[116] V T Lee, A Mazumdar, C C del Mundo, A Alaghi, L Ceze, and M Oskin.

Application Codesign of NDP for Similarity Search. In IPDPS, 2018. (Cited

on page 21)

[117] Haitong Li, Mudit Bhargav, Paul N Whatmough, and H-S Philip Wong.

On-chip memory technology design space explorations for mobile deep neu-

ral network accelerators. In 2019 56th ACM/IEEE design automation con-

ference (DAC), pages 1–6. IEEE, 2019. (Cited on page 23)

[118] Ka Hou Christien Li, Francesca Anne White, Timothy Tipoe, Tong Liu,

Martin CS Wong, Aaron Jesuthasan, Adrian Baranchuk, Gary Tse, and

Bryan P Yan. The Current State of Mobile Phone Apps for Monitoring

Heart Rate, Heart Rate Variability, and Atrial Fibrillation: Narrative Re-

view. JMIR Mhealth Uhealth, 2019. (Cited on pages iii, 45, 77, 122 and 125)

144 BIBLIOGRAFÍA

[119] Li Li, Xiaonan Su, Yi Zhang, Yuetong Lin, and Zhiheng Li. Trend modeling

for traffic time series analysis: An integrated study. IEEE Transactions

on Intelligent Transportation Systems, 16(6):3430–3439, 2015. (Cited on

page 3)

[120] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M

Tullsen, and Norman P Jouppi. McPAT: An Integrated Power, Area, and

Timing Modeling Framework for Multicore and Manycore Architectures.

In MICRO, 2009. (Cited on pages 51 and 68)

[121] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie.

Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Opera-

tions in Emerging Non-volatile Memories. In DAC, 2016. (Cited on page 21)

[122] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida,

Jimmy Iskandar, William Kahan, Suh Y. Kang, Anil Kapur, Michael C.

Martin, Brandon J. Thompson, Teresa Tung, and Daniel J. Yoo. Design,

implementation and testing of extended and mixed precision BLAS. ACM

Transactions on Mathematical Software, 28:152–205, 2002. (Cited on pa-

ge 24)

[123] Yuan Li, Jessica Lin, and Tim Oates. Visualizing Variable-Length Time

Series Motifs. In SDM, 2012. (Cited on page 12)

[124] Jia Liu, Yong Xue, Kaijun Ren, Junqiang Song, Christopher Windmill, and

Patrick Merritt. High-performance time-series quantitative retrieval from

satellite images on a GPU cluster. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 12(8):2810–2821, 2019.

(Cited on pages 6 and 117)

[125] Gabriel H Loh, Nuwan Jayasena, M Oskin, Mark Nutter, David Roberts,

Mitesh Meswani, Dong Ping Zhang, and Mike Ignatowski. A Processing

in Memory Taxonomy and a Case for Studying Fixed-Function PIM. In

WoNDP, 2013. (Cited on page 21)

[126] Nguyen Cong Long, Phayung Meesad, and Herwig Unger. A highly accurate

firefly based algorithm for heart disease prediction. Expert Systems with

Applications, 42(21):8221–8231, 2015. (Cited on pages 1 and 114)

[127] Jeffry Louis, Barak Hoffer, and Shahar Kvatinsky. Performing memristor-

aided logic (MAGIC) using STT-MRAM. In 2019 26th IEEE International

Conference on Electronics, Circuits and Systems (ICECS), pages 787–790.

IEEE, 2019. (Cited on page 21)

BIBLIOGRAFÍA 145

[128] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

Pin: Building Customized Program Analysis Tools with Dynamic Instru-

mentation. In PLDI, 2005. (Cited on page 50)

[129] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. A 0.80

pJ/flop, 1.24 Tflop/sW 8-to-64 bit transprecision floating-point unit for a 64

bit RISC-V processor in 22nm FD-SOI. In IFIP/IEEE 27th International

Conference on Very Large Scale Integration (VLSI-SOC), 2019. (Cited on

pages 25 and 89)

[130] A Cristiano I Malossi, Michael Schaffner, Anca Molnos, Luca Gammaitoni,

Giuseppe Tagliavini, Andrew Emerson, Andrés Tomás, Dimitrios S Nikolo-

poulos, Eric Flamand, and Norbert Wehn. The transprecision computing

paradigm: concept, design, and applications. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2018. (Cited on page 77)

[131] Amy McGovern, Derek H. Rosendahl, Rodger A. Brown, and Kelvin K.

Droegemeier. Identifying predictive multi-dimensional time series motifs:

an application to severe weather prediction. Data Mining and Knowledge

Discovery, 22(1):232–258, 2011. (Cited on page 3)

[132] Sparsh Mittal. A survey of ReRAM-based architectures for processing-in-

memory and neural networks. Machine learning and knowledge extraction,

1(1):75–114, 2018. (Cited on page 21)

[133] George B Moody and Roger G Mark. The impact of the MIT-BIH arrhyth-

mia database. IEEE Engineering in Medicine and Biology Magazine, 20:45–

50, 2001. (Cited on page 15)

[134] Abdullah Mueen and Nikan Chavoshi. Enumeration of Time Series Motifs

of All Lengths. Knowledge and Information Systems, 2015. (Cited on

page 12)

[135] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and

M. Brandon Westover. Exact Discovery of Time Series Motifs. In SDM,

2009. (Cited on page 12)

[136] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausava-

rungnirun. Processing Data Where it Makes Sense: Enabling In-Memory

Computation. Microprocessors and Microsystems, 2019. (Cited on page 21)

[137] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Techniques for Efficient

Processing in Runahead Execution Engines. In ISCA, 2005. (Cited on

page 57)

146 BIBLIOGRAFÍA

[138] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Efficient Runahead Execution:

Power-Efficient Memory Latency Tolerance. IEEE Micro, 2006. (Cited on

pages 19 and 57)

[139] Onur Mutlu and Thomas Moscibroda. Parallelism-Aware Batch Scheduling:

Enhancing Both Performance and Fairness of Shared DRAM Systems. In

ISCA, 2008. (Cited on page 57)

[140] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. Runahead

Execution: An Alternative to Very Large Instruction Windows for Out-of-

Order Processors. In HPCA, 2003. (Cited on page 57)

[141] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. Runahead

Execution: An Effective Alternative to Large Instruction Windows. IEEE

Micro, 2003. (Cited on page 57)

[142] Pawan Nunthanid, Vit Niennattrakul, and Chotirat Ann Ratanamahatana.

Discovery of Variable Length Time Series Motif. In ECTI-CON, 2011.

(Cited on page 12)

[143] Pawan Nunthanid, Vit Niennattrakul, and Chotirat Ann Ratanamahatana.

Parameter-Free Motif Discovery for Time Series Data. In ECTI-CON, 2012.

(Cited on page 12)

[144] Kajal Nusratullah, Shoab Ahmad Khan, Asadullah Shah, and Wasi Haider

Butt. Detecting changes in context using time series analysis of social

network. In 2015 SAI Intelligent Systems Conference (IntelliSys), pages

996–1001. IEEE, 2015. (Cited on page 3)

[145] NVIDIA. Tesla K40 GPU Active Accelerator. Board specification, 2013.

(Cited on pages 55 and 123)

[146] Geraldo F Oliveira, Juan Gómez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu.

DAMOV: A new methodology and benchmark suite for evaluating data

movement bottlenecks. IEEE Access, 9:134457–134502, 2021. (Cited on

pages 10 and 120)

[147] A. V. Oppenheim and R. W. Schafer. From Frequency to Quefrency: a

History of the Cepstrum. IEEE Signal Processing Magazine, 21:95–106,

2004. (Cited on page 89)

[148] Pranav Patel, Eamonn Keogh, Jessica Lin, and Stefano Lonardi. Mining

Motifs in Massive Time Series Databases. In ICDM, 2002. (Cited on pa-

ges 1, 12 and 113)

BIBLIOGRAFÍA 147

[149] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mish-

ra, Mahmut T Kandemir, Onur Mutlu, and Chita R Das. Scheduling Tech-

niques for GPU Architectures with Processing-in-Memory Capabilities. In

PACT, 2016. (Cited on page 21)

[150] Ximing Qiao, Xiong Cao, Huanrui Yang, Linghao Song, and Hai Li. Atomla-

yer: a Universal Reram-based CNN Accelerator with Atomic Layer Compu-

tation. In DAC, 2018. (Cited on page 21)

[151] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Ba-

tista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh.

Searching and Mining Trillions of Time Series Subsequences Under Dyna-

mic Time Warping. In KDD, 2012. (Cited on pages 13 and 47)

[152] SAFARI Research Group. Ramulator Source Code. https://github.com/

CMU-SAFARI/ramulator. Accessed 23 September 2020. (Cited on pages 50

and 68)

[153] Rajesh Saha, Yogendra Pratap Pundir, and Pankaj Kumar Pal. Comparati-

ve analysis of STT and SOT based MRAMs for last level caches. Journal of

Magnetism and Magnetic Materials, 551:169161, 2022. (Cited on page 69)

[154] Soheil Salehi and Ronald F DeMara. Energy and Area Analysis of a

Floating-Point Unit in 15nm CMOS Process Technology. In SoutheastCon,

2015. (Cited on page 55)

[155] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microar-

chitectural Simulation of Thousand-Core Systems. In ISCA, 2013. (Cited

on pages 50, 51 and 68)

[156] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A

Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. Fast Bulk

Bitwise AND and OR in DRAM. CAL, 2015. (Cited on page 21)

[157] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Au-

savarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B

Gibbons, Michael A Kozuch, et al. RowClone: Fast and Energy-Efficient

in-DRAM Bulk Data Copy and Initialization. In MICRO, 2013. (Cited on

page 21)

[158] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gib-

bons, and Todd C Mowry. Ambit: In-memory Accelerator for Bulk Bitwise

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

148 BIBLIOGRAFÍA

Operations Using Commodity DRAM Technology. In MICRO, 2017. (Cited

on page 21)

[159] Vivek Seshadri and Onur Mutlu. Simple Operations in Memory to Reduce

Data Movement. In Advances in Computers. Elsevier, 2017. (Cited on

page 21)

[160] Vivek Seshadri and Onur Mutlu. In-DRAM Bulk Bitwise Execution Engine.

arXiv, 2019. (Cited on page 21)

[161] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.

Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling

Large Design Space Exploration of Customized Architectures. In ISCA,

2014. (Cited on page 51)

[162] R.H. Shumway. Applied statistical time series analysis. Prentice-Hall, En-

glewood Cliffs., 1988. (Cited on page 3)

[163] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan

Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. NERO: A

Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction

Modeling. In FPL, 2020. (Cited on page 21)

[164] Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani, Geraldo F Olivei-

ra, Stefano Corda, Sander Stuijk, Onur Mutlu, and Henk Corporaal. NA-

PEL: Near-memory Computing Application Performance Prediction Via

Ensemble Learning. In DAC, 2019. (Cited on page 21)

[165] Avinash Sodani. Knights Landing (KNL): 2nd Generation Intel® Xeon

Phi Processor. In HCS, 2015. (Cited on pages 55 and 123)

[166] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vi-

nod, Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-

Chen Liu. Knights Landing: Second-generation Intel Xeon Phi product.

IEEE Micro, 36(2):34–46, 2016. (Cited on page 35)

[167] Hairong Song. Review of Time Series Analysis and Its Applications With

R Examples , by Robert H. Shumway & David S. Stoffer: New York, NY:

Springer, 2011, 596 pp., 2017. (Cited on pages iii, 1 and 113)

[168] Shao Yakun Sophia, Xi Sam Likun, Srinivasan Vijayalakshmi, Wei Gu-

Yeon, and Brooks David. Co-Designing Accelerators and SoC Interfaces

Using gem5-Aladdin. In MICRO, 2016. (Cited on page 51)

BIBLIOGRAFÍA 149

[169] Robert Stoermer, Ralph Mager, Andreas Roessler, Franz Mueller-Spahn,

and Alex H Bullinger. Monitoring human-virtual reality interaction: a time

series analysis approach. CyberPsychology & Behavior, 3(3):401–406, 2000.

(Cited on page 3)

[170] Balázs Szigeti, Ajinkya Deogade, and Barbara Webb. Searching for motifs

in the behaviour of larval drosophila melanogaster and caenorhabditis ele-

gans reveals continuity between behavioural states. Journal of The Royal

Society Interface, 12(113):20150899, 2015. (Cited on page 3)

[171] A. Taddei, G. Distante, M. Emdin, P. Pisani, G. B. Moody, C. Zeelenberg,

and C. Marchesi. The European ST-T Database: Standard for Evaluating

Systems for the Analysis of ST-T Changes in Ambulatory Electrocardio-

graphy. European Heart Journal, 1992. (Cited on pages 52, 58 and 89)

[172] G. Tagliavini, A. Marongiu, and L. Benini. FlexFloat: a software library for

transprecision computing. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 39:145–156, 2020. (Cited on pages 25,

78 and 88)

[173] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and

Luca Benin. A transprecision floating-point platform for ultra-low power

computing. In Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), 2018. (Cited on pages 24, 77 and 125)

[174] Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. Discovery of

Time-Series Motif from Multi-Dimensional Data Based on MDL Principle.

Machine Learning, 2005. (Cited on page 12)

[175] Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. Discovery of

Time-Series Motif from MultiDimensional Data Based on MDL Principle.

Machine Learning, 58:269–300, 2005. (Cited on page 3)

[176] Heng Tang and Stephen Shaoyi Liao. Discovering Original Motifs with Dif-

ferent Lengths from Time Series. Knowledge-Based Systems, 2008. (Cited

on page 12)

[177] Texas Instruments. FRAM – New Generation of Non-Volatile Me-

mory. https://www.antaios.fr/IMG/pdf/web_site_sot_whitepaper.

pdf. 2009. (Cited on page 23)

[178] Sahar Torkamani and Volker Lohweg. Survey on Time Series Motif Dis-

covery. WIREs: Data Mining and Knowledge Discovery, 2017. (Cited on

page 12)

https: //www.antaios.fr/IMG/pdf/web_site_sot_whitepaper.pdf
https: //www.antaios.fr/IMG/pdf/web_site_sot_whitepaper.pdf

150 BIBLIOGRAFÍA

[179] Sahar Torkamani and Volker Lohweg. Survey on time series motif discovery.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

7(2):e1199, 2017. (Cited on pages 12 and 69)

[180] Sahar Torkamani, Volker Lohweg, F Hoffmann, and E Hüllermeier. Shift-

Invariant Feature Extraction for Time-Series Motif Discovery. In Workshop

Computational Intelligence, 2015. (Cited on page 12)

[181] Daniel T. Trugman and Peter M Shearer. GrowClust: A hierarchical clus-

tering algorithm for relative earthquake relocation, with application to the

Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismological

Research Letters, 88(2A), 2017. (Cited on page 3)

[182] Ruey S. Tsay. Analysis of financial time series. Wiley series in probability

and statistics. Wiley-Interscience, 2005. (Cited on page 3)

[183] UPMEM. Introduction to UPMEM PIM. Processing-in-memory (PIM) on

DRAM Accelerator (White Paper), 2018. (Cited on pages xii, 20 and 69)

[184] R Vio, Niels Kristensen, Henrik Madsen, and W Wamsteker. Time series

analysis in astronomy: limits and potentialities. Astronomy and Astrophy-

sics, 435, 10 2004. (Cited on page 3)

[185] EE Vogel, G Saravia, D Pastén, and V Muñoz. Time-series analysis of

earthquake sequences by means of information recognizer. Tectonophysics,

712–713:723–728, 2017. (Cited on page 15)

[186] T. Warren Liao. Clustering of time series data - A survey. Pattern Recogn.,

38(11):1857–1874, 2005. (Cited on page 3)

[187] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu,

Pang-Shiu Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai.

Metal–oxide RRAM. Proceedings of the IEEE, 2012. (Cited on page 21)

[188] H-S Philip Wong and Sayeef Salahuddin. Memory leads the way to better

computing. Nature nanotechnology, 10(3):191–194, 2015. (Cited on page 23)

[189] Berlin Wu. Pattern recognition and classification in time series analysis.

Applied Mathematics and Computation, 62(1):29 – 45, 1994. (Cited on

page 3)

[190] Xilinx. Xilinx runtime (xrt) documentation. https://xilinx.github.io/

XRT/. Accessed Apr 21, 2022. (Cited on page 69)

https://xilinx.github.io/XRT/
https://xilinx.github.io/XRT/

BIBLIOGRAFÍA 151

[191] Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl Kings-

ford, Can Alkan, and Onur Mutlu. Shifted Hamming Distance: A Fast and

Accurate SIMD-friendly Filter to Accelerate Alignment Verification in Read

Mapping. Bioinformatics, 2015. (Cited on page 21)

[192] Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Can Alkan, and Onur

Mutlu. FastHASH: A New GPU-friendly Algorithm for Fast and Com-

prehensive Next-Generation Sequence Mapping. In BMC Genomics, 2013.

(Cited on page 21)

[193] Hao Yan, Hebin R. Cherian, Ethan C. Ahn, Xuehai Qian, and Lide Duan.

iCELIA: A Full-Stack Framework for STT-MRAM-Based Deep Learning

Acceleration. IEEE Transactions on Parallel and Distributed Systems,

31(2):408–422, 2020. (Cited on page 23)

[194] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor

Zordan. Detecting Time Series Motifs Under Uniform Scaling. In SIGKDD,

2007. (Cited on page 12)

[195] C M Yeh, H V Herle, and E Keogh. Matrix Profile III: The Matrix Profile

Allows Visualization of Salient Subsequences in Massive Time Series. In

ICDM, 2016. (Cited on pages 52, 58 and 89)

[196] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum,

Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and

Eamonn Keogh. Matrix Profile I: All Pairs Similarity Joins for Time Series:

A Unifying View That Includes Motifs, Discords and Shapelets. In ICDM,

2016. (Cited on pages 2, 12, 13, 41 and 114)

[197] Sorrachai Yingchareonthawornchai, Haemwaan Sivaraks, Thanawin

Rakthanmanon, and Chotirat Ann Ratanamahatana. Efficient Proper

Length Time Series Motif Discovery. In ICDM, 2013. (Cited on page 12)

[198] Shimeng Yu and Pai-Yu Chen. Emerging memory technologies: Recent

trends and prospects. IEEE Solid-State Circuits Magazine, 8(2):43–56,

2016. (Cited on page 124)

[199] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L

Greathouse, Lifan Xu, and Michael Ignatowski. TOP-PIM: Throughput-

Oriented Programmable Processing in Memory. In HPDC, 2014. (Cited on

page 19)

[200] Feichi Zhou and Yang Chai. Near-sensor and in-sensor computing. Nature

Electronics, 3(11):664–671, 2020. (Cited on pages iii, 1 and 113)

152 BIBLIOGRAFÍA

[201] Huanzhou Zhu, Zhuoer Gu, Haiming Zhao, Keyang Chen, Chang-Tsun Li,

and Ligang He. Developing a pattern discovery method in time series data

and its GPU acceleration. Big Data Mining and Analytics, 1(4):266–283,

2018. (Cited on pages 6 and 117)

[202] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar,

and Eamonn Keogh. Matrix Profile XI: SCRIMP++: Time Series Motif

Discovery at Interactive Speeds. In ICDM, 2018. (Cited on pages 2, 13, 14,

15, 40, 41, 52, 77, 80, 114 and 125)

[203] Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian Cri-

tes, Gareth Funning, Philip Brisk, and Eamonn Keogh. Matrix Profile XIV:

Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pair-

wise Comparisons a Day and Beyond. In SoCC, 2019. (Cited on pages 13,

14, 16, 17, 50, 77, 82, 83 and 125)

[204] Zachary Zimmerman, Kaveh Kamgar, Yan Zhu, N Shakibay Senobari,

Brian Crites, Gareth Funning, Philip Brisk, and Eamonn Keogh. Scaling

time series motif discovery with GPUs: breaking the quintillion pairwi-

se comparisons a day barrier. In Proceedings of the ACM Symposium on

Cloud Computing, 2018. (Cited on pages 2 and 114)

[205] David Zuñiga-Noël, Alberto Jaenal, Ruben Gomez-Ojeda, and Javier

Gonzalez-Jimenez. The UMA-VI dataset: visual–inertial odometry in low-

textured and dynamic illumination environments. The International Jour-

nal of Robotics Research, 39(9):1052–1060, 2020. (Cited on page 89)

	Agradecimientos
	Abstract
	Contents
	List of Figures
	List of Tables
	1.- Introduction
	TSA Applications
	TSA Bottlenecks
	Thesis Motivation and Contributions
	Thesis Structure

	2.- Background and Related Work
	Time Series Analysis
	SCRIMP Implementation
	SCAMP Implementation
	DTW Implementation

	Mitigating the Data Movement Bottleneck
	Processing-Near-Memory
	Processing-Using-Memory

	Transprecision Computing

	3.- PhiTSA: Using a Xeon Phi to Optimize and Characterize TSA
	Motivation and Key Idea
	Intel Xeon Phi Knights Landing
	PhiTSA Optimizations of SCRIMP
	Updating P and I
	Increasing Arithmetic Intensity
	Memory Allocation Policy and Scalability

	Evaluation
	Methodology
	Results
	Speedups
	Memory Bandwidth Results
	Sensibility to Time Series Length and Window Size
	Floating Point Performance
	Real-World Applications

	4.- NATSA: A PNM Accelerator for TSA
	Motivation and Key Idea
	NATSA Architecture
	NATSA Processing Units (PUs)
	Workload Partitioning Scheme
	Programming Interface

	Evaluation
	Methodology
	Workload
	Results
	Performance of NATSA
	Power, Energy and Area Consumption
	NATSA Design Space Exploration
	Performance of General-Purpose Cores
	Accuracy and Sensitivity to Subsequence Length

	5.- MATSA: A PUM Accelerator for TSA
	Motivation and Key Idea
	MATSA Architecture
	Overview
	MATSA Subarrays
	sDTW Challenges in NVM-PUM
	Supported Operations
	Data Mapping
	Execution Flow
	System Integration

	Evaluation
	Methodology
	Workloads
	Results
	MATSA Characterization
	MATSA Comparison

	6.- TraTSA: A Transprecision Framework for TSA
	Motivation and Key Idea
	TraTSA Framework
	Overview of TraTSA
	Transprecision SCRIMP-CPU (TranSCRIMP)
	Transprecision SCAMP-CPU (TranSCAMP)
	Transprecision SCAMP-FPGA (TranSCAMPfpga)

	Top-K Accuracy Metric
	Evaluation
	Methodology
	Results
	Short Time Series Accuracy
	Large Time Series Accuracy
	TraTSA Performance
	Energy Savings

	7.- Conclusions
	Future Work
	Appendices
	A.- Resumen en español
	Introducción
	Aplicaciones de AST
	Cuellos de Botella de AST
	Motivación y Contribuciones de la Tesis

	PhiTSA: Usando un Xeon Phi para Optimizar y Caracterizar AST
	Idea y Motivación
	Contribuciones
	Evaluación

	NATSA: Un Acelerador PNM para AST
	Idea y Motivación
	Propuesta
	Evaluación

	MATSA: Un Acelerador PUM para AST
	Contribuciones
	Evaluación

	TraTSA: Un Framework Transpreciso Para AST
	Idea y Motivación
	Contribuciones
	Evaluación

	Conclusiones y Trabajo Futuro

	Bibliography

