Ayuda
Ir al contenido

Dialnet


Resumen de Involvement of the host rna n6-adenosine methylation (m6a) pathway in the infection cycle of alfalfa mosaic virus

Mireya Martínez Pérez

  • Post-transcriptional chemical modifications entail a new level of gene expression modulation. At the beginning of this Thesis, some components of the N6-adenosine methylation (m6A) complex had been characterized in plants, whereas 13 homologs of AlkB (atALKBH1-10B) - putative demethylases (or erasers) - and 13 proteins of the YTH family (ECT1-11, AT4G11970 and CPSF30) had been identified in the Arabidopsis genome. However, unlike mammals and yeast, no functional roles had been described for any of these proteins. Besides, several reports have brought to light the presence of m6A residues in viral RNAs from mammalian viruses and the critical roles that this modification plays regulating viral infections. However, the potential relevance of this molecular mechanism on plant viral infections remained fully unexplored.

    The discovery of the interaction between the AMV CP and an Arabidopsis protein (atALKBH9B) with similarity to a human eraser was the starting point of this Thesis. Here, this interaction is confirmed and it is demonstrated that atALKBH9B can also recognize the viral RNAs. Furthermore, the obtained results prove that atALKBH9B has the capability of demethylating m6A from single-stranded RNA molecules in vitro. This protein was observed to accumulate in cytoplasmic granules that colocalize with siRNA-bodies and associate to P-bodies, suggesting that atALKBH9B activity could be related to mRNA silencing and/or decay processes. On the other hand, preliminary assays show that viral RNAs of AMV, Cucumber mosaic virus (CMV), Turnip crinkle virus (TCV) and Cauliflower mosaic virus (CaMV) become methylated during infection in Arabidopsis. Besides, for AMV and CMV, the results were corroborated by UPLC-PDA-Tof-MS and m6A sites along the RNAs of AMV were identified through MeRIP-seq approach. The results presented here confirm that m6A/A ratio along viral RNAs is increased in atalkbh9b plants compared to wild type, whereas translation and/or replication are impaired and systemic movement to the floral stems is practically blocked. In contrast to AMV, CMV CP does not interact with atALKBH9B by Y2H and, as it occurs with the rest of the assayed viruses (CMV, TCV and CaMV), its infection cycle is not affected in atalkbh9b plants.

    Furthermore, the mRNA-seq analysis performed in this Thesis reveals that some Arabidopsis factors belonging to the m6A machinery, MTA, MTB, VIR and ECT5 genes, are upregulated upon AMV infection. Consistent with the m6A-dependent antiviral effect for AMV and considering that ECT2, ECT3 and ECT4 were recently characterized as cytoplasmic m6A readers, mutations of ECT2/ECT3/ECT5 Arabidopsis module significantly increase AMV and CMV systemic titers. The antiviral effect of ECT2 on AMV seems to be modulated via its direct binding to the m6A residues presented in the viral RNAs, since an ECT2 mutant defective in m6A recognition loses wild type antiviral activity and is not able to pull down viral RNAs in vivo. On the other hand, according to the previous subcellular localization described for ECT2 and ECT4 and the ability of ECT2 to undergo gel-like phase in vitro, the transitory expression of ECT5 displays a cytoplasmic pattern with the formation of some aggregates. As found for mammal YTH proteins, the interaction between ECTs and poly-methylated RNA (in this case viral RNA) is proposed to promote the formation of stress granules and, consequently, reduce viral translation and replication rates.

    In summary, in this work, atALKBH9B is reported as the first m6A eraser identified in plants and, for the first time, it is described the influence of m6A methylation mechanism in plant viral infections.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus