
Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica

Subdirección de Estudios de Posgrado

Doctorado en Ingeniería de Sistemas

Universidad de Málaga

Facultad de Ciencias Económicas y Empresariales

Doctorado en Economía y Empresa

Tesis doctoral en régimen de cotutela

Several approaches for the

Traveling Salesman Problem

por

Nancy Aracely Arellano Arriaga

en opción al grado de

Doctor

Directores

Dra. Iris Abril Martínez Salazar Dr. Julián Molina Luque
UANL, México UMA, España

San Nicolás de los Garza, Nuevo León, 11 de febrero de 2019



Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica

Subdirección de Estudios de Posgrado

Doctorado en Ingeniería de Sistemas

Universidad de Málaga

Facultad de Ciencias Económicas y Empresariales

Doctorado en Economía y Empresa

Tesis doctoral en cotutela

Several approaches for the

Traveling Salesman Problem

por

Nancy Aracely Arellano Arriaga

en opción al grado de

Doctor

Directores

Dra. Iris Abril Martínez Salazar Dr. Julián Molina Luque

UANL, México UMA, España

San Nicolás de los Garza, Nuevo León, 11 de febrero de 2019







Para el mejor �lósofo del mundo



Contents

Acknowledgements xix

Abstract xxiii

Resumen xxvii

Preface xxx

1 Introduction 1

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Hypothesis and justi�cations . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Scienti�c contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



Contents vii

2 Theoretical framework 10

2.1 Linear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Integer programming . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 m-Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . 24

2.4 Minimum Latency Problem . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 k-Minimum Latency Problem . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Multi-objective distance-centered routing problems . . . . . . . . . . 47

2.7.1 Multi-objective Traveling Salesman Problem . . . . . . . . . . 47

2.7.2 Multi-objective m-Traveling Salesman Problem . . . . . . . . 48

2.8 Multi-objective latency-centered routing problems . . . . . . . . . . . 48

2.8.1 Multi-objective Minimum Latency Problem . . . . . . . . . . 49

2.8.2 Multi-objective k-Minimum Latecy Problem . . . . . . . . . . 49

2.9 The simultaneous minimization of latency and distance in routing

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Minimum Latency-Distance Problem 51

3.1 Minimum Latency-Distance Problem: an introduction . . . . . . . . . 52

3.2 mldp: assumptions and mathematical formulation . . . . . . . . . . . 54



Contents viii

3.3 Complexity of mldp . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Solution methods for mldp . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Exact method . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Strategic Memetic Search Algorithm for mldp . . . . . . . . . 70

3.4.2.1 Initial population . . . . . . . . . . . . . . . . . . . . 72

3.4.2.2 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.4 Neighborhood exploration . . . . . . . . . . . . . . . 73

3.4.3 Evolutionary algorithm with Intelligent Local Search Algo-

rithm for mldp . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.3.1 Initial population . . . . . . . . . . . . . . . . . . . . 75

3.4.3.2 Elite set . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3.3 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3.5 Neighborhood exploration . . . . . . . . . . . . . . . 77

3.4.3.6 Neighborhood performance . . . . . . . . . . . . . . 80

3.4.4 Automatically adjusting evolutionary algorithm with Intelli-

gent Local Search Algorithm for mldp . . . . . . . . . . . . . 83

3.4.4.1 Initial population . . . . . . . . . . . . . . . . . . . . 83

3.4.4.2 Elite set . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents ix

3.4.4.3 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.4.4 Ranking and crowding scheme . . . . . . . . . . . . . 85

3.4.4.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.4.6 Neighborhood exploration . . . . . . . . . . . . . . . 88

3.4.4.7 Neighborhood performance . . . . . . . . . . . . . . 90

3.4.4.8 Autocalibration of parameters . . . . . . . . . . . . . 90

3.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.1 Trial instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.2 Measurements of the quality of the obtained fronts . . . . . . 93

3.5.3 Technical speci�cations . . . . . . . . . . . . . . . . . . . . . . 93

3.5.4 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.5 Computational experimentation . . . . . . . . . . . . . . . . . 96

3.5.5.1 Small instances . . . . . . . . . . . . . . . . . . . . . 96

3.5.5.2 Large instances . . . . . . . . . . . . . . . . . . . . . 100

3.5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . 103

4 k-Minimum Latency-Distance Problem 106

4.1 k-Minimum Latency-Distance Problem: an introduction . . . . . . . . 106

4.2 k -mldp: assumptions and mathematical formulation . . . . . . . . . 108



Contents x

4.3 Complexity of k -mldp . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Solution methods for k -mldp . . . . . . . . . . . . . . . . . . . . . . 120

4.4.1 Exact method . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.2 Strategic Memetic Search Algorithm for k -mldp . . . . . . . . 122

4.4.2.1 Initial population . . . . . . . . . . . . . . . . . . . . 122

4.4.2.2 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.2.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.2.4 Neighborhood exploration . . . . . . . . . . . . . . . 123

4.4.3 Evolutionary algorithm with Intelligent Local Search Algo-

rithm for k -mldp . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.3.1 Initial population . . . . . . . . . . . . . . . . . . . . 123

4.4.3.2 Elite set . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.3.3 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.3.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.3.5 Neighborhood exploration . . . . . . . . . . . . . . . 124

4.4.3.6 Neighborhood performance . . . . . . . . . . . . . . 126

4.4.4 Automatically adjusting evolutionary algorithm with Intelli-

gent Local Search Algorithm for k -mldp . . . . . . . . . . . . 126

4.4.4.1 Initial population . . . . . . . . . . . . . . . . . . . . 127

4.4.4.2 Elite set . . . . . . . . . . . . . . . . . . . . . . . . . 127



Contents xi

4.4.4.3 O�springs . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.4.4 Ranking and crowding scheme . . . . . . . . . . . . . 127

4.4.4.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.4.6 Neighborhood exploration . . . . . . . . . . . . . . . 128

4.4.4.7 Neighborhood performance . . . . . . . . . . . . . . 128

4.4.4.8 Autocalibration of parameters . . . . . . . . . . . . . 128

4.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1 Trial instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.2 Measurements of the quality of the obtained fronts . . . . . . 129

4.5.3 Technical speci�cations . . . . . . . . . . . . . . . . . . . . . . 129

4.5.4 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . 129

4.5.5 Computational experimentation . . . . . . . . . . . . . . . . . 133

4.5.5.1 Small instances . . . . . . . . . . . . . . . . . . . . . 133

4.5.5.2 Large instances . . . . . . . . . . . . . . . . . . . . . 139

4.5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . 145

5 Conclusions 147

5.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



List of Figures

2.1 Representation of a continuous polytope in a two-dimensional space. . 14

2.2 Representation of an integer polytope in a two-dimensional space. . . 16

2.3 Graphical example of a small tsp solution in an instance of ten vertices. 18

2.4 Synoptic table depicting several solution methods employed in solving

combinatorial problems, among which routing problems are immersed. 20

2.5 Graphical example of an m-tsp instance. . . . . . . . . . . . . . . . . 24

2.6 The di�erence in the metrics to evaluate the objectives of the tsp

and the mlp. To minimize the travel distance (see Figure 2.6a), only

the sum of all travel times is considered. Figure 2.6b illustrates the

contribution of every visited vertex in the �nal latency of the tour. . . 31

2.7 Graphical example of an small mlp solution in an instance of ten

vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Multi-level network used to formulate the mldp. . . . . . . . . . . . . 33

2.9 Graphical example of an k -trp instance. . . . . . . . . . . . . . . . . 37

2.10 Multi-level network used to formulate the k -trp. . . . . . . . . . . . 39

xii



List of Figures xiii

2.11 Basic de�nitions of Pareto optimality: two objective functions are

being minimized; the Pareto front is drawn in red. . . . . . . . . . . . 44

2.12 Ideal point (yI) and nadir point (yN) depicted in a two-objective

space. Both objectives are being minimized. . . . . . . . . . . . . . . 45

3.1 Graphical example of an small mldp solution in an instance of ten

vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Multi-level network used to formulate the mldp. . . . . . . . . . . . . 57

3.3 Illustration of some particular instances of the mldp, which were

studied in the complexity proof. In Figure 3.3a, the general case is

shown: in this case, service and travel times take all di�erent arbitrary

values. In Figure 3.3b, a simpler case is shown: all service times have

constant values u, while all travel times are arbitrary. This particular

case is a tsp instance. Lastly, in Figure 3.3c, another simpler case is

shown: all service times are arbitrary and all travel times are equal

to a constant u. This particular case is an mlp instance. . . . . . . . 64

3.4 Reduction diagram from tsp to mldp (both as decision problems).

The main box in the �gure depicts an algorithm to solve the tsp prob-

lem that takes as input an instance of tsp and determines whether

the answer is �yes� or �no� to this instance. To prove the complexity

of mldp, a reduction algorithm must transform a tsp entry into a

mldp one. This mldp input is then solved and receives a �yes� or

�no� answer. As a whole, the process takes a tsp instance, reduces it

into an mldp instance, solves the reduced instance with an algorithm

for mldp, and responds correctly �yes� or �no� to the original instance. 66



List of Figures xiv

4.1 Graphical example of an small k -mldp solution in an instance of ten

clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Multi-level network used to formulate the k -mldp. . . . . . . . . . . 110

4.3 Illustration of some particular instances of the k -mldp. In Figure

4.3a, the general case is shown: in this case, service and travel times

all take arbitrary values. In Figure 4.3b, a simpler case is shown: all

service times have a constant value u but travel times are arbitrary (a

k -tsp instance). Lastly, in Figure 4.3c: all service times are arbitrary

and all travel times are equal to a constant u (a k -mlp instance). . . 116

4.4 Reduction diagram from k -tsp to k -mldp (both as decision prob-

lems). The main box in the �gure depicts an algorithm to solve the

k -tsp problem that takes as input an instance of k -tsp and deter-

mines whether the answer is �yes� or �no� to this instance. To prove

the complexity of k -mldp, a reduction algorithm must transform a

k -tsp entry into a k -mldp one. This k -mldp input is then solved

and receives a �yes� or �no�. As a whole, the process takes a k -tsp in-

stance, reduces it into a k -mldp instance, solves the reduced instance

with an algorithm for k -mldp, and responds correctly �yes� or �no�

to the original instance. . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Tables

2.1 Pay-o� table obtained from the ideal point. . . . . . . . . . . . . . . . 46

3.1 EiLS o�spring generation with n = 10 and ϕ = 3. The exchanged

segments are highlighted in grey. . . . . . . . . . . . . . . . . . . . . 76

3.2 An example of N2 with n = 10 with a = 1, b = 3, and c = 9. . . . . . 78

3.3 An example of N3 with n = 10 where a = 3, bξc = 5, and b = 4. . . . 78

3.4 An example of N4 with n = 10 where a = 8, bξc = 4, b = 5, and c = 6. 79

3.5 An example of N8 with n = 10, a = 2, and b = 7, showing all

quantities involved in Equation (3.1), using integers for simplicity of

the example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 An example of N9 with n = 10. . . . . . . . . . . . . . . . . . . . . . 80

3.7 An example N10 with n = 10, a = 7, and b = 3. . . . . . . . . . . . . 82

3.8 An example N11 with n = 10 and λ = 3. . . . . . . . . . . . . . . . . 82

3.9 Metrics list used to measure the quality of the solutions found by our

proposed algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



List of Tables xvi

3.10 Factorial design for parameter calibration for SMSA (left) and EiLS

(right); n is the number of clients, # the number of points in the

approximated front, and SCC the size of space covered. . . . . . . . . 95

3.11 Average CPU times obtained by our four proposed solution meth-

ods. These times are shown in averages per each set of instances and

measured in seconds; n is the size of the instance sets solved. . . . . . 97

3.12 Comparison among the metrics obtained per algorithm. These values

are averages over the set of instances. . . . . . . . . . . . . . . . . . . 98

3.13 Average coverage of the approximated fronts obtained by the SMSA,

EiLS, and AEiLS procedures. . . . . . . . . . . . . . . . . . . . . . . 99

3.14 Average CPU times obtained by our three approximation methods in

larger instances. These times are shown in averages per each set of

instances and measured in seconds. . . . . . . . . . . . . . . . . . . . 100

3.15 Comparison among the metrics obtained per algorithm in larger in-

stances. These values are averages over the set of instances. . . . . . . 101

3.16 Average coverage of the approximated fronts in larger instances. Av-

erages obtained by the SMSA, EiLS and AEiLS. . . . . . . . . . . . . 102

4.1 Example of a single k -mldp solution. This solution has 10 clients and

k = 3 agents. The depot is denoted as v0. . . . . . . . . . . . . . . . . 122

4.2 EiLS o�spring generation with n = 10 and k = 3. The exchanged

segments are highlighted in grey. . . . . . . . . . . . . . . . . . . . . 124

4.3 An example N13 with n = 10 and k = 3, where a = 11 and b = 3. . . 125



List of Tables xvii

4.4 An example of N14 with n = 10 and k = 3, where a = 1, b = 3, and

c = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 An example of N15 with n = 10 and k = 3, where a = 12, b = 4. . . . 126

4.6 An example of N16 with n = 10 and k = 3, where a = 4, b = 12. . . . 126

4.7 Factorial design for parameter calibration in SMSA; n is the size of

the instance. For the SMSA algorithm we tested the size of the initial

population (γ), the probability to mutate a solution (β), as well as

number of iterations without success (I). . . . . . . . . . . . . . . . . 131

4.8 Factorial design for parameter calibration in EiLS; n is the size of the

instance. For the EiLS algorithm we the size of the population (γ),

the number of evaluations per module (φ), as well as the minimum

success (α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.9 Average CPU times obtained by the four proposed solution methods.

The times are averages over set of instances, measured in seconds. . . 134

4.10 Comparison among the metrics obtained per algorithm, averaged over

the set of instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.11 Comparison among the metrics obtained per algorithm, averaged over

the set of instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.12 Comparison among the metrics obtained per algorithm, averaged over

the set of instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.13 Average CPU times obtained by our four proposed solution methods

in averages over each set of instances, measured in seconds. . . . . . . 140



List of Tables xviii

4.14 Comparison among the metrics obtained per algorithm, in averages

over each set of instances . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.15 Comparison among the metrics obtained per algorithm, in averages

over each set of instances. . . . . . . . . . . . . . . . . . . . . . . . . 142

4.16 Comparison among the metrics obtained per algorithm, as averages

over each set of instances . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.17 Comparison among the metrics obtained per algorithm, as averages

over each set of instances . . . . . . . . . . . . . . . . . . . . . . . . . 144



Acknowledgements

I would like to thank all those who made this dissertation possible. As my

committee, friends, and family are Spanish speakers, I provide the acknowledgements

in Spanish.

Esta investigación doctoral no sería posible sin el apoyo económico del Consejo

Nacional de Ciencia y Tecnología (CONACyT). Agradezco el apoyo brindado bajo

la beca número 446316, así como la con�anza para brindarme una beca mixta por

el período 2016�2017 para realizar una estancia doctoral en Málaga y poder acce-

der a la cotutela UMA-UANL. Agradezco igualmente a la Asociación Universitaria

Iberoamericana de Postgrado (AUIP) por el apoyo económico brindado en el perío-

do 2017�2018 para �nalizar mis estudios doctorales en la Universidad de Málaga.

Conjuntamente ambos apoyos económicos han permitido que tenga una dedicación

a tiempo completo para realizar este trabajo. Gracias a ambas instituciones.

Le agradezco a la Universidad Autónoma de Nuevo León (UANL), por haber-

me abierto nuevamente las puertas en esta casa de estudios. Gracias al Posgrado en

Ingeniería de Sistemas (PISIS), a todos los investigadores pertenecientes al progra-

ma, y con especial atención le agradezco al grupo de investigación de la Dra. Iris

Martínez por abrirme las puertas. Agradezco a la Universidad de Málaga (UMA),

por haberme aceptado para unirme al programa de cotutela UMA-UANL. Agradezco

a la Facultad de Ciencias Económicas y Empresariales por aceptarme, especialmente

xix



Acknowledgements xx

al departamento de Matemáticas.

Principalmente le agradezco a mi directora de tesis, la Dra. Iris Abril Martínez

Salazar, por el apoyo y la atención brindada durante todos estos años de investiga-

ción conjunta. Gracias por con�ar en mí y aceptar trabajar conmigo en el doctorado.

Gracias por siempre hacerme sentir parte de tu grupo de trabajo, gracias por la com-

prensión siempre y por compartirme las divertidas anécdotas de sus bebés, sobretodo

las de Victorín.

Gracias a mi co-director de tesis, el Dr. Julián Molina Luque por su cálido re-

cibimiento en Málaga, por aceptar trabajar conmigo sin conocerme antes y romper

desde el día uno esa barrera alumno-maestro que hay muchas veces en las universida-

des mexicanas. Gracias por el apoyo en todo, por escucharme cuando hay problemas

y darme buenas ideas siempre. Ha sido un placer y un privilegio contar con su guía en

la realización de esta tesis doctoral. Finalmente me gustaría añadir mis más sinceros

agradecimientos a Jorge, a Julián y a María por su amabilidad y su atención.

Le agradezco al comité doctoral por sus acertadas correcciones y el tiempo

invertido en la lectura de esta tesis. Comenzando con la Dra. Ada Margarita Álvarez

Socarrás, a quien le agradezco por apoyarme de forma personal siempre. Por nunca

dejar de ser mamá pollito conmigo y dejarme claro que aunque yo soy muy rara

ella siempre está ahí. Gracias por terminar adoptándome más que académicamente

hablando. Se le quiere mucho, a usted y al Dr Frank, aunque casi nunca se lo diga.

Gracias a la Dra. Satu Elisa Schae�er, por la paciencia in�nita que me tiene. Por

enseñarme hasta como puntuar correctamente un texto y que la perfección académica

nunca peca de exageración. Gracias por aceptar colaborar conmigo y con el resto del

comité en las revisiones de esta tesis. Gracias por cada corrección y cada mejora.

De�nitivamente este texto no estaría tan bonito sin su ayuda. Gracias por tanto

apoyo y por no dejar que mi negatividad propia pueda conmigo.



Acknowledgements xxi

Finalmente, le agradezco a la Dra. Irma Delia García Calvillo por todo su

apoyo, paciencia y buenos consejos. Es la que más años consecutivos me ha soportado

y aún así siempre me recibe con una sonrisa y un abrazo sincero. Muchas gracias

por haberme apoyado desde el inicio en mi curiosidad académica aún cuando nos

costó que nos aceptaran trabajar juntas, pero sobre todo muchas gracias por seguir

enseñándome cosas nuevas y apoyándome siempre.

De manera personal, le agradezco a mis amigos del posgrado por tantos buenos

momentos. En especial al Dr. Juan Banda, por tanto. Al Dr. Luis Benavides, al MC.

Daniel Mosquera y al MC. Eduardo García, así como al Dr. Fernando Elizalde, a la

Dra. Cristina Maya, a la Dra. Nelly Hernández y al MC. Diego Hernández. Gracias

por tantos buenos ratos y por cada plática amena.

Un afectuoso agradecimiento al departamento de matemáticas de la facultad de

ciencias económicas y empresariales de la Universidad de Málaga. Muchas gracias

a todos por el cálido recibimiento en ambas ocasiones que he estado ahí, muchas

gracias por la amistad y por los buenos ratos. En especial le agradezco a la Dra.

Laura Delgado, a la Dra. Ana Belén Ruiz, al Dr. Julian Molina y a la Dra. Beatriz

Rodríguez, que me hicieron sentir siempre su amistad dentro y fuera de la rutina

académica. Gracias también al Dr. Rafael Caballero, a la Dra. Trinidad Gomez, a la

Dra. Analía Cano, a la Dra. Mercedes González, al Dr. Mariano Luque y al Dr. Ángel

Torrico por hacerme sentir una más en el departamento durante toda mi estancia.

Gracias a la ME. Lilibeth Ruiz, a la Lic. Gisela Fuentes Zul y al Lic. Héctor

Aguilar por seguir aquí, gracias por el apoyo, la amistad, el tiempo, las buenas

vivencias y todo, ½Los quiero mucho! Gracias a la MC. Myriam Herrera por la amistad

y el apoyo. Gracias a la Dra. Laura Delgado, por enseñarme que las mejores amistades

llegan de improviso: Gracias bonita por adoptarme, por hacerme compañía siempre

y por escucharme y darme buenos consejos, ½Te quiero mucho!



Acknowledgements xxii

Le agradezco al MPhil. Fernando Berdún Palacios por enseñarme cosas nuevas

todos los días, pero sobre todo le agradezco que apareciera y que me haga querer

ser una mejor persona siempre. Gracias por tanto, mi corazón bonito. Y tú sigue

pensando como loco, que no hay cosa más bonita que verte dando vueltas a detalles

pequeñitos y curiosos que sólo tú notas. Gracias por tanta luz, por tanto y por todo.

½Te quiero muchísimo, mi rubiecito guapo!

Finalmente, le agradezco a mis padres, María Arriaga y Elias Arellano, por

todo. A mi preciosa hermana la Dra. Yolanda Arellano, por sacarnos a todos del

hoyo y seguir cultivando su luz propia, ½Te quiero mucho, Enis! Le agradezco a cada

uno de ustedes su apoyo a las cosas raras que hago, las palabras de ánimo siempre que

tengo mis momentos de duda y sobre todo, que aún con todo sigan ahí escuchándome

con mis tonterías, ½Los quiero mucho! Gracias también a mi Babu, a Neyma, Numy,

Nina, Bruno, Pocky, Lili y Norman. Ya saben, por los pelitos en la ropa.

Finally, I would like to add an acknowledgement to the reader, thank you for

your interest and your time in reading this.



Abstract

Nancy Aracely Arellano Arriaga.

Double Doctoral candidate to obtain the degrees of:

Doctor of Engineering with specialization in Systems Engineering, and

Doctor of Economics and Business

Universidad Autónoma de Nuevo León,

Facultad de Ingeniería Mecánica y Eléctrica,

in double doctoral program with

Universidad de Málaga,

Facultad de Ciencias Económicas y Empresariales.

Thesis Dissertation Title:

Several approaches for the Traveling

Salesman Problem

Number of pages: 189.

OBJECTIVES AND METHODOLOGY: This doctoral dissertation studies and

characterizes of a combination of objectives with several logistic applications. This

xxiii



Abstract xxiv

combination aims to pursue not only a company bene�t but a bene�t to the clients

waiting to obtain a service or a product. In classic routing theory, an economic

approach is widely studied: the minimization of traveled distance and cost spent to

perform the visiting is an economic objective. This dissertation aims to the inclusion

of the client in the decision-making process to bring out a certain level of satisfaction

in the client set when performing an action.

We part from having a set of clients demanding a service to a certain company.

Several assumptions are made: when visiting a client, an agent must leave from a

known depot and come back to it at the end of the tour assigned to it. All travel

times among the clients and the depot are known, as well as all service times on each

client. This is to say, the agent knows how long it will take to reach a client and

to perform the requested service in the client location. The company is interested

in improving two characteristics: an economic objective as well as a service-quality

objective by minimizing the total travel distance of the agent while also minimizing

the total waiting time of the clients.

We study two main approaches: the �rst one is to ful�l the visits assuming

there is a single uncapacitated vehicle, this is to say that such vehicle has in�nite

capacity to attend all clients. The second one is to ful�l the visits with a �eet of k

uncapacitated vehicles, all of them restricted to an strict constraint of being active

and having at least one client to visit. We denominate the single-vehicle approach

the minimum latency-distance problem (mldp), and the k-sized �eet the k -minimum

latency-distance problem (k -mldp).

As previously stated, this company has two options: to ful�l the visits with

a single-vehicle or with a �xed-size �eet of k agents to perform the visits. We

characterize both approaches, mldp and k -mldp, with several methodologies; both

a linear and a non-linear mathematical formulation are proposed. Additionally, the
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design and implementation of an exact methodology to solve both linear formulations

is implemented and with it we obtained exact results. Due to the large computation

time these formulations take to be solved with the exact methodology proposed, we

analyse the complexity each of these approaches and show that both problems are

NP-hard.

As both problems are NP-hard, we propose three metaheuristic methods to

obtain solutions in shorter computation time. Our solution methods are population

based metaheuristics which exploit the structure of both problems and give good

quality solutions by introducing novel local search procedures which are able to

explore more e�ciently their search space and to obtain good quality solutions in

shorter computation time.

CONTRIBUTIONS AND CONCLUSIONS: Our main contribution is the study

and characterization of a bi-objective problematic involving the minimization of two

objectives: an economic one which aims to minimize the total travel distance, and a

service-quality objective which aims to minimize of the waiting time of the clients to

be visited. With this combination of objectives, we aim to characterize the inclusion

of the client in the decision-making process to introduce service-quality decisions

alongside a classic routing objective.

To the best of our knowledge, and excluding our own published research, a

similar combination of objectives has not been studied and therefore the whole study

in this dissertation is a direct contribution. We propose a set of instances inspired

by those of Angel-Bello et al. (2013), with adjustments to create client locations

and service times more similar to real-world settings. We propose a linear and a

non-linear mathematical formulation for each problem, mldp and k -mldp, as well

as three metaheuristic methodologies for each. The implementation, design, and

calibration of each of these methods are considered a contribution of this dissertation
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combinación de objetivos que buscan tanto un bene�cio para la empresa como un

bene�cio para los clientes que dicha empresa atiende. Esta tesis doctoral tiene como

objetivo el estudio de la inclusión del cliente en el proceso de toma de decisiones, y

así añadir un objetivo de calidad en el servicio a un problema clásico de ruteo. Se

estudia el problema que tiene una compañía, la cual provee un servicio a un conjunto

de clientes y la cual está obligada a asignar todos los clientes a uno o varios agentes

para visitarles. Estos agentes deben partir de y volver a un depósito previamente

establecido. Se conocen todos los tiempos de viaje entre clientes y los tiempos de

servicio que los agentes se demoran en cada cliente, es decir, cada agente conoce

con exactitud cuanto tiempo tardará en atender a cada cliente y en llegar a él. En

este problema se busca simultáneamente optimizar dos características: minimizar

la distancia total recorrida por el o los vehículos, así como minimizar el tiempo de

espera de los clientes.

Para lograr esto, proponemos dos problemas: the minimum latency-distance

problem (mldp), en el cual un vehículo de capacidad in�nita visita a todos los

clientes, y k-minimum latency-distance problem (k -mldp), en el cual se cuenta con

una �otilla de k vehículos para visitar a todos los clientes con la restricción de que

todos los vehículos deben estar activos y tener al menos a un cliente asignado. Para

ambos problemas, se propone un modelo lineal y un modelo no lineal, así como

el diseño e implementación de una metodología exacta para ambas formulaciones

lineales. Debido al excesivo tiempo de cómputo, se analiza la complejidad de ambos

problemas propuestos y se comprueba que ambos son NP-duros. Se proponen tres

métodos metaheurísticos basados en técnicas evolutivas, los cuales son capaces de

brindar soluciones de buena calidad en tiempos de cómputo pequeños. Estos tres

métodos exploran la estructura de cada uno de los problemas e introducen técnicas de

búsqueda local novedosas, las cuales son capaces de brindar efectivamente soluciones

de buena calidad en tiempos de cómputo pequeños.
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CONTRIBUCIONES Y CONCLUSIONES: La contribución principal de este tra-

bajo se centra en el estudio de una problemática bi-objetivo que optimiza simultánea-

mente dos aspectos importantes para una compañía centrada en el servicio o dis-

tribución: la minimización de la distancia recorrida por el o los vehículos al hacer la

visita a los clientes y optimizar así un objetivo económico, así como minimización del

tiempo total de espera de los clientes que esperan por el servicio que se les brindará y

así, consolidar los bene�cios que tiene la inclusión del cliente en la toma de decisiones

de una empresa centrada en actividades logísticas y de servicio.

La revisión de literatura mostró que no existen trabajos similares, excluyendo

las publicaciones y presentaciones obtenidas con nuestra investigación, por lo tanto

el estudio presentado en este trabajo es una contribución directamente. Se propone

además un conjunto de instancias inspiradas en las ya reportadas previamente por

Angel-Bello et al. (2013) pero con características más apegadas a la realidad. Se

proponen una formulación lineal y una formulación no lineal para cada uno de los

problemas estudiados, mldp y k -mldp, así como el diseño e implementación de

tres metaheurísticas novedosas las cuales también son consideradas una contribución

directa de este trabajo.
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Chapter 1

Introduction

Businesses are economic systems in which goods and services are exchanged in

order to earn a pro�t in a regular basis. These goods can be exchanged for money

or for other goods. For these systems to be pro�table, they require an investment

and enough customers to be reliable. These customers are colloquially referred to as

clients.

In this doctoral dissertation, we study an hypothetical case in which a certain

company in charge of visiting a set of clients to provide them a service is interested

in improving their routing assignation by considering not only the economic aspects

of the business to improve pro�tability but simultaneously, to improve the quality

of the service given to improve the satisfaction of the clients waiting to have their

demand ful�lled. We divide this study in two major branches: when the company

has a single-agent to ful�ll the visiting, as well as when the company has k agents

for doing so.

The following sections in this chapter introduce the general description of both

of the problems this dissertation focuses on, as well as the motivation and objectives

of this work.

1
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1.1 Problem description

Routing theory refers to the determination of an optimal set of cycles, or tours,

within a network to establish a way to reach one point from another under certain

circumstances. This area of study has many applications: the delivery of goods

from a depot to a set of clients or the application of routing to determine the optical

sequence in an electrical drilling device, etcetera.

In particular, this dissertation studies a problem which arises in the logistic

processes and activities of a certain distribution company in charge of providing a set

of clients with a service or a delivery. This company is interested in improving the

assignation of their clients into tours but considering not only the economic aspects

of the business to improve pro�tability, but simultaneously, to improve the quality

of the service given to improve the satisfaction of the clients waiting to have their

demand ful�lled.

To achieve this, the company aims to simultaneously deal with two con�ictive

objectives: to visit all the clients by traveling the minimum distance to ensure that

the cost this routing represents for the company is minimum, as well as the max-

imization of the client satisfaction, through the minimization of the latency of the

routing, to ensure a competitive quality in the service provided to the clients. We

propose to involve the client to be considered in the decision-making process, to turn

a classic routing problem into a client-centered one.

We study this bi-objective proposal in two major branches: when the company

has only a single vehicle available to ful�ll the visiting. Such vehicle has in�nite

capacity, this is to say it can visit every client without exceeding its capacity. In

this single-vehicle approach we assume the depot's location is known, as well as the

exact locations of all the clients. We therefore know with certainty the time it takes
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the agent to travel from every client's location to the depot and vice versa as well

as all times it takes to travel from one client to another. The main goal is to design

the most suitable way of visiting all clients within this set, departing from the depot

and returning to it at the end of the workday, in such a way that the total travel

distance as well as the total waiting time of the clients in the tour are minimized.

We call this problem the Minimum Latency-Distance Problem (mldp).

The second case is when the company has a �eet of k vehicles to ful�ll the visits

to the clients. All these k vehicles have in�nite capacity, this is to say that every

one of them can visit as many clients as are assigned to them without exceeding

their capacity. In this �eet-vehicle approach, we have to satisfy certain conditions:

all k vehicles must be active and have at least one client to visit. Every client must

be visited once, by only one agent; this gives a disjoint set of k tours to ful�ll the

demands of the clients. Some assumptions made are the beforehand knowledge of

the locations of each client and the depot, meaning we know with certainty how

long it will take for every agent to travel to and service each client. The main goal

is to design a disjoint set of k tours for visiting all clients, each of them departing

from the depot and returning to it at the end of the workday, in such a way that

the total travel distance as well as the total waiting time of the clients in the tour

are minimized. We call this problem the k-Minimum Latency-Distance Problem

(k -mldp).

By studying this bi-objective proposal, regardless of the number of agents to

make the visits, we aim to combine an economic and a service-quality objective to

integrate in the decision-making process both parts related: the company responsible

for distributing its product or services and the clients to be attended by the agents,

by minimizing their total waiting time to be served.
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1.2 State of the art

mldp as well as k -mldp minimize two objectives: distance and latency of one

or a set of k disjoint tours, respectively. Our single-vehicle approach, mldp, is the

combination of the objectives optimized by the Traveling Salesman Problem (tsp)

and of theMinimum Latency Problem (mlp). Applications for both raise from classic

routing for tsp (Applegate et al., 2007; Gutin and Punnen, 2006; Mjirda et al., 2017),

all the way to humanitarian logistics for mlp (Blum et al., 1994; Ferrer et al., 2016;

García et al., 2002; Kovács and Spens, 2007, 2009; Lucena, 1990; Stephenson, 2017;

Tomasini et al., 2009; Vargas et al., 2017). Both of these single-objective problems

are NP-hard separately (Afrati et al., 1986; Papadimitriou, 1994) and hence their

combination is expected to be NP-hard as well.

The �eet-sized approach, k -mldp, is the combination of the objectives opti-

mized by the k-Traveling Salesman Problem (k -tsp) and the k-Traveling Repairman

Problem (k -trp). Applications for both raise from routing a set of agents to attend a

set of clients (Cordeau et al., 2007; Dantzig and Ramser, 1959; Gansterer and Hartl,

2018; Khodabandeh et al., 2017; Laporte, 1992; Modares et al., 1999; Toth and Vigo,

2014) for k -tsp, to the minimization of the arrival of a set of agents to certain des-

tinations (Bektas, 2006; Fakcharoenphol et al., 2003; Onder et al., 2017) for k -trp.

These single-objective problems have been proven NP-hard as well (Ausiello et al.,

2000; Fakcharoenphol et al., 2003), and therefore a combination of their objectives

is expected to be NP-hard, too.

The bi-objective approach we propose combines two objectives which have not

been simultaneously studied in a routing context. Nonetheless, considering a single-

vehicle tour, they have been researched in contexts where the goal is the measurement

of the latent time an speci�c growth takes, depending on the distance such growth it
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is measured from as in medicine (Bair et al., 2003; Fischer et al., 1987; Salami et al.,

2003) or network applications (Borah et al., 2017; Depuy et al., 2001; He et al., 2015;

Kim and Na, 2017; Madhyastha et al., 2006; Patterson, 2004; Sarddar et al., 2010,

2011). These applications are seen similarly when considering a �eet of vehicles, as

in (Frye, 1995; Kara et al., 2007; Kim et al., 2012; Malarky, 2013; Mangharam et al.,

2007).

To the best of our knowledge, excluding our own research, this combination of

objectives has not been applied under routing conditions nor considering the client

set in the decision-making for deciding an optimal routing. This dissertation aims to

study the characterization of such trade-o� to simultaneously de�ne a more client-

centered routing approach to o�er to companies aiming to improve their pro�ts and

the satisfaction of their clients.

1.3 Hypothesis and justi�cations

A realistic approach for real-life problems involves the simultaneous optimiza-

tion of several con�icting objectives. This dissertation aims to preserve the pro�t of

a company in charge of providing a service or a delivery to a set of clients, as well

as to improve the quality of the service given by such company by minimizing the

total waiting time of the clients waiting to be served. This is a relevant problematic

in contexts where both client service and company pro�t are priorities. We assign

the same importance to both: distance-dependent aspects such as fuel cost and to

quality-of-service aspects such as the waiting time of the clients to be attended.

As mentioned before, to the best of our knowledge and excluding our own

research, a bi-objective approach with these characteristics has not been studied in

a routing context previously. This bi-objective approach aims to the improvement of
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several aspects in classic routing approaches such as the competitive position of the

company as well as the client satisfaction by considering a client-centered approach.

This dissertation aims to simultaneously optimize two objective functions pre-

viously proven NP-hard and presents a formal proof and justi�cation to the employ-

ment of metaheuristic methods to solve both problematics, mldp and k -mldp, due

to their complexity. This research proposes mathematical formulations to charac-

terize them, along with the complexity study and the proposal of several techniques

to obtain the Pareto fronts of both.

1.4 Objectives

This doctoral dissertation has the following objectives:

• Study of a bi-objective problem which, excluding our own research, does not

exist in current literature. This problem combines an economic and a service-

quality objective to formulate a more client-centered routing approach and is

studied in two di�erent problems: a single-vehicle problem, which we call the

Minimum Latency-Distance problem (mldp), and a k-vehicle problem, which

we call the k-Minimum Latency-Distance problem (k -mldp).

• Mathematical formulation for, mldp and k -mldp, alongside with the design,

implementation and calibration of an exact solution method.

• Study of the computational complexity of both problems, also under particular

trivial instances.

• Design, implementation, calibration, and testing of several metaheuristic solu-

tion methods for, mldp and k -mldp.
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1.5 Scienti�c contribution

The main contributions of this dissertation are the following:

• Study of a combination of objectives leading to a more client-centered routing

approach to o�er to companies interested in simultaneously improving their

pro�ts and the satisfaction of their clients.

• Linear and non-linear mathematical formulations for this combination of ob-

jectives, considering one or several vehicles.

• Study of the computational complexity these bi-objective problems have, in-

cluding particular trivial instances.

• Design of novel local search procedures to employ in the design of metaheuristic

methods to solve mldp and k -mldp.

1.6 Relevance

We propose a bi-objective problem that considers two routing objectives, an

economic objective and a service-quality objective, in order to preserve the pro�t of

a company in charge of providing a service or a delivery to a set of clients, as well

as to improve the quality of the service given by such company by minimizing the

total waiting time of the clients waiting to be served.

This is a relevant combination of objectives in contexts where client service

and company pro�t are priorities; we assign the same importance to both distance-

dependent aspects such as fuel cost and to quality-of-service aspects such as the

waiting time of the clients to be attended. This bi-objective approach aims to
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the improvement of several aspects in classical routing approaches improving the

competitive position of the company as well as the client satisfaction by creating a

client-centered routing approach.

1.7 Thesis structure

As previously stated, we study and characterize a bi-objective problem involv-

ing latency and distance under two main scenarios: a single-vehicle approach and a

k-vehicle approach. In this dissertation, the research is divided similarly, according

to the theoretical framework to the research. With this in mind, the structure of

this dissertation is as follows.

Chapter 2 describes the basic concepts for the study of our proposed bi-

objective problems, beginning with the description of basic Linear Optimization

theory for single-objective problems moving to a short introduction of Integer Pro-

gramming in single-objective theory. Due to the fact that our proposed problems,

mldp and k -mldp, combine four important problems of routing theory, this chapter

progresses to a brief introduction of all the four single-objective problems in Sections

2.2 � 2.5. Each of these sections undertakes the following structure: the considered

single-objective problem is de�ned, several applications are discussed and a clas-

sical mathematical formulation is described. Lastly, a short summary of solution

methods reported in existing literature is provided. As our main objective is the

study of two bi-objective problems, Section 2.6 gives a brief introduction to multi-

objective optimization. In Sections 2.7 and 2.8 we give a summarized state-of-the-art

of multi-objective approaches that involve any of the four previous key problems,

the combinations of which yield mldp and k -mldp. Lastly, Section 2.9 gives a brief

introduction to the speci�c problems we aim to study in this thesis.
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Chapter 3 is dedicated to the Minimum Latency-Distance Problem (mldp).

In Section 3.1, a description of mldp is given. Assumptions for mldp and two

mathematical formulations proposed for it are reported in Section 3.2. Section 3.3

details the analysis of the computational complexity of mldp and presents a proof

that mldp is an NP-hard problem. The exact methodology to solve mldp is de-

tailed in Section 3.4.1. We propose several heuristic methodologies to solve it in

Sections 3.4.2, 3.4.3, and 3.4.4. The calibration of parameters, the description of a

set of instances we propose to recreate real-life conditions, as well as the experimen-

tation and comparison of results of the proposed methods are shown in Section 3.5.

Conclusions and future lines of research for mldp are given in Section 3.6.

Similarly, Chapter 4 is dedicated to the k-Minimum Latency-Distance Problem

(k -mldp). Section 4.1 gives a description of k -mldp. Assumptions considered and

two mathematical formulations for k -mldp are reported in Section 4.2. Section

4.3 details the analysis of the computational complexity of k -mldp and presents a

proof that k -mldp is an NP-hard problem. The exact methodology to solve k -mldp

is detailed in Section 4.4.1. Similarly, we propose three heuristics to solve it in

Sections 4.4.2, 4.4.3, and 4.4.4. Section 4.5 includes the calibration of parameters, the

comparison among the methods and the experimentation results. Lastly, conclusions

and future lines of research for k -mldp are given in Section 4.6.

Finally, Chapter 5 provides a discussion to summarize the conclusions obtained

in exploring this combination of objectives, regardless of the number of vehicles used,

and proposes future lines of research.



Chapter 2

Theoretical framework

Distribution and delivery companies face the problem of �nding e�cient tours

to visit their clients in such a way that economic costs are at a minimum. This is

the idea on which vehicle routing is based: to ful�ll the demand of a set of clients

while keeping the cost of visiting every one of them as low as possible. This objective

is known as the minimization of the travel distance of the tour and it is the main

objective of the Traveling Salesman Problem. With one vehicle available for the visits

(Applegate et al., 2007; Gutin and Punnen, 2006; Mjirda et al., 2017), as well as

with a �eet of several vehicles available for this purpose (Khodabandeh et al., 2017;

Laporte, 1992; Modares et al., 1999), it is one of the most studied combinatorial

problems in literature, aiming to guarantee a company-friendly solution (Applegate

et al., 2007; Cordeau et al., 2007; Dantzig and Ramser, 1959; Gansterer and Hartl,

2018; Gutin and Punnen, 2006; Khodabandeh et al., 2017; Laporte, 1992; Mjirda

et al., 2017; Modares et al., 1999; Toth and Vigo, 2014).

In recent years, humanitarian logistic has studied a di�erent approach for ve-

hicle routing by not taking into account the economic cost of the tour visiting a set

of locations but instead by considering the waiting time spent at every one of the

locations to be visited (Kovács and Spens, 2007, 2009; Ortuño et al., 2013; Stephen-

son, 2017; Thomas and Mizushima, 2005; Tomasini et al., 2009). The minimization

10
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of the waiting time is an objective known as latency, and to visit a set of clients

to ful�ll their demand with the goal of keeping the client waiting time as short as

possible is the main objective of the Minimum Latency Problem (Blum et al., 1994;

Chaudhuri et al., 2003; García et al., 2002; Lucena, 1990; Nagarajan and Ravi, 2008).

With one vehicle (Agnihothri, 1988; García et al., 2002; Van Ee and Sitters, 2018)

or with several vehicles in a �eet (Bektas, 2006; Fakcharoenphol et al., 2003; Onder

et al., 2017), latency is a client-friendly objective employed to guarantee quality of

the service given by the company.

Vehicle routing as such deals with a single-objective decision: to visit a set of

clients at the minimum economic cost (Applegate et al., 2007; Dantzig and Ramser,

1959; Toth and Vigo, 2014). To minimize the latency of a tour is to de�ne a tour

as a single-objective task: to visit a set of clients and ensure the minimum waiting

time for them to get their service (Blum et al., 1994; Lucena, 1990; Nagarajan

and Ravi, 2008). Nonetheless, real-life situations bring the need to take more than

one objective into consideration. The involvement of several objectives leads to the

employment of multi-objective optimization to make better decisions and to consider

more adequate trade-o�s (Ehrgott, 2005).

This dissertation studies a bi-objective problem which arises in the logistic pro-

cesses and activities of distribution companies in charge of providing a set of clients

with a service or a delivery. Such companies deal with two con�icting objectives: to

visit all the clients by traveling the minimum distance (to ensure the cost this tour

represents for the company is the minimum) and the maximization of the clients

satisfaction (through the minimization of the latency of the tour, to ensure a com-

petitive quality in the service provided to the clients). We study two main branches:

a single-vehicle approach and a multi-vehicle approach.

In this chapter, we present a summary of fundamental concepts that uphold
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this dissertation. A general overview of linear optimization is presented in Section

2.1. As stated before, this dissertation focuses on the study of the combination of

two di�erent objectives: the minimization of the traveled distance of the tour and

the minimization of the waiting time of the clients. Sections 2.2 and 2.4 show the

state of the art over each single-objective and single-vehicle problem to help us build

the basis for the study of our bi-objective and single-vehicle proposal; the basis for

the study of our bi-objective and multi-vehicle approach along with the state of the

art is shown in Sections 2.3 and 2.5, where each single-objective and multi-vehicle

problem is studied.

We present a brief introduction to multi-objective optimization in Section 2.6.

Similarly to the single-objective versions we discuss the study of both related objec-

tives, latency and distance, but combined with other objectives previously reported

in literature. Sections 2.7.1 and 2.8.1 provide a general overview of the state of

the art of several bi-objective problems in a single-vehicle modality for both of the

objectives considered in this dissertation. Sections 2.7.2 and 2.8.2 present a general

overview of existing literature regarding bi-objective approaches for a multi-vehicle

approach, for both of the objectives considered in this research. Lastly, Section 2.9

gives a short introduction to the main research this dissertation focuses on.

2.1 Linear Optimization

Operations Research is the application of mathematical methodologies to the

study, analysis, and resolution of problems that involve complex systems. This area

of study is applied to optimize business operations and other day-to-day problems as

routing, backpacking, and scheduling, among others. It helps in company decision-

making such as resource allocation, production scheduling to improve the develop-

ment of production schedules, supply chain management, as well as the organization
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and the distribution of products (Ahuja et al., 1993; Dantzig, 1963; Frederick and

Lieberman, 1982; Taha, 1992).

Linear Optimization, also known as Linear Programming (lp), is an operations

research technique used to depict complex relationships through linear functions to

�nd their optimal solution. It can be understood as a mathematical technique to

state general goals in order to �nd the best solution to achieve an improvement in a

particular problem considering a certain set of constraints and resources (Dantzig,

1963). Real day-to-day systems are often much more complex, but when simpli�ed

to linear relations. This method achieves the best outcome, either maximizing or

minimizing, a linear system of equations. As the goal is to identify the best possible

course of action, this area of study attempts to resolve the con�icts of interest among

the components of the organization in such a way that the solution is the best for the

organization as a whole, it provides the company with an understandable conclusion

of a problem and gives tools to the decision maker to help him decide a course of

action.

2.1.1 General overview

Linear Optimization searches for the best solution, referred as an optimal solu-

tion, for the problem or system of constraints under consideration. Linear Program-

ming is a technique to optimize a linear objective function, subject to linear equality

and linear inequality constraints that represents a convex polytope (also known as

convex cover) which is de�ned as the intersections of the spaces in which each lin-

ear inequality is de�ned. The objective function to optimize is a linear function

de�ned on this polytope and if there exist a point at which this function has the op-

timal value, which could be the smallest or the largest depending on the optimizing

criterion, then such a point is called an optimum.
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Figure 2.1: Representation of a continuous polytope in a two-dimensional space.

Linear systems are expressed in canonical form as shown in Equation (2.1),

maxZ = Cx (2.1)

s.t. Ax ≤ b,

x ≥ 0,

where x is a vector representing the decision variables of the system of equations,

this is to say, x represents the values to be determined: C and b are vectors of

known coe�cients which denote, respectively, the costs and the resources that cannot

be exceeded in the solution; A is a matrix of coe�cients of the constraints that

represents the available resources. The set of constraints de�ne a polyhedron, convex

or concave, that represents the feasible region of the problem. Such polyhedron can

be infeasible if two or more constraints of the constraint set cannot be satis�ed jointly

and an optimal solution does not exist. In Linear Programming, if feasible, such

polyhedron is continuous and the optimal solution is found in a corner of it (Taha,

1992). A graphical representation of such a polytope is shown in Figure 2.1. Notice
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that the inequalities in the constraint set de�ne the polytope and limit the feasible

region of the problem. This example is of a feasible region in a two-dimensional

space.

2.1.2 Integer programming

An special case of Linear Programming problems is de�ned when all decision

variables, or some decision variables, of the problem are integers. A integer problem

keeps the same qualities of a continuous linear problem and only di�ers by adding

the restriction that the solution must be integer in at least one variable. By adding

constraints of integer variables, the feasible region is discretized and the convex cover

is formed by points instead of the full polytope of a continuous case. A graphical

example of such a polytope is shown in Figure 2.2. Note that, similarly to the

continuous case, each inequality in the constraint set limits the polytope, but only

the points de�ne the feasible region. The example is of a feasible region in a two-

dimensional space.

Formally, the canonical form of an integer problem is de�ned in Equation (2.2),

maxZ = Cx (2.2)

s.t. Ax ≤ b,

x ≥ 0,

x ∈ Zn, (2.3)

where x is a vector representing the decision variables among which there are

one or more integer variables, as stated in Equation (2.3). The vector C and b

represent, respectively, all costs and resources that cannot be exceeded, de�ned as

the known coe�cients in the problem. The matrix A of coe�cients of the constraints

represents the available resources.
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Figure 2.2: Representation of an integer polytope in a two-dimensional space.

In Operational Research, there exist many combinatorial integer problems.

In general, integer problems are NP-complete (Garey and Johnson, 1990; Papadim-

itriou, 1994). Some examples of combinatorial integer problems include the following:

• Knapsack problems that aim to the maximization of the total value obtained

by a selection of items with certain weight and value to be carried in a knapsack

without exceeding the limit weight. This is an integer problem because the

items must be included whole, not in halves or parts.

• Assignment problem that aims to match an equal amount of agents and tasks,

where the assignment of a speci�c task to an speci�c agent has a known cost.

Each agent can only have one task assigned and each task only can be assigned

to one agent. The objective is to minimize the cost of the assignment.

• Routing problems in which a set of one or more agents are in charge of providing

a service or a product to a set of clients. Each client must be visited only once.
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Distances and travel times are known beforehand. The objective is to minimize

the total travel distance of the tours.

All these problems have solutions that are integer and therefore are considered

linear integer problems. This dissertation studies a bi-objective routing problem

to simultaneously minimize two con�ictive objectives: distance and latency. In

particular, we focus in the characterization of this combination of objectives under

two di�erent scenarios: a single agent and a �eet of agents to perform the visiting.

In this research, we propose several solution methodologies for such a combination

of objectives. Sections 2.2, 2.4, 2.3, and 2.5 provide the basis of the routing theory

involved in the formal characterization of our research.

2.2 Traveling Salesman Problem

As previously mentioned, in the introduction part of this chapter, we study a

bi-objective problem that simultaneously optimizes two con�ictive objectives: total

travel distance and total waiting time (or latency) in two di�erent scenarios: in a

single tour or in a set of tours of a �eet of vehicles.

This section as well as Section 2.3 brie�y discuss the distance objective and

the two key distance-related problems we employ throughout this dissertation. The

minimization of the total travel distance is an economic decision taken by a company

eager to keep the cost of visiting the clients as low as possible. In a routing context,

this describes the objective of the well-studied Traveling Salesman Problem.

The Traveling Salesman Problem (tsp) is the principal problem in vehicle-

routing theory (Bellmore and Nemhauser, 1968; Dantzig et al., 1954; Dantzig and

Ramser, 1959; Flood, 1956; Kruskal, 1956). This problem aims to the minimization

of the total travel distance of a single-vehicle, or single-agent, tour. Such an agent
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departs from a known depot to visit a set of clients, the exact locations and all

inter-travel times known beforehand, restricted to visit each of the clients exactly

once and to return to the depot at the end of the tour. Figure 2.3 shows a graphical

representation of a single-vehicle tour to visit a set of ten clients. Each grey arrow

depicts a possible connection among clients and the depot whereas the darker lines

denote the tour followed by the agent.

Figure 2.3: Graphical example of a small tsp solution in an instance of ten vertices.

tsp is a combinatorial widely studied problem (Applegate et al., 2007; Cordeau

et al., 2007; Dantzig and Ramser, 1959; Gansterer and Hartl, 2018; Gutin and Pun-

nen, 2006; Ho�man et al., 2013; Khodabandeh et al., 2017; Laporte, 1992, 2006;

Mjirda et al., 2017; Modares et al., 1999; Toth and Vigo, 2014), mostly due to the

simplicity with which it is stated and the complexity it has (Papadimitriou, 1994).

tsp is used for a wide range of applications, some examples are the following:

• Delivery: the most intuitive application of the tsp, from school-bus routing

(Bowerman et al., 1995; Laporte et al., 1995; Newton and Thomas, 1969; Park

and Kim, 2010), geographic information system (Curtin et al., 2014; Jung

et al., 2006), drone assistance (Murray and Chu, 2015), to GPS improvements
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(Camara and Loureiro, 2000; Cook, 2012; Dare and Saleh, 2000; Jung et al.,

2006), this is clearly a well-known reference for this problem.

• Drilling, which refers to the minimization of the total numbers of moves in

a computer controlled drill (Grötschel et al., 1991; Lin and Kernighan, 1973;

Onwubolu, 2004).

• Computer wiring (Lenstra and Kan, 1975), refers to the minimization of the

wire used to link computer components. The components have an established

position and the goal is to join them all with the minimum amount of wire,

starting and ending in non-speci�ed component.

Several formulations of this problem have been reported, such as those of La-

porte (1992); Miller et al. (1960); Orman and Williams (2007). A classic formulation

for this problem is de�ned on a complete directed graph G = (V,A), where A denotes

the arc set and V={v1, v2, v3, . . . , vn} is the vertex set; n is the number of vertices

the agent must visit. The matrix C = tij represents the costs to travel from client i

to client j. Binary decision variables xij are de�ned as,

xij =

1, if arc from vertex i to vertex j is included in the tour,

0, otherwise.

With these decision variables, the mathematical formulation for the tsp is

de�ned as follows:

min
n∑
i=1

n∑
j=1

tijxij (2.4)

subject to
n∑
i=1
i 6=j

xij = 1, ∀j (2.5)
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n∑
j=1
i 6=j

xij = 1, ∀i (2.6)

∑
(i,j)∈A
i∈S

j∈V \S

xij ≥ 1, ∀S ⊂ V (2.7)

xij ∈ {0, 1}, (2.8)

where Equation (2.4) depicts the tsp objective of minimizing the total travel distance

of the vehicle. The sets of Equations (2.5) and (2.6), both of cardinality n, guarantee

that the agent visits every vertex only once. To guarantee that no solution contains

subtours, the set of Equations (2.7) with cardinality 2n is used. Lastly, Equation

(2.8) corresponds to the integer nature of the variables. In general, the number

of solutions of an instance of tsp is n!, where n denotes the size of the instance

(Applegate et al., 2007; Laporte, 2006; Papadimitriou, 1994).

Metaheuristic Algorithms

Exact
Algorithm

Nature based

Approximation
Method

Simulation
Method

Ant Colony

Bee Colony

Swarm
Optimization

Evolutive
Algorithms

Genetic
Algorithm

Memetic
Algorithm

Simulated
Annealing

Scatter Search

Local Search

Tabu Search

GRASP

VNS

Scatter
Search

Figure 2.4: Synoptic table depicting several solution methods employed in solving

combinatorial problems, among which routing problems are immersed.
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Due to its complexity (Papadimitriou, 1994), there exist not only improve-

ments to the known mathematical formulations, but heuristic algorithms to produce

good quality solutions faster. A general graphical depiction of some approximated

techniques for the tsp is shown in Figure 2.4, where several solution approaches are

summarized. The most representative methodologies employed to solve tsp include.

• Approximation methods that attempt to �nd approximate solutions with a

certainty of the distance between the approximated solution and the exact

one. Examples of works using approximation methods include Arora (1998);

Asadpour et al. (2010); He and Xiang (2017); Karp (1977); Karpinski et al.

(2015), among others. The principal di�erence between an approximation

algorithm and a heuristic or a simulation is that an approximation algorithm

involves a mathematical proof to certify the distance between the approximated

and the exact solution (Johnson, 1974).

• Simulation methods, such as:

� Monte Carlo simulations (Chen and Aihara, 1995; Hammersley, 1960; Lee

and Choi, 1994; Powley et al., 2012; Vanderbilt and Louie, 1984; Wong

and Liang, 1997) and Markov simulations (Martin et al., 1992; Ulmer

et al., 2017).

• Heuristic methods are techniques to quickly produce near optimal solutions for

NP-hard problems such as method deals with a trade-o�, losing the assurance

of optimality by minimizing computation time (Silver et al., 1980; Zanakis

et al., 1989). There exist several heuristic types employed for solving tsp:

� Constructive heuristics that part from constructing good quality solutions

based on the structure of the problem as in Bentley (1992); Gendreau

et al. (1992); Lin and Kernighan (1973); Rosenkrantz et al. (1977). A
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disadvantage of such heuristics is the greediness creating apparently good

solutions in the beginning while being stuck with expensive decisions later

on due to the local blindness during the construction process.

� Local-search heuristics that take a solution constructed beforehand and

disturb it with the goal of improving it by examining neighborhoods

(Freisleben and Merz, 1996; Gu and Huang, 1994; Johnson, 1990; John-

son and McGeoch, 1997; Paquete and Stützle, 2003; Voudouris and Tsang,

1999).

� Combined heuristics that combines both of the above types (Gendreau

et al., 1992).

• Metaheuristics that are algorithms de�ned as higher-level procedures, designed

to employ a heuristic to provide su�ciently good solutions (Gendreau and

Potvin, 2010; Glover and Kochenberger, 2006). There exist several types of

metaheuristics, including:

� Nature colony optimization, based in natural systems such as ant colonies

(Bianchi et al., 2002; Chen and Chien, 2011; Dorigo and Gambardella,

2016, 1997; Dorigo et al., 2006; Duan and Yu, 2007; Junjie and Dingwei,

2006), bee colony (Hu and Zhao, 2009; Karaboga and Gorkemli, 2011;

Marinakis et al., 2011; Teodorovic et al., 2006; Wong et al., 2008, 2010)

or swarm optimization (Chen and Chien, 2011; Clerc, 2004; Lope and

Coelho, 2005; Marinakis and Marinaki, 2010; Tasgetiren et al., 2007; Wang

et al., 2003). The main idea of such procedures is to recreate animal

behaviors.

� Simulated annealing, inspired on annealing in metallurgy, aims to ap-

proximate the global optimum of a given function in a large search space

(Chen and Chien, 2011; Malek et al., 1989; Randelman and Grest, 1986;
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Vanderbilt and Louie, 1984), among others.

� Local-search-improvement metaheuristics are algorithms based on the

idea of avoiding any local search heuristic being hindered at a local op-

timum. These algorithms include tabu search (Fiechter, 1994; Gendreau

et al., 1998; Knox, 1994; Malek et al., 1989; Misevi£ius, 2004; Thamil-

selvan and Balasubramanie, 2009; Toth and Vigo, 2003), variable neigh-

borhood search (Burke et al., 2001; Carrabs et al., 2007; Da Silva and

Urrutia, 2010; Hemmelmayr et al., 2009; Hernández-Pérez et al., 2009;

Mladenovi¢ and Hansen, 1997) as well as guided local search procedures

(Kilby et al., 1999; Lope and Coelho, 2005; Voudouris and Tsang, 1999).

� Greedy randomized adaptive search procedure, better known as GRASP,

that constructs an initial solution by iterating a greedy constructive al-

gorithm and sequentially applies iterative improvements through a local

search. Some examples are found in the research of Hernández-Pérez et al.

(2009); Marinakis et al. (2005)

� Genetic algorithms take inspiration in evolutionary theory, these algo-

rithms are based on the idea of having a set of initial solutions and it-

erating it under certain conditions to improve the population (Ahmed,

2010; Choi et al., 2003; Duan and Yu, 2007; Freisleben and Merz, 1996;

Grefenstette et al., 1985; Krasnogor and Smith, 2000; Larranaga et al.,

1999; Merz and Freisleben, 1997; Potvin, 1996; Thamilselvan and Bala-

subramanie, 2009; Ulder et al., 1990).

tsp is considered a company-centered problem as it minimizes the travel dis-

tance, which can be seen as the minimization of costs for the company in charge

of providing the service to the clients. In the rest of this dissertation we discuss

some other routing problems and the multi-objective approach we aim for. Section
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2.3 gives a general overview of a natural generalization of tsp: multi-agents rout-

ing. Section 2.6 provides a general overview of bi-objective problems involving the

minimization of travel distance.

2.3 m-Traveling Salesman Problem

A natural generalization of tsp comes from not being restricted to having just

a single-vehicle with in�nite capacity to visit the clients, but instead, employing a

�eet of vehicles with in�nite capacity to attend the requests of the client set. This

generalization must satisfy certain conditions: every vehicle in the �eet must have at

least one assigned client. Each vehicle must not execute subtours. This problem is

known as the multiple Traveling Salesman Problem or as the m-Traveling Salesman

Problem (m-tsp) (Bektas, 2006), where them denotes the size of the �eet to perform

the visits. A graphical representation of this problem is shown in Figure 2.5. Its

applications include

Figure 2.5: Graphical example of an m-tsp instance.

• Routing of vehicles, such as school buses or delivery trucks. The objective is to
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obtain a tour for each available vehicle, while having a �xed depot from where

all vehicles must part and arrive at the end of their tours. These approaches

aim to minimize the total travel distance by all buses. Examples include works

of Bekta³ and Elmasta³ (2007); Clarke and Wright (1964); Li and Fu (2002);

Min (1989); Park and Kim (2010); Schittekat et al. (2006, 2013); Tang et al.

(2000)

• Door-to-door-querist, when a set of querists interview citizens at their homes,

each interviewer must leave from a �xed point and have a set of homes to visit

(Gilbert and Hofstra, 1992; Kergosien et al., 2009; Sipahioglu et al., 2008)

• Satellite system navigation. In global navigation satellite system (GNSS)

surveying networks, the satellites transmit signals for navigation purposes

(Groves, 2013) and determine the geographical position of unknown points

above Earth by satellite equipment. Such application aims to �nd the best

order of sessions for the receivers to allocate such unknown points and when

having several receivers it can be formulated as anm-tsp (Saleh and Chelouah,

2004).

• Crew scheduling: a delivery company has set of agents to deliver items or

goods to a set of clients, each agent must leave from a central depot and come

back to it at the end of its tour (Lenstra and Kan, 1975; Ra�, 1983; Svestka

and Huckfeldt, 1973; Zhang et al., 1999).

By adding capacity constraints, m-tsp is transformed into several more real-

istic types of vehicle-routing problems (vrp). Literature for tsp is extensive, but

m-tsp has not received the same amount of attention (Bektas, 2006). Several for-

mulations for m-tsp have been reported in literature (Bektas, 2006; Gavish, 1976;

Henry, 1981; Hong and Padberg, 1977; Kara and Bektas, 2006; Kergosien et al.,
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2009; Rao, 1980; Svestka and Huckfeldt, 1973). A classic mathematical formulation

is de�ned on a complete directed graph G = (V,A), where A denotes the arc set and

V={v1, v2, v3, . . . , vn} is the vertex set and v0 is the depot from where all vehicles

part and come back at the end of their tours. A matrix C = tij represents the cost

it has to travel from client i to client j; the total of agents in the �eet is denoted as

m. Binary decision variables xij are de�ned as,

xij =

1, if the arc from vertex i to vertex j is used on the tour,

0, otherwise.

With these decision variables, the m-tsp mathematical formulation is de�ned

as follows,

min
n∑
i=1

n∑
j=1

tijxij (2.9)

subject to
n∑
j=2

x0j = m (2.10)

n∑
i=1

xj0 = m (2.11)

n∑
i=1

xij = 1, ∀j = 2, . . . , n (2.12)

n∑
j=1

xij = 1, ∀i = 2, . . . , n (2.13)

∑
j∈S

xij ≥ |S| − {1, ∀S ⊂ V \ {1}, S 6= ∅ (2.14)

xij ∈ {0, 1}, (2.15)

where Equation (2.9) describes the m-tsp objective of minimizing the total

traveled distance of the m-vehicle �eet. Equations (2.10) and (2.11) express that
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exactly m vehicles are active by ensuring that all m agents parts from the depot and

come back at it at the end of the tour. Equations (2.12) and (2.13) guarantee that

each client is visited once by the agent assigned, and Equation (2.14), guarantees

that no tour has subtours in it. Lastly, Equation (2.15) corresponds to the integer

nature of the variables.

According to Garey and Johnson (1990), k-tsp retains the computational com-

plexity of tsp: it also is NP-hard. Figure 2.4 in Section 2.2 depicts several solution

methods. The most representative methodologies employed for solving m-tsp in-

clude:

• Approximation methods that aim to obtain approximated solutions but with a

certainty of the distance between the optimal solution and the approximated

one (Gavish and Srikanth, 1986; Jonker and Volgenant, 1988; Laporte, 1992).

• Simulation methods that attempt to imitate the theoretical behavior of the

m-tsp, such as neural network (Modares et al., 1999).

• Heuristic methods are algorithms to quickly obtain and optimal solutions (Sil-

ver et al., 1980; Zanakis et al., 1989), such as:

� Constructive heuristics that exploit the structure of the problem to con-

struct good quality solutions (Gilbert and Hofstra, 1992).

� Local-search heuristics disturb a solution with the goal of improving it by

searching local neighborhoods (Shokouhi rostami et al., 2015)

� Combined heuristics (Gilbert and Hofstra, 1992)

• Metaheuristics are higher-level procedures designed to employ a heuristic to

provide good solutions (Gendreau and Potvin, 2010; Glover and Kochenberger,

2006), such as:
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� Nature colony optimization, based on natural systems such as ant colony

or swarm optimization (Ghafurian and Javadian, 2011; Junjie and Ding-

wei, 2006; Sofge et al., 2002).

� Simulated annealing (Geng et al., 2011; Nallusamy et al., 2010).

� Local-search-improvement heuristics (Nallusamy et al., 2010; Shokouhi ros-

tami et al., 2015).

� Genetic algorithms (Carter and Ragsdale, 2006; Fogel, 1990; Király and

Abonyi, 2011; Sofge et al., 2002; Tang et al., 2000; Zhang et al., 1999;

Zhao et al., 2008)

2.4 Minimum Latency Problem

In this dissertation, two main objectives are explored: the minimization of the

total travel distance of a vehicle or a �eet of vehicles and the minimization of the

total waiting time of the clients.

To minimize the total travel distance is to pursue an economic objective for

the company. We aim to incorporate a client-oriented objective in a routing decision

by minimizing the waiting time of the clients in the tour. A waiting period is known

as latency.

The Minimum Latency Problem mlp, also known as the Traveling Repairman

Problem trp and as the Delivery Man Problem dmp (Blum et al., 1994), aims to

serve as quick as possible a set of clients waiting to be given a service provided by

a company in charge of a single agent assigned to make the visiting. As in the tsp,

an agent must visit each client only once, restrained to part from and return to a

known �xed depot, knowing all exact locations of the clients and therefore all travel
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times. As Blum et al. (1994) states, at �rst glance, tsp and mlp may seem similar

problems but in reality this is not the case; The main di�erences are,

• Objectives: two problems is that they do not pursue the same goals. mlp is a

client-centered problem which aims to minimize the time each client awaits for

a service despite the cost the tour may have (Afrati et al., 1986; Blum et al.,

1994; García et al., 2002).

• Service times: for mlp the agent must also know the service time required to

attend each client.

• Metric: latency and distance are computed completely di�erently (Blum et al.,

1994).

Let us de�ne mlp on a complete directed graph G = (V,A), where A denotes

the arc set and V={v0, v1, v2, v3, . . . , vn} represents the vertex set. v0 denotes the

depot and v1, . . . , vn the clients to visit. A non-negative matrix C = ci,j associated.

Let us denote the service time at client i as si and the travel time from vertex i

to vertex j as tij. The total waiting time is de�ned by the time the agent takes

to reach the client's location. By considering the time the agent spent with the

previous clients before arriving to client i and considering all the traveling times

before reaching i,

ci,j = si + tij. (2.16)

A feasible solution for mlp is a permutation of the clients, with the depot in

the �rst position. Latency at vertex i is the length of the path traveled by the agent

from the depot to i,

`i =
i∑

j=1

cj−1,j. (2.17)
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The total latency of the tour is therefore,

L =
n∑
i=1

`i

=
n∑
i=1

(n− i+ 1)ci−1,i. (2.18)

Afrati et al. (1986); Angel-Bello et al. (2013); Angel-Bello et al. (2013); Blum

et al. (1994); Gouveia and Voÿ (1995); Lucena (1990); Nagarajan and Ravi (2008);

Orman and Williams (2007); Picard and Queyranne (1978), among others, highlight

a contribution of the position of the clients in the tour, which means, each arc

will contribute a certain weight in the �nal calculation of the total latency of the

tour. This contribution is considered a dragged weight throughout the tour until the

visiting is over. Figure 2.6, illustrates graphically the di�erence in the calculation of

the metrics in the latency (mlp) and the distance (tsp) objectives. Notice Figure

2.6a illustrates the straightforward calculation of the distance objective. Figure 2.6b,

exempli�es the importance in the order of the clients in the tour due to the local

contribution of each arc and the impact in the total latency of the tour.
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(b) Latency objective L,

L = `0 + `a + `b + `c + `d,

`i = ti,i + ti,j , `0 = 0

L = 0 + (ta,a + t0,a) + ((ta,a + t0,a) + tb,b +

ta,b) + . . . + ((((ta,a + t0,a) + (tb,b + ta,b)) +

(tc,c + tb,c) + (td,d + tc,d))

L = 4(ta,a + t0,a) + 3(tb,b + ta,b) + 2(tc,c +

tb,c) + (td,d + tc,d)

Figure 2.6: The di�erence in the metrics to evaluate the objectives of the tsp and

the mlp. To minimize the travel distance (see Figure 2.6a), only the sum of all travel

times is considered. Figure 2.6b illustrates the contribution of every visited vertex

in the �nal latency of the tour.

Note that in Figure 2.6a, the returning arc is necessarily considered due to the

de�nition of tsp and on Figure 2.6b this returning arc is not considered. This is due

to the de�nition of mlp: the latency aimed to minimize is at the clients. The vehicle

must return to the depot at the end of the tour, but that �nal arc is not considered

in the total latency of the tour. Figure 2.7 shows a graphical representation of a

single-vehicle tour in charge of visiting a set of ten clients while minimizing the total
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latency. Each grey arrow depicts a known possible connection among all clients and

the depot. In this example, no returning arc is depicted due to mlp de�nition; the

darker lines indicate the tour the agent follows to visit the clients.

Figure 2.7: Graphical example of an small mlp solution in an instance of ten vertices.

The interest in the mlp has grown in the Operations Research area (Blum

et al., 1994; Chaudhuri et al., 2003; García et al., 2002; Lucena, 1990). Example

applications include:

• Humanitarian logistic: the delivery and supply of essential provisions during

natural disasters or emergencies is a direct application of the minimization of

the latency due to the importance in providing essential items to the victims

of a disaster in the shortest possible time (Caunhye et al., 2012; Ferrer et al.,

2016; Kovács and Spens, 2007, 2009; Leiras et al., 2014; Overstreet et al., 2011;

Stephenson, 2017; Tomasini et al., 2009; Vargas et al., 2017).

• Medicine: the study of delays between an impulse and the time it takes ac-

tion in the human body (Darcis et al., 2017; Goldfarb et al., 2018; Goodwill,

1965; John and Picton, 2000; Kohara et al., 2000; Littner et al., 2005; Madsen
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Figure 2.8: Multi-level network used to formulate the mldp.

et al., 2018; Paniagua-Soto et al., 2013; Saito et al., 2018; Squires et al., 1975;

Sternberg et al., 1978).

• Telecommunications: minimization of the delay in real-time connections such

as wireless networks (Crowcroft et al., 2015; Grout et al., 2007; Gummadi

et al., 2002) and communication systems (Crowcroft et al., 2015; Joo Ghee

et al., 2009; Kao et al., 2017; Lichtsteiner et al., 2008; Lu et al., 2007; Przybyª,

2018; Schurgers et al., 2002).

• Routing: improvement of the response time in a client-centered approach

(Bock, 2015; Bulhoes et al., 2018; Das et al., 2018; Tsitsiklis, 1992).

In a routing context, research of latency has lead to the development of several

mathematical formulations to characterize it (Angel-Bello et al., 2013; Gouveia and

Voÿ, 1995; Méndez-Díaz et al., 2008; Picard and Queyranne, 1978; Sarubbi et al.,

2008). Among them, the formulation with the best performance is reported by Angel-

Bello et al. (2013). Their formulation is based on a multi-level network, shown in

Figure 2.8, which has n + 1 levels. Such network is inspired on a previous work of

Picard and Queyranne (1978) for a time-dependent tsp.
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By de�nition, solutions to mlp are permutations of all vertices belonging to V

with the depot in the �rst position. On each level `i, i > 0 of the network, a vertex vi

is present: a solution corresponds to a path that visits exactly one vertex per level.

No vertex can be selected on multiple levels.

xi,k =

1, if vertex i is selected on level k on the network,

0, otherwise.

yi,j(k) =

1, if vertex j on level k + 1 follows vertex i on level k,

0, otherwise.

Therefore, mlp is formulated as:

min F1 = n
n∑
i=1

c0ix
1
i +

n−1∑
k=1

n∑
i=1

n∑
j=1

(n− k)cijyi,j(k) (2.19)

subject to
n∑
k=1

xi,k = 1, i = 1, 2, . . . , n (2.20)

n∑
i=1

xi,k = 1, k = 1, 2, . . . , n (2.21)

n∑
j=1
j 6=i

yi,j(k) = xi,k, i = 1, 2, . . . , n, k = 1, 2, . . . , n− 1 (2.22)

n∑
j=1
j 6=i

yj,i(k) = xi,k+1, i = 1, 2, . . . , n, k = 1, 2, . . . , n− 1 (2.23)

xi,k ∈ {0, 1}, i = 1, 2, . . . , n, k = 1, 2, . . . , n (2.24)

yi,j(k) ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n, j 6= i, k = 1, 2, . . . , n. (2.25)

The minimization of the total waiting time of the clients is de�ned by Equation

(2.19). Equation (2.20) guarantees that each vertex occupies a single position in any



Chapter 2. Theoretical framework 35

feasible solution. Equation (2.21) guarantees that each position is occupied by no

more than one vertex in any feasible solution. Equation (2.22) ensures that only one

arc leaves from position k, exactly from the vertex taking that position, and Equation

(2.23) imposes that only one arc at a time can arrive to position k+1, exactly to the

vertex occupying that position. Equations (2.20) to (2.23) require that all possible

solutions for the mldp can be represented on the multi-level network previously

de�ned. Equations (2.24) and (2.25) correspond to the nature of the variables.

Note that variables yi,j(k) are previously de�ned as binary but they are handled as

continuous variables in the model. This is achieved by Equations (2.22) and (2.23),

which guarantee that only one arc leaves from position k and arrives exactly to the

vertex occupying the position k+ 1. These pair of constraints ensures that yi,j(k) is

either one or zero.

mlp is NP-hard (Afrati et al., 1986). Figure 2.4 re�ects the state of the art in

approximation techniques used in combinatorial problems, such techniques are also

used for mlp. Solution methods for mlp include:

• Approximation methods : to �nd approximate solutions with a certainty of the

distance between the approximated solution and the exact one (Archer and

Williamson, 2003; Archer et al., 2008; Arora and Karakostas, 1999; Frederick-

son and Wittman, 2012; Garg, 1996; Goemans and Kleinberg, 1998).

• Simulation methods that attempt to imitate the behavior of mlp, such as

Monte Carlo simulations (Agnihothri, 1988).

• Heuristic methods to quickly produce near optimal solutions (Silver et al.,

1980; Zanakis et al., 1989), such as

� Constructive heuristics that construct good quality solutions by using

the structure of the problem (Frederickson and Wittman, 2012; Ma et al.,



Chapter 2. Theoretical framework 36

2015).

� Local-search heuristics that disturb a solution with the goal of improving

it by searching local neighborhoods (Bjeli¢ and Popovi¢, 2015).

� Combined heuristics (Bjeli¢ and Popovi¢, 2015).

• Metaheuristics are higher-level procedures that employ a heuristic to provide

good solutions (Gendreau and Potvin, 2010; Glover and Kochenberger, 2006)

such as:

� Nature colony optimization (Shyu et al., 2004).

� Simulated annealing (Ma et al., 2015; Moshref-Javadi and Lee, 2016).

� Local-search-improvement metaheuristics, such as tabu search (Dewilde

et al., 2013), variable neighborhood search (Bjeli¢ et al., 2013; Moshref-

Javadi and Lee, 2016; Salehipour et al., 2011), and guided local search

procedures (Vargas et al., 2017).

� GRASP (Ferrer et al., 2016; Salehipour et al., 2011; Silva et al., 2012).

� Genetic algorithms (Bang and Nghia, 2010).

Published research for mlp is not as extensive as the research available for

tsp. It ranges from mainly approximation techniques (Archer and Williamson,

2003; Archer et al., 2008; Arora and Karakostas, 1999; Garg, 1996; Goemans and

Kleinberg, 1998) to heuristics and metaheuristics (Salehipour et al., 2011; Silva et al.,

2012).

This problem brings a new point of view to classical routing problems by giving

priority to the clients waiting to be attended. This problem has a client-centered

objective important to improve quality in the service given by a company.
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2.5 k-Minimum Latency Problem

Similarly to tsp, a natural generalization of mlp comes from not being re-

stricted to having just a single agent but to employ a �eet of vehicles instead. Every

vehicle in the �eet must have at least one assigned client, each active vehicle must

not execute sub-tours and every client can only be visited once. This problem is

known as the Multiple Repairman Problem or as the k-Traveling Repairman Prob-

lem (k -trp) (Fakcharoenphol et al., 2003; Nucamendi-Guillén et al., 2016; Onder

et al., 2017).

In the multi-vehicle latency approach, k -trp, each one of the k agents is in

charge of a subset of clients. Similarly than in the one-tour approach, each agent

knows beforehand the exact location of each client, the service time spent on each

client, and the travel times among them. Similarly, the k tours in k -trp do not

contemplate returning arcs to the depot and only count the latency at the clients.

A graphical representation of k -trp instance is shown in Figure 2.9.

Figure 2.9: Graphical example of an k -trp instance.

A k -trp solution can be computed as k single tours. The latency is computed
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per tour and all k resulting latencies are summed to obtain the total latency of

the �eet. In Figure 2.9 the grey arcs depict possible connections among clients and

depot whereas the darker lines represent the arcs traveled by each agent in the tour,

di�ering in color, not considering the return arcs to the depot as it does not a�ect

at the objective.

Applications of the k -trp include:

• Routing: a �eet of vehicles ful�lls a service to a set of clients (Avci and Avci,

2017; González and Rivera, 2015; Ha Bang, 2018; Martin and Salavatipour,

2016).

• Humanitarian logistics: as in post-disaster resilience to schedule multiple teams

of repairmen to �x damaged facilities (Dikbyk, 2017; Ma et al., 2015).

There exist several formulations in literature for k -trp (Luo et al., 2014;

Nucamendi-Guillén et al., 2016; Onder et al., 2017); a multi-level formulation with

good computational results is reported in the works of Angel-Bello et al. (2017);

Nucamendi-Guillén et al. (2016). To formulate k -trp, let us declare a complete di-

rected graph G = (V,A), where A denotes the arc set and V={v0, v1, v2, v3, . . . , vn}

represents the vertex set, v0 denotes the depot, and v1, . . . , vn the clients to visit.

This multiple repairman problem has k vehicles to ful�ll the client requests and is

restricted to having all k agents active. Therefore, a bound on the number of clients

assigned to a client is,

N = n− k + 1. (2.26)

Equation (2.26) characterizes the worst-case scenario for each agent, which is

that all other agents only have one single client assigned. A non-negative matrix C =

cij represents the total cost it takes the agent to commence service at client i after

client j. Figure 2.10 represents the N + 1 multilevel network used to characterized



Chapter 2. Theoretical framework 39

1 

0 

1 

2 

3 

n-1 

n 

2 

3 

n-1 

n 

0 

1 

2 

3 

n 

n-1 

0 

1 

2 

3 

n 

n-1 

0 

Level 1 Level 2 Level 3 Level N Level N+1 

Figure 2.10: Multi-level network used to formulate the k -trp.

this problem mathematically: level one consists of a copy of all vertices associated

with clients v1, v2, . . . , vn, levels 2,3,. . .,N consist of a copy of all vertices belonging

in the set V , and level N + 1 represents the depot.

By de�nition, a feasible solution for k -trp is a set of k paths starting in the

depot and visiting vertices until all k agents have visited all vertices belonging to V .

In this network, each of the k paths to express a feasible solution can be successfully

represented by starting each path in a copy of the depot and visiting vertices in the

lower levels of the network. As stated by de�nition of k -trp, only one agent can

visit each client, this is to say a client i can only belong to one path. Each path

should only visit one vertex on each level below the starting level; if a path starts in

vertex l, then this path has l − 1 vertices associated. With this, decision variables

are de�ned as:

xi,l =

1, if client i is visited in position l in the path,

0, otherwise,
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yij(l) =


1, if client i in position l + 1 is followed by client j in the

position l in the path,

0, otherwise.

With these variables, the k -trp formulation is de�ned as follows,

min F1 =
n∑
j=1

c0j

N∑
l=1

ly0,j(k) +
n∑
i=1

n∑
j=1
j 6=i

cij

N−1∑
l=1

lyi,j(l) (2.27)

subject to
N∑
l=1

xi,l = 1, i = 1, 2, . . . , n (2.28)

n∑
i=0

xi,1 = k (2.29)

N∑
l=1

n∑
j=1

y0,j(l) = k (2.30)

n∑
j=1
j 6=i

yi,j(l) = xi,l+1, i = 1, 2, . . . , n; l = 1, 2, . . . , N − 1 (2.31)

y0,j(l) +
n∑
i=1
i 6=j

yi,j(l) = xj,l, j = 1, 2, . . . , n; l = 1, 2, . . . , N − 1 (2.32)

y0,j(N) = xj,N , j = 1, 2, . . . , n (2.33)

xi,l ∈ {0, 1}, i = 1, . . . , n; l = 1, . . . , N (2.34)

yi,j(l) ≥ 0, i = 1, . . . , n; j = 1, . . . , n; l = 1, . . . , N − 1. (2.35)

The minimization of the total waiting time of all the clients visited by the

�eet of vehicles is de�ned by Equation (2.27). Equation (2.28) guarantees that there

can only be one active vertex per level, meanwhile Equation (2.29) requires that
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each agent must visit at least a client, to ensure all k vehicles are active. Equation

(2.30) ensures all k vehicles are active, Equation (2.31) guarantees that only from

the vertices active in level l + 1, arcs can leave. Equation (2.32) guarantees that

from level l in the network can only arrive arcs to the active vertices in such level

and Equation (2.33) ensures that if a vertex in level N is active, level N + 1 must be

connected to the vertex active in level N . Equations (2.34) and (2.35) denotes the

nature of the variables. Note that variables yi,j(l) are previously de�ned as binary

but they are handled as continuous variables in the model. This is achieved because

binary variables xi,l determine the active vertices in the network and this simpli�es

�nding the k shortest paths from the active vertex in level l through the active

vertices in the intermediate levels. This is an uni-modular problem and, therefore,

there is no need to de�ne yi,j(l) as binary variables.

Due to the complexity of k -trp (Sitters, 2014), several approximation methods

and heuristics have been reported, such as:

• Approximation methods that �nd approximate solutions with a certainty of the

distance between the approximated solution and the exact one (Fakcharoen-

phol et al., 2003; Martin and Salavatipour, 2016; Sitters, 2014).

• Heuristic methods that quickly produce near optimal solutions. Some examples

of heuristics for k -trp include:

� Constructive heuristics that construct good quality solutions by using the

structure of the problem (Ma et al., 2015).

� Local-search heuristics that take a solution and disturb it with the goal

of improving it (Avci and Avci, 2017; González and Rivera, 2015).

� Combined heuristics that combine both heuristics types above.
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• Metaheuristics are procedures designed to employ a heuristic to provide good

solutions (Gendreau and Potvin, 2010; Glover and Kochenberger, 2006). Ex-

amples of metaheuristics for k -trp include:

� Simulated annealing, (Ma et al., 2015).

� Local-search-improvement metaheuristics such as variable neighborhood

search (Ha Bang, 2018), and guided local search procedures (Avci and

Avci, 2017; González and Rivera, 2015; Nucamendi-Guillén et al., 2016).

� GRASP, as in Ha Bang (2018)

2.6 Multi-objective optimization

Problems that consider a set of constraints while optimizing a single objective

are the main pillar of Operations Research (Ahuja et al., 1993; Frederick and Lieber-

man, 1982; Hillier and Lieberman, 1986; Taha, 1992). In general, a single-objective

problem is solved when an optimum solution is found and labeled as the best in a

set of possible solutions. All problems mentioned in Sections 2.2, 2.3, 2.4, and 2.5

are basic routing problems, each with a single objective function to optimize.

Solving real-life situations implies the challenge of taking decisions which in-

volves the optimization of several objectives simultaneously. A realistic approach to

real-life problems tends to involve several con�icting objectives and the challenge of

optimizing them all, leads to the rede�nition of best solution. Decision-making under

multiple objectives can no longer be de�ned under a single-objective preference and

this leads to the employment of multi-criteria or multi-objective optimization.

This area of study is mainly applied in �eld of science where optimal decisions

are made under a trade-o� among two or more con�ictive objectives (Deb et al.,
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2016; Ehrgott, 2005; Sengupta, 2016). Some examples of a con�ict in the objectives

are found in problems that aim to optimize contradictory objectives such as the

classic example or minimizing the cost of a vehicle while maximizing the comfort or

performance (Ehrgott, 2005). A multi-objective problem has no single solution that

simultaneously optimizes all objectives, this is to say, there exists a grand amount

of �optimal solutions� (Ehrgott, 2005; Romero, 1993). A solution is considered as a

trade-o�, as a decision among the best solutions among a set of alternatives that need

a de�ned criteria to rank them according to which the quality of the alternatives is

measured.

A multi-objective problem has the following general structure:

optimize f(X) = [f1(x), . . . , fi(x), . . . , fq(x)] (2.36)

subject to:

x ∈ X,

where Equation (2.36) denotes the search of e�cient solutions for the fi(x)

objectives simultaneously optimized, X is the feasible set, x the decision variables

vector and f(X) denotes the image of the feasible set. Multi-objective optimization

determines a subset, colloquially called trade-o�, of the feasible set of solutions for

which every belonging is a good solution in Pareto terms.

De�nition 2.6.1. Pareto optimal. A feasible solution x∗ ∈ X is e�cient or Pareto

optimal if there is no other solution x ∈ X such that f(x) ≤ f(x∗).

De�nition 2.6.2. Non-dominated point. If a solution x∗ is satis�es the de�nition

of e�cient solution, f(x∗) is called a non-dominated point.

De�nition 2.6.3. Dominance. If two solutions x1 and x2 belong to X, and f(x1) ≤

f(x2), it is said that x1 dominates x2 and f(x1) dominates f(x2).
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Figure 2.11: Basic de�nitions of Pareto optimality: two objective functions are being

minimized; the Pareto front is drawn in red.

De�nition 2.6.4. E�cient set. The set of all Pareto optimal solutions x∗ ∈ X is

called e�cient set and is denoted by XE.

De�nition 2.6.5. Non-dominated set. All non-dominated points YN : y∗ = f(x∗) ∈

Y, where x∗ ∈ XE is called the non-dominated set or Pareto front.

The above de�nitions are given in minimization terms of f(x), and are depicted

in Figure 2.11, where two objective functions are shown. Note that both objectives

are being minimized and the Pareto front is depicted in red. The e�cient set XE

(De�nition 2.6.4), is formed by all non-dominated points that their images belong to

the non-dominated set or Pareto frontier. In this particular example, two example

points are shown in green and purple, and their image is directly depicted in the

front. The non-dominated region is YN (De�nition 2.6.5), drawn in red.

A Pareto front has two important bounds to de�ne the range in which non-

dominated points can belong to; these bounds are used as reference points to several

solution methods: the ideal point, or lower bound, and the nadir point, or the upper

bound. Note that a Pareto-optimal solution is a vector of all values of a point in all
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objectives.

The ideal point, is the solution vector which includes the optimal values of all

objective functions, simultaneously optimized. In general, such solution corresponds

to a non-existing solution, due to the nature of a multi-objective problem in which

con�ict among objectives exists.

De�nition 2.6.6. Ideal point. The ideal point yI = (yI1 , . . . , y
I
q ) is given by

yIk = minx∈Xfk(x) = min y∈Y yk. (2.37)

Similarly, the nadir point is the solution vector which includes the worst value

of all objective functions.

De�nition 2.6.7. Nadir point yN = (yI1 , . . . , y
I
q ) is given by

yNk = maxx∈XE
fk(x) = max y∈YNxk. (2.38)

f1

f2

yN

yI

Figure 2.12: Ideal point (yI) and nadir point (yN) depicted in a two-objective space.

Both objectives are being minimized.

Figure 2.12 shows an example a bi-objective problem which aims to minimize

both objectives. The ideal point is that in which both objectives simultaneously have
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the minimum value and the nadir point is that worst-case scenario. In general, the

nadir point is not easy to obtain. Several heuristics have been proposed to estimate

it (Bechikh et al., 2010; Deb and Miettinen, 2008, 2010; Deb et al., 2006; Korhonen

et al., 1997; Metev and Vassilev, 2003), but one basic estimation of the nadir point

is by using pay-o� tables.

On a multi-objective problem which optimizes p objectives simultaneously, the

pay-o� table is obtained by solving each of those p objectives in a single-objective

approach, each of them subject to the original set of constraints of the problem.

The ideal point is formed by all those optimal solutions, yIk,= minx∈Xfk(x
k),∀k =

1, . . . , p. By having the ideal point, the pay-o� table is computed by evaluating each

optimal solution on each objective. These evaluations can be shown in a table in

which the diagonal is formed by the ideal point previously found (Table 2.1).

Table 2.1: Pay-o� table obtained from the ideal point.

x1 x2 . . . xp−1 xp

f1 f1(x
1) = yI1 f1(x

2) . . . f1(x
p−1) f1(x

p)

f2 f2(x
1) f2(x

2) = yI2 . . . f2(x
p−1) f2(x

p)
...

...
...

. . .
...

...

fp−1 fp−1(x
1) fp−1(x

2) . . . fp−1(x
p−1) = yIp−1 fp−1(x

p)

fp fp(x
1) fp(x

2) . . . fp(x
p−1) fp(x

p) = yIp

In this dissertation, we employ a pay-o� setting to establish a range in which

the Pareto front is located and �nd each point belonging to it. Multi-objective opti-

mization has several techniques to obtain a front (Ehrgott, 2005). Classic methods

are

• Weighted sum: transform the set of objectives into a weighted sum (Ehrgott,
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2005), where each weight denotes the importance of each criterion to optimize

(Athan and Papalambros, 1996; Kim and de Weck, 2005; Marler and Arora,

2010; Smith et al., 1982).

• ε-constraint: solve one objective subject to the original set of constraints plus

the rest of the objectives constraint to bounds de�ned as ε (Aghaei et al., 2011;

Bérubé et al., 2009; Laumanns et al., 2006; Mavrotas, 2009).

Heuristics and metaheuristics are also applied to obtain approximations to the

Pareto front. Most approaches are iterative: only a single solution is obtained on

each iteration and thus multiple runs are needed to �nd a front. An example of such

techniques are genetic-based heuristics (Coello Coello, 1999; Fonseca and Fleming,

1995; Fonseca et al., 1993; Rey Horn et al., 1994; Zitzler, 1999; Zitzler and Thiele,

1998, 1999). The most commonly used metaheuristic is called NSGA-II (Deb et al.,

2000).

2.7 Multi-objective distance-centered routing problems

We study the simultaneous minimization of the total travel distance and the

total waiting time. In this section, each objective is studied in combination with

others.

2.7.1 Multi-objective Traveling Salesman Problem

The Traveling Salesman Problem (tsp) has been extended with several addi-

tional objectives:

• Scheduling: to minimize the setup costs of a production line de�ned as a tsp

tour (Tang et al., 2000).
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• To minimize the traveled distance while maximizing the collected pro�ts of a

tour (Bérubé et al., 2009; Feillet et al., 2005; Jozefowiez et al., 2008).

• To minimize the total traveled distance and maximize the bene�t obtained by

the company has been studied in Angus (2007); Samanlioglu et al. (2008).

• To minimize the traveled cost and distance of a set of clients to be visited

while minimizing the length of the tour (Elaoud et al., 2010; Jaszkiewicz and

Zielniewicz, 2009; Paquete and Stützle, 2003, 2009; Paquete et al., 2004).

• To minimize the traveled distance and maximize the equalization of the vehicle

travel times (Sutcli�e and Board, 1990).

• To minimize the travel cost and distance of a set of clients to be visited (Lust

and Teghem, 2010; Peng et al., 2009).

2.7.2 Multi-objective m-Traveling Salesman Problem

Similarly several multi-objective approaches exist for m-tsp:

• To minimize the weighted sum of the total traveling costs of all salesmen and

the highest traveling cost of any single salesman (Shim et al., 2012a,b).

• To upgrade the production of iron and steel companies by formulating their

production lines as m-tsp instances while minimizing setup costs simultane-

ously (Tang et al., 2000).

2.8 Multi-objective latency-centered routing problems

The minimization of the total waiting time of the clients combination with

others in literature. This section introduces such multi-objective problems.
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2.8.1 Multi-objective Minimum Latency Problem

Main applications of the Minimum Latency Problem mlp are focused on hu-

manitarian logistics:

• Minimization of the sum of the waiting time of a�ected areas in a disaster while

simultaneously minimizing the sum of the expected value and the variance of

the total cost of the relief chain as studied in (Bozorgi-Amiri et al., 2013).

• Minimization of the sum of the total waiting time of disaster areas while mea-

suring time of response, equity of the distribution or reliability and security of

the operation tours (Vitoriano et al., 2011).

• Minimizing the total waiting time of an earthquake disaster place while opti-

mizing emergency relief conditions (Naja� et al., 2013).

2.8.2 Multi-objective k-Minimum Latecy Problem

Research for multi-objective multi-vehicle minimization of latency includes

emergency areas and the improvement of sustainability of companies:

• Minimize the total latency of a set of tours while minimizing costs and enviro-

mental emissions while maximizing responsiveness of the network (Ebrahimi,

2018).

• Minimize the total cost of the routing while considering both: transportation

costs and penalty costs of not delivering commodities to their destination while

simultaneously minimizing the number and waiting time of injured people who

have not been served (Tavakkoli-Moghaddam et al., 2016).
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2.9 The simultaneous minimization of latency and distance

in routing problems

Mono-objective decisions are taken by considering an objective function subject

to a set of limiters in the resources to be considered. Multi-objective optimization

takes several objectives and optimizes them simultaneously, all subject to a set of

constraints to take into account. We present a bi-objective problem that arises in the

context of logistic activities of distribution-and-service companies which specialize

in customer service by attending requests of product delivery and/or maintenance

services. We seek a trade-o� between the company performing the service and the

client receiving it, by simultaneously minimizing distance and latency of a tour, or

a set of tours, under certain assumptions.

Chapter 3 introduces our bi-objective problem for a single tour whereas Chap-

ter 4 shows our bi-objective problem for a �eet of vehicles.



Chapter 3

Minimum Latency-Distance Problem

This bi-objective problem arises in logistic activities of a company in charge of

providing a set of clients with a service or a delivery. The company deals with two

con�icting objectives: to visit all the clients by traveling the minimum distance to

ensure the cost this tour represents for the company is the minimum, as well as the

maximization of the clients satisfaction, on terms of the minimization of the latency

of the tour, to ensure a competitive quality in the service provided to the clients.

In this chapter we introduce our bi-objective proposal, the assumptions we make to

formulate it mathematically, as well as the solution methods we propose to obtain

Pareto fronts for it.

Section 3.1 introduces our proposed problem, Section 3.2 shows the mathe-

matical formulation as well as the assumptions considered for it. The computational

complexity of our proposed problem is shown in Section 3.3, and solution methods

are shown in Sections 3.4.1 � 3.4.4. Parameter calibration and computational exper-

imentation are found in Section 3.5. Lastly, conclusions for this chapter are given in

Section 3.6.

51
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3.1 Minimum Latency-Distance Problem: an introduction

The Traveling Salesman Problem (tsp) is a classic combinatorial problem that

aims to minimize the total travel distance of a vehicle in charge of visiting a set of

clients (Applegate et al., 2007; Gutin and Punnen, 2006; Laporte, 1992). There is

also a growing interest in studying the minimization of the waiting time (latency) of

all clients to be visited in a single-vehicle tour (Blum et al., 1994; Chaudhuri et al.,

2003; García et al., 2002; Lucena, 1990). Recently, the minimization of latency has

been studied particularly in humanitarian logistics to minimize the waiting time

of disaster areas to be provided with basic necessities in the shortest possible time

(Ferrer et al., 2016; Kovács and Spens, 2007, 2009; Stephenson, 2017; Tomasini et al.,

2009; Vargas et al., 2017). As a consequence of the literal de�nition of latency1, the

study of the minimization of the waiting time can also be found in other areas such as

Medicine (Darcis et al., 2017; Littner et al., 2005; Paniagua-Soto et al., 2013; Squires

et al., 1975; Sternberg et al., 1978) and Telecommunications (Crowcroft et al., 2015;

Grout et al., 2007; Gummadi et al., 2002; Joo Ghee et al., 2009; Kao et al., 2017;

Lichtsteiner et al., 2008; Lu et al., 2007; Schurgers et al., 2002).

To de�ne our bi-objective approach, let us consider a company that provides

a service to a set of clients. Such company has only a single agent to ful�l the visit.

This agent departs from a known depot and returns to it at the end of the day after

visiting each of the clients exactly once. The company goal is to satisfy the requests

of the clients as quickly to minimize the total waiting time over the client set, while

the agent travels a short distance to perform the visiting. With such delimiters,

we propose a bi-objective problem called the Minimum Latency-Distance Problem

1Delay between the moment a request for an action is made and the moment that action is

executed. De�nition according to https://www.collinsdictionary.com/dictionary/english/

latent-time

https://www.collinsdictionary.com/dictionary/english/latent-time
https://www.collinsdictionary.com/dictionary/english/latent-time
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(mldp), to simultaneously optimize both objectives.

mldp arises in the context of logistic activities of companies that o�er delivery

or maintenance services. Its essence is the simultaneous optimization of a combina-

tion of two classic routing objectives that have not been previously studied together

in a routing context. By optimizing both, the total travel distance as well as the

total waiting time, mldp ensures a competitive quality in the service provided to

the clients and by de�nition, satis�es all conditions of tsp and mlp.

The objectives pursued by mldp are considered relevant in contexts where

both client service and company pro�t are priorities. It takes into account distance-

dependent quantities such as fuel cost simultaneously with quality-of-service aspects

such as the waiting time of the clients. In other words, mldp takes into consideration

an economic objective to preserve the pro�t of the company as well as a customer-

centered objective to improve the quality of the service by minimizing the total

waiting time of each client.

To the best of out knowledge, a bi-objective approach of this type has not

been studied in a routing context, although the combination of objectives has been

applied in several medical (Bair et al., 2003; Fischer et al., 1987; Salami et al., 2003)

and network applications (Borah et al., 2017; Depuy et al., 2001; He et al., 2015; Kim

and Na, 2017; Madhyastha et al., 2006; Patterson, 2004; Sarddar et al., 2010, 2011),

both aiming to measure a speci�c growth depending on the distance it is measured

from.

To consider these two objectives under a routing context helps achieving a more

client-centered approach to classical routing. The main motivation of such combina-

tion of objectives is to provide an equilibrium between two important stakeholders

in the decision-making process: the client and the company. This bi-objective ap-

proach aims to improve several aspects in the classical routing approach that does
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not incorporate a-quality-of-the-service factor taking it into consideration helps to

improve the competitive position of the company as well as the client satisfaction

(Clark et al., 1992; Oliver, 1987).

In Section 2.4, di�erences between both objectives were discussed. Section 3.2

shows how we deal with these di�erences and the assumptions made to formulate

this problem mathematically.

3.2 mldp: assumptions and mathematical formulation

To formally de�ne the mldp, let us consider a company that provides a service

to a set of clients through a single agent. This agent departs from a known depot

and returns to it at the end of the day, visiting each of the clients exactly once. The

main goal of this single-vehicle tour is the minimization of the total travel distance

of the agent together with the minimization of the total waiting time of the clients

waiting to be served. As established in Sections 2.2 and 2.4 one of the di�erences in

the latency and distance objectives is the inclusion of service times when computing

latency.

To obtain a formulation for the mldp, we assume that the duration of each

service, the exact distance between the depot and the clients, as well as the distance

between all the clients are known with certainty. The direct proportionality of travel

time to distance traveled as well as the su�cient capacity of the agent to attend all

the clients in a single tour are assumed as well. Note that because of the assumption

of linearity between travel time and travel distance, we refer to the two indistinctly

in our formulation.

As mentioned in Section 3.1, mldp deals with the optimization of two well-

known routing objectives that have several di�erences, one being that the two ob-
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jectives are measured with a di�erent metric (Blum et al., 1994). In mldp, these

di�erences are considered when computing the two objective values. Figure 3.1

shows a graphical representation of a single-vehicle tour in charge of visiting a set

of ten vertices by minimizing the total latency and distance of the tour. Each grey

arrow depicts the possible connections among all clients and the depot. Similarly to

Figure 2.6 in Section 2.4, when considering latency, no returning arc is included by

mlp de�nition, and therefore the returning arc is depicted as a dashed line to show

that it is only considered by mldp in the distance objective by de�nition of tsp.

Figure 3.1: Graphical example of an small mldp solution in an instance of ten

vertices.

As mentioned in Sections 2.2 and 2.4, there exist several reported formulations

in literature for both objectives (Angel-Bello et al., 2013; Gouveia and Voÿ, 1995;

Laporte, 1992; Méndez-Díaz et al., 2008; Miller et al., 1960; Orman and Williams,

2007; Picard and Queyranne, 1978; Sarubbi et al., 2008), nonetheless Angel-Bello

et al. (2013) state that it is inconvenient to employ a formulation designed for the

minimization of the distance of a tour to handle an objective of minimizing the total

latency along the tour.
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To model mldp, we part from a model developed for the objective of latency,

into which we incorporate the distance objective. The best-performing models re-

ported for latency minimization are those of Angel-Bello et al. (2013); we base our

mldp model on their reported �Model A�.

Let us consider a directed and complete graph G = (V,A). Let A be the arc

set and V a vertex set V = {v0, v1, v2, . . . , vn}, where v0 represents the depot and

the remaining vertices represent n clients. Each client i ∈ I has associated a service

time si, which refers to the time the agent takes to ful�l the service to the client.

Each arc (vi, vj) ∈ A has associated a travel time from client i to j, de�ned as tij,

which represents the distance from client i to client j by considering the distance

and travel time linearity assumption discussed before.

By de�ning a matrix T that contains for each pair (vi, vj) a weight ti,j ≥ 0

as the travel time from vertex vi to vertex vj, and where the diagonal element ti,i

represents the service time si of client i, a cost matrix C is computed as follows:

ci,j = ti,i + ti,j. (3.1)

To formulate mldp, similar to how Angel-Bello et al. (2013) formulate mlp,

our mathematical model is based on a multi-level network with n+ 1 levels inspired

by one previously proposed by Picard and Queyranne in 1978, which was designed

for a time-dependent travelling salesman problem. Such a network is depicted in

�gure 3.2 and it is helpful in representing an mldp tour but with the exception of

the returning arc traveled by the agent which, by de�nition of tsp, is only considered

in the calculations of the total traveled distance for the tour.

In this multi-level network, on each level `i, i > 0, all vertices vi are represented.

Note that an mldp solution is a permutation of the n clients with the depot in the

�rst position, like the solutions of the tsp and mlp. Consequently, any solution can
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Figure 3.2: Multi-level network used to formulate the mldp.

be represented on this multilevel network having a single vertex active in each level,

with no repetitions between levels. These facts entail to de�ne the decision variables

xi,k and yi,j(k) as

xi,k =

1, if vertex i is selected on level k on the network,

0, otherwise,

yi,j(k) =

1, if vertex j on level k + 1 follows vertex i on level k,

0, otherwise.

mldp is linearly formulated as follows,

min F1 = n
n∑
i=1

c0ixi,1 +
n−1∑
k=1

n∑
i=1

n∑
j=1

(n− k)cijyi,j(k) (3.2)

min F2 =
n∑
i=1

c0ixi,1 +
n−1∑
k=1

n∑
i=1

n∑
j=1

cijyi,j(k) +
n∑
i=1

ci0xi,n (3.3)

subject to
n∑
k=1

xi,k = 1, i = 1, 2, . . . , n (3.4)
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n∑
i=1

xi,k = 1, k = 1, 2, . . . , n (3.5)

n∑
j=1
j 6=i

yi,j(k) = xi,k, i = 1, 2, . . . , n, k = 1, 2, . . . , n− 1 (3.6)

n∑
j=1
j 6=i

yj,i(k) = xi,k+1, i = 1, 2, . . . , n, k = 1, 2, . . . , n− 1 (3.7)

xi,k ∈ {0, 1}, i = 1, 2, . . . , n, k = 1, 2, . . . , n (3.8)

yi,j(k) ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n, j 6= i, k = 1, 2, . . . , n. (3.9)

The minimization of the total waiting time of the clients is de�ned by Equation

(3.2). In Equation (3.3) lays the minimization of the total traveled distance and

therefore, the minimization of the cost this tour represents to the company. Note

that in Equation (3.2) the arc denoting the return of the vehicle to the depot is not

considered, meanwhile this returning arc has to be considered on Equation (3.3).

The reason for this is that we do not consider the returning of the vehicle to the

depot as client's waiting time.

Equation (3.4) guarantees that each vertex occupies a single position in any

feasible solution. Equation (3.5) guarantees that each position is occupied by no

more than one vertex in any feasible solution. Equation (3.6) ensures that only one

arc leaves from position k, exactly from the vertex taking that position and Equation

(3.7) imposes that only one arc at a time can arrive to position k + 1, exactly to

the vertex occupying that position. The nature of Equations (3.4) to (3.7) lays in

that all possible solutions for the mldp can be represented on the previously de�ned

multi-level network.

Lastly, Equations (3.8) and (3.9) correspond to the nature of the variables.

Note that variables yi,j(k) are previously de�ned as binary but they are handled as

continuous variables in the model. This is achieved by Equations (3.6) and (3.7),
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which guarantee that only one arc leaves from position k and arrives exactly to the

vertex occupying the position k + 1. These pair of constraints assures yi,j(k) takes

a value of one or a value of zero. This formulation consists of n2 binary variables,

n3 − 2n2 + n real variables, and 2n2 constraints.

This formulation can be expressed in non-linear terms, under the same pa-

rameters and in the same multi-level network. This is achieved by representing the

selection of vertices over the network with boolean decision variables xi,k,

xi,k =

1, if vi is selected on `k,

0, otherwise,
(3.10)

where both i and k take values from 1, . . . , n. Note that the depot v0 forms

`0, meaning no selection is made there as every feasible mldp tour initiates at the

depot. Additionally, we write as an auxiliary notation

fi,j(k) = xi,kxj,k+1, (3.11)

meaning that fi,j(k) = 1 if and only if vi is selected on `i and vj is selected on `i+1,

and zero otherwise. With the above notation, the travel distance from the depot to

the �rst client is de�ned as

T0 =
n∑
i=1

c0,ixi,1, (3.12)

the travel distance from the last client to the depot is de�ned as

Tn =
n∑
i=1

ci,0xi,n. (3.13)

Similarly, as each of all the n clients will have to wait for the agent to reach

the �rst client, we write

W0 = n

n∑
i=1

c0,ixi,1. (3.14)
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The complete mldp formulation is de�ned as follows,

min F1 =W =W0 +
n−1∑
k=1

n∑
i=1

n∑
j=1

(n− k)ci,jfi,j(k) (3.15)

min F2 = T = T0 + Tn +
n−1∑
k=1

n∑
i=1

n∑
j=1

ci,jfi,j(k) (3.16)

subject to

∀k :
n∑
i=1

xi,k = 1, (3.17)

∀i :
n∑
k=1

xi,k = 1, (3.18)

xi,k ∈ {0, 1}, ∀i, ∀k. (3.19)

In this non-linear formulation, due to the introduction of the multiplicative

terms fi,j(k), Equation (3.15) expresses the objective to minimize the total waiting

time over the set of clients, as each client has to wait through the services of all

the previous clients and the intermediate travel times. Equation (3.16), denotes the

minimization of total travel distance, from the depot and back to the depot, after

visiting all the clients. Equation (3.17) ensures that only one vertex is selected per

level in such network and Equation (3.18) makes sure that each vertex is selected

exactly once in the network. Lastly, Equation (3.19) denotes the nature of the

variables.

Note that the depot is not waiting for a service and that the time it takes to

return from the last client to the depot is not considered part of the total latency of

the clients, although it is included in the calculation of the total travel distance in

Equation (3.16). By denoting the resulting n× n matrix of decision variables by X,

and in terms of the above de�nitions, mldp can be stated as �nding an assignment

to X that minimizes both Equations (3.16) and (3.15) and satis�es both Equations
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(3.17) and (3.18). This non-linear formulation consists of O(n2) decision variables

and O(n) constraints.

Section 3.3 analyzes the computational complexity of our proposed problem,

and Sections 3.4.1 � 3.4.4 describe our solution approaches for it.

3.3 Complexity of mldp

In this section, we study the computational complexity of the mldp. We begin

with the description of the required de�nitions, along with the description of several

special cases of this problem.

According to Garey and Johnson (1990), a problem, which usually possesses

several parameters or variables with unspeci�ed values, is a general question to be

answered. A problem is described by two properties:

1. a general description of all the parameters belonging to the problem,

2. the properties a solution must satisfy to answer the problem.

A instance of a problem is a set of speci�c values of all parameters describing a

problem and an algorithm is an step-by-step procedure to solve a problem, the most

desirable outcome is �nding the most e�cient algorithm for solving a problem (Garey

and Johnson, 1990).

Computational theory is an area of study that aims to classify problems ac-

cording to their inherent di�culty. A problem is classi�ed as inherently di�cult

if no matter what algorithm is used to solve it; its solution requires a signi�cant

amount of resources to obtain a solution. The idea that a problems seem di�cult is

not enough, a theoretic proof should exist. This is what a computational analysis is



Chapter 3. Minimum Latency-Distance Problem 62

for: to formalize the idea of di�cult-to-solve by proving that a mathematical model

of the problem requires such an amount of resources to solve that it becomes im-

practical. Analysis of the complexity of a problem should not be confused with an

analysis of algorithms, despite these two being closely related (Garey and Johnson,

1990; Papadimitriou, 1994): classifying a problem as di�cult means it cannot be

solved e�ciently with restricted resources no matter which algorithm is used.

In general, the goal of an optimization problem Oσ is to �nd the best solution

according to a set of constraints that describes the environment of the problem. Each

optimization problem is associated to a decision problem Dσ which di�ers from Oσ

in the sense that the objective is treated as a constraint. Given a bound B for the

constraint representing the objective of Oσ, the answer to the decision problem is

whether or not an assignment exists that satis�es both the original constraints and

the new constraint with the bound B. Hence the decision problem Dσ has only two

possible outcomes: yes or no. If the decision problem Dσ is proven NP-complete,

then the corresponding optimization problem Oσ is NP-hard (Garey and Johnson,

1990; Papadimitriou, 1994). The theory of NP-completeness is designed to be applied

to decision problems of optimization problems.

A complexity class is de�ned by several parameters such as non-determinism

and restrictions on the amount of computational resources available (namely time

and space) (Papadimitriou, 1994). NP stands for non-deterministic polynomial time

meaning that the class is de�ned by bounding the execution time polynomially under

non-deterministic computation: given an input for a problem Dσ, an �oracle� can

guess a correct solution in polynomial time. To prove the inclusion of any problem

Dσ in the class NP it su�ces to demonstrate that any given solution of Dσ can be

veri�ed as a valid solution for Dσ in polynomial time. Both of the single-objective

optimization problems that are merged into mldp are NP-hard (Afrati et al., 1986;

Papadimitriou, 1994). In this section, we demonstrate that also mldp itself is NP-
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hard.

To demonstrate the complexity of mldp, the demonstration is subject to the

same assumptions as the model presented in the previous section: we consider one

single agent with no capacity restrictions that visits all of the clients in a single tour.

This requires e�ciently reducing a known NP-complete problem Dσ to our problem

(Garey and Johnson, 1990). We �rst de�ne the decision problem Dmldp associated

to mldp, then show that mldp belongs to NP, and �nally establish that an e�cient

reduction from a known NP-complete problem to our problem exists.

By de�nition, the mldp consists in �nding a tour which visits all clients, leaves

from an established depot and returns to it, while minimizing the total latency of

all the clients and the total traveled distance of an uncapacitated vehicle. To prove

the complexity of mldp, several cases were revised to prove that complexity holds

in several �easy� instances, Figure 3.3 depicts some particular cases in which the

complexity for mldp holds. Nonetheless the special case when constant travel times

and constant service times exist is trivial, and not shown in Figure 3.3, as in this case

any visit order would be optimal. The general case, which refers to a more real-life

situation for the agent, considers arbitrary non-zero traveling and service times, (see

Figure 3.3a). We also consider some special cases of this problem (see Figures 3.3b,

3.3c) to ensure that in simpler and more arbitrary cases the complexity holds.

Note that in the case depicted in Figure 3.3b, when service times are a constant

but travel times are arbitrary non-negative values, the problem is NP-hard as it is a

tsp instance. The case depicted in Figure 3.3c, in which travel times are a constant

but service times are arbitrary, is NP-hard as it is an mlp instance. In this particular

study we present the general case with non-zero and arbitrary values for both travel

and service times (see Figure 3.3a). In a previous study, Nucamendi-Guillén et al.

(2016) discuss latency objective and propose Equation (3.20), where tij refers to
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Figure 3.3: Illustration of some particular instances of the mldp, which were studied

in the complexity proof. In Figure 3.3a, the general case is shown: in this case, service

and travel times take all di�erent arbitrary values. In Figure 3.3b, a simpler case is

shown: all service times have constant values u, while all travel times are arbitrary.

This particular case is a tsp instance. Lastly, in Figure 3.3c, another simpler case

is shown: all service times are arbitrary and all travel times are equal to a constant

u. This particular case is an mlp instance.

travel time among clients i and j, as well as si and sj refers to their corresponding

service times.
1

2

n−1∑
k=1

(n− k)
n∑
i=0

n∑
j=0

tij + (si + sj). (3.20)

By using Equation (3.20), we rede�ne non-zero travel and service times for computing

the bounds used to de�ne the decision problem Dmldp associated to mldp.

The corresponding decision problem of mldp is the following: given the costs

of Equation (3.1), an upper bound T ≤ Θ to to the total travel time of Equation

(3.3), and an upper boundW ≤ Ω to the total latency of Equation (3.2), is there an

assignment X that satis�es all the original constraints as well as the upper bounds
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set on the objectives?

As stated by Garey and Johnson (1990), in order to show that mldp belongs to

NP it is necessary to establish that an e�cient reduction from a known NP-complete

problem to our problem exists. Theorem 1 proves the reduction of mldp to tsp.

Theorem 1. tsp reduces e�ciently to mldp.

Proof. We �rst establish that the feasibility of a givenX can be veri�ed in polynomial-

time: each X captures a permutation that starts at the depot and the permuta-

tion can be e�ciently recovered from the assignment matrix X as a visit sequence

v(0), v(1), . . . , v(n) where v(0) is always the depot and the visits from v1 to v(n) cor-

respond to the clients. We need three accumulator variables, one to measure time

along the tour, one to count the total travel time, and the third to count the total

latency. We also need an array of n binary variables, one per each client, to verify

that each one is properly visited. We proceed in the visiting order, denoting the

source by i and the destination by j adding the value of ti,j to both the time ac-

cumulator and the travel-time accumulator, then adding the service time ti,i to the

time accumulator, and then the current value of the time accumulator to the latency

accumulator, marking the client j as visited. If at the end of the permutation, all

n binary variables are one, the travel-time accumulator respects its upper bound Θ,

and the latency accumulator respects its upper bound Ω, the solution is feasible. As

the veri�cation is a polynomial procedure, Dmldp ∈ NP.

To establish NP-completeness, we reduce the Traveling Salesman Problem

(tsp) in its decision version to Dmldp, as illustrated in Figure 3.4. In the deci-

sion version of tsp, the input is a cost matrix C for the travel costs between n

clients (with the diagonal elements being zero) together with an upper bound to

the total cost of the tour, C, and the question is whether a permutation over the

set of clients exists that produces a tour with the sum of costs of the segments not
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Figure 3.4: Reduction diagram from tsp to mldp (both as decision problems). The

main box in the �gure depicts an algorithm to solve the tsp problem that takes as

input an instance of tsp and determines whether the answer is �yes� or �no� to this

instance. To prove the complexity of mldp, a reduction algorithm must transform

a tsp entry into a mldp one. This mldp input is then solved and receives a �yes� or

�no� answer. As a whole, the process takes a tsp instance, reduces it into an mldp

instance, solves the reduced instance with an algorithm for mldp, and responds

correctly �yes� or �no� to the original instance.

exceeding C.

In order to transform the input for the decision version of the tsp into an

input for Dmldp, we will use the elements of C as T . As C indicates all travel

times among the clients, by considering all service times as zero we remain with

T = C. We set Θ = C, and only need to compute e�ciently an adequate value for

the latency bound Ω. We do this in terms of the worst-case costs, computing from

the cost matrix C the largest cost per each row (that is, as if the agent at each client

chose the most expensive segment to continue the tour) in O(n2) time, and then sort

these worst-case segments from largest to smallest in O(n log n) time to construct

an upper bound to the worst-case latency (the service times in tsp are the diagonal

elements of the cost matrix that are all zero): the worst-case total latency is the

sum of the cumulative sums of the sorted list of costs and we use this as Ω. Hence,

Dmldp responds �yes� to the transformed input if and only if the decision version of

tsp would respond �yes� for the original input.
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As stated before, this demonstration is subject to the same assumptions con-

sidered in the mathematical model presented in Section 3.2: we consider one single

agent with no capacity restrictions that visits all of the clients in a single tour.

This requires e�ciently reducing a known NP-complete problem Dσ to our problem

(Garey and Johnson, 1990). We �rst de�ne the decision problem Dmldp associated

to mldp, then show that mldp belongs to NP, and �nally establish that an e�cient

reduction from a known NP-complete problem to our problem exists. After proving

that mldp reduces e�ciently to tsp, Theorem 2 discusses the complexity proof of

mldp.

Theorem 2. Dmldp is NP-complete.

Corollary 2.1. mldp is NP-hard.

Proof. By Theorem 1 and Corollary 2.1, it is proven that mldp is at least as di�cult

as tsp. Thus, as stated in Corollary 2.1, Dmldp is NP-complete and therefore mldp

is NP-hard.

We have shown that our bi-objective problem is di�cult to solve e�ciently

with exact algorithms. By establishing its complexity we are therefore justi�ed to

propose solving methods, not guaranteed to be optimal, to obtain solutions with

less computation time. The following sections discuss our proposed algorithms for

mldp.

3.4 Solution methods for mldp

mldp is an NP-hard problem and therefore exact methods are only expected

to solve very small instances e�ciently, making heuristic approaches a necessity. In
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this section we discuss the design and implementation of our proposed procedures

to obtain Pareto fronts for a set of mldp instances.

Section 3.4.1 discusses obtaining exact mldp Pareto fronts of these instances,

whereas Sections 3.4.2, 3.4.3, and 3.4.4 describe three heuristic approaches to obtain

approximations of the Pareto fronts.

3.4.1 Exact method

mldp, as previously de�ned, is a problem which deals with the minimization of

two objective functions: latency and distance of a tour. As shown in Section 2.6, the

solution methods for multi-objective problems are di�erent from solution methods

for obtaining a single-objective optimal solution.

A well-known classic technique to obtain an exact solution of multi-objective

problems is the ε-constraint method (Ehrgott, 2005), as mentioned in Section 2.6.

Nonetheless, the ε-constraint has some aspects to improve. Mavrotas (2009) devel-

oped a technique called Augmecon which guarantees Pareto optimality in the pay-o�

table of the obtained solution, as well as in the generation process, parting from the

idea of the classic ε-constraint to constraint one objective to the rest of them. In par-

ticular, Mavrotas and Florios (2013) developed an improvement of Augmecon called

Augmecon2, and while it keeps the same idea of solving a single-objective problem

constrained to the rest of the objectives, it exploits the information from the slack

variables in every iteration, leading to a signi�cant reduction on computation time as

well as the avoidance of redundant iterations with the goal of performing an iterative

lexicographic optimization in the objectives. Augmecon treats all the constrained

objectives similarly, while Augmecon2 applies them in an order of importance. The

general model for this technique is:
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Optimize f1(x) + ε(S2/r2 + 10−1 × S3/r3 + . . .+ 10−(p−2) × Sw/rw)

subject to

f2(x)− S2 = e2

f3(x)− S3 = e3
...

fw(x)− Sw = ew

x ∈ S, Si ∈ R+.

(3.21)

In this model, in each iteration, e2, . . . , ew are the right-hand side parameters

from the grid points of the w objective functions to optimize. Each of these objectives

has a range that denotes the number of equidistant grid points it solves. In Equation

(3.21), ranges are denoted by r2, . . . , rw, surplus variables are denoted by S2, . . . , Sw,

and ε ∈ [10−6, 10−3].

For our implementation of this algorithm, designed to obtain exact solutions

for mldp, the design was formulated for our linear formulation described in Section

3.2. We keep the distance objective of Equation (3.3) as the main objective and solve

the problem subject to the original constraints along with the latency objective of

Equation (3.2); in our case, this produces a single-objective problem which minimizes

the distance of the tour constrained to its total latency.

The order of the objectives could be reversed, but according to Angel-Bello

et al. (2013); Blum et al. (1994), as well as the complexity analysis of the latency

objective (Afrati et al., 1986), the alternative is expected to be more time consuming.

As ε-constraint, Augmecon2 uses a step size to construct a grid and to �nd the Pareto

points. In our case, we de�ne this step size as δ = 1/2n, where n denotes the instance

size. Note that this method is able to �nd optimal solutions, in terms of e�ciency,
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but it may not �nd non-supported points in the Pareto front; in other words, this

technique may not �nd all the points in the true Pareto front.

As both of the single-objective problems that mldp may reduce to in this man-

ner are also NP-complete (Afrati et al., 1986; Papadimitriou, 1994), the asymptotic

complexity of computing a Pareto front with an ε-constraint is exponential in the

size of the instance, which in this case is measured in terms of the number of clients.

Therefore, a metaheuristic approach is justi�ed and desirable. Sections 3.4.2, 3.4.3

and 3.4.4 describe three metaheuristic algorithms to solve this bi-objective problem.

3.4.2 Strategic Memetic Search Algorithm for mldp

mldp is an NP-hard problem. Therefore, a heuristic approach is justi�ed and

desirable. This section introduces an e�cient but heuristic alternative we designed

and implemented: a memetic algorithm to approximate the Pareto fronts for larger

instances. An algorithm of this type is an evolutionary, population-based approach

that employs local improvement procedures as mutation processes.

We propose an elitist multi-objective evolutionary algorithm that involves using

crowding distance of a solution that estimates the density of solutions in the front

surrounding that solution as a means of promoting diversity. This algorithm is based

in the classic NSGA-II algorithm, proposed by Deb et al. (2000). In the following

subsections, each step and the adaptations made in the design of this strategic

memetic search algorithm, hereinafter called as SMSA, are explained in detail. The

general SMSA algorithm is in Algorithm 1.
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Algorithm 1 Strategic Memetic Search Algorithm (SMSA).

Input: integers γ > 0 and χmax > 0.

Output: a set of solutions P .

1: χ := 0

2: generate a population P of size γ (Section 3.4.2.1)

3: repeat

4: generate a set of o�springs Q of size γ from P (Section 3.4.2.2)

5: rank P ∪Q into fronts F0, F1, . . . (Section 3.4.2.3)

6: P ′ = ∅

7: for each front Fi in increasing order of i do

8: for each solution s ∈ Fi do

9: with probability β, mutate s with Algorithm 2 (Section 3.4.2.4)

10: end for

11: P ′ := P ′ ∪ Fi
12: if |P ′| > γ then

13: break the loop

14: end if

15: end for

16: P ∗ := the best γ solutions in P ′ by crowding distance

17: if P = P ∗ then

18: χ := χ+ 1 (no change in the population)

19: else

20: χ := 0

21: end if

22: P := P ∗

23: until χ = χmax

24: return P
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3.4.2.1 Initial population

In our SMSA implementation, the generation of the initial population of size γ

(step two) consists of 60% of random solutions and 40% of solutions obtained using

the cheapest insertion heuristic (Rosenkrantz et al., 1974). From the latter, half of

them are obtained using a distance metric and half using a latency metric.

3.4.2.2 O�springs

In our implementation, the selection of each parent is made through a binary

tournament. After selecting both parents, we apply a combination method based on

the OX crossover introduced by Davis (1985), described in detail by Oliver et al.

(1987). Prins (2004) modi�ed this method so that the combination of the parents

produces up to eight di�erent o�springs; we repeatedly apply this modi�ed version

until a desired number of unique solutions are obtained.

3.4.2.3 Ranking

The ranking process used in SMSA is that described by Deb et al. (2000):

in order to identify a dominating solution, it is iteratively compared to the other

solutions to identify which ones it dominates, storing for each solution the set of

solutions that dominate it as well as the set of solutions that it dominates. These

two sets facilitate the placement of each solution into fronts Fh such that all solutions

in front Fh dominate those in Fh+1. Each front is then internally sorted by dispersion,

from best to worst. This procedure has asymptotic complexity in O(wγ3), where w

refers to the number of objectives involved and γ refers to the size of the population

(Deb et al., 2000).
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3.4.2.4 Neighborhood exploration

SMSA is a memetic algorithm, meaning that the mutation process is based on

a local search. Each solution in the population is mutated with probability β, the

value of which is a parameter.

We use a 2-opt neighborhood (Croes, 1958): given a solution tour, select

a random non-empty segment of the tour, reverse and reinsert it into the tour in

reverse order. Having performed a 2-opt movement, we compute the �tness of the

neighboring solution thus created. We alternate between the two objective functions,

using Equation (3.3) to compute �tness fi(◦) when i = 0 in Algorithm 2), and

Equation (3.2) when i = 1. Each objective is used for I consecutive iterations, after

which the objective function to use as fi(◦) is switched. This process is repeated

R times. We make no attempt to save time by making adjustments to the �tness

of the original solution, but instead re-evaluate the objective function entirely when

computing the �tness of a neighbor.
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Algorithm 2 SMSA mutation process.

Input: a solution s; integers R > 0 and I > 0.

Output: a (possibly mutated) solution s.

1: select i ∈ {0, 1} uniformly at random

2: for R repetitions do

3: for I iterations do

4: s′ := 2-opt(s)

5: if fi(s
′) ≤ fi(s) then

6: s := s′ (keep the better one)

7: end if

8: end for

9: if i = 0 then

10: i := 1 (switch to f1)

11: else

12: i := 0 (switch to f0)

13: end if

14: end for

15: return s

Section 3.5.4 discusses the calibration of parameters mentioned in this section.

Section 3.5.5 discusses and compares results obtained with our proposed heuristic.

3.4.3 Evolutionary algorithm with Intelligent Local Search Algorithm

for mldp

Due to the complexity of mldp, it is desirable to approximate Pareto fronts. In

addition to the memetic algorithm of Section 3.4.2, we propose a second evolutionary
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algorithm to approximate the Pareto fronts.

We call this algorithm as Evolutionary algorithm with Intelligent Local Search

(EiLS). It is based on the Pareto ranking scheme with crowding distance proposed

by Deb et al. (2000) in their NSGA-II procedure but uses an e�cient random-

shake crossover to produce o�springs and an intelligent local search over various

neighborhoods as a substitute for mutation. A general overview of EiLS is given in

Algorithm 3.

Algorithm 3 Evolutionary Algorithm with Intelligent Local Search (EiLS).

Input: integers γ > 0, ε > 0 and κ > 0, real-valued α > 0.

Output: a set of solutions P .

1: ∀h ∈ [1, 12] : S(h) := 0, I(h) := 0, C(h) := 0 (Section 3.4.3.6)

2: generate an initial population P of size γ (Section 3.4.3.1)

3: repeat

4: evaluate the �tness of each solution in P

5: place the ε best solutions into E

 (Section 3.4.3.2)

6: create K := κ couples from E

7: compute the o�springs F of the couples in K (Section 3.4.3.3)

8: P := mutations done with Algorithm 5 on P ∪ F

9: until maxh S(h) < α

10: return P

3.4.3.1 Initial population

By de�nition of mldp, solutions are represented as a permutation of the clients

(π1, π2, . . . , πn), where πi represents the ith client visited along the tour. All initial

solutions are created generating random permutations of the n clients. The depot

is not permuted but instead prepended to all permutations, hence producing only
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feasible solutions.

3.4.3.2 Elite set

We rank the solutions into fronts F0, F1, . . . as described in Section 3.4.2.3 and

construct an elite set E containing the best ε solutions (i.e., starting with F0, then

continuing with F1, and so forth). We then select κ couples of two distinct parents

from E using binary tournament with replacement (i.e., a single solution may form

part of multiple couples).

3.4.3.3 O�springs

Each couple selected from the elite set E produces two o�springs. First, one

of the parents is chosen uniformly at random (p1) and copied to the �rst o�spring

(o1). Once copied, we apply the following perturbation: the positions of two non-

overlapping tour segments of size ϕ are exchanged in the tour; the value of ϕ ∈

[2, b0.3nc] is chosen uniformly at random (see Table 3.1). This procedure is then

repeated independently for the second parent p2 to produce a second o�spring o2.

Table 3.1: EiLS o�spring generation with n = 10 and ϕ = 3. The exchanged

segments are highlighted in grey.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

pi v2 v3 v4 v1 v5 v6 v8 v10 v9 v7

oi v8 v10 v9 v1 v5 v6 v2 v3 v4 v7
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3.4.3.4 Mutation

Each solution in the current population undergoes an intelligent local search

that locally optimizes a compromise function with random weights as proposed by

Molina et al. (2007). The construction of this compromise function is described in

Algorithm 4. Its purpose is to aggregate the original objectives using weights to

diversify the resulting Pareto front.

Algorithm 4 EiLS compromise-function construction.

Input: none.

Output: an objective function.

1: select t ∈ {True, False} uniformly at random

2: if t = True then

3: select uniformly at random one of the objective functions as such

4: else

5: generate a random linear combination of the objective functions

6: end if

7: return an objective function (chosen or constructed)

3.4.3.5 Neighborhood exploration

We employ twelve di�erent neighborhoodsNh for the mutation process in EiLS.

Once a neighborhood is selected, it is explored until a maximum number of consec-

utive iterations with no improvement is reached. It is an adjustable parameter φ;

we de�ne this maximum as a multiple of γ.

Several neighborhood de�nitions are given in terms of closeness bξc that limits

how many steps away a selected position may be from another position, counting

the separation along the permutation Π that represents the solution, allowing moves
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both backward and forward. Experimental tuning of closeness showed no speci�c

value to be clearly superior on all instances. Hence, instead of �xing it, we duplicate

the neighborhood structure with two di�erent values for bξc: N3 andN4 use ξ = 0.5n

whereas N6 and N7 use ξ = 0.8n.

• N1: Two positions a and b, a 6= b, are chosen uniformly at random and their

contents are exchanged.

• N2: Three positions a, b, and c are chosen uniformly at random and their

contents are exchanged by moving the client of a to b, that of b to c, and that

of c to a (see Table 3.2).

Table 3.2: An example of N2 with n = 10 with a = 1, b = 3, and c = 9.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v7 v8 v6 v5 v1 v2 v3 v4 v10 v9

N2(Π) v10 v8 v7 v5 v1 v2 v3 v4 v6 v9

• N3: A position a is chosen uniformly at random and its client is exchanged

with another position b 6= a with ξ = 0.5n (see Table 3.3).

Table 3.3: An example of N3 with n = 10 where a = 3, bξc = 5, and b = 4.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v2 v23 v4 v1 v5 v6 v8 v10 v9 v7

N3(Π) v2 v3 v1 v4 v5 v6 v8 v10 v9 v7

• N4: A position a is chosen uniformly at random, and then two other positions

b and c are chosen (all three positions being distinct) are at most ξ = 0.5n
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steps away from a. The positions of a, b, and c are exchanged using the same

scheme as in N2 (see Table 3.4).

Table 3.4: An example of N4 with n = 10 where a = 8, bξc = 4, b = 5, and c = 6.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v8 v7 v6 v5 v9 v1 v2 v3 v4 v10

N4(Π) v8 v7 v6 v5 v3 v1 v9 v2 v4 v10

• N5: A position a > 1 is selected uniformly at random and its content is

exchanged with the immediately preceding position in Π.

• N6: Selections and exchanges as in N3, but with ξ = 0.8n.

• N7: Selections and exchanges as in N4, but with ξ = 0.8n.

• N8: A position a is chosen uniformly at random among those with max ci,j

(Equation 3.1) where vi is the client in the preceding position and vj is the

client in the position in question. Then, another position b 6= a is chosen

uniformly at random and its contents are exchanged with a (see Table 3.5).

• N9: A position a is chosen uniformly at random and its contents are exchanged

with a position b 6= a chosen uniformly at random such that b > n
2
(see Table

3.6).

• N10: A position n
2
< a < n is selected uniformly at random. Then, a position

b > n−a is chosen uniformly at random. The contents of a and b are exchanged

(see Table 3.7).
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Table 3.5: An example of N8 with n = 10, a = 2, and b = 7, showing all quantities

involved in Equation (3.1), using integers for simplicity of the example.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

ti,i 1 4 3 2 1 5 2 4 3 2

ti,j 2 5 3 4 6 2 6 1 3 5

ci,j 3 9 6 6 7 7 8 5 6 7

Π v2 v3 v4 v1 v5 v6 v8 v10 v9 v7

N8(Π) v2 v8 v4 v1 v5 v6 v3 v10 v9 v7

Table 3.6: An example of N9 with n = 10.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v2 v3 v4 v1 v5 6 v8 v10 v9 v7

N9(Π) v2 v3 v4 v9 v5 v6 v8 v10 v1 v7

• N11: An integer λ ∈ [2, b0.3nc] is chosen uniformly at random. Then, two

non-overlapping tour segments of length λ are chosen uniformly at random

and their contents are exchanged (see Table 3.8).

• N12: First, a position a is chosen uniformly at random. Then a position b

such that a < b is chosen uniformly at random. The contents of a and b are

exchanged.

3.4.3.6 Neighborhood performance

As proposed by Molina et al. (2018), the order in which the Nh neighborhoods
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Algorithm 5 Intelligent neighborhood selection in EiLS.

Input: a set of solutions P ; integers φ > 0 and τ > 0.

Output: a (possibly improved) set of solutions P .

1: for each solution s ∈ P do

2: repeat

3: η := 0 (a stall counter)

4: select a neighborhood Nh with probability S(h)

5: repeat

6: obtain a neighbor s′ := Nh(s)

7: C(h) := C(h) + 1

8: construct f(◦) using Algorithm 4

9: if f(s′) ≤ f(s) then

10: I(h) := I(h) + 1

11: s := s′ (replace the solution by the improved one)

12: η := 0 (reset the stall counter)

13: else

14: η := η + 1 (increment the stall counter)

15: end if

16: S(h) := I(h)/C(h)

17: until η = φ|P |

18: until τ repetitions have been completed

19: end for

20: return P
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Table 3.7: An example N10 with n = 10, a = 7, and b = 3.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v2 v3 v4 v1 v5 v6 v8 v10 v9 v7

N10Π v2 v3 v4 v1 v5 v6 v7 v10 v9 v8

Table 3.8: An example N11 with n = 10 and λ = 3.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

Π v7 v8 v6 v5 v1 v2 v3 v4 v10 v9

N11(Π) v3 v4 v10 v5 v1 v2 v7 v8 v6 v9

are applied directly depends on their performance during the execution of EiLS. The

performance S(h) of Nh is measured in terms of the quantity of the improvement to

the local solution using the current compromise function, computed as the ratio of

calls that resulted in an improvement to the total number of calls to that neighbor-

hood. On line 1 of Algorithm 3, we initialize all these quantities as zero. Note that

the stopping condition of Algorithm 3 is a threshold to the highest S(h). Algorithm

5 selects a neighborhood with a probability proportional to its current performance

(we used rejection sampling in our experiments, although roulette-wheel selection

would also work). The process is repeated sequentially τ times for each solution of

the current population.

Section 3.5.4 discusses the calibration of parameters mentioned in this section.

Section 3.5.5 discusses and compares results obtained with all our metaheuristic

proposals as well as in Section 3.5.6 conclusions of such experimentation are found.
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3.4.4 Automatically adjusting evolutionary algorithm with Intelligent

Local Search Algorithm for mldp

Sections 3.4.2 and 3.4.3 proposed two evolutionary methods that require a

manual calibration of parameters.

In this section, we propose a metaheuristic algorithm able to auto-adjust its

parameters to provide good Pareto fronts approximations. It is based on EiLS (3.4.3)

but it is able to auto-calibrate itself and employs a novel ranking, described in Section

3.4.4.4. We call this algorithm as Automatically adjusting Evolutionary algorithm

with Intelligent Local Search (AEiLS).

As in EiLS, AEiLS has its own speci�c crossover and mutation operators. On

one hand, the computationally heavy crossover (combining tours is non-trivial) is

substituted by a random shake crossover to produce o�springs and an intelligent

local search over various neighborhoods as a substitute for mutation. The general

algorithm of this self-adjusting method can be found in Algorithm 6.

3.4.4.1 Initial population

Similarly to EiLS, all initial solutions in AEiLS are created generating random

permutations of the n clients. The depot is not permuted but instead prepended to

all permutations, hence producing only feasible solutions.

3.4.4.2 Elite set

We rank the solutions into fronts F0, F1, . . . as described in Section 3.4.2.3

but employing a di�erent crowding scheme (Section 3.4.4.4). We construct an elite

set E containing the best ε solutions (i.e., starting with F0, then continuing with
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Algorithm 6 Automatically adjusting Evolutionary algorithm with Intelligent Local

Search (AEiLS).

Input: integers γ > 0, ε > 0 and κ > 0.

Output: a set of solutions P .

1: ∀h ∈ [1, 12] : S(h) := 0, I(h) := 0, C(h) := 0, α := 0 (Section 3.4.4.7)

2: generate an initial population P of size γ (Section 3.4.4.1)

3: calculate success counters (Section 3.4.4.3)

4: repeat

5: evaluate the �tness of each solution in P

6: place the ε best solutions into E

 (Section 3.4.4.2)

7: create K := κ couples from E

8: compute the o�springs F of the couples in K (Section 3.4.4.3)

9: P := mutations done with Algorithm 5 (Section 3.4.3.6), on P ∪ F

10: recalculate α according to a success ratio (Section 3.4.4.8)

11: until maxh S(h) < α

12: return P
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F1, and so forth). We then select κ couples of two distinct parents from E using

binary tournament with replacement (i.e., a single solution may form part of multiple

couples).

3.4.4.3 O�springs

For AEiLS, the crossover operator is similar to the crossover process detailed

in Section 3.4.3.3 for EiLS. This operator selects a couple of solutions and applies

the same perturbation shown in Table 3.1 on Section 3.4.3.3. Note that the two

individuals are processed independently. The main di�erence between the crossover

process of EiLS and that of AEiLS is that every solution created and every generation

formed have a series of counters to measure the success, in terms of improvement in

the global objective, of each one (Algorithm 7).

Each solution s ∈ E has associated a counter of success css, each generation i

created has a counter Geni as well. Such counters are of great importance because

each time an o�spring is created and evaluated, if its evaluation directly improves

the considered objective function in that speci�c iteration then the success ratio

S(i) is increased for the two original solutions from which such o�spring was created

from and counters csi are increased. Such counters are employed to categorize the

success of each explored neighborhood h as well as in the calculation of the mutation

probability for each generation. As for the success of the generation, Geni is only

increased if the improvement of the objective function value is global.

3.4.4.4 Ranking and crowding scheme

One of the biggest di�erences between EiLS and AEiLS is the crowding scheme.

EiLS uses a classical ranking scheme and a classical �tness assignment by crowding

distance just as proposed by Deb et al. (2000). AiELS, on the contrary, proposes
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Algorithm 7 AEiLS success counters scheme.

Input: set of solutions P .

Output: P .

1: construct f(◦) using Algorithm 4

2: for each h ∈ [1, 12] do

3: Genh := 0

4: Genh := 0

5: C(h) := 0

6: for each s ∈ E do

7: css := 0, S(i) := 0

8: repeat

9: if f(s′) ≤ f(s) then

10: css := css + 1

11: else if f(s′) ≤ f(s), s ∈ E then

12: css := css + 1

13: Genh := Genh + 1

14: S(i) := S(i) + 1

15: end if

16: until τ repetitions have been completed

17: end for

18: end for

19: return P
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a hybrid methodology by considering a classical ranking scheme which instead of a

crowding scheme considers a new �tness assignment procedure based on the max-

imum ratio success per neighborhood explored. Once a population is created, the

evaluations on each objective are obtained and the ranking scheme is ruled by the

non-dominated fronts as done by Deb et al. (2000).

Our crowding measurement is based in counters of success csi associated to

every solution belonging to the elite set E and to Geni as well, to compute the

success of each created generation; such counters are described in Section 3.4.4.3.

By considering the measurements of crowding as in Equation (3.22), we consider

only the success ratio caused per solution or its generation in improvements of the

objective. Here, improvement is considered in e�ciency domination terms.

crowdingi =
csi
Geni

. (3.22)

Algorithm 8 Crowding scheme in EiLS.

Input: a set of solutions P .

Output: a set of solutions P ranked per crowding scheme.

1: for each solution s ∈ P do

2: for each generation i do

3: consider C(h), S(i), css and Geni

4: calculate crowdings with Equation (3.22)

5: end for

6: end for

7: return P

By considering such crowing, there exists two population outcomes:

• solutions producing improvements are successful, meaning they are good solu-
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tions,

• such improving producing solutions generate good o�springs and those o�-

springs are the ones improving the considered objective.

By using the success ratio measurement, a time-consuming crowding such as

the one proposed by Deb et al. (2000) is not needed and AEiLS is able to return only

good quality solutions from each generation. As mentioned in Section 3.4.4.3, note

that the success of a generation is only counted as such if in the whole generation

the global objective selected by Algorithm 4 is improved.

3.4.4.5 Mutation

Each solution in the current population undergoes an intelligent local search

that locally optimizes a compromise function with random weights as proposed by

Molina et al. (2007). The construction of this compromise function was described

previously in Algorithm 4. Its purpose is to aggregate the original objectives using

weights to diversify the resulting Pareto front.

3.4.4.6 Neighborhood exploration

We employ twelve neighborhoods Nh for the mutation process in AEiLS. Once

a neighborhood is selected, it is explored until a maximum number of consecutive

iterations with no improvement is reached. It is an adjustable parameter φ; we de�ne

this maximum as a multiple of γ.

Several neighborhood de�nitions are given in terms of closeness bξc that limits

how many steps away a selected position may be from another position, counting

the separation along the permutation Π that represents the solution, allowing moves

both backward and forward. Experimental tuning of closeness showed no speci�c
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value to be clearly superior on all instances. Hence, instead of �xing it, we duplicate

the neighborhood structure with two di�erent values for bξc: N3 andN4 use ξ = 0.5n

whereas N6 and N7 use ξ = 0.8n. Instead of �xing it, we let the intelligent selection

system choose the most suitable one, based on performance.

• N1: Two positions a and b, a 6= b, are chosen uniformly at random and their

contents are exchanged.

• N2: Three positions a, b, and c are chosen uniformly at random and their

contents are exchanged by moving the client of a to b, b to c, and c to a.

• N3: A position a is chosen uniformly at random and its client is exchanged

with another position b 6= a with ξ = 0.5n.

• N4: A position a is chosen uniformly at random, and then two other positions

b and c are chosen (all three positions being distinct) are at most ξ = 0.5n

steps away from a. The positions of a, b, and c are exchanged using the same

scheme as in N2.

• N5: A position a > 1 is selected uniformly at random and its content is

exchanged with the immediately preceding position.

• N6: Selections and exchanges as in N3, but with ξ = 0.8n.

• N7: Selections and exchanges as in N4, but with ξ = 0.8n.

• N8: A position a is chosen uniformly at random among those with max ci,j

(Equation 3.1) where vi is the client in the preceding position and vj is the

client in the position in question. Then, another position b 6= a is chosen

uniformly at random and its contents are exchanged with a.

• N9: A position a is chosen uniformly at random and its contents are exchanged

with a position b 6= a chosen uniformly at random such that b > n
2
.
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• N10: A position n
2
< a < n is selected uniformly at random. Then, a position

b > n−a is chosen uniformly at random. The contents of a and b are exchanged.

• N11: An integer λ ∈ [2, b0.3nc] is chosen uniformly at random. Then, two

non-overlapping tour segments of length λ are chosen uniformly at random

and their contents are exchanged.

• N12: First, a position a is chosen uniformly at random. Then a position b

such that a < b is chosen uniformly at random. The contents of a and b are

exchanged.

3.4.4.7 Neighborhood performance

As proposed by Molina et al. (2018), the order in which the Nh neighborhoods

are applied directly depends on their performance during the execution of AEiLS.

The performance S(h) of Nh is measured in terms of the quantity of the improve-

ment to the local solution using the current compromise function, computed as the

ratio of calls that resulted in an improvement to the total number of calls to that

neighborhood. The neighborhood performance is measured similarly as in EiLS (Al-

gorithm 5) and the stopping condition of Algorithm 6 is a threshold to the highest

S(h).

3.4.4.8 Autocalibration of parameters

Speci�cally for AEiLS, the performance is quanti�ed by considering the success

ratio per solution in the elite set E and by the generation as a whole. Such success

is quanti�ed in terms of the improvement of the local solution using the objective

constructed by previously described Algorithm 4. Opposed to EiLS algorithm, each

Nk neighborhood is explored until a maximum number of consecutive iterations with
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no improvement is reached. The di�erence in AEiLS is that α auto calibrates itself,

depending on the number of consecutive successes obtained by the neighborhood

exploration. The rule to iterate is given by a random number in the �rst iteration and

after this iteration the performance of the neighborhoods S(k) is updated according

to Algorithm 10 and Equation (3.23).

Algorithm 10 Success indicator per explored neighborhood

1: I(k) := the number of times the current solution was improved using Nk in any

local exploration

2: C(k) := the number of times that Nk has been called so far

3: S(k) := I(k)
C(k)

α =
max_evals(Nk)

S(k)
(3.23)

As shown in Algorithm 5 (cf. Section 3.4.3.6), each neighborhood has a prob-

ability to be chosen and a local search is performed until a maximum number of

consecutive iterations with no improvement is reached. After this, the performance

of the neighborhoods is updated with respect to the improvements obtained. This is

repeated sequentially, using the best solution of the preceding round as the starting

solution of the following round, seven times for each individual of the current pop-

ulation with a probability of S(k)−1 to be mutated. Notice that by the way such

mutation is de�ned, by counting the success of each module to know when to stop,

it allows the algorithm to have more consecutive iterations when the success rate is

higher. When success rate decreases, so do the iterations, and the module is replaced

by another.
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3.5 Experimentation

Thus far, we have presented four techniques to obtain Pareto of our Minimum

Latency-Distance Problem (mldp): Augmecon2, SMSA, EiLS, and AEiLS. In this

section, we study and compare their performance.

3.5.1 Trial instances

To test our algorithms, we experiment on instances inspired by Angel-Bello

et al. (2013), with adjustments to create client locations and service times more

similar to real-world settings. This set of instances are inspired by those published

and created by Angel-Bello et al. (2013), but with adjustments to create client

locations and service times more similar to real-world settings (Arellano-Arriaga

and Schae�er, 2017). We �rst create c cities with uniform random coordinates in

(X, Y ) ∈ R, X, Y ∼ Unif(0, 1), and place n clients, selecting for each client a city,

randomly. Notice that each city is selected with a probability proportional to the

current number of clients attached to it in order to create a population pattern

similar to real-world cities.

Once city is randomly selected, the coordinates of the client as the coordinate

of its city are computed with normally distributed o�sets ∆X,∆Y ∼ Norm(µ, σ),

where µ and σ are parameters. We compute the travel distances ti,j for i 6= j as

Euclidean distances between the clients with an exponential delay δ ∼ Exp(λd) and

the service times ti,i ∼ Exp(λt), this to force the service time at the depot to zero,

while locating the depot as if it were another client.

To test all algorithms we experiment with n ∈ {10, 16, 20, 32, 40, 64, 80, 128, 160,

256} clients with c = blogs nc cities, µ = 1/c, σ = 1/
√
n, λd = 1/5

√
n, and

λs = 1/
√
n, creating 35 instances of each size. Note that by multiplying all the
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service times by a constant, the relative balance between service and travel times

can be adjusted without regenerating the instance.

3.5.2 Measurements of the quality of the obtained fronts

To compare the performance of all our proposed metaheuristics against the

exact Pareto fronts obtained with the Augmecon2 algorithm, we consider �ve metrics

to measure the quality of the solutions. These metrics are shown on Table 3.9.

Table 3.9: Metrics list used to measure the quality of the solutions found by our

proposed algorithms.

Label Metric Reference

# number of points �

SCC size of the space covered Zitzler and Thiele (1999)

k-D k-distance Zitzler et al. (2001)

M∗
1 distance between the exact Pareto front and

the approximated Pareto front Zitzler (1999)

c(◦,◦) coverage of the fronts Zitzler and Thiele (1999)

3.5.3 Technical speci�cations

Our implementation of Augmecon2 was solved using the MILP solver ILOG

CPLEX C++ Concert Technology. All our heuristic procedures, SMSA (Section

3.4.2), EiLS (Section 3.4.3), and AEiLS (Section 3.4.4), are implemented in C++.

Every instance was solved in a Xenon R© Intel R© CPU E3-1245 v3 @ 3.40GHz with

16 GB of RAM.
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3.5.4 Parameter calibration

To calibrate the parameters of the proposed solution methods, we treat all

algorithms independently.

• Augmecon2 (Section 3.4.1): the only parameter to be �xed is the step it takes

to obtain each point in the Pareto front. For our implementation this step is

�xed as δ = 1/2n, where n denotes the size of the instance.

• SMSA (Section 3.4.2): we vary the size of the population (γ in Algorithm 1),

the probability to mutate a solution (β in Algorithm 1), as well as number of

iterations (I in Algorithm 2). All this with a �xed R = 5.

• EiLS (Section 3.4.3): we set χmax = γ, we �x τ = 7, ε = dγ/2e, and κ =

dε/2e, and vary the size of the population (γ in Algorithm 3), the number of

evaluations per module (φ in Algorithm 3) as well as the minimum success in

the exploration of each neighborhood (α in Algorithm 3).

• AEiLS (Section 3.4.4): due to the auto calibration of parameters this algo-

rithms calibrates itself. We �x the size of the Elite set to ε = dγ/2e and the

number of couples to generate o�springs to κ = dε/2e.

These parameters were calibrated under a factorial design of experiments and

the combination of parameters where the best quality in the approximated fronts

was obtained was selected as the �xed combination for the metaheuristic.

This experimentation was made for our SMSA and EiLS metaheuristics. For

each of the 35 replicas, we performed 10 executions, and for each of the 350 resulting

fronts we computed the number of points (#) in the resulting front together with

the size of the space covered (SCC) or hypervolume (Zitzler and Thiele, 1999).
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Table 3.10: Factorial design for parameter calibration for SMSA (left) and EiLS

(right); n is the number of clients, # the number of points in the approximated

front, and SCC the size of space covered.

SMSA EiLS

Label P1 P2 P3 # SCC P1 P2 P3 # SCC

1 5n 0.05 n/5 5.92 0.345 n 10 0.3 56.24 0.568

2 5n 0.05 n/10 5.25 0.329 n 10 0.5 60.09 0.581

3 5n 0.03 n/5 6.17 0.518 n 10 0.7 101.14 0.583

4 5n 0.03 n/10 6.53 0.533 n 13 0.3 103.50 0.585

5 10n 0.05 n/5 7.19 0.553 n 13 0.5 106.90 0.622

6 10n 0.05 n/10 6.23 0.544 n 13 0.7 145.59 0.640

7 10n 0.03 n/5 6.14 0.532 n 15 0.3 146.41 0.649

8 10n 0.03 n/10 5.05 0.482 n 15 0.5 147.75 0.652

9 n 15 0.7 152.04 0.660

10 n2 10 0.3 157.56 0.663

11 n2 10 0.5 164.48 0.672

12 n2 10 0.7 152.52 0.671

13 n2 13 0.3 149.83 0.670

14 n2 13 0.5 134.79 0.662

15 n2 13 0.7 118.25 0.661

16 n2 15 0.3 117.58 0.649

17 n2 15 0.5 109.57 0.645

18 n2 15 0.7 106.88 0.641

19 n3 10 0.3 104.21 0.640

20 n3 10 0.5 98.33 0.633

21 n3 10 0.7 98.20 0.622

22 n3 13 0.3 98.13 0.611

23 n3 13 0.5 95.38 0.600

24 n3 13 0.7 90.27 0.600

25 n3 15 0.3 82.45 0.588

26 n3 15 0.5 78.94 0.583

27 n3 15 0.7 78.82 0.572
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For both methods, a single parameter combination produced the best value

for both metrics (i.e., the highest number of points in the front and the largest

hypervolume). Table 3.10 shows the quality obtained with each combination of

parameters, where for both algorithms n refers to the size of the instance. The best-

performing combination for each method is indicated in boldface and highlighted in

gray.

3.5.5 Computational experimentation

The free parameters of SMSA and EiLS were calibrated under a factorial design

of experiments. The combination of parameters for which the best quality in the

approximated fronts was obtained was selected as the �xed combination for each

algorithm for a comparative experimentation, the results of also are discussed in

two sets: small instances (sized up to 40 vertices) and large instances (sized up to

256 vertices), all of them in terms of average values for each size, over sets of 35

instances each. When possible, the same instance sets are solved by all four solution

approaches.

3.5.5.1 Small instances

We consider as small instances those that were able to be solved with the exact

methodology (Section 3.4.1) that was able to solve sets of up to 40 vertices. All the

reported values of the metrics are in terms of averages over the sets of 35 instances

of each size, ten executions per instance. We use the metrics reported on Table 3.9

(page 93) to compare the performance of our proposed algorithms:

CPU times elapsed with all methodologies are reported in Table 3.11.
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Table 3.11: Average CPU times obtained by our four proposed solution methods.

These times are shown in averages per each set of instances and measured in seconds;

n is the size of the instance sets solved.

Instance n Augmecon2 SMSA EiLS AEiLS

MLDP_10 10 20.228 2.875 0.22 0.205

MLDP_16 16 179.722 6.443 2.59 3.275

MLDP_20 20 800.531 29.953 13.29 17.115

MLDP_32 32 26946.179 201.345 99.44 102.885

MLDP_40 40 452100.702 527.655 203.73 206.395

EiLS and AEiLS show a better time-performance than SMSA and Augmecon2

by obtaining solutions in roughly half the time than our SMSA algorithm. Nonethe-

less, EiLS had a better performance than the self-adjusting AEiLS.

The performance of these proposed algorithms is reported in Table 3.12, divided

into sections: each section corresponds to one of our proposed methods and each

method contains four columns: # (average number of points obtained in the front),

SCC (hypervolume), k-D (distance among the points obtained in the fronts), and

M∗
1 (distance among the exact fronts and the approximated ones). All reported

values are in averages over the sets of 35 instances for each size.

Table 3.12 states the superiority of the fronts obtained by both: EiLS and

AEiLS. These algorithms have the ability to employ a more sophisticated local search

neighborhood selection which leads to the improvement in the density of the approx-

imated Pareto fronts while keeping a good hypervolumen in the solutions. Among

them both, there is a subtle superiority for EiLS over AEiLS in obtaining more points

and getting a better coverage of the non-dominated points than our automatically

adjusted version. The distance among the points within the obtained fronts is so

small that it leads to dense approximated fronts, and the distance such fronts have
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Table 3.12: Comparison among the metrics obtained per algorithm. These values are averages over the set of instances.

Augmecon2 SMSA EiLS AEiLS

n # SCC k-D M∗
1 # SCC k-D M∗

1 # SCC k-D M∗
1 # SCC k-D M∗

1

10 4.622 0.912 1.414 0 8.446 0.898 0.213 0.295 35.218 0.949 <0.001 0.016 32.274 0.921 <0.001 0.013

16 5.727 0.876 0.098 0 9.743 0.892 0.326 0.146 91.422 0.938 <0.001 0.023 90.969 0.929 <0.001 0.018

20 7.249 0.904 0.057 0 9.893 0.891 0.166 0.292 138.261 0.935 <0.001 0.013 137.261 0.912 <0.001 0.009

32 9.326 0.918 0.193 0 11.327 0.879 0.085 0.299 201.319 0.921 <0.001 0.055 199.847 0.919 <0.001 0.032

40 9.785 0.912 0.058 0 11.994 0.816 0.068 0.107 592.368 0.921 <0.001 0.068 589.992 0.919 <0.001 0.071
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to the exact fronts is small as well.

The coverage of the fronts is presented in Table 3.13. In general, to measure

the coverage of two fronts (A and B) is to measure the volume of points of front A

that are dominated by front B: this means that either of both fronts that dominates

more points is a better front. Table 3.13 allows us to highlight the superiority of

both: EiLS and AEiLS algorithms over the SMSA because they both dominate a

big volume of the points found by SMSA. Note that because Augmecon2 is able to

�nd optimal solutions but it may not �nd non-supported points in the Pareto front,

this leads to less points and less variability. Because of this we only report SMSA,

EiLS and AEiLS coverages.

Table 3.13: Average coverage of the approximated fronts obtained by the SMSA,

EiLS, and AEiLS procedures.

Instance n c(
SM

SA
,E
iL
S)

c(
SM

SA
,A
E
iL
S)

c(
E
iL
S,
SM

SA
)

c(
E
iL
S,
A
E
iL
S)

c(
A
E
iL
S,
SM

SA
)

c(
A
E
iL
S,
E
iL
S)

MLDP_10 10 <0.001 <0.001 0.796 0.004 0.792 0.001

MLDP_16 16 0.062 0.059 0.832 0.023 0.824 0.001

MLDP_20 20 0.183 0.181 0.857 0.033 0.849 0.002

MLDP_32 32 0.195 0.198 0.847 0.038 0.852 0.013

MLDP_40 40 0.197 0.198 0.914 0.038 0.927 0.018

With the results reported in Tables 3.12 and 3.13, it is clear that under small

instances EiLS and AEiLS are able to provide good quality approximations to the

Pareto fronts obtained by Augmecon2 but in shorter computational time. In small

instances, we are unable to report a well de�ned superiority among both algorithms,

due to the e�ectiveness of both and the apparent best performance of EiLS in smaller
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sized instances.

3.5.5.2 Large instances

Section 3.5.5.1 shows the experimentation obtained in small instances. We now

report results for instances that the exact method was no longer able to solve. Each

set contains 35 replicas (i.e., independent instances created with the same value of

n) and we report results with n ∈ {64, 80, 128, 160, 256}, ten executions per instance

of each method. Due to the fact that our implementation of an exact methodology

is not able to solve instances of such sizes, the comparison is just between our three

metaheuristic approaches: SMSA, EiLS, and AEiLS. All results are reported in

averages obtained per set of instance.

Table 3.14: Average CPU times obtained by our three approximation methods in

larger instances. These times are shown in averages per each set of instances and

measured in seconds.

Instance n SMSA EiLS AEiLS

MLDP_64 64 627.283 301.873 293.472

MLDP_80 80 1002.374 379.572 361.385

MLDP_128 128 1473.287 683.958 597.283

MLDP_160 160 1924.739 935.284 891.373

MLDP_256 256 2423.624 1225.448 999.374

Table 3.14 shows the comparison in CPU time consumed in obtaining these

fronts. Table 3.14 shows that both, EiLS and AEiLS have a better time-performance

than SMSA in larger instances as well by only consuming about half the time SMSA

takes to approximate the Pareto fronts. It is shown that also AEiLS have a slightly

better CPU time than EiLS, above all, in the larger sizes tested.
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Table 3.15: Comparison among the metrics obtained per algorithm in larger instances. These values are averages

over the set of instances.

SMSA EiLS AEiLS

Instance n # SCC k-D # SCC k-D # SCC k-D

MLDP_64 64 17.372 0.8517 0.081 679.285 0.9271 <0.001 731.371 0.9226 <0.001

MLDP_80 80 21.273 0.8312 0.078 843.572 0.9129 <0.001 893.362 0.9112 <0.001

MLDP_128 128 38.371 0.8298 0.075 1085.274 0.9081 <0.001 1142.383 0.9102 <0.001

MLDP_160 160 50.282 0.8288 0.071 1483.753 0.8934 <0.001 1512.248 0.9021 <0.001

MLDP_256 256 75.813 0.8141 0.068 1812.935 0.8712 <0.001 1873.372 0.8801 <0.001



Chapter 3. Minimum Latency-Distance Problem 102

To evaluate the performance our three proposed metaheuristics have in larger

instances, we divide Table 3.15 into three sections, one for each method, and each

section containing four columns: #, SCC, k-D, and M∗
1 . All reported values are

in averages over the sets of 35 instances for each size. Table 3.15 shows a great

di�erence in the volume of points obtained by EiLS and AEiLS against SMSA, and

clearly show the superior ability of the former two to provide more populated fronts

than SMSA. Contrary to the performance in small instances (cf. Section 3.5.5.1),

in larger instances the latter being superior. EiLS and AEiLS use their intelligent

neighborhood selection to improve the density of the approximated Pareto fronts

while mantaining a good hypervolumen. As exact fronts could not be computed, we

omit the M∗
1 metric that would compare the approximated fronts to the exact ones.

Due to the mldp constraints, the search space is smaller than in k -mldp and

therefore, it is expected for EiLS to perform better than AEiLS in small instances.

Nonetheless, with larger instances, AEiLS has enough time to calibrate and produces

slightly better results than EiLS.

Table 3.16: Average coverage of the approximated fronts in larger instances. Aver-

ages obtained by the SMSA, EiLS and AEiLS.

Instance n c(
SM

SA
,E
iL
S)

c(
SM

SA
,A
E
iL
S)

c(
E
iL
S,
SM

SA
)

c(
E
iL
S,
A
E
iL
S)

c(
A
E
iL
S,
SM

SA
)

c(
A
E
iL
S,
E
iL
S)

MLDP_60 60 0.201 0.193 0.919 0.001 0.920 0.001

MLDP_80 80 0.205 0.191 0.931 0.003 0.937 0.005

MLDP_128 128 0.219 0.212 0.944 0.007 0.948 0.010

MLDP_160 160 0.208 0.203 0.969 0.007 0.970 0.012

MLDP_256 256 0.213 0.205 0.971 0.012 0.974 0.043
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The coverage of the fronts is reported in Table 3.16, for SMSA, EiLS and

AEiLS: EiLS and AEiLS are superior to SMSA. Note that because Augmecon2 is

able to �nd optimal solutions but it may not �nd non-supported points in the Pareto

front, this leads to less points and less variability. Hence we only report SMSA, EiLS

and AEiLS coverages. In larger instances, AEiLS has a slightly better performance

than EiLS.

For solving larger instances, EiLS and AEiLS are able to provide good-quality

approximations to the Pareto fronts in a short computational time and with a good

diversity of the front.

3.5.6 Conclusions

Incorporating smart neighborhood exploration to approximate Pareto fronts of

mldp leads to better results than a classical multi-objective technique.

EiLS has a better performance than AEiLS in smaller instances: EiLS starts

iterating at a good parameter combination while AEiLS has to adjust its parameters,

resulting in poor solutions in the beginning. When instances are larger, AEiLS has

enough time to self-adjust and slightly outperforms EiLS. Given enough time to

iterate, the self-adjusting method calibrates itself appropriately.

3.6 Conclusions and future research

Our single-vehicle bi-objective problem, the Minimum Latency-Distance Prob-

lem (mldp), involves minimizing the travel distance and the total latency of an

assumed in�nite-capacity tour. We propose a bi-objective approach which combines

two well-known combinatorial problems with the goal to integrate the client as an

active part in the decision-making process of a routing problem.
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mldp is an NP-hard problem (Section 3.3), which justi�es the employment of

approximated methods. We proposed a non-linear formulation for this problem, that

can be solved to obtain the exact Pareto fronts (Sections 3.4 and 3.5).

We provide a set of new instances that take into account several adjustments

to recreate real-world settings (Section 3.5.1), and were able to �nd the exact Pareto

front of instances with ten to forty clients (Section 3.5.5.1). We compared three

methods:

• Strategic Memetic Search Algorithm (SMSA), a metaheuristic based on the

classic multi-objective NSGA-II algorithm,

• Evolutionary algorithm with Intelligent Local Search (EiLS), an intelligent

neighborhood selection method, and

• Automatically adjusting Evolutionary algorithm with Intelligent Local Search

(AEiLS), a self-adjusting intelligent neighborhood selection method.

EiLS and AEiLS, guided by an intelligent selection of a more appropriate neigh-

borhood in the local search procedure, are superior to SMSA, in terms of density of

the fonts, hypervolume percentage, computational time required, and other quality

metrics.

Due to the characteristics of mldp, an adequate parameter calibration can be

obtained manually (Section 3.5.4), and hence, it is expected for EiLS to outperform

AEiLS in small instances as AEiLS has to adjust its parameters during the execution.

Nonetheless, for larger instances, AEiLS has enough time to self-adjust and slightly

outperform EiLS.

As future work, we wish to incorporate real-world conditions in more detail

to develop a more realistic mathematical formulation such as the introduction of
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capacity for each one of the vehicles. A stochastic version of this problem as well

as the rede�nition of the assumptions made for the linearity between traveling time

and traveled distance are also worth considering. Chapter 4 considers a version of

the mldp with a �eet of vehicles instead of a single agent to carry out the visiting.



Chapter 4

k-Minimum Latency-Distance Problem

This chapter introduces a multi-vehicle result of the Minimum Latency-Distance

Problem, this version considers the use of several vehicles of in�nite capacity to per-

form the visiting. We call this problem the k-Minimum Latency-Distance Problem

(k -mldp).

Section 4.1 introduces this new problem, Section 4.2 shows the mathematical

formulation as well as the assumptions considered for it. The computational com-

plexity of our proposed problem is established in Section 4.3, and solution methods

are shown in Sections 4.4.1 � 4.4.4. Parameter calibration and computational exper-

imentation are reported in Section 4.5. Lastly, conclusions for this chapter are given

in Section 4.6.

4.1 k-Minimum Latency-Distance Problem: an introduction

The Multiple Traveling Salesman Problem (m-tsp) is a classic combinatorial

problem which aims to minimize the total traveled distance of a vehicle in charge

of visiting a set of clients (cf. Section 2.3). The main application of this problem is

found in vehicle routing (Bekta³ and Elmasta³, 2007; Clarke and Wright, 1964; Li

and Fu, 2002; Min, 1989; Park and Kim, 2010; Schittekat et al., 2006, 2013; Tang

106
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et al., 2000) or door to door visiting (Gilbert and Hofstra, 1992; Kergosien et al.,

2009; Sipahioglu et al., 2008).

The employment of several vehicles in a �eet in charge of performing a service

to a set of clients with the aim of minimizing the total waiting time of all the clients

is known as the k-Traveling Repairman Problem (k -trp, Section 2.5) Fakcharoen-

phol et al. (2003); Nucamendi-Guillén et al. (2016); Onder et al. (2017). The main

application of such is in humanitarian logistic (Dikbyk, 2017; Ma et al., 2015) and

routing (Avci and Avci, 2017; González and Rivera, 2015; Ha Bang, 2018; Martin

and Salavatipour, 2016).

In both m-tsp and k -trp, every vehicle in the �eet must have at least a client

assigned. Each vehicle must not carry out sub-tours and each client can only be

visited once.

Let us consider a company that provides a service to a set of clients with a �eet

of k agents that all depart from a known depot and return to it at the end of the

day. Each of the clients is visited exactly once. This company seeks to satisfy the

requests of the clients as fast as possible by minimizing the total waiting time of the

client set while the agents travel the minimum distance to perform the visiting. With

such delimiters, we propose a bi-objective problem called the k-Minimum Latency-

Distance Problem (k -mldp) to simultaneously optimize both of these objectives.

To the best of out knowledge, a similar multi-vehicle approach has not been

studied in a routing context, but has been seen in medical and telecommunications

contexts (Frye, 1995; Kara et al., 2007; Kim et al., 2012; Malarky, 2013; Mangharam

et al., 2007).
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4.2 k -mldp: assumptions and mathematical formulation

To formally de�ne the k -mldp, let us consider a company that provides a

service to a set of clients through a �eet of vehicles. Such �eet has a �xed number of

k vehicles and each one of them departs from a known depot and returns to it at the

end of the day. All k vehicles must have at least one client assigned and it must be

reassured that all clients have only an agent scheduled to visit them. The main goal

is to �nd a combination of k active tours that ful�l the visiting of all clients while

aiming to minimize the total travel distance of all agents as well as to minimize the

total waiting time of the clients.

We assume that the duration of each service, the exact distance between the

depot and the clients, as well as the distance between all the clients are known with

certainty. The direct proportionality of travel time to distance traveled as well as

the su�cient capacity of each and every one of the agents to attend all the clients it

has assigned in its tour are assumed as well. Note that because of the assumption

of linearity between travel time and travel distance, we refer to the two indistinctly.

k -mldp deals with the optimization of two well-known routing objectives mea-

sured with a di�erent metric (Blum et al., 1994). Figure 4.1 shows a graphical

representation of a set of k tours in charge of visiting a set of ten vertices by min-

imizing the total latency and distance of it. Each grey arrow depicts the known

possible connection among all clients and the depot.

Note that despite having k active agents to perform the service on each client,

each of those tours is a single mldp tour and therefore, no returning arcs to the

depot are considered. In Figure 2.6 as well as in Figure 4.1, the returning arc is

depicted as a dashed line to indicate that it is only considered when computing the

distance objective.
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Figure 4.1: Graphical example of an small k -mldp solution in an instance of ten

clients.

To model k -mldp, we part from a model developed for the objective of latency,

into which we incorporate the distance objective; we base our formulation on the

work of Nucamendi-Guillén et al. (2016). Let us consider a directed and complete

graph G = (V,A). Let A be the arc set and V a vertex set V = {v0, v1, v2, . . . , vn},

where v0 represents the depot and the remaining vertices represent the n clients to

be visited. A set I = {v1, v2, . . . , vn} is derived from set V and denotes the n clients.

A total of k vehicles are in charge of ful�lling the visiting of the clients; all k vehicles

must be active and have at least one client assigned to them. Due to this constraint

being in�exible, a bound on the number of clients assigned to a client is de�ned as,

N = n− k + 1, (4.1)

characterizing the worst-case scenario for each agent: all other agents only have one

single client assigned.

Each client i ∈ I has a service time si associated to it. This service time refers

to the time the agent takes to ful�l the service to the client. Each arc (vi, vj) ∈ A

has associated a travel time from client i to j, de�ned as tij, which represents the
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distance from client i to client j.

A matrix T contains for each pair (vi, vj) a weight ti,j ≥ 0 (the travel time from

vertex vi to vertex vj), and where the diagonal element ti,i represents the service time

si of client i, a cost matrix C is computed with elements:

ci,j = ti,i + ti,j. (4.2)
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Figure 4.2: Multi-level network used to formulate the k -mldp.

To represent k -mldp, we base our formulation on a N + 1 multi-level network,

similarly to the k -trp characterization of Nucamendi-Guillén et al. (2016). Such

network is depicted in Figure 4.2: level one consists of a copy of all vertices associ-

ated with clients, v1, v2, . . . , vn. Levels 2, 3, . . . , N are copies of V and level N + 1

represents the depot. This network is helpful in representing a k -mldp solution, this

is to say, a set of k active and disjointed tours which start in the depot and in total,

visit all clients.

A feasible solution of k -mldp is a set of k paths starting at the depot and

visiting vertices until the k agents have together visited all clients. A client i can

only belong to one path. Each path should only visit a vertex in each level lower
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than the starting vertex level; if a path starts in vertex h, then this path has h− 1

vertices associated to it.

Note than a k -mldp solution only considers the returning arc of each of the

k tours to the depot in the calculations of the total traveled distance for each tour.

Hence we de�ne the decision variables xi,l and yi,j(l) as

xi,l =

1, if vertex i is active in level l in the path,

0, otherwise,

yi,j(l) =

1, if vertex i in level l + 1 is followed by vertex j in level l,

0, otherwise.

k -mldp is linearly formulated as follows,

min F1 =
n∑
j=1

c0j

N∑
l=1

ly0,j(k) +
n∑
i=1

n∑
j=1
j 6=i

cij

N−1∑
l=1

lyi,j(l) (4.3)

min F2 =
n∑
j=1

c0j

N∑
l=1

ly0,j(k) +
n∑
i=1

n∑
j=1
j 6=i

cij

N−1∑
l=1

lyi,j(l) +
n∑
i=0

ci0

N∑
l=0

yi,0(l) (4.4)

subject to
N∑
l=1

xi,l = 1, i = 1, 2, . . . , n (4.5)

n∑
i=0

xi,1 = k (4.6)

N∑
l=1

n∑
j=1

y0,j(l) = k (4.7)
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n∑
j=1
j 6=i

yi,j(l) = xi,l+1, i = 1, 2, . . . , n; l = 1, 2, . . . , N − 1 (4.8)

y0,j(l) +
n∑
i=1
i 6=j

yi,j(l) = xj,l, j = 1, 2, . . . , n; l = 1, 2, . . . , N − 1 (4.9)

y0,j(N) = xj,N , j = 1, 2, . . . , n (4.10)

xi,l ∈ {0, 1}, i = 1, . . . , n; l = 1, . . . , N (4.11)

yi,j(l) ≥ 0, i = 1, . . . , n; j = 1, . . . , n; l = 1, . . . , N − 1 (4.12)

The minimization of the total waiting time of all the clients visited by the �eet

of vehicles is stated in Equation (4.3). Equation (4.4) states the minimization of the

total travel distance by the �eet of vehicles. In Equation (4.3), the arcs denoting the

return of the vehicles to the depot are not considered meanwhile all returning arcs

have to be considered in Equation (4.4) as we do not consider the returning of the

vehicles to the depot as client waiting time.

Equation (4.5) guarantees that there can only be one active vertex per level in

the multilevel network shown in Figure 4.2, meanwhile Equation (4.6) requires that

each agent must visit at least one client, to ensure all k vehicles are active. Hand

to hand, Equation (4.7) ensures there are exactly k vehicles. Equation (4.8) ensures

that from level l + 1 can leave arcs from the nodes that are active at that level.

Equation (4.9) impose that at level l can arrive arcs to nodes that are active at that

level, and Equation (4.10) ensures that if a vertex on level N is active, level N + 1

must be connected to that vertex.

Lastly, Equations (4.11) and (4.12) denote the nature of the variables. Note

that variables yi,j(l) are de�ned as binary but they are handled as continuous vari-

ables in the model. This is achieved as the binary variables xi,l determine the active

vertices in the network and this simpli�es �nding the k shortest paths from the ac-
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tive vertex in level l through the active vertices in the intermediate levels. This is to

say, this is an uni-modular problem and therefore there is no need to de�ne yi,j(l) as

binary variables. This formulation consists of n2N binary variables, (n3−2n2 +n)N

real variables, and (2n2)N + 2n constraints.

As mldp, our k -mldp formulation can be expressed in non-linear terms under

the same parameters and in the same multi-level network. This is achieved by

representing the selection of vertices over the network with boolean decision variables

xi,l,

xi,l =

1, if vi is selected on `l,

0, otherwise,
(4.13)

where i takes values from 1, . . . , n, and l takes values from 1, . . . , N . Note

that the depot v0 forms `N+1, meaning no selection is made there as every k -mldp

feasible tour initiates at the depot. Additionally, we write as an auxiliary notation

yi,j(l) = xi,l+1xj,l, (4.14)

meaning that yi,j(l) = 1 if and only if vi is selected on `i+1 and vj is selected on `i,

and zero otherwise. With the above notation, the travel distance from the depot to

the �rst client is de�ned as

T0 =
n∑
j=1

c0j

N∑
l=1

ly0,j(l), (4.15)

the travel distance from the last client to the depot is de�ned as

Tn =
n∑
i=0

ci0

N∑
l=0

yi,0(l). (4.16)

Similarly, as each of all the n clients will have to wait for the agent to reach

the �rst client, we write

W0 =
n∑
j=1

c0j

N∑
l=1

ly0,j(l). (4.17)
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The complete k -mldp formulation is de�ned as follows,

min F1 =W =W0 +
n∑
i=1

n∑
j=1
j 6=i

cij

N−1∑
l=1

lyi,j(l) (4.18)

min F2 = T = T0 + Tn +
n∑
i=1

n∑
j=1
j 6=i

cij

N−1∑
l=1

lyi,j(l) (4.19)

subject to

∀i :
N∑
l=1

xi,l = 1 (4.20)

∀i :
n∑
i=0

xi,1 = k (4.21)

N∑
l=1

n∑
j=1

y0,j(l) = k (4.22)

∀i, ∀l :
n∑
j=1
j 6=i

yi,j(l) = xi,l+1 (4.23)

∀j,∀l : y0,j(l) +
n∑
i=1
i 6=j

yi,j(l) = xj,l (4.24)

∀j : y0,j(N) = xj,N (4.25)

∀i, ∀l : xi,l ∈ {0, 1}. (4.26)

In this non-linear formulation, Equation (4.18) expresses the objective to min-

imize the total waiting time over the set of clients, as each client has to wait through

the services of all the previous clients and the intermediate travel times. Equation

(4.19) denotes the minimization of total travel distance of the entire set of vehicles,

from the depot and back to the depot, after visiting all the clients. Equation (4.20)

guarantees that only one vertex is selected per level in the network. Equation (4.21)

ensures that each agent has at least a client assigned and Equation (4.22) ensures
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that there are exactly k vehicles.

Equation (4.23) ensures that from level l+1 can leave arcs from the nodes that

are active at such level, and Equation (4.24) guarantees that at level l can arrive

arcs to nodes that are active at that level. Equation (4.10) ensures that if a vertex

on level N is active, level N + 1 must be connected to that vertex. Lastly, Equation

(4.26) denotes the nature of the variables.

4.3 Complexity of k -mldp

In this section, we study the computational complexity of the k -mldp. A short

reminder of basic complexity theory is previously given in Section 3.3.

Both of the single-objective optimization problems that are merged into k -

mldp are NP-hard (Afrati et al., 1986; Ausiello et al., 2000; Fakcharoenphol et al.,

2003; Papadimitriou, 1994). In this section we demonstrate that also k -mldp itself

is NP-hard.

To demonstrate the complexity of k -mldp, we are subject to the same assump-

tions as the model presented in the previous section: we consider a �xed-size �eet of

vehicles, each with no capacity restrictions, that visits all of the clients in k disjoint

tours. This requires e�ciently reducing a known NP-complete problem Oσ to our

problem (Garey and Johnson, 1990). We �rst de�ne the decision problem Dk-mldp

associated to k -mldp, then show that k -mldp belongs to NP, and �nally establish

that an e�cient reduction from a known NP-complete problem to our problem exists.

By de�nition, the k -mldp consists in �nding a set of k disjoint tours which

in total visit all clients, leaving from a established depot and returning to it at the

end of their shift, while minimizing the total latency of all the clients and the total

traveled distance of all k uncapacitated vehicles. Figure 4.3, depicts some particular
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Figure 4.3: Illustration of some particular instances of the k -mldp. In Figure 4.3a,

the general case is shown: in this case, service and travel times all take arbitrary

values. In Figure 4.3b, a simpler case is shown: all service times have a constant

value u but travel times are arbitrary (a k -tsp instance). Lastly, in Figure 4.3c: all

service times are arbitrary and all travel times are equal to a constant u (a k -mlp

instance).
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cases considered. In a general case, which refers to a more real-life situation for the

agents, it considers arbitrary non-zero traveling and service times, (see Figure 4.3a).

We also consider some special cases of this problem (see Figures 4.3b, 4.3c).

Nucamendi-Guillén et al. (2016) discuss the latency objective and propose

1

2

n−1∑
k=1

(n− k)
n∑
i=0

n∑
j=0

tij + (si + sj), (4.27)

where tij refers to travel time among clients i and j, as well as si and sj refers to

their corresponding service times.

By using Equation (4.27), we rede�ne non-zero travel and service times for

computing the bounds used to de�ne the decision problem Dk-mldp associated to

k -mldp.

The corresponding decision problem of k -mldp is the following: given the costs

of Equation (4.2), an upper bound to the total time T ≤ Θ to Equation (4.4), and an

upper bound to the waiting time W ≤ Ω to Equation (4.3), is there an assignment

X that satis�es all the original constraints as well as the upper bounds set on the

objectives?

As stated by Garey and Johnson (1990) to show that k -mldp belongs to NP it

is needed to establish that an e�cient reduction from a known NP-complete problem

to our problem exists. Theorem 3 proves the reduction of k -mldp to m-tsp.

Theorem 3. k-tsp reduces e�ciently to k-mldp.

Proof. We �rst establish that the feasibility of a givenX can be veri�ed in polynomial-

time: each X captures a set of k disjoint permutations that start at the depot and

can be e�ciently recovered from the assignment matrix X as a set of k disjointed

sequences in the form of v(0), v(1), . . . , v(N), where v(0) is always the depot, N is the
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bound per vehicle de�ned in Equation (4.1), and the visits from v1 to v(N) correspond

to the clients visited per vehicle.

We need four accumulator variables, one to measure time along the tour, one

to count the total travel time per vehicle, k to count the total travel time of the set

of vehicles, and the fourth to count the total latency of the �eet. We also need k

arrays, one per agent, of N binary variables each, to verify each client assigned to

each agent and to guarantee all vehicles are active and have at least a client assigned.

We need an array of n binary variables, one for each client, to verify that each one of

the clients is properly visited. We proceed in the visiting order, per vehicle, denoting

the source by i and the destination by j adding the value of ti,j to both the time

accumulator and to both travel-time accumulators, then adding the service time ti,i

to the time accumulator, and then the current value of the time accumulator to the

latency accumulator, making the client j as visited. Every time a client is visited

by one of the k agents, it is marked in the auxiliary array to verify that all clients

are visited. This process is carried out for each vehicle, and if at the end of all k

permutations, all n binary variables are one, the travel-time accumulator respects

its upper bound Θ, and the latency accumulator respects its upper bound Ω, the

solution is feasible. As the veri�cation is a polynomial procedure, Dk-mldp ∈ NP.

To establish NP-completeness, we reduce the multiple Traveling Salesman Prob-

lem (k -tsp) in its decision version to Dk-mldp, as illustrated in Figure 4.4. In the

decision version of k -tsp, the input is a constant k which refers to the total number

of agents to make the visiting, a cost matrix C for the travel costs between all n

clients (with the diagonal elements being zero) together with an upper bound to the

total cost of the whole set of k tours must ful�l, C, and the question is whether a

set of k disjointed permutations over the set of clients exists such that it produces a

set of tours with the sum of costs of the segments not exceeding C.
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Im-tsp Rm-tsp,k-mldp Mk-mldpIk-mldp

“NO”

“YES”

Mm-tsp

Figure 4.4: Reduction diagram from k -tsp to k -mldp (both as decision problems).

The main box in the �gure depicts an algorithm to solve the k -tsp problem that

takes as input an instance of k -tsp and determines whether the answer is �yes� or

�no� to this instance. To prove the complexity of k -mldp, a reduction algorithm

must transform a k -tsp entry into a k -mldp one. This k -mldp input is then solved

and receives a �yes� or �no�. As a whole, the process takes a k -tsp instance, reduces

it into a k -mldp instance, solves the reduced instance with an algorithm for k -mldp,

and responds correctly �yes� or �no� to the original instance.

In order to transform the input for the decision version of the k -tsp into an

input for Dk-mldp, the total number of agents to make the visiting is de�ned as k1, we

use the elements of C as T , set Θ = C, and lastly we only need to compute e�ciently

an adequate value to describe the total latency bound Ω, which is set for all the k

tours an k -mldp solution must have. Notice that according to Equation (4.1), the

worst-case scenario for each agent is given when all the others k − 1 agents are in

charge of visiting a single client each. To compute Ω, we proceed vehicle by vehicle, in

terms of the worst-case costs, computing from the cost matrix C the largest cost per

each row (that is, as if the agent at each client chose the most expensive segment to

continue the tour when visiting its N assigned clients) in O(N2) time, and then sort

these worst-case segments from largest to smallest in O(n logN) time to construct

an upper bound to the worst-case latency per tour. To calculate the complete set of

tours we would need O(k)(N2) time to compute the expensive segments, and then to

sort these worst-case segments from largest to smallest we would need O(kN logN).

Notice that the service times in k -tsp are the diagonal elements of the cost matrix
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that are all zero. Therefore the worst-case total latency, per vehicle, is the sum of

the cumulative sums of the sorted list of costs. We use the sum of all k worst cases

latencies as Ω. Hence, Dk-mldp responds �yes� to the transformed input if and only

if the decision version of k -tsp would respond �yes� for the original input.

As stated before, this demonstration is subject to the same assumptions con-

sidered in the mathematical model presented in Section 4.2: we consider a �xed-sized

�eet of vehicles with no capacity restrictions to visit all of the clients in a k disjointed

set of tours. This requires e�ciently reducing a known NP-complete problem Dσ to

our problem (Garey and Johnson, 1990). We �rst de�ne the decision problemDk-mldp

associated to k -mldp, then show that k -mldp belongs to NP, and �nally establish

that an e�cient reduction from a known NP-complete problem to our problem exists.

After proving that k -mldp reduces e�ciently to k -tsp, Theorem 4 establishes the

complexity proof of mldp.

Theorem 4. Dk-mldp is NP-complete.

Corollary 4.1. k-mldp is NP-hard.

Proof. By Theorem 3 and Corollary 4.1, it is shown that k -mldp is at least as

di�cult as k -tsp. Thus, as mentioned in Corollary 4.1, Dk-mldp is NP-complete and

therefore k -mldp is NP-hard.

4.4 Solution methods for k -mldp

k -mldp is an NP-hard problem and therefore exact methods are only expected

to e�ciently solve very small instances, making heuristic approaches a necessity.
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In this section we discuss the design and implementation of the procedures we im-

plement to obtain the Pareto fronts for a set of instances created speci�cally for

k -mldp, based on the instances created for mldp (cf. Section 3.5.1).

Section 4.4.1 discusses obtaining the exact k -mldp Pareto fronts of these in-

stances, whereas Sections 4.4.2, 4.4.3, and 4.4.4 present heuristic approaches to ob-

tain the approximations of such Pareto fronts.

4.4.1 Exact method

k -mldp, is a natural generalization of mldp that deals with the minimization

of two objective functions, latency and distance, but instead of minimizing them on

a single tour, k -mldp aims to minimize both objectives using a �xed-sized �eet of

vehicles.

We obtain exact solutions for k -mldp using the linear formulation described

in Section 4.2. Similarly as in our mldp design, we keep the distance objective of

Equation (4.4) as the main objective and solve the problem subject to the origi-

nal constraints along with the latency objective of Equation (4.3); in our case, this

produces a single-objective problem which minimizes the distance of the tour con-

strained to its total latency.

As both of the single-objective problems that k -mldp may reduce to in this

manner are also NP-complete (Afrati et al., 1986; Ausiello et al., 2000; Fakcharoen-

phol et al., 2003; Papadimitriou, 1994), the asymptotic complexity of computing a

Pareto front is exponential in the size of the instance, which in this case is measured

in terms of the number of clients. In case the latency objective of Equation (4.3) is

the one being �xed and the problem is solved subject to the original constraints along

with the distance objective of Equation (4.4), an NP-hard problem is expected as
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well. Therefore, a metaheuristic approach is justi�ed and desirable. Sections 4.4.2,

4.4.3, and 4.4.4 describe three metaheuristic algorithms to solve this bi-objective

problem.

4.4.2 Strategic Memetic Search Algorithm for k -mldp

We employ Strategic Memetic Search Algorithm (SMSA) (cf. Section 3.4.2)

for the k-vehicle version. In this section, we discuss the adjustments made for it.

4.4.2.1 Initial population

A solution of k -mldp is a permutation of the n vertices that form the client

set, considering k times the depot, as k is the number of agents to ful�l the visiting

now. An example of a solution of k -mldp, considering 10 clients and k = 3 agents

to visit them can be seen in Table 4.1.

Table 4.1: Example of a single k -mldp solution. This solution has 10 clients and

k = 3 agents. The depot is denoted as v0.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

v0 v2 v3 v4 v0 v1 v5 v6 v0 v8 v10 v9 v7

4.4.2.2 O�springs

The selection of each parent is also made through a binary tournament and after

selecting both parents, we apply a combination method based on the OX crossover.

Due to the way each k -mldp solution is coded (see Table 4.1), we apply this modi�ed

crossover over each of the k segments individually.
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4.4.2.3 Ranking

The ranking scheme requires not additional modi�cations to work for the multi-

vehicle version.

4.4.2.4 Neighborhood exploration

The local search is applied in each of the k segments belonging to each coded

solution. This is to say, the process is applied on each one of the k tours in the �eet

individually.

4.4.3 Evolutionary algorithm with Intelligent Local Search Algorithm

for k -mldp

In this section we discuss the adjustments made to EiLS (cf. Section 3.4.3) for

the multi-vehicle version.

4.4.3.1 Initial population

EiLS solutions are represented the same way as for SMSA in the multi-vehicle

version: inserting k-1 non-sequential copies of the depot within the permutation (cf.

Table 4.1).

4.4.3.2 Elite set

The ranking scheme is unchanged for the multi-vehicle variant of EiLS. Our

elite set is constructed similarly as well.
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4.4.3.3 O�springs

The procedure selects two non-overlapping tour segments of size ϕ and when

exchanging them, it veri�es that no depot is immediately followed by another one

after the exchange both, assuring all agents have at least one client assigned. Table

4.2 shows an example for obtaining an o�spring from a 10-client solution with k = 3

agents to ful�l the visiting.

Table 4.2: EiLS o�spring generation with n = 10 and k = 3. The exchanged

segments are highlighted in grey.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

pi v0 v2 v3 v4 v0 v1 v5 v6 v0 v8 v10 v9 v7

oi v0 v8 v10 v9 v0 v1 v5 v6 v0 v2 v3 v4 v7

After interchanging both blocks of vertices, we verify the solution has all k

vehicles active, this is to say no depot is followed by another depot in the solution.

4.4.3.4 Mutation

The mutation operator for EiLS is unchanged in the multi-vehicle version.

4.4.3.5 Neighborhood exploration

The neighborhood exploration for the multi-vehicle version of EiLS include all

twelve neighborhood of the single-version of EiLS (cf. Section 3.4.3.5), but modi�ed

by adding the constraint that no two depot can be consequent in the resulting

solution. Four new neigborhoods, made specially for multi-vehicle movements, are

added. The exploration process is unchanged of the single-vehicle version of EiLS.
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• N13: First, a position a ∈ n
2
is chosen uniformly at random. Then position b

such that b ∈ n
2
. Contents of a and b positions are exchanged (see Table 4.3).

Feasible check-up is made to ensure no depots are consequent.

Table 4.3: An example N13 with n = 10 and k = 3, where a = 11 and b = 3.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

Π v0 v7 v8 v6 v0 v5 v1 v2 v0 v3 v4 v10 v9

N13(Π) v0 v7 v4 v6 v0 v5 v1 v2 v0 v3 v8 v10 v9

• N14: Three positions a, b, and c are chosen uniformly at random and their

contents are exchanged by moving the client of a to c, that of c to b, and that

of b to a (see Table 4.4). Feasible check-up is made to ensure no depots are

consequent.

Table 4.4: An example of N14 with n = 10 and k = 3, where a = 1, b = 3, and c = 9.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

Π v0 v7 v8 v6 v0 v5 v1 v2 v0 v3 v4 v10 v9

N14(Π) v0 v6 v8 v10 v0 v5 v1 v2 v0 v3 v4 v7 v9

• N15: Movement intra-tours. A position a > n
2
is chosen uniformly at random

and its contents are inserted in a random b location in the tour before the tour

its current position is located (see Table 4.5). Feasible check-up is made to

ensure no depots are consequent.

• N16: Movement intra-tours. A position a < n
3
is chosen uniformly at random

and its contents are inserted in a random b location in the tour after the tour
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Table 4.5: An example of N15 with n = 10 and k = 3, where a = 12, b = 4.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

Π v0 v7 v8 v6 v0 v5 v1 v2 v0 v3 v4 v10 v9

N15(Π) v0 v7 v8 v10 v6 v0 v5 v1 v2 v0 v3 v4 v9

its current position is located (see Table 4.6). Feasible check-up is made to

ensure no depots are consequent.

Table 4.6: An example of N16 with n = 10 and k = 3, where a = 4, b = 12.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13

Π v0 v7 v8 v6 v0 v5 v1 v2 v0 v3 v4 v10 v9

N16(Π) v0 v7 v8 v0 v5 v1 v2 v0 v3 v4 v6 v10 v9

4.4.3.6 Neighborhood performance

The performance of the neighborhood selection remains unchanged to the

single-vehicle version of EiLS.

4.4.4 Automatically adjusting evolutionary algorithm with Intelligent

Local Search Algorithm for k -mldp

In this section, we discuss the adjustments made for the single-vehicle version

of our proposed self-adjusting evolutionary algorithm (cf. Section 3.4.4), to generate

a multi-vehicle version.
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4.4.4.1 Initial population

The representation of the solutions of k -mldp follows the same structure as

SMSA and EiLS (cf. Table 4.1). The generation of solutions follows the same

structure as in the multi-vehicle version of EiLS (cf. Section 4.4.3).

4.4.4.2 Elite set

The ranking scheme and the elite set construction remains unchanged as in the

single-vehicle version of AEiLS.

4.4.4.3 O�springs

The crossover operator follows the same guidelines as the crossover of the multi-

vehicle version of EiLS (cf. Section 4.4.3.3); but to each solution generated with such

crossover, the structure of all counters detailed for the single-vehicle version of AEiLS

(cf. Section 3.4.4.3) remains unchanged.

4.4.4.4 Ranking and crowding scheme

The ranking and crowding scheme remains unchanged as in the single-vehicle

version of AEiLS (cf. Section 3.4.4.4).

4.4.4.5 Mutation

The mutation operator for the multi-vehicle version of AEiLS remains un-

changed.
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4.4.4.6 Neighborhood exploration

All sixteen neighborhoods detailed for the multi-vehicle version of EiLS (cf.

4.4.3.5) are included in AEiLS, along the restriction that that no two depot can be

consequent in the resulting solution. The exploration process is unchanged of the

single-vehicle version of EiLS.

4.4.4.7 Neighborhood performance

The performance of the neighborhood selection remains unchanged to the

single-vehicle version of AEiLS (cf. Section 3.4.4.7).

4.4.4.8 Autocalibration of parameters

The structure to measure the obtained success of AEiLS in its single-vehicle

version (cf. Section 3.4.4.8), remains unchanged for the multi-vehicle version.

4.5 Experimentation

In this section, we study the performance of our four proposals: Augmecon2,

SMSA, EiLS, and AEiLS, all adjusted for the multi-vehicle case.

4.5.1 Trial instances

In the experimentation for k -mldp, we employ the instances described in Sec-

tion 3.5.1, varying the number of k vehicles per instance, independent of the size of

each instance: k ∈ {bn/10c, bn/8c, bn/5c, bn/4c, bn/3c, bn/2c}, and

n ∈ {10, 16, 20, 32, 40, 64, 80, 128, 160, 256} clients, each with 35 instances.
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4.5.2 Measurements of the quality of the obtained fronts

To compare the performance of all our proposed metaheuristics against the

exact Pareto fronts obtained with the Augmecon2 algorithm, we consider �ve metrics

to measure the quality of the solutions.

• the number of points (#),

• the size of the space covered (SCC),

• k-distance (k-D),

• the distance between the exact Pareto front and the approximate Pareto front

(M∗
1 ),

• the coverage of the fronts (c(◦,◦)).

These metrics are shown on Table 3.9 on page 93.

4.5.3 Technical speci�cations

Our implementation of Augmecon2 was solved using the MILP solver ILOG

CPLEX C++ Concert Technology. All our heuristic procedures are implemented

in C++ and every instance was solved in a Xenon R© Intel R© CPU E3-1245 v3 @

3.40GHz, with 16 GB of RAM with each of these methods.

4.5.4 Parameter calibration

The parameter selection is the following:
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• Augmecon2 (Section 4.4.1): step size is �xed as δ = 1/2n, where n denotes the

size of the instance.

• SMSA (Section 4.4.2): we vary the size of the population (γ in Algorithm 1),

the probability to mutate a solution (β in Algorithm 1), as well as number of

iterations (I in Algorithm 2). All this with a �xed R = 5.

• EiLS (Section 4.4.3): we �x χmax = γ, τ = 7, ε = dγ/2e and κ = dε/2e.

We vary the size of the population (γ in Algorithm 3), the number of evalu-

ations per module (φ in Algorithm 3) as well as the minimum success in the

exploration of each neighborhood (α in Algorithm 3).

• AEiLS (Section 4.4.4): we �xed the size of the elite set to ε = dγ/2e and the

number of couples to generate o�springs to κ = dε/2e.

The varied parameters were calibrated under a factorial design of experiments

and the combination of parameters where the best quality in the approximated fronts

was obtained was selected as the �xed combination for further experiments. For each

of the 35 replicas, we perform 10 executions, and for each of the 350 resulting fronts

we compute the number of points (#) in the resulting front, the size of space covered

(SCC). For both methods, a single parameter combination produced the best value

for both metrics (i.e., the highest number of points in the front and the largest

hypervolume). Tables 4.7 and 4.8 show the quality obtained with each combination

of parameters.
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Table 4.7: Factorial design for parameter calibration in SMSA; n is the size of the

instance. For the SMSA algorithm we tested the size of the initial population (γ),

the probability to mutate a solution (β), as well as number of iterations without

success (I).

SMSA

k bn/10c bn/8c bn/5c bn/4c bn/3c bn/2c

Label γ β I # SCC # SCC # SCC # SCC # SCC # SCC

1 5n 0.05 n/5 5.60 0.452 6.09 0.693 5.67 0.462 5.99 0.607 6.49 0.613 5.62 0.751

2 5n 0.05 n/10 5.86 0.462 6.12 0.697 5.74 0.642 6.13 0.610 6.52 0.685 6.19 0.688

3 5n 0.03 n/5 6.28 0.642 6.94 0.726 5.81 0.676 7.04 0.743 6.94 0.707 6.54 0.713

4 5n 0.03 n/10 6.52 0.734 7.23 0.782 6.42 0.724 7.13 0.825 7.18 0.748 7.05 0.734

5 10n 0.05 n/5 7.94 0.869 7.73 0.835 7.29 0.795 7.33 0.894 7.26 0.749 7.13 0.784

6 10n 0.05 n/10 6.95 0.812 5.81 0.776 6.62 0.766 6.51 0.807 6.41 0.694 6.81 0.747

7 10n 0.03 n/5 5.71 0.793 5.74 0.742 6.14 0.686 6.14 0.750 5.54 0.685 6.43 0.712

8 10n 0.03 n/10 5.66 0.731 5.67 0.742 5.47 0.635 5.57 0.688 5.17 0.645 6.17 0.673
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Table 4.8: Factorial design for parameter calibration in EiLS; n is the size of the

instance. For the EiLS algorithm we the size of the population (γ), the number of

evaluations per module (φ), as well as the minimum success (α).

EiLS

k bn/10c bn/8c bn/5c bn/4c bn/3c bn/2c

Label γ φ α # SCC # SCC # SCC # SCC # SCC # SCC

1 n 10 0.3 61.60 0.518 69.29 0.510 85.60 0.494 73.06 0.499 69.87 0.508 61.75 0.700

2 n 10 0.5 66.81 0.531 73.68 0.531 86.96 0.514 78.44 0.500 92.64 0.511 62.81 0.701

3 n 10 0.7 71.41 0.562 83.20 0.536 92.15 0.528 94.48 0.501 120.30 0.522 85.53 0.701

4 n 13 0.3 73.30 0.568 92.15 0.537 97.01 0.530 101.99 0.519 123.59 0.523 101.73 0.707

5 n 13 0.5 76.68 0.569 97.01 0.539 98.25 0.539 120.68 0.519 127.95 0.529 106.05 0.709

6 n 13 0.7 81.58 0.572 98.25 0.542 99.57 0.539 131.38 0.529 128.55 0.532 119.33 0.710

7 n 15 0.3 83.85 0.578 99.57 0.546 102.71 0.540 133.51 0.532 136.01 0.537 129.72 0.713

8 n 15 0.5 90.90 0.583 102.71 0.566 105.63 0.546 134.76 0.539 145.51 0.538 131.32 0.718

9 n 15 0.7 96.32 0.588 105.63 0.570 114.29 0.549 145.73 0.540 154.08 0.538 138.97 0.719

10 n2 10 0.3 115.27 0.588 111.35 0.589 115.91 0.563 147.99 0.553 159.55 0.543 156.16 0.748

11 n2 10 0.5 159.98 0.658 150.80 0.597 161.47 0.573 161.41 0.560 160.03 0.549 158.36 0.754

12 n2 10 0.7 152.11 0.647 142.07 0.588 155.63 0.570 146.50 0.549 151.75 0.537 146.03 0.699

13 n2 13 0.3 146.03 0.641 135.28 0.583 152.11 0.567 138.07 0.549 151.46 0.531 144.35 0.697

14 n2 13 0.5 144.35 0.634 133.69 0.578 146.03 0.562 135.37 0.543 150.39 0.530 140.53 0.689

15 n2 13 0.7 140.53 0.628 131.71 0.572 140.53 0.558 130.32 0.543 147.29 0.529 133.25 0.688

16 n2 15 0.3 133.25 0.618 129.22 0.569 133.25 0.551 127.54 0.542 143.91 0.528 128.87 0.688

17 n2 15 0.5 128.87 0.618 128.49 0.568 125.32 0.502 121.53 0.534 143.06 0.538 125.32 0.683

18 n2 15 0.7 125.32 0.600 123.19 0.562 121.80 0.500 108.24 0.523 142.07 0.530 121.80 0.682

19 n3 10 0.3 121.80 0.600 123.18 0.531 119.33 0.492 106.77 0.521 135.28 0.529 119.33 0.661

20 n3 10 0.5 90.90 0.588 110.03 0.518 114.21 0.490 103.34 0.519 133.69 0.529 114.21 0.658

21 n3 10 0.7 83.85 0.588 108.87 0.503 109.59 0.483 102.69 0.503 131.71 0.521 113.14 0.658

22 n3 13 0.3 81.58 0.518 102.75 0.500 90.90 0.480 97.77 0.483 129.22 0.518 109.59 0.652

23 n3 13 0.5 76.68 0.513 97.98 0.499 83.85 0.477 92.62 0.475 128.49 0.511 90.90 0.641

24 n3 13 0.7 73.30 0.502 94.12 0.498 81.58 0.477 92.37 0.470 123.19 0.511 83.85 0.639

25 n3 15 0.3 71.41 0.499 84.96 0.482 76.68 0.473 86.92 0.470 123.18 0.499 81.58 0.638

26 n3 15 0.5 66.81 0.478 83.69 0.481 73.30 0.463 81.53 0.464 110.03 0.499 76.68 0.631

27 n3 15 0.7 61.60 0.473 77.47 0.481 71.41 0.460 72.27 0.460 108.87 0.498 73.30 0.628

The calibration of parameters for SMSA is shown in Tables 4.7, and for EiLS

in Table 4.8. Both tables highlight the combination of parameters that give, in

average, the highest hypervolume of the obtained fronts. With this factorial design,

the combination of parameters was selected to start the experimentation analysis.
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4.5.5 Computational experimentation

Using the calibrated parameter selection, computational experimentation was

carried out to compare the methods: the results are presented in two sets: small

instances (up to 40 vertices) and large instances (up to 256 vertices), in terms of

average values for each size, over sets of 35 instances.

4.5.5.1 Small instances

We consider as small instances those sets that were able to be solved with the

exact methodology reported in Section 4.4.1, able to solve sets of up to 40 clients.

CPU times Elapsed with all methodologies are reported in Table 4.9.

CPU times are reported in Table 4.9. Note that the number of vehicles a�ects

the performance of EiLS and AEiLS. In smaller instances, EiLS seems faster, but

when the instances grow, the e�ectiveness of AEiLS also grows. In smaller instances

with fewer vehicles, EiLS has better performance. In larger instances, regardless of

the number of vehicles, AEiLS is more e�cient.
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Table 4.9: Average CPU times obtained by the four proposed solution methods. The

times are averages over set of instances, measured in seconds.

Instance n k Augmecon2 SMSA EiLS AEiLS

MLDP_10 10

bn/10c 34.561 2.475 0.074 0.068

bn/8c 34.561 2.949 0.068 0.074

bn/5c 23.964 2.987 0.073 0.083

bn/4c 23.964 3.217 0.081 0.099

bn/3c 20.464 3.504 0.173 0.202

bn/2c 20.328 3.726 0.305 0.309

MLDP_16 16

bn/10c 233.838 6.443 0.315 0.137

bn/8c 204.319 7.637 0.168 0.182

bn/5c 170.442 8.322 3.825 1.358

bn/4c 148.872 10.544 4.950 2.529

bn/3c 121.072 13.635 6.428 5.638

bn/2c 109.494 13.725 3.354 8.445

MLDP_20 20

bn/10c 1729.560 18.261 5.428 3.173

bn/8c 1729.560 20.277 5.428 3.173

bn/5c 1529.322 23.567 8.065 8.643

bn/4c 1289.083 28.377 10.925 11.912

bn/3c 907.364 34.134 9.718 14.662

bn/2c 827.483 37.163 20.046 16.655

MLDP_32 32

bn/10c 29193.180 270.816 137.104 106.283

bn/8c 27345.543 302.543 138.481 136.595

bn/5c 24080.765 371.741 220.678 137.990

bn/4c 22194.666 464.359 284.370 183.074

bn/3c 18157.022 570.936 299.173 192.253

bn/2c 18048.120 605.256 346.299 196.895

MLDP_40 40

bn/10c 489551.553 595.373 301.325 204.618

bn/8c 466971.353 731.482 311.941 214.353

bn/5c 296044.833 834.416 542.636 261.547

bn/4c 172222.754 1057.544 561.117 263.814

bn/3c 96946.754 1192.363 633.107 372.183

bn/2c 43147.795 1212.081 637.744 416.273

Tables 4.10 and 4.11 show the average values of quality metrics. Similarly,
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Table 4.10: Comparison among the metrics obtained per algorithm, averaged over the set of instances.

Augmecon2 SMSA EiLS AEiLS

Instance n k # SCC k-D M∗
1 # SCC k-D M∗

1 # SCC k-D M∗
1 # SCC k-D M∗

1

MLDP_10 10

bn/10c

5.12 0.884 0.0970 0 8.81 0.829 0.1977 0.2967 45.48 0.922 0.0003 0.1777 29.91 0.918 0.0006 0.0321

MLDP_16 16 5.54 0.907 0.4601 0 9.27 0.842 0.1361 0.2968 66.86 0.923 0.0003 0.1602 53.14 0.934 0.0003 0.0290

MLDP_20 20 11.57 0.907 0.8104 0 9.38 0.838 0.1513 0.2983 80.19 0.922 0.0005 0.1450 69.61 0.916 0.0015 0.0247

MLDP_32 32 12.66 0.929 1.1851 0 10.93 0.842 0.1555 0.2984 105.10 0.943 0.0007 0.1700 113.90 0.919 0.0083 0.1444

MLDP_40 40 13.52 0.948 1.3540 0 11.76 0.837 0.1605 0.2993 169.69 0.943 0.0006 0.1245 202.48 0.906 0.0003 0.1313

MLDP_10 10

bn/8c

5.31 0.899 0.2393 0 8.65 0.832 0.1927 0.2992 33.37 0.930 0.0006 0.0233 31.20 0.938 0.0004 0.0419

MLDP_16 16 6.54 0.902 0.0701 0 9.07 0.832 0.0938 0.2964 52.04 0.944 0.0006 0.0633 50.95 0.908 0.0001 0.0249

MLDP_20 20 13.04 0.931 0.2926 0 9.66 0.830 0.1157 0.2987 61.61 0.942 0.0001 0.0203 94.98 0.927 0.0009 0.0393

MLDP_32 32 8.35 0.934 1.3725 0 11.22 0.829 0.1763 0.2988 127.93 0.912 0.0009 0.0512 113.86 0.942 0.0001 0.0761

MLDP_40 40 11.09 0.969 0.1191 0 11.81 0.832 0.0989 0.2972 228.78 0.893 0.0009 0.0463 294.43 0.922 0.0003 0.0462

MLDP_10 10

bn/5c

8.20 0.904 0.5669 0 9.17 0.835 0.1743 0.2978 32.47 0.948 0.0015 0.1675 25.32 0.938 0.0019 0.1393

MLDP_16 16 8.58 0.894 0.8349 0 9.69 0.847 0.1236 0.2972 75.09 0.923 0.0018 0.1092 66.07 0.927 0.0019 0.1512

MLDP_20 20 9.26 0.962 0.2289 0 11.12 0.829 0.1866 0.2963 97.69 0.939 0.0013 0.1363 89.93 0.942 0.0011 0.1463

MLDP_32 32 11.28 0.948 0.7019 0 11.30 0.838 0.0838 0.2977 106.15 0.913 0.0010 0.1494 237.29 0.926 0.0012 0.1495

MLDP_40 40 13.20 0.932 1.1954 0 11.38 0.845 0.1842 0.2976 349.06 0.941 0.0010 0.1320 374.49 0.942 0.0013 0.1405
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Table 4.11: Comparison among the metrics obtained per algorithm, averaged over the set of instances.

Augmecon2 SMSA EiLS AEiLS

Instance n k # SCC k-D M∗
1 # SCC k-D M∗

1 # SCC k-D M∗
1 # SCC k-D M∗

1

MLDP_10 10

bn/4c

4.86 0.977 0.7209 0 8.63 0.831 0.0831 0.2993 38.26 0.942 0.0017 0.0515 39.49 0.935 0.0007 0.0325

MLDP_16 16 5.75 0.939 0.3491 0 9.45 0.845 0.1679 0.2992 49.43 0.927 0.0016 0.0312 54.59 0.912 0.0008 0.0378

MLDP_20 20 7.68 0.916 0.2887 0 9.76 0.844 0.0973 0.2996 72.91 0.916 0.0011 0.0254 80.62 0.918 0.0007 0.1846

MLDP_32 32 8.04 0.934 0.3933 0 10.87 0.845 0.1869 0.2929 81.34 0.913 0.0009 0.1138 186.73 0.932 0.0016 0.0092

MLDP_40 40 10.28 0.878 0.6946 0 10.91 0.831 0.1992 0.2959 340.91 0.901 0.0009 0.1184 402.66 0.949 0.0018 0.0689

MLDP_10 10

bn/3c

5.64 0.948 0.4404 0 8.92 0.846 0.1998 0.2985 38.46 0.929 0.0001 0.1114 39.33 0.927 0.0007 0.0895

MLDP_16 16 7.51 0.932 0.7628 0 10.40 0.847 0.0782 0.2991 50.49 0.918 0.0007 0.0426 64.20 0.938 0.0008 0.0969

MLDP_20 20 7.85 0.957 0.5998 0 8.62 0.842 0.1778 0.2988 87.22 0.892 0.0007 0.1003 108.72 0.941 0.0002 0.0708

MLDP_32 32 7.92 0.957 1.2805 0 9.52 0.847 0.2065 0.2967 267.94 0.907 0.0009 0.1130 275.71 0.930 0.0006 0.0047

MLDP_40 40 12.74 0.909 0.2133 0 9.75 0.849 0.2118 0.2983 349.39 0.881 0.0009 0.1262 401.67 0.944 0.0001 0.0288

MLDP_10 10

bn/2c

4.75 0.966 1.1074 0 8.62 0.844 0.8439 0.3035 39.52 0.930 0.0001 0.1701 37.85 0.934 0.0007 0.0895

MLDP_16 16 5.11 0.923 0.1957 0 9.52 0.834 0.8343 0.2296 51.97 0.944 0.0007 0.1596 47.94 0.947 0.0008 0.0969

MLDP_20 20 5.25 0.919 1.3171 0 9.75 0.849 0.8487 0.2965 68.88 0.925 0.0007 0.1003 93.18 0.934 0.0010 0.1509

MLDP_32 32 8.78 0.890 0.6242 0 10.08 0.847 0.8475 0.1429 98.62 0.914 0.0009 0.1130 111.50 0.922 0.0009 0.1349

MLDP_40 40 9.38 0.924 1.1778 0 9.78 0.831 0.8312 0.2983 240.91 0.918 0.0009 0.1262 294.76 0.921 0.0001 0.1031
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both tables are grouped by the number of vehicles. Note that for few clients and

few vehicles, EiLS yield better results in terms of the number of points (#), SCC

and a good spread (k-D). When the instances and the amount of vehicles are larger,

AEiLS found more points in the fronts (#), a larger SCC amount, and a better

spread (k-D).

It is clear that in small instances and fewer vehicles, EiLS outperforms the

other algorithms. AEiLS has a good SCC and a good performance when instances

are larger and involve more vehicles. With larger instances AEiLS has time to �nd

a better calibration and reaches better results.

The coverage of the fronts is presented in Table 4.12. EiLS and AEiLS over-

perform the SMSA. As Augmecon2 is able to �nd optimal solutions but it may

not �nd non-supported points in the Pareto front,it produces less points and less

variability; hence, we only report coverages for SMSA, EiLS and AEiLS. For small

instances, EiLS and AEiLS are able to provide good-quality approximations to the

Pareto fronts obtained by an exact methodology in a short computational time.
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Table 4.12: Comparison among the metrics obtained per algorithm, averaged over

the set of instances.

Instance n k c(
SM

SA
,E
iL
S)

c(
SM

SA
,A
E
iL
S)

c(
E
iL
S,
SM

SA
)

c(
E
iL
S,
A
E
iL
S)

c(
A
E
iL
S,
SM

SA
)

c(
A
E
iL
S,
E
iL
S)

MLDP_10 10

bn/10c

0.197 0.176 0.891 0.037 0.912 0.018

MLDP_16 16 0.183 0.111 0.826 0.031 0.819 0.013

MLDP_20 20 0.145 0.153 0.817 0.036 0.813 0.002

MLDP_32 32 0.062 0.041 0.779 0.023 0.784 0.001

MLDP_40 40 <0.001 <0.001 0.743 0.004 0.732 0.001

MLDP_10 10

bn/8c

0.187 0.139 0.717 0.036 0.714 0.001

MLDP_16 16 0.152 0.146 0.789 0.033 0.748 0.001

MLDP_20 20 0.174 0.157 0.698 0.028 0.799 0.014

MLDP_32 32 0.054 0.068 0.792 0.019 0.809 0.009

MLDP_40 40 <0.001 <0.001 0.842 0.003 0.901 0.016

MLDP_10 10

bn/5c

0.173 0.091 0.699 0.003 0.765 0.001

MLDP_16 16 0.176 0.092 0.723 0.013 0.774 0.002

MLDP_20 20 0.159 0.124 0.778 0.031 0.841 0.006

MLDP_32 32 0.056 0.051 0.817 0.034 0.834 0.012

MLDP_40 40 <0.001 <0.001 0.831 0.038 0.909 0.015

MLDP_10 10

bn/4c

0.147 0.091 0.719 0.004 0.768 0.001

MLDP_16 16 0.106 0.124 0.748 0.011 0.783 0.005

MLDP_20 20 0.154 0.092 0.752 0.033 0.834 0.012

MLDP_32 32 0.052 0.049 0.829 0.032 0.839 0.013

MLDP_40 40 <0.001 <0.001 0.835 0.035 0.901 0.016

MLDP_10 10

bn/3c

0.148 0.096 0.702 0.001 0.753 0.001

MLDP_16 16 0.146 0.099 0.737 0.012 0.758 0.004

MLDP_20 20 0.101 0.102 0.757 0.018 0.821 0.011

MLDP_32 32 0.068 0.061 0.817 0.028 0.847 0.013

MLDP_40 40 <0.001 <0.001 0.831 0.031 0.911 0.016

MLDP_10 10

bn/2c

0.147 0.093 0.694 0.001 0.798 0.001

MLDP_16 16 0.145 0.097 0.701 0.009 0.803 0.006

MLDP_20 20 0.059 0.046 0.734 0.013 0.816 0.011

MLDP_32 32 0.054 0.106 0.793 0.025 0.834 0.015

MLDP_40 40 <0.001 <0.001 0.794 0.028 0.891 0.015
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4.5.5.2 Large instances

In this section we report the results obtained with larger instances with 64, 80,

128, 160, and 256 clients. As our implementation of an exact methodology is not able

to solve these instances sizes, the comparison is done between our three metaheuristic

approaches: SMSA, EiLS, and AEiLS. All results are reported as averages over the

set of instances of each size.

Table 4.13 shows the comparison in CPU time consumed in obtaining these

fronts. EiLS and AEiLS have a better performance than SMSA, only consuming

about half the time SMSA takes to approximate the Pareto fronts. AEiLS has a

better CPU time than EiLS, above all, for the larger sizes. The more vehicles are

available, the less time AEiLS takes: when more vehicles are available, the latency

objective is less restricted and less computational heavy . An ideal solution for the

mlp is the one when there is a vehicle for each client, the complete opposite for the

ideal solution of tsp in which doing so would give a really expensive solution (Blum

et al., 1994).

To compare the e�ectiveness these algorithms have in larger instances, Tables

4.14 and 4.15 present the average value per set of instances of the quality-metrics

#, SCC, k-D, and M∗
1 . With these tables it is shown that AEiLS outperforms EiLS

and SMSA. It is able to �nd more points in the fronts (#) and a larger SCC amount,

and a better spread in the fronts (M∗
1 ). It is clear that in larger instances, AEiLS

has enough time to calibrate itself and give good-quality fronts.
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Table 4.13: Average CPU times obtained by our four proposed solution methods in

averages over each set of instances, measured in seconds.

Instance n k SMSA EiLS AEiLS

MLDP_64 64

bn/10c 587.227 289.374 276.384

bn/8c 479.372 282.264 270.975

bn/5c 477.275 277.845 260.975

bn/4c 465.283 273.975 247.842

bn/3c 432.372 268.863 235.859

bn/2c 401.438 263.372 215.372

MLDP_80 80

bn/10c 1001.028 367.277 300.474

bn/8c 994.473 359.483 293.489

bn/5c 979.372 351.374 286.483

bn/4c 981.273 348.374 274.389

bn/3c 976.372 343.234 262.375

bn/2c 967.373 338.364 259.857

MLDP_128 128

bn/10c 1419.411 577.277 499.274

bn/8c 1413.372 569.483 485.273

bn/5c 1383.573 561.374 479.273

bn/4c 1288.746 558.374 464.372

bn/3c 1198.373 543.234 465.281

bn/2c 1134.274 538.364 453.476

MLDP_160 160

bn/10c 1924.739 913.473 875.273

bn/8c 1910.372 907.273 871.765

bn/5c 1903.247 900.372 865.865

bn/4c 1889.372 899.372 861.499

bn/3c 1873.328 892.372 856.754

bn/2c 1869.327 879.428 845.362

MLDP_256 256

bn/10c 2323.624 1199.362 932.472

bn/8c 2314.382 1092.373 927.942

bn/5c 2267.972 1078.853 915.483

bn/4c 2249.273 1066.964 903.479

bn/3c 2243.846 1064.119 899.327

bn/2c 2199.579 1063.374 893.437
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Table 4.14: Comparison among the metrics obtained per algorithm, in averages over each set of instances

SMSA EiLS AEiLS

Instance n k # SCC k-D # SCC k-D # SCC k-D

MLDP_64 64

bn/10c

18.44 0.858 0.1157 695.49 0.921 0.0017 889.92 0.928 0.0007

MLDP_80 80 31.26 0.842 0.1763 899.86 0.913 0.0016 1053.13 0.914 0.0008

MLDP_128 128 46.92 0.822 0.0989 1180.19 0.902 0.0011 1269.61 0.901 0.0007

MLDP_160 160 54.24 0.820 0.1745 1565.10 0.893 0.0009 1673.90 0.901 0.0001

MLDP_256 256 82.37 0.815 0.1236 1839.69 0.890 0.0009 1922.48 0.896 0.0018

MLDP_64 64

bn/8c

23.90 0.851 0.1763 673.37 0.921 0.0015 899.20 0.948 0.0007

MLDP_80 80 33.57 0.832 0.0989 902.04 0.915 0.0018 1050.95 0.939 0.0008

MLDP_128 128 46.99 0.836 0.1742 1261.61 0.902 0.0013 1294.98 0.926 0.0002

MLDP_160 160 58.26 0.820 0.1236 1567.93 0.900 0.0010 1693.86 0.923 0.0006

MLDP_256 256 89.36 0.802 0.0989 1898.77 0.893 0.0010 1994.43 0.912 0.0001

MLDP_64 64

bn/5c

26.31 0.865 0.0831 682.47 0.918 0.0006 902.44 0.918 0.0007

MLDP_80 80 32.19 0.850 0.1679 879.09 0.913 0.0006 1066.07 0.913 0.0008

MLDP_128 128 43.47 0.835 0.0973 1297.69 0.909 0.0001 1389.93 0.902 0.0010

MLDP_160 160 57.82 0.820 0.1870 1656.15 0.900 0.0009 1701.29 0.902 0.0009

MLDP_256 256 92.37 0.828 0.1992 1901.06 0.891 0.0009 1974.49 0.892 0.0001
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Table 4.15: Comparison among the metrics obtained per algorithm, in averages over each set of instances.

Instance n k # SCC k-D # SCC k-D # SCC k-D

MLDP_64 64

bn/4c

26.99 0.839 0.1869 698.26 0.922 0.0001 859.42 0.935 0.0019

MLDP_80 80 31.48 0.835 0.1992 919.43 0.917 0.0007 1054.59 0.920 0.0019

MLDP_128 128 49.72 0.832 0.1998 1272.91 0.906 0.0007 1301.62 0.914 0.0011

MLDP_160 160 58.94 0.825 0.0782 1681.33 0.894 0.0009 1686.73 0.903 0.0012

MLDP_256 256 92.41 0.821 0.1778 1905.91 0.891 0.0009 1995.66 0.898 0.0013

MLDP_64 64

bn/3c

28.79 0.853 0.1998 699.46 0.929 0.0001 891.36 0.922 0.0006

MLDP_80 80 34.36 0.846 0.0782 920.49 0.911 0.0007 1064.20 0.913 0.0003

MLDP_128 128 48.62 0.842 0.1778 1297.22 0.893 0.0007 1308.72 0.910 0.0015

MLDP_160 160 60.38 0.835 0.2065 1593.94 0.890 0.0009 1775.70 0.900 0.0083

MLDP_256 256 92.36 0.829 0.2118 1940.39 0.881 0.0009 1999.67 0.890 0.0003

MLDP_64 64

bn/2c

28.59 0.856 0.2439 709.52 0.930 0.0003 901.85 0.914 0.0004

MLDP_80 80 36.83 0.845 0.1343 931.97 0.912 0.0003 1067.94 0.907 0.0001

MLDP_128 128 49.75 0.839 0.2487 1268.88 0.905 0.0005 1393.18 0.894 0.0009

MLDP_160 160 56.08 0.835 0.1475 1688.65 0.894 0.0007 1691.50 0.895 0.0001

MLDP_256 256 93.78 0.821 0.0112 1924.92 0.892 0.0006 2004.76 0.892 0.0003
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Tables 4.16 and 4.17 show the coverage of the fronts and allow us to highlight

the superiority, in larger instances, of both: EiLS and AEiLS algorithms over the

SMSA. Our experimentation in larger instances have a tendency to point out that

AEiLS, despite the number of vehicles, tends to outperform other methods.

Table 4.16: Comparison among the metrics obtained per algorithm, as averages over

each set of instances

Instance n k c(
SM

SA
,E
iL
S)

c(
SM

SA
,A
E
iL
S)

c(
E
iL
S,
SM

SA
)

c(
E
iL
S,
A
E
iL
S)

c(
A
E
iL
S,
SM

SA
)

c(
A
E
iL
S,
E
iL
S)

MLDP_64 64

bn/10c

0.297 0.216 0.743 0.021 0.732 0.067

MLDP_80 80 0.245 0.203 0.779 0.021 0.784 0.061

MLDP_128 128 0.183 0.201 0.817 0.022 0.813 0.056

MLDP_160 160 0.162 0.141 0.826 0.026 0.819 0.063

MLDP_256 256 0.121 0.118 0.891 0.028 0.912 0.064

MLDP_64 64

bn/8c

0.202 0.199 0.698 0.021 0.714 0.053

MLDP_80 80 0.194 0.168 0.717 0.021 0.748 0.069

MLDP_128 128 0.172 0.146 0.789 0.029 0.799 0.068

MLDP_160 160 0.171 0.138 0.792 0.024 0.809 0.073

MLDP_256 256 0.167 0.131 0.842 0.026 0.901 0.069

MLDP_64 64

bn/5c

0.201 0.197 0.699 0.011 0.765 0.067

MLDP_80 80 0.193 0.185 0.723 0.012 0.774 0.073

MLDP_128 128 0.189 0.184 0.778 0.016 0.841 0.071

MLDP_160 160 0.176 0.172 0.817 0.012 0.837 0.064

MLDP_256 256 0.173 0.161 0.831 0.015 0.909 0.068
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Table 4.17: Comparison among the metrics obtained per algorithm, as averages over

each set of instances

Instance n k c(
SM

SA
,E
iL
S)

c(
SM

SA
,A
E
iL
S)

c(
E
iL
S,
SM

SA
)

c(
E
iL
S,
A
E
iL
S)

c(
A
E
iL
S,
SM

SA
)

c(
A
E
iL
S,
E
iL
S)

MLDP_64 64

bn/4c

0.245 0.199 0.719 0.011 0.768 0.054

MLDP_80 80 0.222 0.149 0.728 0.015 0.783 0.051

MLDP_128 128 0.206 0.124 0.755 0.012 0.834 0.063

MLDP_160 160 0.154 0.092 0.809 0.013 0.839 0.062

MLDP_256 256 0.147 0.091 0.825 0.016 0.901 0.055

MLDP_64 64

bn/3c

0.198 0.181 0.702 0.011 0.853 0.041

MLDP_80 80 0.182 0.161 0.737 0.024 0.858 0.052

MLDP_128 128 0.171 0.142 0.757 0.021 0.821 0.058

MLDP_160 160 0.166 0.139 0.817 0.023 0.847 0.058

MLDP_256 256 0.158 0.126 0.831 0.016 0.899 0.061

MLDP_64 64

bn/2c

0.199 0.189 0.694 0.011 0.898 0.051

MLDP_80 80 0.189 0.146 0.701 0.016 0.903 0.059

MLDP_128 128 0.178 0.106 0.734 0.021 0.896 0.053

MLDP_160 160 0.165 0.097 0.793 0.015 0.894 0.065

MLDP_256 256 0.151 0.093 0.794 0.015 0.891 0.068

4.5.6 Conclusions

Smart neighborhood exploration to approximate Pareto fronts of k -mldp leads

to better results than a classical multi-objective technique.

Each solution of k -mldp is formed by k disjoint tours. For small instances

EiLS excels in the number of points obtained, SCC, and a good spread of the front
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found points. In small instances and fewer vehicles, EiLS has better performance of

any of the algorithms.

On the other hand, AEiLS has a good performance when the search space is

larger. With larger instances, AEiLS has time to �nd a better calibration and give

better results in the long run.

4.6 Conclusions and future research

The k -Minimum Latency-Distance Problem (k -mldp) minimizes the travel dis-

tance and the total latency of a set of k disjoint tours, each with an in�nite capacity.

Each one of the k agents must be active and have at least a client assigned. We

aim to improve two important aspects of the problem: the economic decisions of the

company and the degree the company's clients service, by the minimization of the

total waiting time of all the clients.

k -mldp is a NP hard problem. We proposed a non-linear formulation for this

problem, which, by the addition of several linearization variables, it gives a linear

formulation that can be solved to obtain the exact Pareto fronts.

With adjustments for multiple vehicles, we experiment on the proposed solution

methods Strategic Memetic Search Algorithm (SMSA), Evolutionary algorithm with

Intelligent Local Search (EiLS), and Automatically adjusting Evolutionary algorithm

with Intelligent Local Search (AEiLS). We found that EiLS and AEiLS, guided

by an intelligent selection of a more appropriate neighborhood in the local search

procedure, are superior than SMSA, in terms of density of the front, hypervolume

percentage, computational time required, and other quality metrics. The number of

vehicles directly a�ects the performance: in smaller instances with fewer vehicles, a

manual calibration of parameters su�ces to �nd good solutions, while having larger
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instances and more vehicles gives opportunity to self-tunning algorithms to calibrate

and obtain good solutions.

Again, capacitated and stochastic versions are of interest for future work on

k -mldp.



Chapter 5

Conclusions

This dissertation studies a combination of objectives to pursue not only a

company bene�t but also a bene�t to the clients waiting for a service. In classic

routing, an economic approach is widely studied: minimize travel distance to perform

the visits. We study the consideration of the satisfaction of the client in the decision-

making process.

We part from several assumptions into account: an agent must depart from

and return to a known depot, all travel times are known, as well as all service times.

We work with two scenarios: �rst, assuming there is a single uncapacitated

vehicle that visits all clients in a single tour, and second, visiting the clients with

a �eet of k uncapacitated vehicles, each visiting at least one client. We call the

single-vehicle approach The Minimum Latency-Distance Problem (mldp), and the

�eet approach The k -Minimum Latency-Distance Problem (k -mldp).

For each one of these problems we proposed a linear and a non-linear formula-

tion, both of them based on two multilevel networks. We solve our linear formulations

with our implementation of Augmecon2 to obtain exact fronts of small instances.

We studied the complexity of each one of these problems, and proved that both are

NP-hard. Hence, we proposed three metaheuristic procedures to compute fronts in
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larger instances. Strategic Memetic Search Algorithm (SMSA), based on NSGA-II,

Evolutionary algorithm with Intelligent Local Search (EiLS), that employs an intel-

ligent neighborhood selection, and Automatically Adjusted Evolutionary Algorithm

with Intelligent Local Search (AEiLS) with a novel ranking scheme.

The three metaheuristics were able to solve larger instances of up to 256 vertices

each. In smaller instances EiLS is able to quickly provide fronts close to the exact

ones, while for larger instances, AEiLS gives the best results as it is able to self-

calibrate.

5.1 Future research

For future research some improvements can be considered. One is no longer

assuming linearity in the relationship between travel time to distance traveled, which

is the case in high-tra�c cities and transport by airplanes.

Another is constraining the capacity of the vehicles employed in visiting the

clients. Also considering heterogeneous �eets.

The inclusion of stochastic service and travel times is also of interest, as well

as the possibility that new clients can be added in real time. The consideration of

penalization for not delivering the goods within an established time-window, �exible

or not, or the inclusion of work shifts for the drivers of the vehicles is also relevant.

The inclusion of additional objectives, such as the minimization of the size of

the �eet or balancing the work among the agents are of interest as future work.

Allowing each vehicle to return several times to the depot to re�ll is also another

possible scenario.
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