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y Ciencias de la Computación de la Universidad de Málaga, bajo nuestra dirección, el trabajo de investigación

correspondiente a su Tesis Doctoral titulada

IntegraDos: facilitating the adoption of the Internet of Things through the integration of technologies

Revisado el presente trabajo, estimamos que puede ser presentado al tribunal que ha de juzgarlo, y autorizamos

la presentación de esta Tesis Doctoral en la Universidad de Málaga.

Málaga, Noviembre de 2018

Fdo.: D. Manuel Dı́az Rodrı́guez
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1
Introduction

We are witness to an unprecedented and rapid evolution in electronics, wireless communication and

miniaturisation technologies. This has contributed significantly to reducing the production costs

of electronic products and embedded devices, thereby increasing the number of them in the Inter-

net era. Nowadays, it is possible to acquire a personal computer for just 9 dollars [1], something

unachievable a few years ago. These devices are usually devices connected to the Internet with

capabilities to sense and actuate over the physical world, a paradigm also known as the Internet of

Things (IoT) [2]. The IoT was probably introduced by Ashton [3] in 1999, and can be defined as

a set of interconnected things (devices, tags, sensors, and so on) over the Internet, which have the

ability to measure, communicate and act all over the world. The key idea of the IoT is to obtain

information about our environment to understand and control and act on it. The IoT has been in

a state of continuous growth over the last few years, and according to Cisco [4], the number of

connected devices is predicted to reach 500 billion by 2030.

The IoT visualises a totally connected world, where things are able to communicate measured

data and interact with each other. This makes a digital representation of the real world possible,

through which many smart applications in a variety of industries can be developed. These include:

smart homes, weareables, smart cities, healthcare, automotive, environment, smart water, smart
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CHAPTER 1. INTRODUCTION

Figure 1.1: Internet of Things connected world

grid, etc. IoT solutions are being deployed in many areas, optimising production and digitising

industries. Figure 1.1 shows some domains where the IoT is applied, connecting physical things to

the Internet. IoT applications also have very specific characteristics, they generate large volumes

of data and require connectivity and power for long periods. This, together with the limitations in

memory, computer capacity, networks and limited power supply pose a great number of challenges.

Many IoT devices are designed to work for long periods and are battery-powered as they may

be deployed in environments where there may not be mains electricity (e.g., environmental moni-

toring). To reduce the power consumption and production costs, these devices have limitations in

terms of storage, processing and networking. Therefore, applying current standard ways to inter-

communicate systems and exchange information such as web services is a non-viable task in most

cases. Moreover, one of the main challenges, in the moment of designing an IoT application is the

vendor lock-in issues derived from using multiple platforms without a common backbone standard.

The Internet Engineering Task Force (IETF) has taken into account the aforementioned problems

and has contributed with many standards intended to reduce the gap between resource-constrained

devices and powerful ones and connect these devices directly to the Internet. One of its results is

the IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [5], which enables the

transmission of IPv6 packets on top of IEEE 802.15.4 networks. Routing is also a challenge in

constrained networks since they have special features such as limited radio range, large number of

nodes and limited resources. An IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)
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[6] was also released by the IETF to solve the routing issues in constrained networks. However, the

advances in the media layers are not sufficient, since the heterogeneity still climbs to the upper lay-

ers. Taking note of the expansion of the World Wide Web (WWW) and its standard interconnection

mechanisms (web services), the IETF designed, through its CoRE (Constrained RESTFul Environ-

ments) working group, the Constrained Application Protocol (CoAP) [7], which provides a RESTful

architecture similar to current web services, nevertheless it has been adapted to resource-constrained

devices. CoAP is one of the promising protocols for the IoT and most of the contributions of this

thesis are based on CoAP.

The serious constraints with respect to processing, storing and networking also originated in-

tegrations with paradigms like cloud computing, known as the Cloud of Things [8], which has

attempted to solve such IoT limitations. Cloud computing enables an on-demand access to a pool of

configurable resources providing virtually unlimited capabilities in terms of storage and processing

power [9], which are the main drawbacks of the IoT. As a result, this paradigm has enabled appli-

cation scenarios that require intensive computation over large volumes of data, such as health care

and critical infrastructure monitoring. These resulting applications benefit from service availability

and processing power at the expense of an increase of latency in the data propagation across the

backhaul and cloud economic costs. The backhaul data latency cannot meet the requirements of

applications that require time-constraints when the network throughput is limited. In addition, the

next generation of applications will generate large amounts of data that would result in a bottleneck

for mobile networks in cloud-based computing applications. For instance, the next generation of

connected cars are expected to generate 1GB of data per second [10]. This will be difficult for

current mobile networks to manage, even with the advances of the next generation networks (5G).

Recent paradigms such as fog, edge and social dispersed computing [11] aim to reduce both latency

and bandwidth in IoT cloud communication, moving the computation to what is available near to

the generating sources. These paradigms will place the computation as close as possible to where

it is being generated, thereby reducing the latency, a requirement for (near) real-time applications.

Social dispersed computing goes beyond and aims at the participation of end users to improve the

global benefit of the system.

1.1 Motivation

Despite the improvements in the latest protocols and paradigms for the IoT, the adoption of the

IoT still poses a great number of challenges to be overcome before becoming a reality. Among

these challenges can be identified the volatility and mobility of its applications, the limitations of its
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devices, and the need for fast processing and reliable data. During the course of this thesis we have

found four motivations that have inspired our research to facilitate the adoption of the IoT:

On the one hand, IoT applications are still designed to be coupled to final devices, which means

that applications do not adapt to the continuous changes in the underlying infrastructure. In the case

of inclusion of new devices in these applications or even their disconnection due to battery con-

sumption, it is still necessary to reconfigure these applications and devices to adapt to these changes

and to be part of the system. In the IoT where the number of devices grows in an unprecedented

way and devices are very volatile, these limitations drag out its expansion. For instance, in environ-

mental monitoring, device-decoupled applications could display over-the-fly measurements from

sensors deployed based on the users’ needs. Moreover, IoT applications are personalised, i.e., the

underlying IoT infrastructure can be designed to work with certain end users. This greatly increases

the complexity in the application development. For instance, imagine a personalised application for

more than one hundred end users. The development for all the personalised logic can represent a

higher development effort than the whole architecture itself. Last but not least, end users can be

part of different IoT applications in separate scenarios. In this case, it would be desirable to have a

control over these applications with the minimum configuration and using a common interface.

Apart from software portability, IoT solutions comprise many hardware components that can

be exchanged or required in different environments depending on the user’s needs. IoT devices can

be divided into two categories in most IoT scenarios. On the one hand, the devices can constitute

a black box with specific sensors which complicates their configuration, e.g., wearable products.

Other IoT devices can be composed through configurable microcontrollers, enabling customisable

environments to be designed. These IoT devices are closer to the vision of the IoT, as they are

plug&play devices. However, the necessary tools and knowledge for programming and configuring

microcontrollers are not accessible to everyone. In addition, this process should be done in run-

time in order to avoid the service interruption of devices. This could also lead to power saving

(critical in IoT devices), deactivating the unnecessary hardware components when required. Many

application scenarios use a lot of sensors and actuators for their operation, such as smart cities and

environmental applications, so this challenge could have a positive affect on many IoT scenarios.

On the other hand, the limitations of the IoT devices make it difficult to apply paradigms that

convert raw data into useful information, as they require large capabilities in terms of processing

and storage, such as big data. Paradigms like cloud computing have been integrated with the IoT

to overcome its main limitations and provide these much needed capabilities. Even though these

integrations can overcome such limitations, the current need to extract knowledge from the data

in (near) real-time implies having to think beyond. Applications in critical environments, such as
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structural health monitoring [12], not only require large computation capabilities but also a low la-

tency response, otherwise the information could stop being useful. These scenarios, where the data

propagation latency over the backhaul cannot meet requirements, lead to cloud computing, even

though it may be unsuitable due to high latency. Current paradigms, such as edge and fog comput-

ing, should, therefore be considered to carry out the integration of the IoT with cloud computing

and meet the low latency of these scenarios, without forgetting the limitations of the IoT devices.

Finally, the huge expansion of the IoT has to be supported by standard mechanisms and proto-

cols as seen in order to reduce the existing heterogeneity in the field. This heterogeneity leads to

vertical silos and reduces the adoption of the IoT. However, aside from the heterogeneity and inte-

gration challenges present in the IoT, the trustworthiness of its data is also an important issue to bear

in mind. Nowadays, we trust in the information of financial entities and the government among oth-

ers, but can we be sure that the information provided by them and by other external entities, such as

IoT companies, has not been tampered with/altered/falsified in any way? This is a difficult question

to answer in centralised architectures. Untrusted entities can alter information according to their

own interests, so the information they provide might not be completely reliable. This brings about

the need to verify that the information has never been modified. Although the IoT can facilitate the

digitisation of the information itself, the reliability of such information is still a key challenge. In

this sense, a new technology that was born as the first decentralised cryptocurrency has the potential

to offer a solution to the data reliability problem: Blockchain. The integration with the IoT would

perfectly complement both technologies. Application domains that manage sensitive data, such as

health care and police surveillance, could leverage this integration to both acquire more information

about their processes and save it in a reliable way.

These challenges have motivated the work of this thesis. Specifically, this thesis addresses the

following research questions:

(i) How can the management and deployment of physical resources in the IoT be facilitated?

(ii) How can we intuitively define portable, adaptable, personalised and device-decoupled IoT ap-

plications?

(iii) How can the IoT be integrated with cloud computing taking into account the vast amount of

data generated in the IoT, low latency and the limitations of its devices?

(iv) How can the IoT be integrated with Blockchain and what are the potential benefits and cha-

llenges of that integration?
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1.2 Contributions

This thesis aims to investigate the aforementioned challenges. The main goal of this thesis (In-

tegraDos) is to facilitate the adoption of the IoT through the research challenges and integrations

identified. This goal comprises four individual contributions. Figure 1.2 shows an overview of the

contributions of this thesis. On the one hand, it has been addressed how the management of sen-

sors and actuators in physical devices can be facilitated without programming and rebooting their

systems (1). On the other hand, a system to program portable, personalised, adapted to changing

contexts and intuitive IoT applications has been defined (2). Then, the integration components for an

IoT and cloud computing integration have been analysed, resulting in the λ-CoAP architecture (3).

Lastly, the challenges for an IoT and Blockchain integration have been analysed and the possibilities

of IoT devices to incorporate blockchain components have been evaluated (4).

Specifically, the following contributions are provided in this thesis to respond to the thesis’

research questions:

Facilitating device management

Portable, adaptable, personalised
and device-decoupled IoT applications

Apache Kakfa

Apache Storm

Druid

Apache Hadoop
(Master Data)

λ Architecture
Knowledge, actions

Smart 
Gateway

Smart 
Gateway

Less bandwitdh traffic, lowerdata priority

CoAP Networks

High priority data
real-time interactions

Portability Core

Discovery

Access 
Control

Context 
changes

CoAP 
interface

Data flow 
framework

Location 
management

User 
applications

Building 
management

Blockchain integration

IoT and cloud 
computing integration

4

1

2

Internet of Things

Cloud

Edge
3

Figure 1.2: Thesis contributions overview

(i) A run-time deployment and management system of physical resources that bridges the gap be-

tween end users and customisable environments. With this system, end users can incorporate

new physical components in their systems without having to access and program the micro-
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controller board. Application domains with a high density of hardware components such as

smart cities will benefit from this system in the management of their components. The limi-

tations of the devices to support libraries have been taken into account with the definition of

an objective middleware for a specific environment.

(ii) A framework that enables the development of portable device-decoupled applications that can

be adapted to changing contexts called Appdaptivity. Through Appdaptivity, application de-

velopers can intuitively create portable and personalised applications, disengaging from the

underlying physical infrastructure. This enables the development of applications that adapt

to the continuous changes in the underlying infrastructure. Application developers just need

to concentrate on the application logic, rather than the low-level details of the underlying

physical infrastructure, which is managed by Appdaptivity. The portability of applications

enables their mobility between different physical infrastructures with a minimal configura-

tion. This contribution meets the requirements of the development of IoT applications in

general, specifically those that have dynamic behaviours and plug&play components.

(iii) A comprehensive study of the integration components for a cloud computing and IoT inte-

gration, including existing integrations and proposals. The study comprises from low level

components for the IoT, such as IoT middleware, up to multidisciplinary cloud computing

platforms. The analysis leads to the λ-CoAP architecture, which proposes an integration of

cloud computing and the IoT. The purpose of the λ-CoAP architecture is to query, process

and analyse large amounts of IoT data with low latency. This low latency is achieved in

part thanks to an edge layer that has been incorporated to reduce both the latency and the

bandwidth in cloud-IoT communications. Application domains that require large-scale data

processing with a low latency response, such as structural health monitoring, could make use

of this architecture to overcome their limitations problems.

(iv) An exhaustive study on the challenges and open issues in the new disrupting technology

for reliability, Blockchain, and its integration with the IoT. The study also analyses current

blockchain platforms and applications, and provides an evaluation and comparison of the

performance of different blockchain components in the IoT. Finally, this contribution aims to

analyse the challenges and open issues for an integration between the IoT and Blockchain to

ensure data reliability in IoT applications in the near future.

Therefore, the overall challenge of this thesis, to facilitate the adoption of the IoT, has been

addressed through these aforementioned contributions. These contributions are not strictly related
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with each other but together they contribute to addressing the overall challenge of this thesis as we

will see below. First, the run-time and deployment system and the λ-CoAP architecture contribu-

tions have been developed as different iterations of the same project and are perfectly integrated.

This can open up more avenues, such as applications that require large processing of data and hard-

ware component management. For instance, an application use case can process the data received

from the IoT and decide which physical components are not needed, and deactivate them thereby

saving power in IoT devices. On the other hand, Appdaptivity was developed during a research

stay with the IDLab research group of the University of Ghent. This project contributes to the

overall challenge established and is part of the IDLab research group. Thus, this project has not

initially been integrated with the previous contributions, however it could be achieved thanks to the

component-based architecture detailed in Chapter 4. This integration should consider the distribu-

tion of the application logic between the entire λ-CoAP architecture, enabling the development of

time-sensitive, portable, device-decoupled and compute-intensive applications, which would rep-

resent a great research challenge. Finally, the Blockchain and IoT integration contribution is an

exhaustive study on the open issues and challenges in a cutting-edge and timely topic of research in

order to be addressed and integrated with the rest of contributions in a near future.

1.3 Outline of this Thesis

The remaining chapters are structured as follows:

Chapter 2. State of the Art and Related Work.

In this chapter, related work with regard to the contributions of this thesis are presented. Firstly, an

introduction to CoAP is given. Then, the related work is categorised into the four main contributions

of this thesis: run-time deployment and management, device-decoupled applications and portability

in the IoT, IoT and cloud computing integration and finally Blockchain and IoT integration.

Chapter 3. Run-time Deployment of Physical Resources in the Internet of Things.

This chapter presents the run-time and management system for incorporating new sensors or actua-

tors in customised environments. This system facilitates the management of IoT devices, enabling

libraries to be installed remotely. The evaluation presented in this chapter has been done in one of

the main case studies in the IoT, the smart home.
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Chapter 4. Appdaptivity: An Internet of Things Device-Decoupled System for Portable
Applications in Changing Contexts.

Appdaptivity, a system that enables the development of portable, adapted to changing contexts,

personalised and device-decoupled applications is presented in this chapter. The chapter includes

some examples that show how to program these applications in Appdaptivity. The evaluation is

based on a smart city use case, where 6LoWPAN devices along sensors and actuators are deployed.

Lastly, the differences between CoAP, the CoAP++ Framework and Appdaptivity are analysed.

Chapter 5. An Internet of Things and Cloud Computing Integration.

This chapter begins with an analysis of the integration components in the integration of the IoT

and cloud computing. This analysis establishes the guidelines for the definition of the integration.

Then, the λ-CoAP architecture is presented as an integration of the IoT and cloud computing. This

architecture enables the processing of large amounts of data with low latency. Finally, an evaluation

of the architecture and challenges and open research issues is given.

Chapter 6. On Blockchain and its Integration with the Internet of Things

The current challenges and open issues in Blockchain, and its integration with the IoT are analysed

in this chapter. It then continues with the comparison of current blockchain platforms and existing

integrations. Lastly, an evaluation of blockchain components in IoT devices examines the potential

of this technology in the IoT.

Chapter 7. Conclusions and Future Work.

Conclusions and future work with regard to the contributions of this thesis are presented in this

chapter. The funding and the publications produced in the course of this thesis are detailed.

Appendix A. Resumen.

This appendix summarises this thesis in Spanish.
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2
State of the Art and Related Work

This chapter presents the state of the art and related work with regard to the contributions of this

thesis. The chapter is structured as follows. An introduction to CoAP, the backbone IoT protocol

used in this thesis, is given in Section 2.1. Section 2.2 presents the state of the art and related

work on run-time deployment and management. Section 2.3 surveys work on device-decoupled

applications and portability in the IoT. Then, Section 2.4 discusses related work on the integration

of the IoT and cloud computing. Lastly, integrations of IoT and Blockchain are presented in Section

2.5.
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This chapter surveys the related work with regard to the four contributions and the backbone

IoT protocol of this thesis. However, some related work to the contributions are extended in their

respective chapters. For instance, several integrations of the IoT and cloud computing are presented

in this chapter, whereas the analysis of integration components for an IoT and cloud computing

integration are detailed in Chapter 5. Equally, integrations of the IoT and Blockain are presented in

Section 2.5, whereas the state of the art in Blockchain platforms for the IoT, and the challenges on

Blockchain and its integration with the IoT are presented in Chapter 6.

This has resulted principally in two comprehensive blocks of related works with regard to the

integration of the IoT with cloud computing and Blockchain, supported by two high impact publica-

tions, [2] and [13] respectively. The integration of the IoT and cloud computing, recently awarded

with the Journal of Network and Computer Applications 2017 Best Survey Paper Award, was a

cutting-edge contribution as was the contribution of Botta et al., [14], and they were published al-

most at the same time. Both contributions address integration, but with different approaches. The

contribution of this thesis focuses on integration components, whereas Botta et al., centre more on

the motivations toward the integration and applications. For an extensive survey on applications,

protocols, and technology enablers for the IoT, please refer to [15]. The contribution of the inte-

gration between the IoT and Blockchain discusses, in more depth, in the challenges for Blockchain

and its integration with the IoT, in addition to evaluating the use of Blockchain platforms in IoT

devices. Related work on this topic such as [16] and [17] follow different approaches to address this

integration, paying more attention to application use cases. Lastly, to solve the ambiguity between

computing paradigms and find core-enablers and challenges in a cutting-edge paradigm, such as

social dispersed computing, please refer to [11].

2.1 Constrained Application Protocol (CoAP)

Heterogeneity, limitations and vendor lock-in issues have been present for a while in resource-

constrained devices. As mentioned above, the IETF has contributed with many standards to connect

these devices to the Internet and reduce the gap between them and powerful ones. Notable, among

these standards are the 6LoWPAN, RPL and the Constrained Application Protocol (CoAP).

CoAP provides a RESTful architecture similar to current web services, nevertheless it has been

adapted to resource-constrained devices. The most notable feature with respect to current RESTful

web services is the abolition of the high-consumption protocols involved, such as HTTP and TCP.

Handshaking, packet reordering and header characteristics of these protocols suppose a high barrier

to devices with limited capabilities and presence in constrained networks. CoAP has adopted UDP
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as the transport layer, thereby reducing the overhead and requirements of TCP communications.

The adoption of UDP brings IP multicast which can improve the control and reduce the number

of communications in constrained networks. Due its UDP nature, CoAP provides two types of

communications: confirmable and non-confirmable messages. Therefore, CoAP offers the strengths

of confirmable messages in TCP while simultaneously providing lightweight communications for

environments where confirmations are not necessary (e.g., stream data monitoring). To reduce the

number of communications, confirmation responses can also be piggybacked. With a client-server

model, Figure 2.1 shows two examples of CoAP communications. Concretely, a client sends a GET

request with a non-confirmable message to a CoAP server, and the server returns the temperature

status (Figure 2.1a); and the same communication with a confirmable message and a piggybacked

response (Figure 2.1b).

Client Server
NON [0xbc90]

GET /temperature

(Token 0x71)

NON [0xbc90]

2.05 Content

(Token 0x71)

”22.5 C”

a

Client Server
CON [0xbc90]]

GET /temperature

(Token 0x72)

ACK [0xbc90]

2.05 Content

(Token 0x72)

”22.5 C”

b

Figure 2.1: CoAP messages. (a) Non-confirmable CoAP GET request; (b) Request with

piggybacked response.

The CoAP header is characterised by its short fixed length (only 4 bytes) that may be followed

by a token, options and a payload. The token is used to match requests and responses. Messages in

a CoAP communication possess the same token. Other options can be included in CoAP messages

and include additional information of messages, such as the content format of responses and the

URI (Uniform Resource Identifier) to identify a resource. CoAP options can be seen in a similar

format to HTTP metadata. If there is any non-zero length payload, one-byte payload marker (0xFF)

is added which indicates the start of the payload and the end of the options. A structure of the CoAP

header and messages is presented in Figure 2.2. The rest of the fields are defined as follows:

• Version: unsigned integer which indicates the CoAP version.
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• Type: indicates the type of the message: confirmable (0), non-confirmable (1), acknowledge-

ment (2) and reset (3).

• Token Length (TKL): indicates the length of the token (0-8 bytes) if any.

• Code: indicates the message operation type (e.g, request, response and client/server error).

The code is split into a 3-bit class which indicates the class of the operation (e.g, request

and response) and a 5-bit detail which indicates extra information of the operation (e.g, GET

request, success response).

• Message ID: 8 bit unsigned integer used to detect message duplication and match requests

and acknowledgements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ver T TKL Code Message ID

Token (if any, TKL bytes) . . .

Options (if any) . . .

1 1 1 1 1 1 1 1 Payload (if any) . . .

Figure 2.2: CoAP Message Format

Like RESTful web services, CoAP offers operations and objects through resources, which can

be accessed with HTTP-style methods (GET, PUT, POST and DELETE). Accessing sensors and

actuators can be defined in resources, thereby enabling an HTTP-style access to them. For instance,

in Figure 2.1 a CoAP server contains a temperature sensor resource which is accessed through the

‘/temperature’ URI by CoAP clients. In monitoring systems, it is important to have an up-to-date

representation of the interested resources. However, continuous resource polling can drastically

affect the devices’ performance since communication is one of the most power-consuming tasks on

these devices. CoAP supports proxying with caching capabilities, which can reduce the number

of communications with final devices. Consider an HTTP-CoAP proxy which translates HTTP

requests into CoAP ones. In the latter scenario, HTTP clients can access CoAP resources in the same

way as the WWW (World Wide Web), enabling the known paradigm of the WoT (Web of Things).

However, it does not make an efficient use of these resources. IoT devices have still limitations that

they have to address, like sleeping cycles which complicate access by clients. Furthermore, most

monitoring systems are not interested in receiving monitoring data, but they are interested in data

changes. An extension of CoAP, known as resource observation [18] introduces a mechanism to

optimise the interactions with CoAP devices. Resource observation enables a new asynchronous
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Client Server
GET /temperature

Token: 0x73

Observe: 0

2.05 Content

Token: 0x73

Observe: 1

”22.9 C”

2.05 Content

Token: 0x73

Observe: 12

”22.8 C”

. . .

RST

Token: 0x73

Registration

Notification of

the current state

Notification of

the current state

Cancellation

Figure 2.3: Observing a resource in CoAP

communication model in CoAP where clients can subscribe to resources and receive asynchronous

notifications. The observe operation can be configured with a max age option to indicate an age

up to resource statuses are acceptable. Resource notifications are also sent when its status changes.

Therefore, the resource observation avoids continuous client polling in resources and final devices

can send data when they are available combining it with other tasks like the sleeping mode. On the

other hand, clients can receive asynchronous data updates without polling resources. An example

of a observe communication is given in Figure 2.3. The communication starts with a GET request

to the resource of interest by a CoAP client, a temperature sensor resource in this case, with the

observe option established. Once the CoAP server has processed the request, it saves the client in

the list of observers and sends observe updates until the client sends an RST message. Resource

observation can also be optimised with conditional observations [19] where clients can establish

a configurable criteria to receive resource notifications.

2.2 Run-time deployment and management

Traditionally, deploying and obtaining information from the physical world implies using highly

engineered instruments and wired control protocols [20]. However, the newest challenges focus on
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systems which support programming and manipulating the physical world so that devices can form

themselves as general-purpose devices and support different application types.

The most recent proposals focus on integrating the physical world into the digital world and the

Internet. One example is the SENSEI project [21]. The SENSEI project integrates WSNs (Wireless

Sensor Network) into a business-driven architecture and offers applications and services over them.

OpenIoT [22] is another project which offers a middleware for integrating and implementing IoT

solutions with a range of functionalities. Although the integration of the IoT with the Internet

is addressed in many approaches, including one of this thesis contributions (Chapter 3), the run-

time managing and deploying of physical components in both is still necessary to control physical

components.

Other proposals focus on deploying plug&play infrastructures [23]. Nevertheless, even though

plug&play makes physical components instantaneously available, the components involved in the

plug&play process correspond to autonomous devices that go beyond the sensors and actuators

used in Chapter 3. In [24] another plug&play sensor infrastructure for deploying sensors is pre-

sented. The infrastructure can plug-in sensors and interpret their values through a sensor interface

description. Sensors are subsequently available in the system when the drivers are defined. How-

ever, it focuses on the USB and IEEE 1451 standards which are usually found in computers instead

of microcontrollers. The CoAP Middleware (CoM) proposed in this thesis (Chapters 3 and 5) is

one example of a plug&play component. In [25] Yang et al. recognise the inefficiency of most

plug&play protocols used, in terms of energy and memory usage and present µPnP, a hardware and

software solution for the automatic integration of peripherals in resource constrained devices. The

hardware solution is based on the passive electrical characteristics of the components of additional

hardware circuit added in the peripherals to uniquely identify them. The current prototype uses mini

HDMI connectors to connect the peripherals. Once the peripherals have been plugged into the sys-

tem, their drivers are automatically installed and downloaded when they are not locally available.

Once each driver has been installed, it is loaded and the peripherals are ready to use. However,

although µPnP enables automatic peripheral identification and use, the solution requires additional

hardware circuits and connectors, and the interconnection is only allowed with ADC, I2C, SPI and

UART protocols. The solution presented in this thesis does not require additional hardware to install

sensors and the management can be done remotely through a web on a smart-phone or tablet if the

sensors are already connected to the microcontroller.

An extension the GSN middleware [26], a middleware which facilitates the deployment and

programming of sensor networks, is proposed in [27]. GSN provides a connection with a microcon-

troller and sensors which is defined semantically through virtual sensors. Virtual sensors abstract
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the implementation details from accessing sensors through the semantic definition of data stream.

Once a virtual sensor has been defined, GSN looks to see whether there is one wrapper for each

data stream defined in the wrapper repository. If the wrapper exists it is instantiated in the middle-

ware and a new connection with the desired sensor is established. Although GSN allows semantic

connection with new sensors without programming, the authors identify that this process requires

the wrappers to be developed manually and there is no code sharing between wrappers. The authors

have defined a new sensor device definition which generates and compiles new wrappers based on

semantic definitions. Therefore, the programming and sharing code problems in wrappers appar-

ently disappear. However, even though this solution enables sensor connection semantically and

without programming, this solution is focused on the connection with sensors and microcontrollers

which offer Application Programming Interfaces (API) or third-party libraries to access their sensor

readings and does not provide the mechanisms to instantiate and manage new sensors and actuators.

Employing web services in embedded devices could constitute another solution for manag-

ing sensors and actuators in run-time, e.g., the Device Profile for Web Services (DPWS) [28] and

RESTful web services [29]. Web services are currently one the most open and extended ways of

connecting things over the Internet. Nevertheless, the complexity due to the HTTP and TCP pro-

tocols can be too heavy for embedded devices. The protocol used in this thesis for interconnecting

things, CoAP, can provide the benefits of the RESTful web services whilst simultaneously display-

ing a better performance than the protocols that use other web services [30]. The complexity of

the web services can also be moved out to the Gateways [31], but it implies a dependency on Gate-

ways. The Gateway involved in our solution (Chapter 3) facilitates the deployment and access to

the underlying devices, since it translates protocols and connects to the cloud. Nevertheless, the

underlying devices can be accessed directly without the Gateways through CoAP.

The run-time reconfiguration and upgrading of resource constrained devices is a hot topic ad-

dressed in many papers [32], [33]. Ruckebusch et al. present GITAR [32], a system that enables run-

time upgrading of network stacks and applications in resource constrained devices. REMOWARE,

a composed-based middleware for reconfiguring sensor networks dynamically, is also presented in

[33]. Network and firmware updates are necessary requirements to maintain the IoT running over

time and actuate over possible bugs or security breaches. In the scope of these approaches, updates

can incorporate new libraries into the system, but there is still a lack of a component which can pro-

vide the mechanism to instantiate and manage libraries through well-defined interfaces, end users,

even external applications as presented in this thesis.

The solution presented in Chapter 3 enables the management and deployment of physical com-

ponents in resource-constrained devices. This solution leverages the CoAP capabilities for interact-
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ing with the IoT, and permits the management and deployment of physical components in run-time

with the use of CoAP. Therefore, the system can be comfortably installed in microcontrollers and

can be integrated with the Internet. In fact, a Web UI (User Interface) has been developed to facili-

tate the management of the system by end users. Moreover, this solution does not require additional

hardware components for its operation, which encourages its adoption.

2.3 Device-decoupled applications and portability in the Internet of

Things

Programming wireless sensor networks has garnered a lot of attention due to its complexity, since

it requires knowledge in multiple fields, such as distributed computing, embedded devices and

wireless networks. Multiple abstractions have been released to reduce this gap, such as service-

oriented, data-driven and group-based programming. The idea behind device-decoupled applica-

tions can be related to the macro-programming paradigm in wireless sensor networks [34, 35].

Macro-programming allows sensor networks to be programmed as a whole, rather than program-

ming low-level software for individual nodes. This was a great advance in the development of

sensor networks, and greatly reduced the programming efforts in large sensor networks. However,

most approaches like EcoCast [36] do not focus on open standards, making their implantation in

the continuous-growing IoT difficult. Our approach in Appdaptivity (Chapter 4) follows a similar

approach to macro-programming, adapting it to current standards in the field, such as CoAP.

The dependency between devices and applications could be carried to its maximum by directly

moving the application logic inside the sensor networks. This approach considerably reduces the

latency and the number of packets, since communications are carried out inside the Low power and

Lossy Networks (LLNs) and there is no need for communications with external components. In ad-

dition, the dependency on other factors such as routing and network reliability in cloud-based appli-

cations is reduced. This paradigm is known as in-network processing. Bindings and RESTlets [37]

are extensions of CoAP designed by the IDLab research group, which introduce flexible bindings

between sensors and actuators and application building blocks respectively. RESTlets configure

the inputs, output and some processing tasks just using CoAP on the devices enabling in-network

applications which use direct binding between sensors and actuators. T-Res [38] also proposes an

extension of CoAP to enable in-network applications. T-Res improves the application logic, which

enables scripts for defining custom algorithms to be programmed. However, it requires the use of an

embedded Python virtual machine and stores URLs of input sources and destination outputs, which

can affect the performance of resource-constrained devices. These solutions optimise the device

18



2.3. DEVICE-DECOUPLED APPLICATIONS AND PORTABILITY IN THE INTERNET OF THINGS

interactions and reduce the latency in its communications, nevertheless they do not leverage the

changes on the environment to adapt the applications.

A Distributed Data Flow (DDF) programming model to develop IoT applications for fog com-

puting is proposed in [39]. In data flow programming, the application logic is expressed through

a directed graph of nodes. Nodes define a set of inputs and outputs and an independent function

which does not affect to the rest of the nodes. Thus, nodes are highly portable and reusable for

the creation of user applications. DDF addresses the interconnection of cloud, edges, IO and com-

pute nodes which comprise fog computing applications. These interconnections enable different

interactions such as things-to-things, fog-to-cloud and cloud-to-fog. Thing functionality is provided

through specialised nodes by domain experts. Application developers only need to focus on data

flow applications. Glue.things [40] presents an IoT mashup resulting from the COMPOSE Euro-

pean project. Glue.things brings three tools for the application development: the device manager,

the composer and the deployment manager. Device manager provides a web-based application to

connect IoT devices using different protocols (HTTP, STOMP, MQTT and CoAP). Once the IoT

device has been connected to the system, it is available for the composer component to create ap-

plication logic using a web-based data flow model. Lastly, the deployment manager controls and

deploys the mashup applications resulting from the composer component. DDF and glue.things

have similarities to our work in that they were built on top of Node-RED [41], a browser-based

editor that allows visual data flow programming. However, both of them have only focused on the

application development instead of providing a full solution with customisable user applications

as Appdaptivity does. The most differentiated part of these approaches and others such as Apple

Home, Google Home and BACnet, with respect to our work is the application’s adaptability to the

underlying physical infrastructure without having to connect these devices and recompile the sys-

tem. The approach presented in Chapter 4 is intended to offer a novel framework for developing

CoAP-based applications without reconfiguration. Appdaptivity enables the design of applications

that are independent of the underlying physical devices and can be easily adjusted without recom-

piling. The IoT device has to be manually connected in glue.things and DDF and discovery are

not supported, whereas Appdaptivity provides run-time discovery and update services that deploy

portable user applications based on the IoT devices available at any given moment.

PatRICIA [42] is a novel programming model for the IoT which decouples physical devices

from user applications. PatRICIA introduces two new abstractions: Intent and IntentScope, which rep-

resent desired tasks to be performed in a physical environment and logical group of physical devices

respectively. Intents are abstract representations of tasks and are applied on IntentScopes. De-

vice controlling and monitoring are defined by domain experts using tasks through device services.
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On the other hand, application developers define device-decoupled applications using Intents which

are dynamically transformed into tasks based on the information contained. Therefore, application

developers define device-decoupled applications which use device-coupled applications written by

domain expert users. Our solution differs from PatRICIA in the programming model. Instead of

having different roles of development which decouple applications from devices only once, Ap-

pdaptivity has just one programming model which enables device-decoupled programming with

visual components which leads to better results [43, 44]. Appdaptivity is based upon a standard

and promising IoT protocol, CoAP, with more than 30 open-source implementations for IoT de-

vices [45]. This increases the adoption of Appdaptivity as an application development system in

the IoT unlike PatRICIA. Moreover, it has not been demonstrated how portable and personalised

applications in PatRICIA could be achieved. Lastly, the programming model for device-decoupled

applications in PatRICIA requires a familiarity with Intents programming, which increases the de-

velopment efforts in comparison to visual component programming.

A macro-programming framework for wireless sensor networks is also proposed in PyoT [46].

PyoT hides the complexity of the network by providing the available resources as a set of Python

objects for the application developers. A Web UI has been incorporated into the system where users

can carry out basic operations such as sensor monitoring, actuation control and resource listing.

Therefore, application logic can be defined in two ways: a shell interface where application devel-

opers use the Python API to interact with the CoAP resources, and the Web UI for basic operations.

PyoT shares some similarities with respect to Appdaptivity (Chapter 4). On the one hand, PyoT uses

CoAP as application protocol and enables automatic discovery of available resources and event ac-

tions to be performed when they are detected in an abstract way for end users. On the other hand,

PyoT provides a high-level abstraction framework for developing IoT applications which reduces

the aforementioned difficulties in programming such devices. Lastly, although more limited, a Web

UI enables the application development for non-expert users. As has been pointed out in future

work, PyoT does not support 6LoWPAN nor CoAP group abstraction, unlike Appdaptivity, thereby

it can decrease both the network and device performance. Finally but not least, the CoAP imple-

mentation does not provide support for Datagram Transport Layer Security (DTLS) and the solution

could be vulnerable in real IoT deployments such as buildings with access control management.

The importance of the separation between the application logic from device firmware is ad-

dressed in [47]. This approach also uses CoAP, providing thin servers− devices as a role of CoAP

servers without any application logic. Thin servers are provided with embedded metadata (e.g.,

geographical information, name, brand) to enable a user-friendly and efficient look-up. The pro-

gramming model is similar to Web 2.0 mashups, enabling the reuse of deployed services and ap-
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plications on the cloud. Actinium [48] provides a run-time container for dynamic management of

application scripts. The resulting applications are modelled as resources themselves, so that they can

be combined with other apps resulting in multi-layer applications, CoAP servers or even external

applications. Although these approaches abstract the application logic from final devices and make

use of standard protocols, they are still not completely agnostic from end devices (they use device

services or resources instead), cannot be portable and are not provided with the run-time updates

necessary to keep applications up-to-date with changes in the underlying physical infrastructure.

In addition of CoAP, many other application protocols have been released during the last years.

MQTT (Message Queue Telemetry Transport) [49] is probably the IoT application protocol which

has acquired an attention similar to CoAP. MQTT is a publish/subscribe protocol designed to inter-

connect things. The comparison between CoAP and MQTT has been deeply studied in the literature

[50, 51]. Although most studies conclude that the use of each protocol depends on the working sce-

nario and the bitrate, CoAP incorporates RESTful web services that follow the current trends in the

Web. It therefore facilitates the integration of the IoT with the Web (WoT), and its observe operation

also enables a publish/subscribe model which can be configurable based on the consumer’s needs.

IoTivity [52] is a software framework for creating IoT applications that implements Open Intercon-

nect Consortium (OIC) standards. OIC was developed by leading technology companies including

Samsung, Cisco and Intel to define standards for ensuring the interoperability of the IoT. AllJoyn,

another framework for the IoT was recently integrated with IoTivity. IoTivity is also based on CoAP

and provides a connectivity abstraction for other non-IP protocols such as Bluetooth, Z-Wave and

ZigBee. That connectivity abstraction would improve the interconnection of proprietary IoT de-

vices. Multiple services allow the configuration of devices, accessing them and creating groups of

devices like Appdaptivity. Nevertheless, the application logic is couple with the physical infrastruc-

ture. OM2M [53] is an Eclipse project that provides a platform for developing services discovering

the underlying network. This provides a RESTful service capability layer which offers an abstract

layer for handling REST requests. Applications can be created using REST (REpresentational State

Transfer) requests that could complicate the application development and a binding protocol for

resource-constrained devices like CoAP are not yet available. Kura [54] is another Eclipse project

that provides a platform for building IoT applications in gateways. Kura provides a wide range of

APIs (including hardware access with protocols such as I2C, USB and GPIOs), which enables the

deployment of multiple applications using OSGi, the dynamic component system for Java systems.

Kura focuses on gateway IoT applications, therefore it can be part of the underlying physical infras-

tructure through CoAP and its configurable services can be used for improving the management of

the IoT.
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Appdaptivity, presented in Chapter 4, is a framework that enables the development of device-

decoupled, portable, personalised and adapted to changing contexts in IoT applications. Instead

of having multiple programming models, Appdaptivity provides a unified programming model to

visually and intuitively develop IoT applications. Changes in the underlying physical infrastructure,

such as device dis/connection, are managed by Appdaptivity to adapt the developed applications.

Therefore, application developers just need to focus on the application logic of their applications.

In addition, Appdaptivity adopts current standards of the IoT, such as CoAP, thus facilitating the

adoption of the system and its applicability to resource-constrained devices.

2.4 Internet of Things and Cloud Computing Integration

In this section, different existing proposals for cloud computing and IoT integration are summarised.

The proposals cover research projects, enterprise products and open-source projects in multiple

areas, so they form a multidisciplinary set of existing solutions in this field. Table 2.1 shows a

comparison of the analysed proposals.

OpenIoT [22] is an open-source middleware, co-funded by the European Union’s Seventh Frame-

work Programme, for getting information about sensors, actuators and smart devices, offering

utility-based IoT services in a cloud platform. OpenIoT leverages the state of the art on middle-

ware frameworks of RFID/WSN and the IoT like XGSN [55] and AspireRFID [56]. Virtual sensors

are also promoted by OpenIoT, enabling the concept of Sensing-as-a-Service. The main inclusion

is the semantics structure; using ontologies, enabling semantics interaction and interoperability be-

tween external systems and offering Open Linked Data interfaces. OpenIoT has also designed a

set of applications over the cloud platform to enable on-the-fly specification of service requests to

the OpenIoT platform, data visualisation, and configuration and monitoring components over the

sensors and OpenIoT services.
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Table 2.1: Integration proposals comparison

Platform REST API Management Web UI Connection with devices Online for use Available code Security License
OpenIoT Yes Yes X-GSN No Yes OAuth 2.0 authentication,

permissions and roles.

GNU General Public License

version 3

SENSEI Yes Yes CoAP, Sockets, USB and

REP instantiation

No No Token authentication, permis-

sions, roles

N/A

Nimbits Yes Yes RESTful API Yes Partially Authentication with token

and user/password

Apache License Version 2.0

(portions)

Xively Yes Yes RESTFul API, Sockets, Web-

Sockets and MQTT

Yes No Authentication and permis-

sions with OAuth 2.0 and API

keys. User/password authen-

tication

End User License Agreement

Paraimpu Yes Yes RESTful API Yes No Token authentication End User License Agreement

Particle Yes Yes CoAP Yes Yes Authentication with user/-

password and OAuth 2.0

Several open-source licenses

Thinking Things Yes Yes N/A Yes No Authentication with token

and user/password

End User License Agreement

Sensor Cloud Yes Yes RESTful API Yes No All transactions occur over

TLS

End User License Agreement

CloudPLugs Yes Yes MQTT, RESTFul API,

SmartPlug instantiation and

WebSockets

Yes No SSL for communications and

AES and RSA to protect user

sources

End User License Agreement

Stack4Things Provided by OpenStack Yes AMQP and CoAP No No N/A N/A
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The SENSEI project [57], [21] is also an Integrated Project in the EU’s Seventh Framework

Programme, which aims to integrate heterogeneous WSAN (Wireless Sensor and Actor Networks)

in an open business-drive architecture in order to offer services and applications on them. SEN-

SEI’s result is a secure marketplace where users can manage and access information about WSAN

resources. The Resource is the main concept in the architecture, which abstracts sensors, actuators,

processors and software components through a semantic specification, at the same time that offers

a set of services. SENSEI also offers an Open Service Interface and a management UI designed to

enable machine processing which facilitates the dynamic composition, discovery and instantiation

of new services. For communication and management with end points, SENSEI makes use of the

Resource End Point (REP), which makes resources on embedded devices or sensors available to the

SENSEI system through RESTful interfaces. REPs can be directly deployed on devices through

TinyOS, Contiky, and Android implementations or by REP gateways which act as a resource proxy

between the underlying WSAN and the SENSEI systems.

Nimbits [58] is an open-source platform for connecting things to the cloud, and one another.

Nimbits could be downloaded and installed privately in addition to using a public cloud Nimbits de-

ployed in Google App Engine. Currently, Nimbits is deprecated. Nimbits is composed of two main

components: a web server which records and processes geo and time stamped data and executes

user rules on the data such as push notification, emails and XMPP messages; and a Java library for

developing and connecting new applications on the platform. Moreover, Nimbits contains a library

for Arduino support and an Android App to manage and visualise all connected data prints. The

data is sent by clients using the JSON (JavaScript Object Notation) format. Users can configure data

points to behave in many cascading ways when new data is recorded, generating different triggers

and alerts in each situation. Several parts of Nimbits were provided with an open-source license, but

the core components do not contain an open-source license, though the latter could be downloaded

for free.

Xively [59] is an IoT platform as a Service for developing applications over connected things.

Xively offers different communication methods for connecting things, such as RESTFul, HTTP,

Sockets and MQTT; different data formats such as JSON, XML and CSV, and official libraries for

dozens of languages and platforms like Arduino, Android, Java and C. The Xively API has been

built to read and write data and manage products and devices. Xively has been designed to support a

development process in three stages: development for testing devices and applications, deployment

for turning prototypes into products, and management for batching products and support real-time

devices. This can be done by the Web UI offered by Xively. Furthermore, the platform contains end-

to-end security for protecting communication channels and for fine-grained permissions. Xively has
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a proprietary license, allowing users and systems to connect with its platform.

Paraimpu [60] introduces a novel paradigm to share objects, data and functionalities with other

people in order to attain a participative and collaborative use of a friend’s things. Paraimpu is a

web platform which allows the adding, use, inter-connection and sharing of real smart objects and

virtual things like services on the Web and social networks. Users can define connections between

a sensor and an actuator through a sequence of rules and actions, and manage the thing’s privacy.

As a result, a user can publish on social media, like Facebook, an information message when a

sensor’s temperature exceeds a certain threshold. The platform promotes the concept of the WoT,

where multiple connected smart objects communicate using Web protocols. Currently, Paraimpu

has a proprietary license and only allows things to be used or connected to its platform.

An integration with their own products has been released by Particle [61]. Particle offers a set

of development kits at low prices—starting from 19$ a microcontroller with Wi-Fi support—with a

free hosted cloud platform for each device. The Particle team has obviously thought of the impor-

tance of IoT software and they have designed a set of software tools for developing, managing

and monitoring the Particle devices. The software tools include a mobile app for remote con-

trol and monitoring, Web and local IDEs, a Particle CLI and programming support for Node.js,

Arduino-like development and a REST API. However, the main advantage of Particle is that all

their software contains an open-source license and all are published on GitHub (Particle GitHub:

https://github.com/particle-iot). Moreover, the solutions have also been integrated

with several external systems such as a smart bed and a water monitoring system. The development

kits have Wi-Fi and 2G/3G support, so together with their low price and the hosted cloud, they form

a cheap choice to start with IoT and cloud computing.

As is Particle, Thinking Things [62] is a project founded by Telefonica with their own devices,

which aims to connect IoT devices and cloud technologies. Unlike Particle, Thinking Things has

presented a set of modular development kits with integrated sensors—air temperature, air humid-

ity and ambient light—making up a stack of connected blocks that you can put together like Lego

pieces. Furthermore, a REST API and mechanisms to monitor and define action rules form part of

the platform. Thinking Things also offers devices with Arduino-compatibility, with free cloud con-

nection and utilisation. A collaboration with a pizza company has concluded with the development

of an embedded button to order pizzas in real-time. However, Thinking Things development kits

are more expensive than Particle kits, they do not contain as many software tools as Particle and

they only have connectivity support for GSM communications.

SensorCloud [63] leverages the cloud computing technologies to provide a data storage, visual-

isation and management platform. For the IoT interconnection, the company MicroStrain offers a
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specific gateway which collects data from its sensors and pushes it to SensorCloud. Moreover, data

from other IoT devices can be published on SensorCloud through the RESTful API offered. Sensor-

Cloud also incorporates the MathEngine—a set of software tools to process, analyse and monitor

sensor data—, a mechanism to upload you own scripts to process data, and an alert engine (as other

integration platforms). Lastly, SensorCloud offers multiple plans to use its platform, from free ones

with 25.000 transactions per month.

The concept of a secure and robust software agent is promoted by CloudPlugs [64]. The agent,

known as SmartPlug, connects with the CloudPlugs IoT platform in addition to having local intel-

ligence for communication and to control other devices. CloudPlugs also has a pay-as-you-grow

IoT platform with which you can manage and deploy the underlying IoT deployment and access

your IoT data through a REST API. SmartPlug has also been designed to deploy applications over a

Node.js server, offering communication support with local sensors through several local interfaces

like ZigBee and Bluetooth and multi-operating system support. Final devices can connect directly

to the CloudPlugs platform through several communication protocols and all things can communi-

cate with each other independently from the protocol through a smart message bus. CloudPlugs is

the only platform that besides the cloud computing integration offers mechanisms to support local

intelligence. Although, CloudPlugs has a pay-as-you-grow platform, it also offers a free account to

test the platform.

Stack4Things [65] proposes an extension of the OpenStack platform in order to enable a cloud-

oriented infrastructure for managing the IoT. Stack4Things relies on OpenStack as a cloud platform

as well as virtual infrastructure manager to provide higher level services applied to the IoT. The

s4tProbe components constitute the end components in the system, which are deployed in Arduino

YUN boards. The s4tProbe components connect the IoT with the OpenStack platform providing a

pull-based design through the AQMP protocol and a push based design through CoAP. The Open-

Stack platform has been extended to support new UI functionalities, integrate s4tProbe components

and provide complex event processing.

The comparison of integration proposals in Table 2.1 shows that all the surveyed proposals

have REST API support and a management Web UI. The connection with devices is established

in different ways. On the one hand Nimbits, Paraimpu and Sensor Cloud just rely on a RESTFul

API whereas Particle and Stack4Things rely on the lightweight CoAP protocol. Stack4Things also

relies on AQMP for a pull-based design. OpenIoT, SENSEI and CloudPlugs rely on, respectively,

middleware, gateways and agents to abstract the underlying IoT deployment. In the case of SENSEI

and CloudPlugs, they also offer support for other protocols. Lastly, Xively allows communications

with several protocols and Thinking Things abstracts the communication through its own devices.
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Most integration proposals are available online for use and deployment of an IoT infrastructure

except for SENSEI, Nimbits, Stack4Things and OpenIoT, but the latter has the source code available

online. In the case of Thinking Things and Particle, it is free to use the cloud, but they require the

use of their own devices for this. Moreover, Particle goes beyond and apart from the free use of

cloud, all source code of the platform’s components contain open-source licenses and are available

online. Stack4Things leverages the cloud features of a well-established solution as OpenStack to

build the system. Nimbits also contains an open-source license for its source, but in this case only

for some portions. For security aspects, most components make use of tokens in order to allow a

secure form of authentication, identification and permissions over a set of users or devices. On the

other hand, SensorCloud and CloudPlugs protect their communication through secure protocols, but

they do not make use of tokens as it can be overly weighty for embedded devices.

The λ-CoAP architecture described in Chapter 5 also represents an integration between the IoT

and cloud computing. However, this architecture has been designed to meet the requirements of

time-sensitive use cases, since it focuses on applications that require processing large amounts of

data with low latency. This has been achieved thanks to the adoption of the Lambda Architecture to

reduce the processing time in the cloud side, and an edge layer to reduce both the latency and band-

width in IoT-cloud communications. The IoT has been integrated with the de facto IoT protocol,

CoAP, enabling its use in resource-constrained devices.

2.5 Blockchain and Internet of Things Integration

In finances, there has been a notable emergence of alternative cryptocurrencies (altcoins, 1486 ac-

cording to coinmarketcap) that have built a new market and have enabled new forms of payment

and investment. Examples of them are Ripple [66], Litecoin [67], Nxt [68], Peercoin [69], Bitshares

[70], Dogecoin [71], Namecoin [72], Dash[73], and Monero [74]. This new market has also led to

the appearance of new applications for payment, exchange and trading infrastructures for these new

currencies.

Beyond finances, the distributed and trustless ledger of blockchain has been identified as an

ideal solution for traceability systems. What were economic transactions in Bitcoin, have become

changes of the plotted objects. In this way the chain stores the objects and all their changes, al-

lowing a complete, open and reliable traceability, only possible through this technology. There

are some ongoing projects from prominent companies such as IBM, Unilever, Walmart and Nestle

collaborating for food traceability [75] or Renault to track vehicle maintenance history [76].

Identity verification has also become a popular application of the technology, blockchain pro-
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vides an open trusted distributed ledger that can be used to store identities. This makes the global

management of identities possible. In the field of e-government many countries have proposed the

use of blockchain technologies for instance: for passports in Dubai [77], e-identity in Estonia [78],

Illinois to digitise birth certificates [79] and for land registration in India [80].

Additionally, the integration of smart contracts opens up a world of possibilities for many in-

dustries: energy, insurance, mortgages, music royalty payments, real estate, gambling, betting, etc.

Cloud storage, education, or e-health are other areas in which blockchain applications have been

proposed. Table 2.2 lists some of these applications in different areas.

IoT blockchain applications

Although the use of blockchain in the IoT is relatively recent, there are already a large number of

proposals where this technology is used in different ways to improve current IoT technology. A

summary of some of these proposals is shown in Table 2.3.

In fact, IoT can join forces with blockchain in many scenarios. Almost all traceability appli-

cations can benefit from the inclusion of IoT devices, for instance, sensors that are attached to the

product to be traced can provide information during its distribution. Similarly, many applications

that digitise the world by providing sensed data can be enriched with blockchain technology. It can

help to increase data legitimacy or reliability and moreover provide distributed identity, authentica-

tion and authorisation mechanisms without the need for central authorities.

Blockchain could be a powerful candidate to make the smart city concept a reality. The concept

of the smart city is based on smart IoT devices that can work autonomously. Blockchain can increase

the autonomy of devices since it eases interaction and coordination by providing a distributed open

ledger where devices can query trusted information with reliability. Moreover, the autonomy that

blockchain enables, favours the creation of new IoT marketplaces. [108, 100, 109, 110].

As Table 2.3 shows, Ethereum is the most popular platform for IoT blockchain applications.

Ethereum [111] provides more features than Bitcoin, and the inclusion of smart contracts greatly

expands the possible applications.

In LO3 Energy [108] an energy microgrid that uses blockchain has been demonstrated in Brook-

lyn (USA), southern Germany and South Australia. Microgrids are localised groupings of electricity

generation, energy storage, and electrical loads. The project builds a community energy marketplace

that creates a decentralised P2P energy network that is coordinated with the broader power grid. It

is the first ever energy-blockchain-platform, that allows devices at the grid edge to securely and di-

rectly transact for energy sales among microgrid participants. A hybrid device measures a building’s

energy production in use and sends data to the network.
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Table 2.2: Blockchain applications

Application Classification

Ripple [66]

Cryptocurrency

Litecoin [67]

Nxt [68]

Peercoin [69]

Dogecoin [71]

Namecoin [72]

Dash [73]

Monero [74]

BitPay [81]
New payment infrastructures

Abra [82]

BitNation [83]

Identity verification
Onename [84]

Keybase [85]

ShoCard [86]

Passport management [77]

e-government

e-identity [78]

Birth certificates [79]

Land registration [80]

Follow my vote [87]

Tierion [88]

Verification of ownership or provenance

Proof of Existence [89]

Factom [90]

Everledger [91]

MIT’s digital diploma [92]

Provenance.org [93]

Product traceability
SkuChain [94]

IBM Food traceability [75]

Renault vehicle maintenance history tracking [76]

Robomed [95]
e-health

Medrec [96]

Synechron [97] Energy, insurance and mortgages

Ubitquity [98]
Real estates

Atlant [99]

Slock.it [100] Renting, sharing and selling

DAO.Casino [101]

Gambling and bettingPeerplays [102]

Wagerr [103]

Storj [104] Cloud storage

Sony education history [105] Education

Ujo [106]
Music royalty payments

Resonate[107]
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Table 2.3: IoT-Blockchain applications

Application Classification Platform

LO3 Energy [108] Energy microgrid

Ethereum

ADEPT [112] Smart contracts involving IoT devices

Slock.it [100] Renting/Selling/Sharing smart objects

Aigang [109] Insurance network for IoT assets

MyBit [110] Investment in IoT devices

AeroToken [113] Sharing airspace market for drone navigation

Chain of things [114] Identity, security and interoperability

Chronicled [115] Identity, data provenance and automation

Multiplatform
Modum [116] Data integrity for the supply chain

Riddle and Code [117] Sharing and machine economy

Blockchain of things [118] Secure connectivity between IoT devices

The project for Autonomous Decentralised Peer-to-Peer Telemetry (ADEPT) led by IBM and

Samsung [112] aims to promote device autonomy, and to this end they use blockchain technology

to ensure code execution on edge devices. ADEPT uses three protocols: Telehash, Bittorrent and

Ethereum, for messaging, file sharing and blockchain, respectively. Blockchain technology pro-

vides authentication, engagement, contracts and checklists. Their proof of concept consists in smart

washing machines that use smart contracts to buy detergent supplies from retailers.

The blockchain framework proposed by Slock.it [100] aims to address security, identity, co-

ordination and privacy over billions of IoT devices. The objective is to build a sharing economy

where each IoT asset can be rented securely and quickly without the need for any authority. They

are working on a variety of projects, for instance a marketplace to provide a charging infrastructure

for electric vehicles, called Blockcharge. This solution uses a smartplug, a mobile application to

activate the plug and control the charge, and the blockchain to pay for the services. They are also

working on a smart lock to automate apartment renting.

Aigang [109] is an autonomous insurance network for IoT assets. Aigang has deployed smart

contracts over the Ethereum test-bed that issue policies, conduct risk assessment and process claims

automatically. They have also created a custom virtual currency (AIX). They offer investment

opportunities in different products with different risk levels and potential gains. Smart contracts

connect intelligent devices with insurance policies. Through these contracts the devices can order

maintenance and insurance payment can be automated. With the inclusion of Oracles to report

events, claim handling can be automatically handled.

MyBit [110] plans to build an ecosystem of services where IoT assets (from drones to cars) are
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owned by a group of people, and the revenues are shared. A new financing model and investment

opportunity open to anyone. Ethereum smart contracts are used to automate processes: when the

IoT devices generate revenue the investors automatically receive a share of the profits proportionate

to their ownership stake. A central smart contract is responsible for the control, maintenance and

updating of the platform. The platform defines different asset types, and IoT devices are linked

to assets. Once installed they send and request information through an API. Oracles are used to

connect devices to the network.

AeroToken [113] aims to create a real-time navigation and property access authorisation sys-

tem for low-altitude commercial drone services. They provide a solution to drone navigation by

voluntarily sharing airspace over properties. This helps to solve the problem of drone operation

permission, building a new sharing marketplace. Property owners offer their airspace using smart

contracts in the blockchain, and drone service providers pay for a temporary access. The application

has been developed using Ethereum smart contracts.

The Chain of Things [114] is a blockchain-enabling IoT research lab that proposes Maru, an

integrated blockchain and IoT hardware solution. Blockchain provides devices with universal iden-

tity from birth, security and interoperability. Three case studies are presented: Chain of Security,

focused on providing security to IoT through blockchain; Chain of Solar, that aims to connect solar

panels to the blockchain to store produced energy for a variety of applications; and Chain of Ship-

ping, which plans to improve security in the shipping and logistics industry. Data logging devices

are used to send data to the network. The proof of concept has been developed over the Ethereum

network.

Chronicled [115] has developed several IoT products provided with cryptographic capabilities

with the objective of creating the world’s most trusted IoT and supply chain ecosystems. Chroni-

cled platform includes a blockchain synchronisation server capable of synchronising with multiple

blockchain systems such as Quorum, Ethereum and Hyperledger. Registration and verification of

device identity is performed through smart contracts.

The Modum [116] blockchain solution aims to provide data integrity for physical products,

focused on improving supply chain processes. The Modum sensors record environmental conditions

during shipments. Modum has been designed to work with different platforms. A solution for the

distribution of medical products has been developed using Ethereum blockchain. Ethereum smart

contracts are used to verify sensor data each time goods change ownership, the contract validates

that the transaction meets the customer’s standards. The solution integrates sensor tags that collect

measurements during transit, a mobile application, used to connect and activate sensors and change

ownership, and a dashboard to analyse sensor collected data after shipment reception.
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Twin of Things is a solution for securing the ownership and provenance of everyday objects

[117] developed by Riddle and Code. The solution combines blockchain and cryptography to gen-

erate a hardware-based digital identity for all connected physical objects. Communication and trans-

actions between devices is autonomously and securely performed thanks to blockchain. A highly

secure crypto chip enables each device to become a blockchain node. The chip is produced in the

form of an adhesive non-removable NFC tag and an Android application is used to carry out a

blockchain transaction to register the unique, tamper-proof identity of the chip. Once validated in

the network, it can interact with other devices. The solution has been designed to be blockchain

agnostic, it can currently work with Ethereum, Bitcoin and BigchainDB blockchains.

Lastly, the Blockchain of Things [118] provides a secure open communication platform for

industrial IoT integration. They propose Catenis, a web service layer for rapid Bitcoin blockchain

integration, with end-to-end encryption. It can also be adapted to Ethereum, Hyperledger and other

blockchains. In Catenis, each IoT device is represented as a virtual device in a Catenis Hub and

Gateways (with increased security). Each virtual device will manage a host of Catenis services for

the IoT device.

The contribution presented in Chapter 6 does not, in itself, represent an integration between the

IoT and Blockchain, rather it analyses the challenges and open issues to overcome that integration.

In addition, several blockchain platforms are analysed and an evaluation of blockchain nodes in IoT

devices is undertaken to validate the feasibility of Blockchain in the IoT. Therefore, this contribution

has its as goal to define the guidelines for future IoT and Blockchain integrations.
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3
Run-time Deployment and Management of CoAP

Physical Resources for the Internet of Things

In this chapter, the first contribution of this thesis is presented: a run-time deployment and

management system for physical resources. This contribution will enable the deployment and

management of physical sensors and actuators without having to access and program the micro-

controller boards. First, the problem statement and research goals are defined in 3.1. The sys-

tem and all its components are presented in Section 3.2. Then, Section 3.3 shows how the sys-

tem has been implemented. Finally, the evaluation of the system is presented in Section 3.4.
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3.1 Problem Statement and Research Goals

The continuous growth of the IoT in recent years has meant it is increasingly more present, as IoT

scenarios such as smart homes and smart cities become part of our everyday lives. This growth has,

in turn, affected the number of IoT solutions, devices and applications available to end users. As

mentioned, standardisation is key in the IoT, where protocols such as 6LoWPAN, RPL and CoAP

bring the IoT closer to end users.

Resources in CoAP represent an operation on a constrained web service. Resource operations

can contain both sensors (e.g. a temperature sensor) and actuators (e.g. a light actuator). Normally,

resources are defined in compile time which does not permit managing the resources in run-time.

Although CoAP defines the guidelines for creating resources in run-time through a CoAP request,

it does not establish the rules for managing and deploying resources with physical components such

as sensors and actuators.

The goal of this contribution is to leverage CoAP’s capabilities for creating and serving re-

sources, and provide mechanisms for controlling the resources with physical components in run-

time. The latter does not require programming or installing external components, so end users could

incorporate new sensors or actuators in their installed microcontroller without having to access and

program the microcontroller board.

3.2 Run-time Deployment and Management of CoAP Resources

The overall architecture in the run-time deployment and management system comprises three dif-

ferentiated components. On the one hand, the Web UI provides a user-friendly and accessible way

to manage the resources belonging to the associated CoMs (CoAP Middleware). Through the Web

UI users can either create a new resource on a CoM or edit and remove previously created resources.

On the other hand, a Smart Gateway provides a proxy for translating HTTP to CoAP which is not

only used by the Web UI to control the CoMs but could also be used for external HTTP clients

through its REST interface. The Smart Gateway also comprises a Database/Cache which stores in-

formation about the resources of the connected middlewares and their data in order to protect them

from high access rates. Lastly, the CoM offers a CoAP server and a set of resources which can be

managed by the Smart Gateway and the Web UI.

Figure 3.1 shows an overview of the architecture with the aforementioned components and the

data flow between them. The data flow starts with an HTTP request for an operation to interact
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Figure 3.1: Run-time deployment and management of CoAP resources architecture overview

with a specific resource from the Web UI or an external HTTP client. Then, the Smart Gateway

translates the HTTP request to CoAP and transmits it to the objective CoM. Finally, the Smart

Gateway responds through HTTP once the CoM responds with the operation’s result.

3.2.1 CoAP Middleware

The CoM is one of the main components in the system, so it serves the resources registered to

it and enables the management and deployment of these resources. The CoM is allocated in the

microcontrollers deployed. Therefore, the CoM provides the way for end users to install and access

resources.

Connecting sensors or actuators in a microcontroller involves connecting them in some connec-

tor/s or pin/s. That is the main idea with which we have designed this approach. Users can connect

a sensor or an actuator to connectors in a microcontroller. Once the sensor or the actuator has been

correctly connected to the microcontroller, users can register the installed resource and its connec-

tors in order to establish the resource available for interacting with it in the CoM. Therefore, users

can easily create a new resource, connecting it to the microcontroller and registering it on the Web

UI.

Although some sensors and actuators do not need external libraries to interact with them, such

as some analogical sensors, many others do require them. The available libraries for sensors and

actuators in microcontrollers could require a large amount of storage. Hence microcontrollers with

storage limitations are far from being supported. To alleviate this, we propose the concept of ob-

jective middleware. An objective middleware is a middleware that supports a set of suitable sensors
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or actuators for a certain environment. For instance, an objective middleware designed for smart

cities with support for environmental sensors (CO2, humidity and temperature). Objective middle-

wares will form as many groups as there are situations and possible scenarios constituting the IoT,

since the system architecture is designed to be easily increased. Furthermore, generic libraries with

support for well-known protocols such as I2C, SPI or UART can also be created in order to reduce

the library size and enable different components to be installed with the same library.

The CoM has been designed to support the creation and association of new sensors and actuators

without modifying the source code, so it avoids the human errors that are produced when modifying

code and provides an easy way to define new components in the system. To define new components,

a new class should extend and implement the virtual methods defined in the CoapSensor class. The

CoapSensor class provides the mechanisms to access and manage the sensors and actuators defined

for the CoM. A new sensor or actuator can be defined, implementing the virtual methods of the

CoAPSensor class shown in Listing 3.1.

Class CoapSensor

/ / I n i t i a l i s e t h e s e n s o r / a c t u a t o r

Pu bl i c Subprogram i n i t ( name , c o n n e c t o r s )

. . .

End Subprogram

/ / S e t t h e v a l u e i n p u t d a t a r e c e i v e d as argument

Pu bl i c Subprogram s e t v a l u e ( i n p u t d a t a , i n p u t d a t a l e n , o u t p u t d a t a ,

o u t p u t d a t a l e n ) ;

. . .

End Subprogram

/ / Get t h e c u r r e n t v a l u e o f t h e s e n s o r

Pu bl i c Subprogram g e t v a l u e ( o u t p u t d a t a , o u t p u t d a t a l e n )

. . .

End Subprogram

/ / Uncouple t h e s e n s o r / a c t u a t o r

Pu bl i c Subprogram d i s a b l e ( )

. . .

End Subprogram
End Class

Listing 3.1: CoapSensor class pseudocode
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The init method in the CoapSensor class is responsible for initialising the necessary components

to deploy the desired component based on the connectors’ information provided as argument. The

get value and set value methods enable the query or the actuation in the sensor or the actuator

respectively. The CoM detects the nature of the component implemented (sensor or actuator) based

on the methods implemented. Hence in the case of defining a new sensor, it is only necessary to

implement the get value method, and the set value method in the case of a new actuator. Lastly, the

disable method uncouples the components connected.

New libraries can be created dynamically in the CoM through CoAP requests. When a CoM

receives a CoAP POST request with a valid payload for creating libraries, the CoM gets the library

type and finds the target library by means of the Registry Software Design Pattern [119]. The

Registry Pattern allows the CoM to get references and create classes dynamically through the class

name, so it avoids modifying the solution’s source code and enables the creation of new classes

just by including them in the project solution. Once the libraries have been instantiated in the

CoM, their references are saved in the memory and can be updated or removed through CoAP PUT

and DELETE requests respectively. If something fails during an operation (e.g modules activated

wrongly), the libraries are not instantiated and a CoAP error response is sent to inform the users

of the operation’s result. Figure 3.2 shows the behaviour of each CoM when it receives a CoAP

request. In order to reduce the flow’s complexity, the error cases that can be thrown after each

operation have been excluded.

Each CoM has, by default, one resource, called lib, which returns the supported sensors and

actuators which can be installed in it. The resource lib response replies with the following Core

Link Format [120] (Listing 3.2).

RES : 2 . 0 5 C o n t e n t

</ l i b >; a =”0 1 3 . . . ”

Listing 3.2: Lib response example

A new link-extension parameter, a, has been added to the Core Link Format to enable the sup-

ported libraries in each library response. The lib response includes the URI for accessing the re-

source and the list of available id types separated by spaces in the a parameter. Moreover, the Smart

Gateway will add information such as the name and the number of connectors to each supported

library when the response is received. The latter also prevents the overload of the CoMs since they

only need to send the id type and the rest of the information is completed by the Smart Gateway.

The CoAP resource discovery has also been modified to incorporate additional information

from the CoAP resources created, such as the resource type deployed and the connectors used

in the installation. A new link-extension parameter p is in charge of indicating the connectors
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Figure 3.2: Flow chart with the CoM behaviour on CoAP request

used, separated by spaces, and the resource type rt attribute has been reused to indicate the type of

resource deployed. The p parameter is also included in the resource discovery process to inform

users in which connectors the sensors are deployed. Hence a possible response from a CoM with

two resources could be the one in Listing 3.3.

Response in Listing 3.3 shows the resource discovery of a CoM with two resources: gas and

light. The gas resource has been installed in the connectors 5, 6 and 1 with an ID type 3 (CO
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gas sensor), and it is a sensor resource (core.s, sensor in Core Link format). On the other hand,

the resource light is an actuator (core.a, actuator in Core Link format) and has been deployed in

connector 12 with the ID type 2 (light actuator).

RES : 2 . 0 5 C o n t e n t

</ gas>; r t = ” 3 ” ; i f =” c o r e . s ” ; p=”5 6 1” ,

</ l i g h t >; r t = ” 2 ” ; i f =” c o r e . a ” ; p =”12”

Listing 3.3: Resource discovery response example

When resources are created in the architecture, they are available for interaction, but when

microcontrollers are reloaded or stopped for some reason (power, error, damage, and so on) the

changes may be lost. For this reason, the resource persistence also has to be taken into account.

We have therefore used the EEPROM storage for the majority of the microcontrollers to store the

information of the resources. Therefore, when CoM starts, first of all it checks whether or not there

are indeed resources to be restored in the EEPROM storage. In the case that there are resources in

the EEPROM, they are restored, based on all the information provided during their creation (name,

resource type and connectors). This avoids the changes being lost when the CoM deviates from its

normal behaviour, which in turn provides resource persistence.

3.2.2 Smart Gateway

The Smart Gateway provides a cross-proxy to convert HTTP requests into CoAP [121], [122]. This

avoids having to know the format or additional information from the CoAP request. As all the

information is gathered in an URI, it sends the format of the CoAP requests which are hidden from

the end users, and enables an accessible way to communicate with them through well-defined URIs.

In order to carry out tests or simply an operation which is not required in a reload of the CoM,

a new concept of temporality is introduced into the system. Temporality implies that all changes

made in one CoM (creations, updates, deletions) can optionally persist in the CoM depending on

the user’s needs. Accordingly, users can create, update or remove a resource in a CoM and decide

whether or not to apply these changes throughout its useful life. This also protects the storage in

the case of multiple uses, like, for example, testing, because usually storage has a limited number of

writings. It has been implemented with a new link-extension parameter t which indicates with the

value 1 that the operation is temporal, and 0 if not.

All HTTP operations in the proxy follow a well-defined interface shown in Table 3.1. The API

is used by the Web UI to manage the CoAP resources in the CoMs but it could also be integrated

into external applications.
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Table 3.1: Smart Gateway API

URI HTTP

Method

Description

/nodes GET Obtain the CoM list from the Smart Gateway

/CoM/.well-known/core GET Obtain the CoM resource list

/CoM/lib GET Obtain the available libraries from the CoM

/CoM/res GET Obtain the data of the resource res in the

CoM

/CoM/res/val PUT Actuate over res with the value val

/CoM/res/typ?

p=[v1;v2;..]&t=[01]

POST Create a resource res with type typ, connec-

tions contains in p and temporality t defined

/CoM/res/new res/

typ?p=[v1;v2;..]& t =[01]

PUT Update the resource res with a type typ, a

new name in new res, connections contains

in p and temporality t defined

/CoM/res?t=[01] DELETE Remove the resource res with the temporality

t defined

As can be seen in Table 3.1, the Smart Gateway enables a set of operations for interacting

with resources as well as managing and deploying them. All operations can be done through a

URI, so it is not necessary to learn any format or include any payload more than the URI itself.

Some operations for managing the resource observations are also included. To ensure the matching

between requests and responses, each request sent by the Smart Gateway includes a unique token

which is validated with the token of the corresponding response received.

HTTP PUT / temp / n e w u r i / 0 ? p =[1 ;4]& t =1

CoAP PUT / temp

</ new ur i>r t = ” 0 ” ; p=”1 4 ” ; t =”1”

Listing 3.4: Translation between HTTP and CoAP

Creating and updating resources requires some information in the CoAP payload. That infor-

mation includes the connectors’ information p, the resource type rt, its new resource URI and its

temporality t. DELETE requests only require the temporal parameter to remove the resource. The
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translation in Listing 3.4 shows an example of the translation done by the Smart Gateway to tempo-

rally update a resource.

Lastly, a Database/Cache in the Smart Gateway stores information on the CoM resources as

well as data from its own in some cases. Periodically, with a configurable timeout, the CoMs

send a request to update its registration. The latter also maintains the contact between the Smart

Gateway and the CoMs and can detect possible service interruptions. CoMs are registered with the

Smart Gateways when they start up, through a registration process. When data from an observable

resource is received in the Smart Gateway, it stores the data used in the request for this resource. As

a result, the number of requests to the CoMs is reduced and this prevents overload and reduces its

power consumption.

3.2.3 Web UI

The Web UI enables registered users to straightforwardly access the CoMs and CoAP resources in-

volved. The Web UI also avoids having to use HTTP clients and learn the URI formats for managing

and actuating over CoAP resources. Moreover, the responsive design allows a proper visualisation

on many devices, thus the Web UI can be accessed on smart-phones, PCs and tablets.

The Web UI is organised on several levels: the associated CoMs, the resources of the CoMs, and

the interaction with theirs resources. Once the registered users have accessed the system using their

credentials, a form with the associated CoMs in the Smart Gateway is provided. Users can visualise

the resources belonging to each CoM by selecting the option of view resources in each CoM. If

the option is selected, a form, as shown in Figure 3.3a, with the list of resources is provided. This

list shows the resources that belong to the selected CoM with its corresponding information such

as its resource type, connectors used and four types of operations—create a new resource, interact,

update or delete one of them—which are available for each of the resources. The interaction with the

resource can differ, depending on the resource type. In the case of resources which contain a sensor,

the communication will be established through GET requests, both for HTTP and CoAP. When a

user decides to interact with a sensor resource, a GET request is sent to the Smart Gateway and a

pop-up window shows the data response received. In the case of resources associated with actuators,

the communication is done through PUT requests. The pop-up window in a PUT request (Figure

3.3b) first enables the insertion of a value to control the state of the resource, e.g., a behaviour in one

actuator resource could be to turn it on with a 1 value, turn it off with a 0 value and create special

behaviours with other values. The behaviours will depend on the possibilities of each resource type

and the possible values for interacting with them will be indicated to the end users. When the value

is inserted and the user confirms the operation, the PUT request is sent to the Smart Gateway and the
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a Resource list of a CoAP Middleware

b Pop-up window for actuation with a actuator resource c Pop-up window for adding a resource

Figure 3.3: Screenshots of the Web UI

pop-up window shows the result of the operation when the response is received. These behaviours

follow the good practices of RESTFul web services

Creating resources, Figure 3.3c, enables the creation of new resources from the resource types

available in the CoM selected. In the resource updates, users can update the access name and

connectors of a resource, choosing the temporality of the operation. Equally, users can remove each

resource, establishing its temporality.

When an end user decides to create a new resource in the form of list of CoM resources (Figure

3.3a), he/she only has to press the new resource button to create it. As the CoMs can have different

objective middleware depending on the scenario, the first step is for the Web UI to send a request

to the CoM to obtain its supported libraries. When the Web UI obtains the information requested,

a pop-up window to create the new resource is displayed (Figure 3.3c). In the creating resource

window, the user can select the resource type, introduce its access name and connector information

and decide whether or not the changes will be temporal. When the user introduces the information

and presses the confirm button, the information is sent to the corresponding Smart Gateway. Then,
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the Smart Gateway translates the request to the CoAP format defined and responds to the Web UI

when it receives the response from the CoM. If the resource has been correctly created, the user

will see the resource in the resource list form and interaction with it is allowed from this moment

onwards.

3.3 Implementation

The CoM is based on the implementation of the CoAP library for Arduino with XBee radio support

in [123]. This implementation follows the 8th version of CoAP and supports the observe option

and provides a well-defined abstraction of the CoAP protocol. The CoM has introduced changes in

the implementation provided, such as the capacity to manage and deploy resources in run-time in

addition to ZigBee communication support and the EEPROM management. As stated, an objective

middleware has been defined to control the supported libraries, and the limited memory of the IoT

devices. Therefore, different objective middlewares will contain different sets of supported libraries.

These libraries are included at compile-time in the CoM, as shown in Listing 3.1, and can be queried

and instantiated at run-time by end users through CoAP, the Smart Gateway and the Web UI. When

an end user checks the available libraries in a CoM, a CoAP GET request is sent to the CoM to get

the list of available libraries installed to be instantiated. All the operations with regard to this system

can be saved. In that case, when the CoM is restarted for any reason, all the saved operations are

restored when the CoM is once again available.

The Smart Gateway is responsible for translating HTTP requests into CoAP, and vice versa. The

Smart Gateway receives HTTP requests through an REST API defined with the Python open source

Wheezy Web server. Wheezy Web is a highly concurrent, lightweight and high performance Web

framework that enables a REST API to access the operations in each Smart Gateway. The CoAP

support in the Smart Gateway has been developed from scratch with ZigBee communication. The

information contained in the Database/Cache is stored in the memory with access control.

Lastly, the Web UI has been designed in two different components through the widely-used

back-end/front-end paradigm. The open source Python Web framework Django has been chosen

to allocate the back-end. Django allows Web applications or REST APIs to be created with very

little code and very quickly. The open source JavaScript frameworks AngularJS and Bootstrap

have been utilised for developing the front-end. Whilst AngularJS enables the creation of dynamic

Web applications and the back-end interaction, Bootstrap contains a large set of components and

utilities for creating responsive Web applications with very little effort. The Web UI enables the

management and visualisation of the system through a user-friendly and accessible interface. Some
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information on the Web UI, like the registered users, is contained in an SQLite database.

3.4 Evaluation

3.4.1 Smart Home case study

The evaluation has been done in one of the main case studies in the IoT, the Smart Home [124].

The system was evaluated in a room where three CoMs connected through batteries were deployed

in order to enable the deployment of three different components (a humidity sensor, a temperature

sensor and a light actuator) in each one of them. In the case study, the behaviour of the aforemen-

tioned components has also been tested with the three operations to manage sensors and actuators

in run-time: creation, updating and elimination. Therefore, the Smart Home case study comprises a

real IoT system with two IoT sensors (temperature and humidity) and one IoT light actuator.

The Smart Gateway was deployed in a laptop in the same room with a ZigBee connection. Once

each CoM had been connected to a battery, its corresponding sensor or actuator was attached to

some free connectors in the microcontroller and registered in the CoM as indicated above in Figure

3.3c. Once each sensor and actuator had been attached in the CoM and registered in the system,

the evaluation was done through an HTTP client which sent requests to the Smart Gateway. In the

evaluation, the HTTP-client carries out the same operations as those in the Web UI since it also

sends requests to the same API in the Smart Gateways. But it was chosen so as to carry out multiple

operations in a batch and test the system with a higher stress. Moreover, the Web UI is not the

only client that can manage the system, since any other system can be integrated into the proposed

system through the Smart Gateways API, so the evaluation also tests the system as it integrates with

external applications. Figure 3.4 shows the case study proposed in the system evaluation.

We have used an Arduino Mega 2560 as the microcontroller for deploying the CoMs. Arduino

is part of the open hardware microcontroller board family which is present in a large number of

IoT projects due to its reduced price and its large community. A lot of IoT microcontrollers offer

support for Arduino such as Libelium [125] and Particle [61], so the CoM could also be tested in

other microcontrollers other than Arduino. Moreover, as the implementation is done in C/C++, it

can be easily extrapolated to another platform. Four XBee Pro S2B modules configured with API

mode with escaping and a baud rate of 19200bps have also been used to create a ZigBee mesh (one

coordinator connected to the Smart Gateway and three end devices integrated in Arduino Mega).

The Smart Gateway, the Web UI and the HTTP client have been installed on a Windows 7 OS PC

with 8GB of RAM. The following subsections present the memory footprint, data transmission,

communication delay and power consumption evaluations performed.
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Figure 3.4: Smart Home case study

3.4.2 Memory Footprint

The memory footprint is one of the most critical parts of resource constrained devices, since their

available memory is normally highly limited. In order to evaluate the memory consumption when

new supported libraries are added to the CoM, an evaluation with three libraries of different sizes

has been done. These libraries include an LM35 temperature sensor which does not require external

libraries to work, a DHT temperature and humidity sensor with medium-sized external libraries and

a DS18B20 temperature sensor which requires large-sized external libraries.

Figure 3.5a and Figure 3.5b show, respectively, the flash and SRAM footprints of the uploaded

sources to the microcontroller by the Arduino IDE in the aforementioned scenarios. The evaluation

demonstrates that the flash footprint in Arduino Mega 2560 varies from 1 to 2% with each library,

depending on its requirements. The SRAM footprint barely changes with each new supported li-

brary. Therefore, the CoM runs comfortably on the Arduino Mega platform and enables support for

around 45 to 90 types of libraries approximately.

3.4.3 Data Transmission

The data transmission is another crucial requirement in resource constrained devices, since the

transferred data is restricted most of the time and large data transmissions require high-consumption.
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Figure 3.5: Memory footprint with different library types

In fact, some configurations with ZigBee, with security and in API enabled mode can restrict data

transmission by as much as 62 bytes. Moreover, the maximum transmission unit in IEEE 802.15.4

on which are based protocols such as 6LoWPAN and ZigBee, is established at 127 bytes.
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Each data packet exchanged in the run-time CoAP resources control system is composed of

the following components: CoAP header, token, URI-Path, and payload. The CoAP Header, as

mentioned, is fixed at 4 bytes. Although the token size can vary between 0 to 8 bytes, in the current

CoAP version, our implementation uses a fixed token of 2 bytes. One byte to indicate the token

option and another to generate 255 different tokens which is sufficient for the proposed scenarios.

The URI-Path depends on the URI provided in the Web UI by the users, however it is recommended

that short URIs like ‘/sen’ with 4 bytes are used. The URI-Path is included as an option in the CoAP

packet, so a minimum of 1 byte is also added. Lastly, the payload size changes with the number of

connectors used, the URI-Path and the operation being done (some operations do not require all the

parameters). A payload of a creation operation with a URI-Path of 4 bytes, one connector with two

bytes and temporally defined (</send>rt=“0”;p=“12”;t=“1”) is formed by 24 bytes. Therefore,

the packet size of one CoAP operation can be composed as 4 + 2 + 5 + 24 = 35 bytes.

In general terms, the exchanged packet size in the operations offered by the system is fitted into

only one data packet and only sent once. Therefore, it can be sent in the most resource constrained

networks and it also avoids other mechanisms such as fragmentation, which overloads the network.

3.4.4 Power Consumption

The power consumption has been measured with a high accuracy digital multimeter which measures

the circulating draw provided by the external batteries to the CoMs. In the previous tests, an HTTP

client executes a testbed with a set of creations, updates and deletions with different resource types

and behaviours. The power consumption of the Arduino Mega was measured, running the CoM

without any operations and with an empty loop in order to contrast the results provided by the

microcontroller consumption. The multimeter has a USB interface to upload data to the PC. Figure

3.6 shows the power consumption results.

The evaluation in Figure 3.6 shows an average consumption of the CoM of 103mA. That power

consumption can be considered as high, because a normal battery of 2200mAh will be exhausted

in approximately 2200/103 = 21.35 hours. This is because the average consumption in Arduino

Mega with an empty loop is 70mA which is more than two thirds of the total consumption of the

CoM running. Note that this is the raw power consumption in Arduino Mega without taking into

account any power management libraries. The idle current of Zigbee Pro S2B of 15mA is also

included. Due to the high power consumption in Arduino Mega, other low-power microcontrollers

like Moteino Mega will be considered in future tests.

The average operation consumption does not vary to any great extent with respect to the CoM

consumption. Some outliers of between 114 and 116mA in all cases were found, which could be
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due to high communication rates, but the overall consumption is constant, close to 104mA in all

scenarios. Therefore, the run-time CoAP resources control system does not cause a high-power

consumption in the management operations with Arduino Mega.
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The total energy consumed by the microcontroller can be estimated using the following formula

[126]:

E =
∑
j∈M

ij .υ.∆tj (3.1)

whereM is the set of operation modes of the microcontroller (active, idle, RX and TX); ij is

the current in state j; υ is the nominal voltage of the battery; and ∆tj is the time the microcontroller

spent in operation mode j. Specifically, the XBee-PRO S2B radio transceiver used in the case study

consumes an average of 54.5mA in read mode (RX), a peak 212.5mA in writing mode (TX), and

15mA in active mode. The consumption of the CoM in active mode is 103mA, including the ZigBee

active mode based on our evaluation. Lastly, the battery voltage is 7.4V.

In order to estimate the energy consumption based on the number of requests over time, we

make the following assumptions:

• baud rate obtained in evaluations of 15389.78bps.

• ZigBee API mode with escaping and no packet loss.

• CoM is always running, idle mode=0.

• other requests are ignored.

• 31 and 6 bytes for the CoAP requests and responses to the CoM respectively.

• 1 year simulation.

Figure 3.7 presents a simulation of the energy consumption with different operation rates over a

year. Although, in order to work for long periods microcontrollers have to sleep to reduce the power

consumption, the results show an exponential energy decrement with respect to the operation rate.

However, the energy consumption remains high due to the microcontroller’s consumption.

3.4.5 Communication Delay

In order to measure the communication delay with the CoMs, a testbed with different types of phys-

ical sensors and behaviours was also designed. In each operation, the HTTP and CoAP response

time of the creation, update and elimination operations from an HTTP client to the Smart Gateway

was measured 10 times. The results are represented as box plot graphs in Figure 3.8 which shows

the median, outliers and quartiles of each operation. LM35 and DS18B20 temperature sensors
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were chosen to evaluate the response time with sensors with different requirements. The temporal

behaviour was also evaluated for each sensor type.

Figure 3.8a shows the CoAP response time in the management operations in the LM35 and

DS18B20 sensors, respectively. The creation and update operations differ from each other by be-

tween 4 and 5 centiseconds. This is due to the delay in the instantiation of the libraries needed to

register the DS18B20 sensor. Therefore, different sizes in the management operations only imply

the consumption of some centiseconds. However, the deletion operation does not require the instan-

tiation of new libraries, so the delay is smaller. In fact, the results show a slightly better result in the

DS18B20 deletion.

In Figure 3.8b the median response time of HTTP and CoAP in each operation is shown. The

main purpose of HTTP is to translate the HTTP request into CoAP, so resource types and behaviours

do not affect it. This is the reason why the HTTP time only changes in milliseconds between

operations and its time is not representative beyond measuring the overall response time in each

operation. Nevertheless, the results reflect that the management operations can be done through the

Web UI or an HTTP client in little more than 1 second in the deployment scenario, irrespective of

the sensor type used.

As can be seen in Figure 3.8c and Figure 3.8d, the temporality affects the CoAP response time,

to a greater extent, in both types of sensors. This is because when temporality is defined changes

are persisted in the EEPROM memory and the storage delay is also present. Thus, the temporality

not only protects the EEPROM memory but it also reduces the response time in the management

operations.

3.4.6 Comparison with other proposals

As mentioned in Section 2.2 of the Chapter 2, most current systems deploy sensors and actuators

in compile-time, or else, provide mechanisms to deploy them in run-time using standards suitable

for computers such as USB or IEEE 1451 instead of microcontrollers. The latter entails a difficult

task to achieve a comparison with other systems in the same scenarios due to the anatomy of the

plug&play components, which are not suitable for resource constrained devices, and vice versa. An-

other solution could consist in modifying the compile-time deployment systems in order to provide

the run-time deployment functionality, however this goes beyond the scope of this contribution.

To the best of our knowledge, only µPnP provides a system that allows the deployment of

sensors and actuators in run-time for resource constrained devices. However, µPnP requires specific

software and hardware components to compose the system architecture and they are not accessible

to make a system comparison. Based on the evaluation provided in the µPnP paper [25], the system
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proposed in this Chapter provides a lower RAM and a higher Flash consumption. In the Smart

Home case study the Flash consumption is not a drawback since there is about 90% free space

with some libraries. The data transmission time shows an average time with the proposed scenario

similar to our average time with the sensors and actuators tested and the temporality defined. The

HTTP time is not included in the last comparison, but it also enables the system to be managed

with a large variety of clients, as for example the Web UI. Lastly, in terms of energy consumption

the proposed system provides a higher energy consumption, however the proposed system has been

tested in a real scenario whilst the µPnP presents a simulation with ideal behaviours.
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4
Appdaptivity: An Internet of Things

Device-Decoupled System for Portable

Applications in Changing Contexts

This chapter presents the second contribution of this thesis, Appdaptivity, a device-decoupled system for the

development of portable, personalised and adapted to changing contexts IoT applications. This contribution

was developed during a research stay in the IDLab research group of the University of Ghent, Belgium. With

Appdaptivity, application developers just need to focus on the application logic with personalised behaviours,

rather than the low-level details of the IoT, which are abstracted the by system. Moreover, these applications

can be intuitively created and are portable and adapted to changing contexts. The chapter begins with the

problem statement and research goals in Section 4.1. Appdaptivity, its requirements (4.2.1), the approach and

design (4.2.2), its ways of deployment (4.2.3), and the components involved are presented in Section 4.2. The

evaluation and the validation of Appdaptivity in a smart city use case, and the experiences of Appdaptivity in

HomeLab, a smart home at Ghent University, are given in Section 4.4. Lastly, the chapter concludes with a

discussion about the differences between Appdaptivity and some technologies used: CoAP and the CoAP++

framework.
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4.1 Problem Statement and Research Goals.

The IoT is continuously expanding in an unprecedented way, changing the way we interact with each other

and with the environment. Many companies have adopted this epoch-defining revolution to improve their

business processes and manufacturing chains with the capabilities offered by the IoT. This revolution has

also reached many other environments such as housing and buildings, healthcare, cities and farming, to

name but a few [2, 127, 128]. However, most have resulted in vertical silo applications with established and

predefined physical IoT devices. This makes the inclusion of new components at run-time difficult and goes

against one of the IoT philosophies of having ready-to-use devices with minimal configuration. Although

some systems provide discovery and joining mechanisms, forming ready-to-use devices, applications are still

dependent on the physical devices and reconfiguration is usually required upon the inclusion or disruption

of devices. Application logic should be abstracted from the underlying physical infrastructure adapted to

changing contexts, automatically adapting the application logic to the underlying infrastructure changes.

Moreover, IoT devices are becoming more personalised. The advances in the IoT have contributed to

the release of a wide range of devices for multiple areas. These devices apart from being shared between

the community (e.g., a city CO2 sensor), also belong to people (e.g., a door locker). The development of

IoT applications should take this into account as part of their design, but without deviating from their main

goal: the application logic. Otherwise, the development for highly personalised applications would represent

a high effort.

In large IoT deployments, it may be a challenge to define the application logic. If the IoT deployment

comprises multiple infrastructures, the application logic is normally installed and configured in each one

of those scenarios, again making the expansion of the IoT difficult. If instead of having to configure each

environment, these environments could be dynamically configured and be part of the IoT applications, the

IoT applications would not have to address the challenges of having multiple infrastructures. This would

enable the portability of applications for heterogeneous environments.

The application development itself can also represent an obstacle for the development of IoT applications.

The IoT has been taken up by multiple kinds of users, both with and without expertise. This means that the

spread of the IoT would be limited if the application development required the use of complex abstractions.

To reach a wide variety of end users, these applications should be intuitively created, i.e., the development

should be easy to do and not represent an obstacle for end users.

Finally, as it is known that IoT devices are subject to a set of limitations. The work should focus on

devices with low capabilities, like Class 1 devices (≈10 KB RAM and≈100 KB ROM) that can be consider-

ably reduced with networking stack libraries and the application logic. Therefore, the solution should affect

these resource-constrained devices as little as possible, otherwise it cannot be applied.

Our research aims to answer the following question based on the problems identified in the development

of IoT applications:

• How can we intuitively define portable, adaptable, personalised and device-decoupled IoT applica-

tions?
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4.2 Appdaptivity System

4.2.1 Requirements

Requirements establish the guidelines for the solution design and should be kept for the solution’s life cy-

cle. Based on the previous research questions and problem statement, the following requirements have been

identified:

• Application development completely agnostic from physical devices. Application developers should

focus on the application logic instead of considering the final devices that will be part of the system.

Final device inclusion and subscription should adapt the logic of the targeted applications.

• Intuitive application development. The IoT is penetrating the consumer market with a large variety of

solutions for multiple areas. A minimal device configuration and an intuitive application development

are both key to spreading the solution.

• Portable application development. End users can be part of extremely dissimilar environments such

as an entire building, a single smart-home and an embedded device. The solution should be able to be

dynamically part of these environments with minimal configuration.

• Personalised applications. In some IoT deployments, users have rights to certain devices and cannot

interact with any other (e.g., restricted areas). The system should be able to restrict the access to the

underlying infrastructure when it is required.

• Adoption of current standards. The IoT requires the use of open standards, otherwise the solution will

be taken into a vertical silo, increasing the IoT heterogeneity.

• Embedded solution to reach resource-constrained devices. IoT devices have serious limitations in term

of processing, storage and power. The proposed solution should take into account these limitations and

not affect their performance.

4.2.2 Approach and Design

As targeted in the aforementioned requirements, the application development should focus on the application

logic instead of designing applications for specific devices. Appdaptivity enables the development of IoT ap-

plications independently of the physical infrastructure. Through a discovery process, the underlying physical

infrastructure is part of the system and the application logic when it is available. Discovery can also be done

in multiples scenarios thanks to the involvement of end users. In this case, discovery is dynamically done as

a background process and the underlying physical infrastructure can be discovered in multiple contexts. Ap-

plication logic only has to be done once and this discovery design enables the portability of these applications

to multiple heterogeneous environments. Application portability is one of the key features of Appdaptivity.

An abstraction has been adopted to categorise the underlying physical infrastructure and the context

changes for end users: the location. The location refers to a logical abstraction where a physical infrastructure
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has been deployed, e.g., a room. Location enables the modelling of the real work as it has been conceived.

All context changes that have happened in locations will be reflected in the application logic defined. This

requires that the physical infrastructure has to support the location on their devices in order to correlate them

with logical locations. Enabling the location on constrained devices can incur a loss of performance. Here,

previous work has been exploited to force/encourage users to configure the location through a virtual resource

[129], which does not impact on the resource-constrained devices’ performance. Personalised applications

are developed, exploiting previous work on managing access in resource-constrained environments [130],

so that only authorised people can access devices. In the discovery process the underlying infrastructure

is discovered which a target user has rights to, and the application logic will be fed with these updates. If

a certain logic depends on a situation (e.g., temperature values), the application logic will not be activated

until all the corresponding components have been received. Therefore, the application development can be

globally done for all the personalised applications, since the application logic will be activated depending on

the rights of each end user.

Appdaptivity has adopted a data flow programming model [39] to intuitively define user applications.

In data flow programming, users define applications through a directed graph of nodes, modelling a flow

of actions from which data should be taken. Nodes have a defined function which does not depend on

other nodes, therefore they form highly portable and reusable components for the creation of applications.

Moreover, Appdaptivity provides a large set of nodes to define user applications that can be created without

having to program any lines of code. This mechanism is so non-technical users find it easier to use the

system, which in turn facilitates the expansion of the proposed solution. Other frameworks provide some of

the capabilities to develop device-decoupled, adapted changing contexts and personalised application. To the

best of our knowledge this approach is the first to provide a framework for intuitively creating IoT applications

that can be portable, personalised and adapted to changing contexts.

Appdaptivity comprises the Portability Core (PoCo), which is the component responsible for enabling

the data flow programming in an accessible and transparent Web UI. The PoCo enables location-based appli-

cation development where users can define their applications. The resulting applications can be dynamically

portable to other environments. An adaption for diverse deployment-scenarios has been taken into account

and the PoCo offers a variety of deployments for different use cases. The application logic comprises differ-

ent behaviours in data flow programming, whereas user applications are a set of clients that receive and send

data to the PoCo with the information originating from the system and the required information to activate

the flows. Behaviours comprise the application logic of the resulting applications and will always be up-to-

date with the underlying contexts. User applications are typically smartphone applications which display an

up-to-date representation of the behaviours of the underlying physical infrastructure provided by the PoCo to

end users.

IoT devices are another key part of the architecture, and the most restricted one, since it contains resource-

constrained devices. For this reason, Appdaptivity has adopted CoAP as the application protocol to interact

with final devices. In the scope of this contribution, there will be sensors to be monitored and actuators

to be interacted with, therefore a lightweight standard like CoAP with accessible resources represents a

56



4.2. APPDAPTIVITY SYSTEM

suitable protocol. All the wireless sensor networks with CoAP support that can be part of Appdaptivity will

henceforth be referred to as the CoAP network. The CoAP network provides the sensors and actuators and

device information which are accessible using CoAP to create IoT applications. The PoCo is responsible

for interacting with the CoAP networks and enables the definition of data flows with the obtained CoAP

resources that will form different behaviours in the user applications.
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Figure 4.1: Appdaptivity architecture.

An overview of the Appdaptivity architecture is presented in Figure 4.1. In this case, the PoCo adopts

a cloud deployment, however it can be deployed in other scenarios as we will see later. In real worldwide

IoT deployments, CoAP networks along with their sensors and actuators are deployed in different physical

locations, for example different cities, such as Malaga and Ghent. Appdaptivity handles the process of

portability of the IoT applications to these environments while at the same time it allows the definition of

custom behaviours with a unified and intuitive interface. Discovery is responsible for discovering the CoAP

networks in different environments where the portability will be carried out. The behaviours comprise the

functionalities that can be defined in the PoCo through its data flow framework and define the actions to be

taken with the discovered CoAP networks. Behaviours are executed in the PoCo, however some tasks such

as a device interaction can be carried out directly by user applications once the corresponding behaviour has

been received. Examples of these behaviours are: the creation of charts with the average value of temperature

sensors, alert monitoring based on the sensor data and CoAP groups, for interacting with them with just a

unique CoAP request. In the last example, end users could directly interact with the group using CoAP.

The CoAP interface in PoCo manages all the CoAP interactions in the system such as a group creation and

an observation.
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4.2.3 System Deployments

Depending on the use case and the scope of the application, IoT applications can vary from local use up to

worldwide deployments. The portability and access of the resulting applications are different in each use

case. The system architecture has been designed to adapt itself to a variety of use cases and enables three

ways of deployment (Figure 4.2):

• cloud (3): a cloud deployment of the PoCo enables the portability of applications and the access from

anywhere with an Internet connection, e.g., access control in an international company. In this case,

the discovery of the local CoAP networks by necessity has to be performed by the user applications

since the PoCo could be deployed in a different network than CoAP devices and the IP multicast

for discovering the CoAP networks has to be performed in the local network. Resource Directory

(RD) [131] and CoAP devices will have to be located in the local network and they will have to

be IP-accessible in order to enable their discovery and interaction respectively. The RD is an entity

launched by the CoRE group which holds information on other servers such as list of resources and

their characteristics. RDs are mainly used to indirectly discover nodes when it is not possible or

practical due to the given network’s specific characteristics, in this case RDs provide the resources and

end points contained in the CoAP network to the PoCo.

• local (2): in this case, user applications and the PoCo have been deployed in different devices. The

PoCo will run on a dedicated server, but in the same network as the user applications, e.g., controlling

the sensors and actuators of a building on behalf of the employers. The application portability can

done with the available CoAP networks in the local network. Discovering of RDs can be done by both

user applications and the PoCo.

• embedded (1): user applications and the PoCo have been deployed in the same device. This enables

a portable and embedded solution that can be applied to controlled areas, e.g., smart home controlled

by the owners. CoAP networks are discovered by the PoCo. In this case, the portability is done in situ

with the discovered CoAP networks.

4.2.4 CoAP Network

The CoAP network comprises a set of CoAP servers deployed in known locations that contains a set of

resources with the actuators and sensors available for IoT applications. A CoAP server is an IoT device

running a CoAP server that collects data and performs actuation in its resources. These CoAP servers have

to be previously registered with the RD which enables the observation of the CoAP servers resources and

end points by the PoCo. Apart from the sensors and actuators, CoAP servers should define the physical

location to enable the user interaction in different locations. CoAP servers could require an extra resource

for the location, and this can affect the performance of constrained devices. However, the location can be

established through sensor virtualisation [129, 132], through which resources are defined in the gateways and

it does not affect the performance of the resource constrained CoAP servers.
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Figure 4.2: Possible deployment configurations in Appdaptivity.

Once a CoAP server has been started, it can discover the RDs in the network. In the case of an RD

discovery, CoAP servers can register its resources in the RD through a POST request as defined in the stan-

dard. In the PoCo, an observation to the resources and end points of each discovered CoAP network is sent

to maintain an up-to-date status of the CoAP networks. Therefore, the system is self-adaptive to network

changes and user applications always contain up-to-date behaviours based on the current CoAP networks.

4.2.5 Portability Core (PoCo)

IoT applications are designed using the visual data flow framework provided by PoCo. These applications

define the behaviours that will be rendered in the user applications without any configuration by end users,

allowing the portability of them to multiple environments. The application developers only need to focus

on high-level functionalities, rather than the implementation of low-level details of the underlying physical

infrastructure. The service continuity can be a key challenge in applications with large IoT deployments

since they can involve multiple heterogeneous networks. In that sense, the PoCo provides the mechanisms to

maintain the service continuity in IoT applications independently the underlying physical networks used by

the applications. Application can be portable to multiple environments and networks, thus applications are

independent of the underlying physical devices and can adapt to the changing context without recompiling,

keeping the service continuity of IoT applications in multiple scenarios.

The discovery process used in Appdaptivity follows the OMA LightweightM2M (OMA LWM2M) stan-
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dard [133], which enables the association of sensors and actuators with an open specification, i.e., resources

are identified and organised based on the rules established in the standard. The use of standards allows a

unified identification of resources. Nevertheless, apart from the OMA LWM2M standard, other standards

like the IPSO Application Framework can also be added and used in Appdaptivity. In case of the adoption of

another standard, the specification of the location resource should be configured in Appdaptivity according to

the new standard. Moreover, user applications will have to integrate the standard in their UIs in order to know

the type of behaviours received and display them accordingly. Moreover, CoAP discovery can be enhanced

for supporting semantic matchmaking via inference services and logic languages like the SWoT framework

[134].

The work flows that can be configured in Appdaptivity are not only restricted to location-based flows,

they can also dispatch the resources belonging to the discovered RDs. Appdaptivity enables two main flows:

the location and the building flows. Both flows take as input the resources discovered and the locations of

each end points. The location flow is responsible for enabling the behaviours defined in one physical location

no matter what RDs have been found; whilst the building flow enables the behaviours defined with all the

locations in the RD received, e.g., an entire building. End users can establish their location, or just get

their available behaviours in the building based on the last RD received. In order to reduce the number of

communications with the RDs and CoAP servers, flows are only activated once end users have established

their locations or start the building flow. On the other hand, personalised behaviours are crucial when the

number of sensors and actuators increases. This is more important in scenarios where sensors and actuators

are restricted, e.g., access control in secured areas.

The Algorithm 1 shows an overall description of the update functionality in Appdaptivity. Once the IoT

infrastructure is discovered, or there is any change in the environment, each active location in the location

and building flow is checked to see if its corresponding IoT infrastructure has been changed. In the case

that any flow has been changed, its behaviours affected will be updated and user applications will receive an

up-to-date representation of them. When location or building flow are activated by user applications, they

take the current status of the IoT infrastructure with its corresponding CoAP resources and will be up-to-date

through this algorithm during its lifecycle.

4.2.5.1 Personalised Behaviours

In personalised behaviours, the communication between the PoCo and the CoAP networks uses the standard

DTLS with client certificate authentication, and the communication between user applications and the PoCo

uses SSL/TLS. Therefore, the communication channel on both sides can be encrypted, enabling user authen-

tication, and location access control. Security and privacy problems in the IoT, such as applying security

patches, physical attacks on the sensor, data leakage, side channel attacks and intrusive sensing are beyond

the scope of this contribution. To establish a relationship between CoAP networks and physical spaces, the

system makes use of the user location to find the nearby infrastructure for each user. The location can be

established by end users through the Near Field Communication (NFC) technology. NFC is a short-range

identification technology which provides a secure and easy communication and is widely available in mul-
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Algorithm 1 Overview of the update algorithm in Appdaptivity
Version April 20, 2018 submitted to Sensors 13 of 30

Data: Local or user applications discovery of the IoT Infrastructure
Result: Notifications to user applications
while true do

IoTInfrastructure_← localDiscovery() ‖ discoveryByUserApp()
if changed(IoTIn f rastructure_) then

IoTInfrastructure← IoTInfrastructure_
if activeLocationFlows then

checkLocations(activeLocations, IoTInfrastructure)
end
if activeBuildingFlows then

for building← activeBuildingFlows do
activeLocations←getLocations(building, IoTIn f rastructure)
checkLocations(activeLocations, IoTInfrastructure)
if newLocations(building, IoTIn f rastructure) then

for location← newLocations do
resourcesLocation← getResources(location, IoTIn f rastructure)
behaviours← activateBehaviours(resourcesLocation)
notifyBehavioursUserApps(location, behaviours)

end
end

end
end

end
end
Procedure checkLocations(locations, IoTIn f rastructure)

for location← activeLocations do
resourcesLocation← getResources(location, IoTInfrastructure)
if changed(location, resourcesLocation) then

behaviours← updateBehaviours(resourcesLocation)
notifyUpdateUserApps(location, behaviours)

end
end

Algorithm 1: Overview of the update algorithm in Appdaptivity

infrastructure for each user. The location can be established by end users through the Near Field494

Communication (NFC) technology. NFC is a short-range identification technology which provides495

a secure and easy communication and is widely available in multiple devices such as smartphones,496

thereby it can be used in multiples devices without external hardware requirements. Once a location497
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with client certificate authentication for the CoAP network in the case of a secure configuration. These499

resources are converted into behaviours for the user applications in the Appdaptivity flows. In a500

non-secure configuration, the PoCo just returns the available resources of the established location.501

Tracking user presence in real-time is a hard problem and is also beyond the scope of this paper.502

The secure configuration is done through access control lists (ACL) by the physical infrastructure,503

in this case by the CoAP++ framework; refer to this paper [34] for more information. Encrypted and504

read-only NFC tags only tell Appdaptivity that a certain user is in a certain location, which can also505

be done with other identification technologies. Nevertheless, NFC is an identification technology506

present in many today smartphones, which provides capabilities for security identification. In the507

case that a user has rights over the resources of this location; the user will receive the associated508

behaviours to these resources. Therefore, once the location has been established and the user has rights509

to that location, the authorisation is given indefinitely, i.e., if the user does not establish a new location510

he/she can move to other physical locations and will have the previously established logic location.511

Moreover, in the case that users want access to all the locations where he/she has rights in a CoAP512

tiple devices such as smartphones, thereby it can be used in multiples devices without external hardware

requirements. Once a location has been established, the PoCo gets the resources that the user has rights

to through a DTLS connection, with client certificate authentication for the CoAP network in the case of a

secure configuration. These resources are converted into behaviours for the user applications in the Appdap-

tivity flows. In a non-secure configuration, the PoCo just returns the available resources of the established

location. Tracking user presence in real-time is a hard problem and is also beyond the scope of this work.

The secure configuration is done through access control lists (ACL) by the physical infrastructure, in this

case by the CoAP++ framework; refer to this paper [130] for more information. Encrypted and read-only

NFC tags only tell Appdaptivity that a certain user is in a certain location, which can also be done with

other identification technologies. Nevertheless, NFC is an identification technology present in many today

smartphones, which provides capabilities for security identification. In the case that a user has rights over the
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resources of this location; the user will receive the associated behaviours to these resources. Therefore, once

the location has been established and the user has rights to that location, the authorisation is given indefinitely,

i.e., if the user does not establish a new location he/she can move to other physical locations and will have the

previously established logic location. Moreover, in the case that users want access to all the locations where

he/she has rights in a CoAP network, the building flow give users the opportunity to interact with all their

available locations, thus Appdaptivity is not location-strict.

Therefore, in the case that a smartphone application is targeted such as a user application, end users

can establish their locations through their smartphones and the NFC tags located in each physical space.

When the location has been established, user applications automatically obtain the resources belonging to the

location in the terms defined in the behaviours in PoCo, e.g., list of values in real-time, charts, and so on. As

discussed, this also requires a configured location resource in each CoAP server to know each server location,

but it can be done without a performance lost with EC-IoT [129].

An example of the communication process to interact with a light actuator in a physical location is pre-

sented in Figure 4.3, specifically the system has been deployed in local mode with access control enabled.

The communication starts with a connection between a user application and the PoCo (1). Once the connec-

tion has been established, the user application starts to discover RDs in the network (2). When a new RD has

been discovered, it is sent to the PoCo (3) and an observation to the resources and end points is established

(4). From this moment on, end users can establish their location with the NFC tags of each physical Person-

alised Behavioural space. In the interaction process, the location ‘Room 1’ has been established (5) and sent

to the PoCo (6). From this moment, the PoCo starts the location flow in the established location (7) and the

user application starts to receive the behaviours defined such as charts, groups and lists of resources allowed

(8). Lastly, the end user decides to interact with a light actuator received (9) and a CoAP PUT request is sent

directly to the CoAP server with the value selected by the user on the smartphone application.

4.2.5.2 PoCo Components

The available nodes in the PoCo for data flow programming with which users can define application be-

haviours are known as PoCo components. PoCo components have a set of inputs and outputs and a given

behaviour, e.g., a URI filter component which filters the list of resources received based on the URI infor-

mation provided in the component. There are some components that need a certain input, as for example, a

group component waits for a set of resources to create a new group of these resources. Others can receive

inputs from multiple components, such as the component in charge of sending all generated messages to the

user applications. Components can be connected with each other in the correct way, forming work flows.

Depending on their connections and the components involved, a large number of flows can be generated only

with a few components. Therefore, with the same components or a subset of them and different component’

connections, multiple behaviours can be obtained. To avoid functionality interruptions, there are necessary

components and connections that are critical to the system (e.g., the discovering process) but there are also

many optional components, such as filters which can be included in flows allowing different behaviours.

For the creation of a new component, an HTML file, with its style, and a JavaScript file, with its func-
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Figure 4.3: System interaction to actuate with a light actuator in a physical location.

tionality (e.g., filtering CoAP resources), only have to be defined; and then incorporating them to the system

configuration. From that moment on, the component will be part of the palette enabling its inclusion in the

development of IoT applications. Next, the developed components to define the PoCo behaviours are given:

• Filters: A set of components that filter the list of resources received based on the information es-

tablished in the components or received in the messages. The filter (resource type, location or URI)

information can be configured in each component. Filtering follows open standards for device in-

teraction such as the OMA LWM2M standard [133], thereby it enables a common language in the

integration with external systems and user applications.

• Groups: Group is a new entity which aims to address several CoAP resources as a group instead of

addressing each resource individually. Groups offer a set of operations for the values of their resources

and the possibility to observe them. End users can interact with a set of resources through a group-

specific CoAP resource created by this component.

• Group operations: As mentioned above, groups enable a set of operations that can be applied on them.

Among these operations are included the minimum, maximum, average and real-time list of resources

values. This component makes an observation to the group received with the operation selected and

returns asynchronously the information received.

• Observations: Resources can also be observed individually without a group association. This compo-

nent enables the observation in the resources received and return the data obtained asynchronously.

• Alerts: Sometimes end users can be interested in receiving warnings when something changes in

the environment, e.g., a door has been opened. This component checks the data received from the
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observations and the group operations components and sends an alert message to user applications

when the data matches the filters established.

• Actuation trigger: The reaction to conditions established in the environment is addressed by this com-

ponent. Once an alert has been received based on the established conditions, this component triggers

the target resources with the value established in the component to be actuated by the Send request

component.

• Charts: This component adds extra information to the data received in order to inform user applications

that data should be rendered such as a chart. Otherwise, data is shown without a rendered component.

• Function: Although the goal of Appdaptivity is not to program source code except visually, this com-

ponent enables adding source code for specific tasks. For instance, a data mining algorithm can be

added for data analysis.

• CoAP requests: Once resources or groups have been received in the user applications, they can be re-

quested directly without a PoCo interaction. However, some user applications cannot provide a CoAP

support to interact directly with resources or groups. In this case they can send a message to the

PoCo to make the requests on behalf of the user application. This component makes a request for the

resources or groups received and returns back the operation result.

• Access control: Lastly, this component provides access control to create personalised behaviours.

Although this component can be mandatory in most uses cases, sometimes the access control is not

necessary, e.g., public sensors or collaborative actuators. If this component is deployed, the access

control is enabled in the system, otherwise it is disabled.

Monitoring applications are not the only application logic that can be created in Appdaptivity. Actuation

trigger and Alerts components enable the definition of automatic actuation and configurable notifications.

For instance, a user can define the actuation with some devices (e.g., windows) when there is change in the

environment (e.g, high temperature). Users can also receive notifications when the underlying infrastructure

matches a configurable criteria. This application logic allows automatic behaviours and actuation without

any user interaction. Thereby, the main goals of the IoT, sense and actuate over the physical world [2] have

been included. Furthermore, in the cases where a specific logic is necessary, the Function component enables

the inclusion of specific source code like a data mining algorithm in the JavaScript programming language.

As can the rest of the components in Appdaptivity, the Function component can be added in run-time and the

application logic will be adapted with it.

When behaviours become complex, programming can become a tedious task due to the number of PoCo

components and necessary data flows to define them. For that reason, behaviours can be reused creating a

subflow component. Subflow can be defined by selecting a group of PoCo components and selecting the

option “create a subflow”. Once a subflow has been defined, a new PoCo component with the selected

behaviours will be available in the system. Therefore, subflow components enable the programming reuse in

addition to reducing the complexity of large flows and facilitating programming for non-expert users.
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Although the possible PoCo configurations are large, the configuration presented in Figure 4.4 covers

most of the behaviours presented above. The top flow is responsible for the discovery of the IoT infrastructure,

thanks to the observation of the end points (RD EP component) and resources (RD RES component). The

next components allow it to get the end point locations and enable the location and building flows. Note that

this flow can be grouped into a subflow to simplify the development. The middle block contains, from top

to bottom, temperature, humidity and light filters respectively. Lastly, three different behaviours have been

created in the bottom flow: an average chart of temperature, an alert of humidity, and a group of lights. As

can be seen, Appdaptivity provides an intuitive way to program IoT applications with just a few components.

Locations

RDs discovered

Charts

Top flow

Middle flow

Bottom flow

Groups

Alerts

Observations

Figure 4.4: PoCo configuration with building and location flows, access control, and different

behaviours.

4.2.6 User Applications

The Appdaptivity architecture has been designed to be abstracted from user applications, in such a way

that any application can be integrated with Appdaptivity using its communication means and understanding

its data formats. Hence, in addition to user applications created from scratch such as smartphone, web or

desktop, Appdaptivity can also be integrated into other platforms or applications through its API. As dis-

cussed, behaviours are defined in the PoCo and user applications display the information and data received to

end users in the way that they have been configured. Taking into account the system goals, user applications

should provide the mechanisms to access and interact with the underlying physical devices without the efforts

of programming and configuring. This goal has been the key philosophy in the design of user applications,

therefore configuration and behaviours are defined in the PoCo, whereas user applications are only responsi-
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ble for displaying the behaviours defined, discovering RDs when the system requires it and establishing the

users’ locations, which do not require any configuration. Consider, for example, a smartphone application

launched as a user application in Appdaptivity, the only configuration required is installing the application

if the application logic has previously been defined. Suppose a smart building, the administrator could cre-

ate the application logic associated with the building infrastructure. Then, workers only have to install the

application to start using the smart building functionalities.

Once the locations or the building flow have been established and started respectively, user applications

start receiving the behaviours defined in the PoCo configuration, their corresponding data and the changes

during the execution of the application. Figure 4.5 shows screenshots of a user application with an established

location. Concretely, from top to bottom, Figure 4.5a displays an average temperature chart, a humidity

average real-time value, and a group of light actuators for the interaction with. Figure 4.5b displays a pop-up

window to manage a group of light actuators. The left button of the pop-up will turn on all lights belonging to

the selected group once it has been pressed, whereas the center one will turn off all lights. User applications

always contain up-to-date behaviours based on the state of the CoAP networks, and so in the case of a new

or shutdown CoAP server deployment, user applications will be updated by the PoCo.

a b

Figure 4.5: User application screenshots with some defined behaviours defined in the PoCo. (a) A

chart, real-time values and a group of lights; (b) Pop-up window for interact with a light group.
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The RD discovering can also be done by user applications, especially in cloud deployments where the

PoCo cannot discover RDs by itself. It is important then that the discovery service takes into account the

network changes, as for example, the connection to another Wi-Fi network, since RDs could be deployed in

such networks. Lastly, although optionally, user applications can interact directly with the resources received

with a CoAP client, otherwise they can use the request service available in the PoCo.

4.3 Implementation

4.3.1 PoCo and Interconnection

PoCo has been implemented as an extension of Node-RED [41], an open-source visual tool for data flow

programming with a Web interface. Specifically, a set of nodes (PoCo components, communication and

discovery) has been developed to be part of the Node-RED palette to address the requirements offered by the

system. Node-RED comprises many components to define IoT applications thanks to the CoAP, WebSockets,

GPIOs and many other available nodes. However, the components needed to discover CoAP networks;

manage and observe CoAP groups and resources; provide secure CoAP communications; enable the location

and building flows; and the logic for having an up-to-date representation of the behaviours defined in a

transparent way for application developers, were not available in Node-RED. This is precisely the added

value of Appdaptivity with regard to Node-RED, which enables the definition of portable, personalised,

device-decoupled and adapted to changing contexts IoT applications. In addition, many other nodes (PoCo

components) such as filters and visualisation components have been developed to facilitate the development

of IoT applications. Each developed node has a specific function, such as the creation of a group of resources.

The connection of these nodes comprises the behaviours that can be defined in Appdaptivity, as shown in

Figure 4.4.

The communication between user applications and the PoCo has to be able to provide asynchronous

communications since both components can send information asynchronously. Information can be dispatched

from the PoCo to user applications continuously in groups or resources observations and sporadically when

the CoAP network changes. User applications can also send asynchronous data with the RD discovered

process and the location establishment. As a result, the communication channel has also to be bidirectional.

Historically, applications that need bidirectional communication require different TCP connections, one for

sending information and a new one for the reception. This entails the maintenance of multiple connections,

mapping between each other and the abuse of HTTP polling for updates. WebSockets [135] was conceived

as an alternative to HTTP polling providing two-way communication in a single TCP connection. In fact,

WebSockets connections are done in the same ports as HTTP, nevertheless WebSockets and HTTP can only

understand themselves in the handshake. Header and latency are usually smaller in WebSockets, thereby it is

considered as a real-time communication channel. Moreover, WebSockets has also been integrated by default

in most web browsers, the Web, and a large set of clients, so it opens the door to the integration of a large

variety of clients and applications. Node-RED nodes have been developed in the PoCo to have a Websockets

channel. The communication between user applications and the PoCo is encrypted leveraging the TLS/SSL
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support in WebSockets. Therefore, the main interconnections in the system, the interconnection between the

PoCo and user applications, and the PoCo and CoAP networks, are done through WebSockets and CoAP

respectively.

The data format is another key challenge in the development of applications, since bizarre and random

data formats carry out into large efforts of development, code difficult to maintain and a door opened to

multiple issues. We have therefore chosen JSON—an open-standard and de facto format in a large amount of

applications and development frameworks—as message format. A semantic has been defined for the message

definition. All messages exchanged from PoCo to user applications contain an operation type and most of

them, a location, which indicates the operation has to be done in user applications and the location where the

event has taken place, respectively. Optional values can also be included, for example, a message status, the

resource type of a resource, the value of a request and information for rendering components. An example of

a message exchanged between the PoCo and user applications is presented in Figure 4.6, specifically an alert

message of the change of a light actuator. The message is an alert operation in the location Room 1, indicated

in the fields op and location respectively. Other fields indicate the message status and the resource type and

URI of the component. Messages are sent once new behaviours have been created for user applications, with

the observed data from resources and operation results.

Figure 4.6: Alert message sent from the PoCo to a user application.

4.3.2 User Applications

Appdaptivity does not focus on a certain user application, but it paves the way to the integration of them

into the system. To integrate external end users with Appdaptivity, an application should be defined with a

WebSockets communication, which should understand the API defined. Moreover, the application should

provide the capabilities to visualise the behaviours defined (e.g., real-time charts) and enable end users to

interact with the system (e.g., group of actuators). Lastly, NFC reading capabilities will be required to

change the location. To validate Appdaptivity we have created a smartphone user application. Smartphones

have revolutionised the way in which we interact with each other and we use applications. Moreover, they are

commonly used nowadays, and through them the release of a smartphone can be quickly extended amongst

end users. To avoid the programming efforts in programming smartphone applications for different OSs,

we chose a multi-platform framework for developing smartphone applications called Ionic [136]. The Ionic

framework enables the application programming using web technologies such as HTML and JavaScript. It
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is based on AngularJS, a well-known framework for creating web applications. Once applications have been

implemented in Ionic, they can be compiled for the target mobile OS such as Android and IOS. This reduces

the development effort since only one source code is maintained.

A developed smartphone application enables end users to switch locations using the NFC technology and

render the behaviours as defined in the PoCo (e.g., charts, group of actuators and real-time values). Apart

from the location flow, end users can also activate the building flow obtaining all the behaviours defined in the

building where they are. Furthermore, the smartphone application provides support for network discovery

required in Appdaptivity cloud deployments. Figure 4.5 shows some screenshots of the resulting applica-

tion running some behaviours defined in the PoCo such as charts and group of lights once a location has

been established. Although the application is intended to be installed in multiple mobile OSs, currently the

application only offers support for the tested OS: Android.

In certain situations, user applications have to perform a network discovery, like, for example, the RD

discovery in a cloud deployment. The RD can be discovered through IPv6 multicast using its defined inter-

face. However, during the development of a smartphone app as a user application in Appdaptivity, we realised

that IPv6 multicast was not working properly in some devices, especially in smartphones. In this case, we

extended the Appdaptivity with multicast Domain Name System (mDNS), a zero-configuration service —it

does not require manual configuration nor special servers—which shares similarities with DNS and resolves

hostnames to IP addresses. mDNS is supported by Android and IOS OSs, and the open-source implementa-

tion known as avahi, which has become the de facto standard implementation in Linux. In fact, the mDNS

support in Appdaptivity uses the avahi implementation to publish a service on an established IP where clients

can discover the RD in those cases where IPv6 multicast does not work properly. Smartphone-based user

applications can make use of this service in order to reduce the issues using IPv6 multicast as in our case.

4.3.3 CoAP Network

CoAP networks have been deployed using the CoAP++ framework [137], a CoAP framework which enables

the definition of CoAP applications with extended capabilities such as support for group communication,

ACLs, observe operation and conditional observe developed by the IDLab research group. The CoAP++

framework allows a run-time definition of ACLs that is used to manage which user can access which re-

sources. This allows a custom control, as for example, only enable the data access of the resource (GET

method) or the interaction with (PUT method). The ACL can also support cipher suites for DTLS secured

communication, including the certificate and public key and virtual resources in the CoAP server. An exam-

ple of resource virtualisation is the location resource which typically is a virtualised resource that is hosted in

the gateway, and not on the device itself. The communication process usually involves high-requirements in

terms of communication, processing and memory footprint, which are not available in resource-constrained

equipment, such as class 1 devices. The CoAP++ framework can be deployed in more powerful devices

such as Raspberry Pi or BeagleBone and allows the use of pre-shared keys in order to avoid using public

key operations in DTLS communications and reducing the requirements for performance-constrained envi-

ronments [138].
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The group communication was presented as an RFC in [139], nevertheless the CoAP group and the

observe specification required to observe groups, have not been defined to work together [140]. This means

that if a client needs an up-to-date representation of the resources belonging to a group, it has to continuously

pull the group or observe the resources individually. In both cases, the client loses the benefits of the observe

option and the benefits of the group, respectively. In the CoAP++ framework, the observe option and groups

have been integrated and enable the possibility to apply different operations on groups of resources (e.g.,

average, minimum, maximum and list of values). Although group operations can be optional in some use

cases, like, for example, actuating environments, in other environments such as continuous monitoring of

set of resources, the group communication in the CoAP++ framework provides an optimal solution. Any

standard-based CoAP server and RD implementation could be used in Appdaptivity, however some optional

functionalities not available in other implementations such as the group management and access control

available in the CoAP++ framework could be required in some behaviours.

4.4 Results and Discussion

In this Section an evaluation of Appdaptivity is presented. To evaluate the performance of Appdaptivity we

have chosen different test scenarios. On the one hand, CoAP servers in the CoAP++ framework together with

a lightweight user application without a graphical user interface have been created to evaluate Appdaptivity

with a large number of clients and CoAP devices. This scenario enables the inclusion of multiple user

applications and devices to the CoAP networks without the need to use multiple hardware devices, thereby

facilitating the realisation of performance tests. On the other hand, a real deployment using a smartphone user

application and a CoAP network with physical devices including sensors and actuators has been deployed as

use case of an emerging IoT area. Moreover, one use of Appdaptivity is illustrated in a smart home at the

Ghent University. The performance tests have been done in a 4GB Xubuntu OS virtual machine running

over a 8 GB Windows 7. Note that this virtualisation could affect the evaluation done, especially in the real

deployment. However, a virtualised environment was chosen for both the development and the evaluation

processes in Appdaptivity. Due to its capabilities of replication, snapshot and isolation from the host OS.

4.4.1 Underlying IoT Infrastructure

In the tests, the total time until the resources and its locations from the CoAP network are obtained has been

measured. This process includes the resources and end point collection from observation of the RD discov-

ered, and the location collection from each end point obtained. Tests have been done with access control

enabled (thereby with secure communication) and disabled in order to evaluate Appdaptivity in the different

environments that it can be deployed in. Each CoAP server used in the CoAP network has 4 associated re-

sources: temperature and humidity simulated sensors, a light simulated actuator and a location resource to

obtain its physical location. Figure 4.7 shows average response times obtained from the performance tests

done. As can be seen, the discovery time with access control enabled varies a little, whereas in the secure

communication the discovery time increases more notably with respect to the number of CoAP servers.
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Figure 4.7: Location discovery response time with respect to the CoAP end points discovered.

Secure communications use DTLS which implies higher delays than UDP due to the necessary steps

to secure the channel. However, Appdaptivity can manage these CoAP networks without large delays, and

therefore it can be applied in large IoT deployments. In this test, it was also intended to evaluate the require-

ments of portable application development, thanks to the portability of IoT infrastructure (done thanks to the

discovery) and personalised applications (secure configuration).

Deploying complex behaviours which involve a large number of PoCo components can reduce the scala-

bility of the system. For that reason, the location discovery response time has once again been measured with

7 CoAP servers (4 resources each) and a different number of PoCo components. Figure 4.8 shows the results

obtained with respect to a different number of PoCo components. In the same chart, the location discovery

response time obtained in Figure 4.7, is also included which has fewer less than 20 PoCo components. As

can be seen, the number of deployed PoCo components does not affect, to a great degree, to the scalability of

Appdaptivity.
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Figure 4.8: Location discovery response time with respect to the PoCo components deployed.

4.4.2 User Applications

The number of connected users that Appdaptivity can handle can limit the possibilities of applying Appdap-

tivity in the IoT. In this test, we will evaluate the number of user applications that can interact concurrently

with Appdaptivity. The tests have measured the response time since user applications send an RD discovered

until the information of the behaviours defined (list of resources) is received with multiple user applications

concurrently. Therefore, the location discovery time measured above is also included. The CoAP network

comprises 8 CoAP end points along with their 4 corresponding resources as presented above. In the same line

of the connection with the CoAP network, Appdaptivity also guarantees a secure and private communication

with user applications through the fundamental protocol in the Internet transport security: TLS/SSL. In the

comparison, the scenarios with a secure and non-secure communication channel have been included. Figure

4.9 displays the average response time, and the 95% confidence intervals in the aforementioned scenario. The

variation between a secure and non-secure channel varies slightly until it remains stable with 80 user applica-

tions concurrently. Confidence intervals show a higher difference due to the use of secure communications.

We have taken 80 users as the upper bound as an example of workers of a medium-size building. Therefore,

in this case it is recommendable to activate the secure channel at all times. Appdaptivity can comfortably

handle a large number of user applications. The worst case time may seem a bit high, however it only has
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Figure 4.9: Response time with different numbers of user applications and the behaviour list

of resources.

to be done once and includes the communication response from all the clients, the discovery of the CoAP

network and a CoAP request for each one of the 8 CoAP servers to get their locations.

4.4.3 Smart Cities: Portability of IoT Services in Different Districts

The design of personalised applications represents one the main potentials of Appdaptivity. The data flow

programming approach and the range of behaviours that can be defined with the PoCo components enable

the definition of applications in a large set of areas in the widely expanded IoT field. To demonstrate this

potential, we define a real use case and translate it into Appdaptivity. The goal of this use case is to demon-

strate how IoT applications can be created intuitively and agnosticly from the underlying IoT infrastructure

with Appdaptivity. In addition, the portability of the solution and personalised behaviours using resource-

constrained devices.

Consider a smart city with two districts. Both districts have different IoT services to allow the population

to interact with, however the IoT services and networks can vary over the time. Therefore, to maintain the

service continuity to the population without the need to install multiple applications or write specific and

non-reusable code it is necessary to have a system that can cope with these challenges, and this is where
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Appdaptivity can be applied.

As mentioned above, the districts contain different IoT services. Let us suppose that in district D1, a

light actuator is activated automatically when a presence is detected by a passive infrared sensor (PIR) or

an illuminance sensor. The population could also query the luminosity measurements. On the other hand,

in district D2, end users can control light actuators in a single way or individually, and see the average

temperature in a chart.

As the use case has different locations, the resulting data flow in the translation to Appdaptivity should

differentiate the behaviours for each district. In the D1 district, the luminosity control is managed automat-

ically through an Actuation trigger component which receives the list of lights to interact with and an alert

once a presence has been detected or the illuminance is lower than a given limit (e.g., 30%). This component

sends the list of lights to trigger the send request component which is responsible for making these requests.

The population can query the illuminance sensors directly in their applications through a direct connection of

the illuminance sensors to the user applications. In the D2 district, the population obtains a chart of average

temperature. Lastly, the lights can be controlled directly, sending the light resources to the user applications,

and controlled in a group-way with the creation of a group. Figure 4.10 displays the resulting Appdaptiv-

ity flow from the smart city use case presented. The mandatory components to enable the discovery of the

underlying IoT and exchange information with the user applications have been grouped into two subflow

components (Discovery and Output), so that the rest of components are PoCo components to define the use

case behaviours. The development with just 20 components, shows the potential of Appdaptivity for the

intuitive development of an IoT use case.

Figure 4.10: Smart-city use case translated into a Appdaptivity flow.

6LoWPAN has been chosen as the communication medium to deploy the smart city use case. 6LoW-

PAN enables the transmission of IPv6 packets over constrained networks, thereby providing an IPv6 address

for each device that will be IP-accessible through the Internet. The CoAP network comprises four Zolertia

RE-Mote (Zolertia RE-Mote platform: https://github.com/Zolertia/Resources/wiki/RE-

Mote) devices, two for each district. The Zolertia RE-Mote is a hardware development platform which
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provides support for 2.4-GHz and 863–950-MHz IEEE 802.15.4 and ZigBee compliant radios with low con-

sumption. Zolertia RE-Mote also provides support for the well-known open-source OS for embedded devices,

Contiki, and intrinsically for its 6LoWPAN implementation. Erbium, the Contiki REST engine and the CoAP

implementation have been used to deploy the CoAP servers into Zolertia RE-Motes. As stated, Appdaptivity

is decoupled from devices, thus Zolertia RE-Mote and Contiki have been used to validate the system but

other devices and CoAP frameworks like Intel Edison and Californium can also be used with Appdaptivity.

The fragmentation and reassembly mechanisms needed in 6LoWPAN to enable the communication with IPv6

networks are done by edge routers using RPL. We have chosen the Zolertia Orion router (Zolertia Orion Ether-

net: https://github.com/Zolertia/Resources/wiki/Orion), an IPv4/IPv6 and 6LoWPAN

routing device with Ethernet interface and 2.4 GHz and 863–950 MHz IEEE 802.15.4 radio support. The

CETIC 6LBR (CETIC 6LBR: https://github.com/cetic/6lbr/wiki) border router solution has

been installed into the Orion routers (one per district) to transparently enable users to communicate between

IPv6 and 6LoWPAN networks. CETIC 6LBR also enables a Web UI to manage the router configuration and

see its connected devices. A standard digital PIR sensor, the TSL2561 lux sensor with I2C connection, two

DHT22 temperature and humidity digital sensors, and four standard digital LEDs were used as sensors and

actuators in the use case. The experiments were performed in two of our laboratories (one per District), in the

Research Building Ada Byron, University of Málaga. In each laboratory a NFC tag was place to change the

location. The use case was active for one hour, with default max-age in the observe operation, thus generating

approximately 300 CoAP messages.

The CoAP++ framework has been used to allocate the RD, where the Zolertia RE-Motes register their

resources and end points and Appdaptivity observes it to get the status of the CoAP networks. Appdaptivity

has been deployed in local model along with CoAP++ framework in a 4GB Xubuntu OS virtual machine

running over a 8GB Windows 7. The border routers and the PC are connected to a switch router by Ethernet

and Wi-Fi respectively. Finally, the user application has been installed on an Android smartphone which is

also connected by Wi-Fi to the switch router and can change the district with the NFC tags located in each

one. Figure 4.11 shows an overview of the smart city use case proposed. As mentioned before, each district

has a border router with a 6LoWPAN network. End users can change the location with the NFC tags located

in each district independently of the networks without interrupting the service continuity of Appdaptivity.

Figure 4.12a,b display the RAM and Flash usage in the Zolertia RE-Motes and Orion routers respectively.

This information has been obtained from the Contiki OS once the sketches have been uploaded to the devices.

As can be seen, the Zolertia Re-Motes have 90% free space of Flash and 67% of RAM, allowing the creation

of a large variety of new resources and reducing the power consumption thanks to the lightweight sketches.

This test corroborates with the requirements of an embedded solution to reach resource-constrained devices,

and the adoption of a current standard (CoAP). On the other hand, the Orion router needs more requirements:

75% of free space in Flash and 6% in RAM, however their sketches do not suffer many changes and they

are usually connected without batteries. The power consumption evaluation resulted in an average 42 mA

in the Zolertia motes which decreases the consumption more than two times of other hardware development

platforms using 802.15.4 radios, as described in Chapter 3. The power consumption of the Zolertia Orion
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Figure 4.11: Smart-city use case deployment scenario.

routers has not been measured since they require large power capabilities with the use of Ethernet and it is

assumed that they are powered without batteries. Finally, the discovery process in Appdaptivity takes an

average of 286.4 ms in a non-secure mode.

4.4.4 Appdaptivity in HomeLab

Appdaptivity has also been evaluated in a real scenario. In this video [141] you can find a demo tutorial of

Appdaptivity for its use in HomeLab. HomeLab [142] is a standalone house at the Ghent University, designed

as a test environment for IoT services and smart living. In the video you can see charts from power meter and

temperature sensors in different rooms changed using the building flow. Moreover, it shows how the lights

can be controlled with the inclusion of a new button component at run-time, showing the corresponding flows

in the PoCo.

4.5 Differences between CoAP, the CoAP++ Framework and Appdap-

tivity

To illustrate, consider the following scenario. A person wishes to create an application to manage and monitor

certain conditions at his/her workplace or home. One option would be to deploy CoAP servers together with

the relative sensors and actuators. These sensors and actuators could be acquired for direct use from lock-in

vendors, but it is clear that this creates a vertical silo in the IoT. Therefore, resource-constrained devices are

installed to work with CoAP, e.g., Zolertia Re-Motes. The low-level details for accessing these sensors and

actuators in the Erbium framework would then have to be programmed. This would allow the interaction with

these sensors and actuators through CoAP using, for example the well-known CoAP web client Copper (Cu).

However, other functionalities may also be required, such as an HTTP-CoAP proxy, an RD, or being able to

create groups of resources and conditional observations, and therefore the person decides to use the CoAP++
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Figure 4.12: RAM and Flash memory usage in the Zolertia RE-Motes and the Zolertia Orion

router. (a) Memory average usage in the sketches of the Zolertia RE-Motes; (b) Memory usage in

the sketch of the Zolertia Orion Router.

framework, and installs it on a Raspberry Pi. Again, he/she can interact with the physical infrastructure with

extended functionalities and has the possibility to use any HTTP client to interact with the CoAP network,

e.g., a web browser. Nevertheless, in this case the person wishes to use a smartphone application to do the

same tasks. They therefore decide to use the CoAP framework Californium and the Android platform to

develop one. At this stage the application logic has to be programmed. Automatic tasks can be created,

which open the windows when the measurements of the CO2 sensors reach above a set level, or a button to

control all the lighting, and charts and alerts set to show a given space’s conditions, such as temperature and

humidity. Note that until this point Appdaptivity has not been used nor required. Now, once the system has

been deployed correctly, using open standards, the person decides to add the control of another room with

new sensors and actuators. The common situation in this case if that any specific functionalities, programmed

in the existing devices will necessitate having to reprogram and re-compile the application to incorporate the

new devices. Alternatively, the application may be able to automatically discover new CoAP servers together

with the sensors and actuators of the new room, but usually an application with these new components would

have to be created. In these cases, device-coupled applications are created. Nevertheless, the ideal would

be to have an application that automatically discovers the new devices in the CoAP networks and adapts the

application logic. This is where Appdaptivity comes into its own.

Consider that the illumination of a given space can be controlled. The group communication of the

CoAP++ framework can be used to create a group to manage this. In the case that there are new lights or
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changes to them, Appdaptivity will update the corresponding behaviours, and also update their corresponding

groups to ensure an up-to-date configuration. Furthermore, the rest of the behaviours that depend on these

changes will also be updated, e.g., the trigger component that checks presence sensors to actuate over these

lights. With Appdaptivity, if n components are controlled and a new CoAP server with the same component is

deployed, then n+1 components can be controlled automatically. This can be extrapolated to other behaviours,

e.g., if statistics about the conditions of some sensors are being displayed, each change in these sensors will

be detected by Appdaptivity and the associated configuration will be updated. Appdaptivity will also enable

the portability of the IoT applications to new CoAP networks in the future. In the case of personalised

applications, the challenges are greater. In this case, a smartphone application can be installed and will

always count on an up-to-date representation of the CoAP networks, with the result that the applications

are adapted to the context changes, which makes them personalised and portable. Therefore, the aim of

Appdaptivity is to complement CoAP and the IoT in the development of personalised, portable and adapted

to changing context IoT applications.
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5
An Internet of Things and Cloud Computing

Integration

In this chapter, the λ-CoAP architecture is presented. This architecture proposes an integration between

the IoT and cloud computing with edge computing capabilities. The chapter starts with an analysis of the

integration components to compose the integration (Section 5.2). The problem statement and research goals

of the λ-CoAP architecture are given in Section 5.1. The analysis of the integration components, which

establish the guidelines to define the λ-CoAP architecture are given in Section 5.3, and its implementation

in Section 5.4. Then, the architecture is evaluated in Section 5.5. Lastly, this chapter summarises some

challenges and open research issues in Section 5.6.
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5.1 Problem Statement and Research Goals

The IoT is intended to generate large amounts of data, which will keep on growing in the coming years

[143]. The limitations of its devices make addressing current paradigms such as big data or deep learning

very complicated, as they require large capacities in terms of processing and storage. These paradigms are

designed to extract knowledge and generate actions over raw IoT data. In the last few years, the integration

of the IoT with disruptive technologies such as cloud computing has provided the capabilities needed in

the IoT to address these paradigms [2]. Nevertheless, this has resulted in an increase of latency in IoT

communications in some situations (e.g., an actuation after cloud computing processing) and a dependency

on many factors such as availability, routing and networks, which entail the use of external services.

Certain IoT applications, such as structural health monitoring [144] enable damage to be detected just by

monitoring multiple, simple points of infrastructures. Higher-level concepts can be extracted from lower-level

ones, which in addition can help define the higher-level concepts. This process is known as deep learning

[145]. Deep learning is fed by multiple sources and large amounts of data from the extraction of complex

patterns. This paradigm can require high capacity in terms of processing and storage that can be achieved

with cloud computing. However an extreme event such as an earthquake or unanticipated blast loading would

require timely action whilst reducing the latency to a minimum. A new paradigm known as edge computing

[10], is intended to reduce the response time in IoT communications and reduce the upload bandwidth to the

clouds, moving the computation to the edge of the networks. Edge computing can be interchangeable with

fog computing, but edge computing is more focused on the things side [10]. For instance, the next generation

of cars will generate 1GB of data per second and so real-time processing to make the right decisions will be

required [10]. Although the next generation of mobile networks, 5G, is intended to increase the bandwidth

and considerably reduce the latency, networks in the car use case like many others, e.g. airplanes, would

represent a bottleneck for cloud-based computing. The adoption of an edge computing approach is required

in these scenarios to optimise the latency of the communications and avoid network saturation. This does

not mean that cloud computing will disappear from IoT applications, rather it will be used only when it is

required.

The aim of this work is to provide an integration framework for the IoT and cloud computing to resolve

the aforementioned problems. This framework will enable the development of IoT applications using both

edge and cloud computing. The resulting applications will take advantage of real-time interactions at the

edge and a long-term analysis on cloud computing.

5.2 Integration Components

The integration of the IoT and cloud computing started with an analysis of the possible components for that

integration. The integration components were classified into two categories taking into account the needs of

both the IoT and the cloud. On the one hand, the analysis addressed multidisciplinary cloud platforms to

satisfy IoT limitations and to offer new business opportunities and more scalability. On the other hand, the

analysis addressed the comparison of several IoT middleware to abstract the underlying heterogeneous IoT
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devices.

Cloud computing and IoT integration provides new storage, processing, scalability and networking capa-

bilities which until now have been limited in the IoT due to its characteristics. Furthermore, new opportunities

like complex analysis, data mining and real-time processing will be enabled in the IoT, hitherto unthinkable

in this field. Finally, through the IoT Middleware, the IoT devices will have a lightweight and interoperable

mechanism for communication with each other and with the cloud systems deployed. Figure 5.1 shows the

integration components surveyed in this analysis.

Figure 5.1: Cloud and IoT integration

5.2.1 Cloud Platforms

Recently and in the future, the number of users and data from the IoT will grow significantly as the number of

connected devices increases [143]. For a long time, DBMS (Database Management Systems) have been used

to store and access data in a great number of applications. Nevertheless, the growth in users and data means

that a large number of DBMS are unsuitable. Hence, a platform which can tackle this is required in order to

offer high scalability, storage and even processing. In this subsection, we summarise different platforms for

storing, processing and accessing large amounts of heterogeneity data, which has become known as Big Data

[143].

5.2.1.1 Batch Processing

Processing and analysing large amounts of data is one of the requirements that should be addressed in the

integration of the IoT and cloud computing. Batch processing components are responsible for the execution

of a series of jobs without manual intervention, allowing a greater distribution of them and high throughput.
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An open-source framework to manage large amounts data is approached by Hadoop [146]. Hadoop

comprises three main components: HDFS, MapReduce and YARN. HDFS is a distributed file system respon-

sible for storing distributed and replicated data through a server cluster, providing reliability, scalability and

high bandwidth. HDFS also balances the disk space usage between servers with a master/slave architecture.

MapReduce [147] is also a master/slave framework used in Hadoop 1 to process and analyse large data sets,

master job scheduling and cluster resource management on slaves. The coupling of a specific programming

model like MapReduce with the cluster resource management, and concerns about centralised handling jobs,

have encouraged the appearance of YARN [148] in Hadoop 2. YARN aims to decouple resource management

functions from the programming model, incorporating a new layer which abstracts resource management at

the same time as allowing new programming models. Presently, MapReduce is only in the form of an applica-

tion running on top of YARN. However, the complexity of developing MapReduce programs has originated

the appearance of new enriched systems that translate code into MapReduce, like Apache Hive [149], an

SQL-like data warehouse for managing and querying large datasets, and Apache Pig [150], a platform for

analysing large datasets with a high-level language for expressing programs.

Although Hadoop and other platforms are suitable for processing and analysing large amounts of data,

in some situations such as machine learning algorithms and interactive ad-hoc query on large datasets, la-

tency is considerable due to having to reload continuous data from a disk [151]. A good solution is a Map

Reduce framework that keeps data in memory to reuse for multiple jobs and to reduce disk latency. Apache

Spark [151], [152] is a fast and general framework which processes large amounts of data with low latency.

Spark incorporates fault-tolerant and large data processing like Hadoop MapReduce, but also introduces a

novel abstraction, the RDD (Resilient Distributed Dataset). RDDs are fault-tolerant collections of elements

distributed across nodes than can be created, parallelising an existing collection or referencing a dataset in

data store. The main advantages of RDDs are that they can persist in memory and can rebuild lost data

without replication, executing 100x faster than Hadoop MapReduce in a logistic regression algorithm [152].

Moreover, Spark has a driver-worked architecture unique to each application, allowing isolation between ap-

plications, but data sharing applications must be written in external storage. Spark is also compatible with any

Hadoop data store, such as HDFS, Apache Cassandra, Apache Hive, Apache Pig or Apache HBase, Chukwa

and Amazon S3.

5.2.1.2 Distributed Databases

Focusing more on storing and querying large amounts of data, distributed databases offer mechanisms to

enable some traditional features DBMS in a distributed environment with high availability and low latency.

Druid [153],[154] is an open-source distributed and column-oriented platform for storing and accessing

large data sets in real-time. The need for storage and computing have originated platforms that store large

amounts of data like Hadoop. However, these platforms do not guarantee how quickly data can be accessed

and stored nor do they query performance, which can be required in some systems. Druid aims to resolve

these problems and offers a platform which is suitable for applications that require low latency on ingestion

and query data. The Druid architecture comprises two main components: historical nodes, which store and
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query non-real-time data and real-time nodes, which ingest stream data and respond to queries with them.

Moreover, other components such as the coordination nodes coordinate historical nodes to ensure that data is

available and replicated, the brokers receive queries and forward them to real-time and historical nodes, and

lastly, the indexer nodes ingest batch and real-time data in the system. The main functions of real-time nodes

are to respond with real-time data and built segments for aged data that they send to the historical nodes.

Historical nodes persist data in deep storage and download it in memory when the coordination node requires

it. Druid also utilises Apache Zookeeper—a well-known Hadoop component for synchronising elements

in a cluster—to manage the current cluster state, and MySQL for the maintenance of metadata about data

segments.

Apache HBase [155] is another open-source distributed database suitable for random and real-time read-

/write large amounts of data. Apache HBase emerged from Google’s Bigtable, a distributed storage system

for structured data provided by Google File System. Specifically, Apache HBase uses HDFS for its storage

system, and can be seen as the Hadoop Database. In HBase, data is stored in tables like traditional Rela-

tional Database Management Systems (RDBMS). However, HBase tables are composed by multiple rows,

where each row has a set of columns which can store mixed and indeterminate key-value sets unlike tradi-

tional RDBMS. The tables can also be stored in different namespaces to restrict resources, and offer different

security levels and region groups. The rows are identified and stored lexicographically by row key, allow-

ing related rows, or rows which can be read together. The HBase architecture is HMaster/RegionServer,

where the HMaster monitors and manages all RegionServers, and each RegionServer serves and manages

the underlying regions. The regions are the basic components for distributing and providing availability and

fault-tolerance in HBase tables. Initially, if a pre-splitting policy has not been established, a table is composed

with only one region. Then, when the table rows grow, a set of policies can be established to split the regions

in the RegionServers. If a table has been split into three regions, each region contains a sorted keyset chunk

of the table. Regions’ replication is provided by HDFS to enable fault-tolerant. The HMaster is responsible

for assigning regions to RegionServers, balancing regions between RegionServers and restoring regions if a

RegionServer goes down. Furthermore, HBase has allowed interaction with MapReduce, so MapReduce jobs

can interact with the HBase data store. HBase provides a set of operations to modify and query tables, but if

you want to use an SQL functionality and JDBC connector with HBase, you can use Apache Phoenix [156]

or Cloudera Impala [157].

However, in some situations such as time series, the sorted key can lead to a major issue because when

a table is split into two regions, the new writers will be written in the last region due to sorting, so a hot

region will always be present. This problem is solved by OpenTSDB [158]. OpenTSDB uses an HBase table

and a key format composed by a metric type—a string composed by a timestamp and a set of key/value—to

store all stream data across various regions in a table. OpenTSDB has a broker architecture formed by the

Time Series Daemons (TSD). The TSDs are the key components in OpenTSDB since they are responsible

for managing and querying all data saved on HBase. A set of aggregation operations over the metrics as max,

min or avg can be applied to OpenTSDB. All the features of HBase such as fault-tolerant, replication, split

into tables, and so on, are used by OpenTSDB. Furthermore, a Web UI and other tools have been integrated to
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query and graph all the time series stored. Nevertheless, a storage limitation is defined in OpenTSDB, since

each metric and its types and values are assigned a unique id with 3 bytes, so 224 − 1 metrics and 224 − 1

types and values on each metric can be stored.

5.2.1.3 Real-time Processing

There are situations that require not only access to data, but also processing them in real-time, like decision

making in critical systems or trending topics in social media.

Apache Storm [159] is a popular open-source distributed system for processing data streams in real-time.

Storm contains a nimbus/supervisor architecture coordinated through Zookeeper, and is based on directed

graphs, where the vertices represent computational components, and the edges represent the data flow among

components. Spouts are the Storm components that receive data in the topology and are transmitted to Bolts

which are responsible for processing the data and transmitting it to the next set of Bolts or data storage

as required. Moreover, Storm offers semantic guarantees about data processing like ‘at least once’ or ‘at

most once’ in addition to fault-tolerance. The main drawback drawback is that it is not able to dynamically

re-optimise at run-time between nodes, but this is considered to be future work [159].

An extension of Apache Spark for fault-tolerant streaming processing is known as Spark Streaming

[160], [161]. Spark Streaming follows a different philosophy to Apache Storm. In Spark Streaming, the

data received is stored in memory for a specific interval or window, and then is processed and stored in a

Spark RDD. A D-Stream (Discretised stream) is the representation by times series of RDD, and it lets users

manipulate them through various operators in real-time. Spark Streaming is properly integrated with Apache

Spark, as it uses the same data representation, allowing reuse code and a hybrid architecture through the

combining of batch with stream processing with the same data. The main drawback is the length of the

sliding windows, as if they are too large, the real-time can disappear whereas if they are too small it can

generate multiple RDDs. Furthermore, in most cases, stream data is received over the network, so to achieve

data received fault-tolerance, Spark Streaming replicates data among the worker nodes.

5.2.1.4 Distributed Queues

Albeit in multiple systems, data is obtained from internal data stores, in some systems, especially in the

IoT, data is dispatched by many devices or sub-systems. To deploy a large number of things in an IoT

system requires large amounts of received data to be handled and eventually dispatched in real-time to the

stakeholders. Distributed queues are summarised in this subsection in order to solve these problems.

Apache Kafka [162], [163] is a distributed messaging system that consumes and dispatches large amounts

of data with low latency. Kafka is based on a publish/subscribe queue with ‘at least once’ and ‘at most

once’ semantics that guarantees its suitability for streaming data and performing offline analysis. Topics

are the stream of messages in Kafka, wherein producers can publish messages and consumers can subscribe

to receive them. Load balancing and fault-tolerance is performed by partitions of the topics, where each

topic can be divided into multiple partitions, and each partition can have multiple replicas. Communication
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between producers and consumers to the server is through agnostic TCP, so it is available in many languages.

When a message is sent by a producer to Kafka, it is stored on a disk in determined partitions and its replicas

are consumed for a prefixed time. Moreover, Kafka provides group-consumers with a way of introducing

load balancing ingestion data between consumers. However, Kafka does not contain a master node, it does

however contain a set of brokers which locate the system partitions and are synchronised through Apache

Zookeeper. The latter prevents concerns of master failures. Furthermore, producers and consumers can

operate synchronously or asynchronously with batch data, but this originates a great dilemma between latency

and throughput.

RabbitMQ [164], [165] is another open-source messaging queue that contains an Erlang-based imple-

mentation of AMQP (Advanced Message Queuing Protocol) v0.9.1 protocol. AMQP is an open standard

for exchanging messages over TCP. RabbitMQ uses the Mnesia database, which is an in-memory persistent

embedded database of Erlang for data persistence. RabbitMQ also uses brokers which are middleware ap-

plications of AMQP that receive messages from producers and sends them to other brokers or consumers.

Brokers can be replicated for high availability, and send messages to other brokers in other clusters. When a

message is sent by producers, it is received by a component of the brokers, called an exchange, which routes

it, according to its routing rules—point-to-point, publish-subscribe, headers or multicast—and it is sent to a

queue. When a consumer or consumer group receives a message, it is deleted from the queue. Moreover,

RabbitMQ contains a pluggable system, where plugins can extend the deployment with new components like

a Web UI management and monitoring. Therefore, RabbitMQ follows a different philosophy to Kafka, it in-

corporates message confirmation and more forms of communication than a topic. Producers can also obtain

the message acknowledgment of consumers, so RabbitMQ can behave as the RPC protocol. RabbitMQ can

also be more flexible than Kafka, however throughput and latency in Kafka is more desirable.

5.2.1.5 Management, Monitoring and Deployment

Many systems such as Apache Storm, Apache Hadoop or Apache Spark contain a Web UI for monitoring

and visualising the cluster deployed. Nevertheless, in deployed clusters with multiple, deployed platforms,

what is needed is a single platform that can deploy, monitor and manage all platforms.

In the Hadoop ecosystem, there is a platform for provisioning, monitoring and managing Hadoop clus-

ters, called Apache Ambari [166]. Apache Ambari provides an open-source management Web UI, enabling

system administrators to easily deploy new Hadoop services in the cluster, add new host nodes, manage

existing services deployed and monitor the heath and status of the Hadoop cluster. Ambari follows a mas-

ter/agent architecture, where master contains a set of components responsible for monitoring the agent status

and planning actions. Ambari agents send heartbeat events to master every few seconds with the agent sta-

tus and actions and it receives actions to execute in the response. Moreover, Ambari utilises a database to

store the system status, so in case of master failure, the status is rebuilt. Ambari uses Ganglia—a distributed

monitoring high-performance system—for metrics collections, and Nagios—a monitoring system for IT in-

frastructure—for system alerts and sending emails. Furthermore, Ambari also integrates all capabilities in

other systems through the Ambari REST APIs. Ambari is therefore a powerful tool for managing and moni-
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toring Hadoop components with only one platform, and it can be easily integrated into other systems.

Tables 5.1 and 5.3 compare the different cloud platforms analysed. The components cover multiple cloud

computing needs such as batch and stream processing, distributed storage and distributed queue which can be

integrated independently or jointly. Most components follow a master/slave architecture and present a point

of failure if the master goes down, but this can be mitigated with master replication or a broker architecture.

Replication and load balancing are contained in most components, except load balancing in Apache Storm

and Apache Ambari, and replication in Apache Ambari and Apache Spark that relies on the data store for

this. Fault tolerance is one of the basic cloud computing features and is present in most components.

For batch processing, Apache Spark is recommended for low-latency applications with the same data,

whereas Apache Hadoop is a fairly consolidated platform and is more integrated and compatible with external

systems. Considering compatibility aspects, Spark Streaming is suitable if Apache Sparks is chosen as the

batch processing component. Apache Storm does not necessarily require data storage as Spark Streaming

does, and it contains more external integration, but nevertheless it does not contain load balancing. Distributed

queuing, depends on the application, you may require confirmation messages and more options than a single

topic, so RabbitMQ is the best solution in this case, but if you want a low-latency and throughput solution,

Apache Kafka should be chosen.

Although HBase is an established solution, the need to design based on the data and the lack of real-

time, mean that Druid will become the more promising solution. Apache Ambari has been designed to

solve multi-platform deployment problems and is seemingly the solution for this. Apache HDFS is the most

compatible distributed file system, whilst components like Java Apache Thrift and Hadoop Streaming allow

multi-language service development. On the other hand, Apache Hadoop has the largest number of official

companies using it, more than 170 companies, in comparison with Druid and OpenTSDB with 10 and 30

companies in 2016 respectively. Lastly, all components surveyed have an open-source license.
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Table 5.1: Cloud Platforms comparison I

Cloud Plat-
form

Finality Architecture Replication Load bal-
ancing

Fault-
tolerant

Memory Programm-
ing Lan-
guages

Data store External
integration

Access Documenta-
tion

Official
companies
that use it

Last up-
date

License

Apache

Hadoop

MapReduce

Batch pro-

cessing

Master/slave Yes Yes Yes, if not

master

Yes Java, C++,

Hadoop

Streaming

and REST

API

HDFS Web UI and

CLI

? ? ? +170 dec-15 Apache Li-

cense Version

2.0

Apache

Hadoop

HDFS

Distributed

file system

Master/slave Yes Yes Yes, if not

master

Yes, op-

tionally

Java,

Apache

Thrift and

REST API

HDFS Web UI and

CLI

? ? ? +170 dec-15 Apache Li-

cense Version

2.0

Druid Real-time

data store

Multiple

nodes

Yes Yes Yes, if not

coordinator

Yes, real-

time nodes

Ruby,

Python, R

and Node.js

S3, HDFS,

local mount

and Cas-

sandra

Hadoop,

Storm and

Kafka

CLI ?? +10 dec-15 GNU General

Public Li-

cense Version

2.0

Apache

HBase

Distributed

data store

HMaster/

HServerRe-

gions

Yes Yes Yes, if not

Hmaster

Yes, op-

tionally

Java, C/C++,

Apache

Thrift and

REST API

HDFS, lo-

cal filesys-

tem

Apache

Hadoop

MapRe-

duce

Web UI and

CLI

? ? ? +40 nov-15 Apache Li-

cense Version

2.0

OpenTSDB Distributed

time series

data store

Brokers Yes Yes Yes, if not

Hmaster

No REST API,

R Client, Er-

lang, Ruby,

Go

HBase RabbitMQ,

Etsy Sky-

line and

Apache Pig

Web UI and

CLI

?? +30 nov-15 GNU

LGPLv2.1+
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Table 5.3: Cloud Platforms comparison II

Cloud Plat-
form

Finality Architecture Replication Load bal-
ancing

Fault-
tolerant

Memory Programm-
ing Lan-
guages

Data store External
integration

Access Documenta-
tion

Official
companies
that use it

Last up-
date

License

Apache Spark Batch pro-

cessing

Driver/worked No in

memory,

implicit in

storage

Yes By appli-

cation, if

driver not

fail.

Yes Java, Python

and Scala

HDFS, S3,

Cassandra

and HBase

Web UI and

CLI

? ? ? +80 nov-15 Apache Li-

cense Version

2.0

Apache Kafka Distributed

queue

Brokers Yes Yes Yes No Several lan-

guages

Several

systems

CLI ?? +70 N/A Apache Li-

cense Version

2.0

Apache Storm Stream pro-

cessing

Nimbus/

supervisor

Yes No Yes, if not

nimbus

Yes Java and

Apache

Thrift

Several

systems

Web UI and

CLI

?? +70 nov-15 Apache Li-

cense Version

2.0

Apache Spark

Streaming

Stream pro-

cessing

Driver/worked Yes, at re-

ception

Yes By appli-

cation, if

driver not

fail.

Yes Java,

Python,

Scala

HDFS, S3,

Cassandra,

Hbase

Web UI and

CLI

? ? ? N/A nov-15 Apache Li-

cense Version

2.0

RabbitMQ Distributed

queue

Brokers Yes, with

plugin

Yes Yes Yes Several lan-

guages

MQTT and

STOMP

Web UI and

CLI

?? N/A dec-15 Mozilla Pub-

lic License

Version 1.1

Apache Am-

bari

Provisioning

and moni-

toring and

managing

clusters

Master/agents No No Yes, if not

master

No REST API HDFS Several

Hadoop

Compo-

nents

Web UI,

CLI

?? N/A dec-15 Apache Li-

cense Version

2.0
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5.2.2 Middleware for IoT

In IoT deployments there are usually many heterogeneous devices with different functionalities, capabilities,

and multiple programming languages to access them. So an abstraction layer is necessary to abstract this

heterogeneity in order to achieve a seamless integration with anything. Through a middleware, users and

applications can access the data and devices from a set of interconnected things, hiding communication and

low-level acquisition aspects [55]. We now summarise different IoT middleware in this context. In the

comparison we have also added the web service protocols DPWS and CoAP, which although they are not

middleware as such, they do incorporate several middleware features and are important protocols to promote

the IoT towards the WoT.

GSN [167], [26] is a middleware that originated in 2005 as a platform for processing data streams gener-

ated by WSN which provides a platform for flexible integration and deployment of heterogeneous WSNs. The

key concept in GNS is the virtual sensor, which describes sensors across XML files, is able to abstract from

implementation details of access to sensor data and structures through different configurations of the data

stream which the virtual sensor consumes and produces. GSN has a container-based architecture comprising

several layers: the virtual sensor manager (VSM) which manages virtual sensors and underlying infrastruc-

ture; the query manager which parses and executes and planning SQL queries. It also has a configurable

notification manager to configure alerts; and lastly, at the top, an interface layer for access through web ser-

vices and via Web. VMS manages connection with devices though wrappers, currently there are wrappers for

TinyOs platforms, several devices and generic wrappers. Moreover, different instances of GSN can establish

communication through remote wrappers.

Although GSN handles the heterogeneity devices and acquisition level problems, there is actually a large

heterogeneity data problem when data have to be interpreted and understood [168], [55]. An extension of

GSN middleware, called XGSN, is presented in [55] to address this problem by facilitating the discovery and

search tasks in an IoT environment. XGSN provides semantic annotation for GSN middleware, enriching

virtual sensors with semantic data by means of an extension of the SSN ontology. The main semantic anno-

tations of XGSN are concerned with sensors, sensing devices and their capabilities, and the measurements

produced which have not been previously described in GSN. Moreover, in the same way as GSN, XGSN

offers interfaces to query data and manage virtual sensors, and even integration with the Linked Sensor Mid-

dleware for storing and processing stream data.

DPWS (Device Profile for Web Services) [28], [169] is an OASIS web services specification for em-

bedded devices and devices with few resources. DPWS is based on SOA (Service-Oriented Architecture),

where each device is abstracted as a set of services. DPWS defines a protocol stack built over web services

standards: SOAP (Simple Object Access Protocol) 1.2, WSDL (Web Services Description Language) 1.1,

XML Schema and WS-Addressing; and also defines several protocols for discovery, security, messaging and

eventing. The DPWS services can be specified using XML Schema, WSDL and WS-Policy like a web ser-

vice, and are discovered by the WS-Discovery protocol in a plug-and-play mode. Services are discovered,

specifying the type of the device, the scope in which devices reside or both. The WS-Discovery protocol uses

multicast with SOAP over UDP in order to reduce network traffic overhead and during the discovery process

89



CHAPTER 5. AN INTERNET OF THINGS AND CLOUD COMPUTING INTEGRATION

each device displays its metadata information such as its end-point reference or a set of messages that can be

sent or received. Moreover, the WS-Eventing protocol defines a publish/subscribe protocol allowing devices

to register to receive messages about other devices. Lastly, the WS-Security is responsible for providing dif-

ferent levels of security, such as authentication and confidentiality in the devices. Currently, there are several

implantations of DPWS like the WS4D open-source implementation [170] in C/C++ and different implemen-

tations in Java, and the adoption of Microsoft in their OS from Windows Vista and Windows Server 2008

[171]. However, due to the DPWS protocol stack, the integration of DPWS in embedded devices may be

too heavy, so a solution like the DPWS-compliant gateway proposed by Cubo et al. [172], could abstract the

underlying IoT components while taking advantage of DPWS interoperability and semantics on embedded

devices.

The OMG Data-Distribution Service (DDS) for real-time systems [173] is a data-centric publish/sub-

scribe OMG (OMG: http://www.omg.org) specification for real-time and embedded systems. The

specification defines both the communication semantics (behaviour and QoS) and the APIs for efficient de-

livery of information between producers and consumers. In the same way as Apache Kafka, data publishers

in DDS publish typed data-flows over topics which consumers can subscribe to. However, DDS does not con-

tain a server to connect publishers and producers, rather it provides dynamic and extensible applications by

means of dynamic discovery of publishers, subscribers and data types. DDS follows the data-centric publish-

subscribe model, through typed interfaces, providing the information needed to tell the middleware how to

manipulate the data and also providing a level of safety type. A domain is the way to abstract different entities

(publishers, consumers, data types) in the same group. At the beginning of each application, it is necessary

to define the data types for the communication, although publishers and consumers have been designed to

support multiple data types. Unlike other middleware, DDS defines QoS policies like data durability, latency

maximum or data ownership. Currently, there are several official implementations of DDS which include

multiple programming languages and SOs as well as different license types.

For communication between devices WSs (Web Service) are usually used. The WSs offer a way to

communicate, share and access data information over the Internet. Nowadays, there are many WSs offering

a variety of functionalities over the Internet, like current currency exchange, information on zip codes and

cities, connecting with social networks, and so on. The main ones are RESTFul and SOAP WSs. However,

WSs normally operate over HTTP, or in the case of SOAP, they work with exchange XML, which is a

major limitation for constrained devices. CoAP [174], [7] is a transfer protocol designed for constrained

devices. As aforementioned, CoAP follows the same style of RESTFul architecture, but it uses UDP thereby

reducing TCP connection and transfer overheads. CoAP defines GET, POST, DELETE and PUT operations

and responses like normal RESTFul WSs, allowing a seamless integration with HTTP platforms. However,

in HTTP the transactions are usually initiated by clients with pull mode, so this scenario is too expensive

for devices with power limitations, battery and network. CoAP, in contrast to HTTP, uses an asynchronous

mode to push information from servers to clients following the observer design pattern. Moreover, to allow

interoperability between CoAP end points, CoAP includes a technique for adverting and discovering resource

descriptions, and depending on the situation, CoAP allows several types of confirmation messages.
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Nonetheless, HTTP is widespread across the Internet in many applications and systems, unlike CoAP. A

proxy design to leverage the compatibility with HTTP and the seamless adaptation of CoAP on embedded

devices is presented in [121]. The proxy shows that the WebSockets protocol is more suitable than HTTP for

long-lived communications, whilst the final CoAP devices are not overloaded since they are only connected

with the proxy following the observer pattern, handling the proxy all consumers’ connection. The proxy

also provides HTTP compatibility, and leveraging the observer pattern, uses a cache to reduce the number

of requests to CoAP devices. On the other hand, Castro et al. [175] avoid using external intermediate

application servers for interconnecting clients with end devices, and propose CoAP Embedded Java Library

for interconnecting Web browsers directly with end devices. There are different implementations of CoAP

both with private and public licenses, as in several programming languages [45]. CoAP can also considerably

reduce power consumption with respect to HTTP in many situations as show in [30].

LinkSmart [176] emerged from a European research project to develop a middleware based on a service-

oriented architecture for network embedded systems. LinkSmart has been designed, taking into account the

common problem of compatibility between proprietary protocols and devices. The result of the project is a

software gateway which acts as a bridge between the digital world and the underlying IoT devices. Loosely

coupled OSGi based webs services are powered by LinkSmart in order to allow applications to control, ob-

serve and manage physical devices through the LinkSmart gateway. The use of OSGi provides a components

system which allows the deployment and control of components without requiring a reboot. LinkSmart is

so far the only one which allows dynamic deployment and control of components during execution, a key

issue in critical devices which cannot be rebooted. By default, LinkSmart has components installed, like

the Network Manager, which can be used to register and discover services in the LinkSmart Network and

for direct communication between LinkSmart nodes. Additional, optional components provide a topic-based

publish-subscribe service, device discovery and secure identity and encrypted communications. LinkSmart

requires a JVM (Java Virtual Machine) and a minimum memory of 256MB so it is too high for embedded

devices.
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Table 5.4: IoT Middleware comparison

Middleware Communi- cation
model

Discovery Connection with de-
vices

Real-time Devices
require-
ments

Virtual de-
vices

QoS sup-
ported

Security License

DDS Peer-to-peer Yes Protocol instantiation ? ? ? High/

Medium/

Low

No Yes DDS-Security (Authen-

tication, Privacy, Ac-

cess Control, Logging

and Data Tagging)

Different implementa-

tions (enterprise and

open-source)

GSN Peer-to-peer Yes Wrappers for TinyOs

platforms, HTTP

generic, several de-

vices, and generic UDP

and serial

? Medium/

Low

Yes No N/A GNU General Public

License Version 3 (or

later)

DPWS Client-server Yes Protocol instantiation ? High No No WS-Security (In-

tegrity, Confidentiality,

Authentication)

Different implementa-

tions (enterprise and

open-source)

CoAP Client-server asyn-

chronous

Yes Protocol instantiation ? ? ? Low No No DTLS (Authentication,

Privacy) Different

implementations

(enterprise and open-

source)

Different implementa-

tions (enterprise and

open-source)

LinkSmart Peer-to-peer Yes Protocol instantiation

or connection through

the proxy

? High/Low Yes No Crypto Manager (Au-

thentication, Privacy)

GNU Affero GPL v3

LooCI Peer-to-peer Yes Protocol instantiation

or wrapper with devices

? High/

Medium

/Low

No No Specification on Se-

cLooci

GNU General Public

License version 3
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For the latter, a proxy component has been incorporated to abstract different communication protocols

and interfaces such as ZigBee, Bluetooth and USB. The publish/subscribe mechanism provided by the Event

Manager component is another key component which exchanges XML messages between senders and re-

ceivers, and is suitable for asynchronous environments. Moreover, IOS, Android and Windows tools have

been incorporated to control and manage the IoT resources deployed.

The component infrastructure middleware introduces a novel paradigm in IoT, where the underlying de-

vices can be reconfigured, as well as offering common mechanisms for deploying and managing components

in run-time. However, the requirements of JVM in OSGi make it unsuitable for constrained devices. LooCI

[177] is a middleware for building component-based applications in WSN which takes into account this re-

striction. LooCI provides interoperability across various platforms: a Java micro edition for constrained

devices known as Squawk, the open-source OS for IoT Contiki, and the OSGi. Like LinkSmart, LooCI

has a distributed event bus to allow publish/subscribe in addition to direct bindings for communication be-

tween all the components deployed. All the communication is based on type events, so it leads to type-safe

communications and services and binding discoveries. In contrast to LinkSmart, LooCI instead of having

a proxy component to abstract different communication protocols or interfaces, leaves the implementation

of the device communication in each component and standardises the networking services through a Net-

work framework. Recently [178], a new middleware known as SecLooCI has been proposed to expand the

LooCI middleware in order to enable a secure sharing of resource-constrained WSN devices. However, the

SecLooCI middleware’s implementation is not available for download as it has not yet been released.

Table 5.4 shows the results of the IoT Middleware comparison. All middleware surveyed have a mecha-

nism to discover other systems and services. Most middleware contain a peer-to-peer model communication

which uncouples the main point of failure in client-server models. DPWS has a client-server model and

CoAP has a client-server with an asynchronous model since the information can be pushed from server to

clients asynchronously. Several QoS mechanisms are only addressed by DDSs which, together with the real-

time support, is maybe the main reason for the adoption of DDS in critical and governmental systems. The

device virtualisation is addressed by GSN and LinkSmart through the proxy component. GSN, LinkSmart

and LooCI are maybe the most versatile middleware, since GSN and LinkSmart contain support for sev-

eral protocols and devices, and LooCI can implement any device communication through its corresponding

interface. For the device requirements, CoAP is the most lightweight middleware, while the different in-

stantiations of the different wrappers as the middleware instantiation itself mark the requirements in GSN,

LinkSmart and LooCI. GSN is the weightiest middleware due to its protocol stack, and DDS does not define

the communication stack so the weight of DDS may vary in each implementation.

DDS, DPWS and LinkSmart contain secure implementations, including security services like authenti-

cation and data confidentiality. On the other hand, CoAP can use DTLS for security, GSN does not mention

anything about security and LooCI has released a new middleware for security but it is not yet available.

DDS, LinkSmart and LooCI require that all data applications must be defined at the start, but at the same

time this offers a safety type which is not present in the remaining middleware. Moreover, LinkSmart and

LooCI are good choices when dynamic management and deployment of components are required and DDS
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and CoAP are better for real-time support. Lastly, GSN, LinkSmart and LooCI have open-source licenses

and the rest have both enterprises and open-source implementations.

5.3 The λ-CoAP Architecture: an IoT and Cloud Computing Integra-

tion

The λ-CoAP architecture provides an integration of cloud computing with the IoT, taking into account edge

capabilities. On the one hand, the IoT heterogeneity inside the underlying devices involved is abstracted at the

same time as the lightweight web services are enabled so as to access them through CoAP. On the other hand,

the Lambda Architecture enables the real-time processing, actuation and analysis of the large amount of data

generated by the IoT. An edge layer that resides between the IoT and the Lambda Architecture, aims to reduce

the bandwidth and latency in IoT-cloud communications. The λ-CoAP architecture is complemented with a

Smart Gateway to interconnect the Lambda Architecture, HTTP and CoAP; a CoM (CoAP Middleware) to

install the CoAP in resource-embedded devices; and external components such as a Web UI and a component

to manage and actuate over the underlying IoT, respectively.

Apache 
Kakfa

Apache Storm

Druid

Apache Hadoop
(Master Data)

λ Architecture

Knowledge, actions

Smart 
Gateway

Co
AP

Smart 
Gateway

Co
AP

Edge

Less bandwidth traffic, lower data priority

IoT devices

High priority data
real-time interactions

Figure 5.2: The Λ-CoAP architecture: an overview

Figure 5.2 shows an overview of the λ-CoAP architecture. At the bottom, end devices incorporate a
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middleware based on CoAP whose main function is to abstract the communication with the upper layers for

querying data or actuate over them as well as discovering and low-level acquisition aspects. This middleware

has also been used in Chapter 3. In the middle resides the Smart Gateways and the edge layer. Initially,

the Smart Gateway acted as a bridge to interconnect the cloud platform, the underlying devices and the end

users (Chapter 3). However, the Smart Gateway has been adapted to support edge computing architecture

in addition to being an autonomous device with processing capabilities. With its computation power it can

reduce the communication latency and lighten the networks. Therefore, the edge layer comprises the Smart

Gateways deployed in the architecture. Lastly, at the top, the cloud is responsible for allocating and serving

the components of the Lambda Architecture.

5.3.1 Lambda Architecture

The Lambda Architecture (LA) [179] is a paradigm composed by cloud platforms—a distributed queue, batch

and stream processing and distributed data stores—designed to offer arbitrary queries over arbitrary real-time

data. Immutable data—data that does not change as time passes, can only be queried or added—besides the

precomputed views are key concepts in the LA. Due to the temporal characteristics of IoT data, and the need

to extract knowledge and predictions of historical data, even in some situations with real-time, the LA is a

suitable paradigm for the IoT, and will bring with it the following benefits: storage, real-time processing,

scalability and machine learning. Moreover, in other scenarios, the true knowledge resides in the data, since

it can be used to prevent certain situations from arising and to act in advance, and the LA stimulates these

scenarios with immutable data and pre-computed views. The abilities of the LA with regard to large-scale

smart environment management and big data storage/analytics are show in [180]. Apart from these benefits,

LA is not centered on any particular technology, so each user can choose the necessary technology based on

his/her needs.

Figure 5.3: Lambda Architecture

All data received in the LA is stored in the master data and converted into another form during the

processing, so the initial data received never change over time. The latter prevents human errors such as

accidental deletions and updates. Additionally, cloud computing LA components replicate the data and offer
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mechanisms for high availability and fault-tolerance, so the probability of data lost is small. Generating

arbitrary functions and complex analysis over large amounts of data may require a considerable latency, an

issue for real-time systems. Precomputed views have been designed to have available the complex analysis

required besides extracting knowledge over the system data. The LA is decomposed into the following layers

for these purposes:

• Batch layer: responsible for processing the historical data and generating the batch precomputed

views through batch processing. The batch layer also stores all system data in an immutable form,

known as master data, so it allows generating new precomputed views with new functions at any time.

• Real-time layer: makes up the high latency of the batch layer, processing the stream data and gener-

ating real-time precomputed views.

• Serving layer: responsible for abstracting the batch and real-time views offering a unique way of

accessing them.

When stream data is received in the LA, a distributed queue distributes the stream data to the batch and

real-time layers (see data flow in Figure 5.3). The batch layer stores the stream data received and periodically

generates the batch views with the historical data. The batch layer carries out a complex analysis over the

historical data and generates actions for the IoT based on this analysis. On the other hand, the real-time layer

generates the real-time views and actions with the stream data received. Lastly, the serving layer merges the

batch and real-time views for future queries.

5.3.2 Smart Gateway

The Smart Gateway is the component in the λ-CoAP architecture responsible for abstracting the IoT in

addition to connecting it with the LA. The Smart Gateway is also responsible for incorporating a cross-layer

proxy to interconnect the IoT with the Web. Each Smart Gateway comprises the following components:

• LA Connector: connects the Smart Gateway with the LA. When a stream provided by the Smart Gate-

way is received, the LA Connector sends it to the distributed queue in the cloud for further processing

in the LA.

• HTTP proxy: is responsible for managing the HTTP requests from external sources such as an action

provided by the LA and a query of a client. The HTTP proxy firstly checks the cache to see whether

the data required is available. If the data required is not present, the HTTP proxy obtains the address

of the device associated with the request, and uses it to make a CoAP request to obtain or act over the

device that is sent to the CoAP Connector.

• CoAP Connector: receives requests from the Web Server to request data or actuate over a device.

The CoAP Connector also connects the CoMs with the Smart Gateways to obtain the data or send the

actions requested.
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• Resource Directory: has two main functions, in fact, it is both a cache and a lightweight database. On

the one hand, the Resource Directory stores information about end devices and their resources. On the

other hand, a cache also stores data of devices in order to provide a cache and protects the end devices

from an overload of requests.

• Web UI: provides an interface to manage and monitor the IoT devices for end users. Moreover, this

interface enables the run-time management of sensors and actuators (presented in Chapter 3) and the

management of containers.

• Edge computing framework: enables the development of the IoT application logic in the edge. This

framework provides a visual interface, which makes the development of these applications intuitive.

5.3.2.1 Lightweight Virtualisation

Initially, Smart Gateways in the λ-CoAP architecture had a closed infrastructure comprising a set of compo-

nents to interconnect the LA, the CoMs and end users. Upon a new development or a component modification,

it is therefore necessary to reconfigure or install these components manually, without component isolation.

Lightweight virtualisation technologies have garnered a lot of attention in the last few years due to their

features: fast processes of building containers, high density of services per container and a high isolation

between instances [181]. In contrast to traditional hypervisors, lightweight virtualisation technologies im-

plement virtualisation of processes through containers in the operating system. This reduces the overhead of

the hardware and virtual device virtualisation in traditional hypervisors, allowing the deployment of a high

density of containers [182]. Therefore, the use of this virtualisation technology could help in the management

of components in an IoT Gateway.

A lightweight virtualisation architecture has been applied to the Smart Gateway. The resulting Smart

Gateway with its containers is shown in Figure 5.4. Two new components have been added to the Smart

Gateway: a Web management UI for managing devices and containers and an edge computing framework to

develop the edge logic. This architecture enables the management of processes at run-time and the reuse and

backup of containers. Therefore, this virtualisation will facilitate the process update, backup and management

in the Smart Gateways. In addition, each container is isolated from the rest.

5.3.2.2 IoT Devices and Virtualisation Management Web UI

A Web management UI has been incorporated inside the Smart Gateway to manage IoT devices and con-

tainers. This enables the management of Smart Gateways without the involvement of a cloud infrastructure.

Sensors and actuators can be created and managed at run-time in the IoT devices deployed through the Web

UI using the work of Chapter 3. This enables the management of the physical components in IoT devices

without necessitating a reconfiguration and stopping their services. In this case, CoAP has been used, but the

container-based architecture paves the way towards the integration of new IoT protocols.

Containers can also be managed in the Smart Gateway through a lightweight virtualisation integration.

Containers represent the processes running in the Smart Gateways. The management allows a better control
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Figure 5.4: Smart gateway with lightweight virtualisation, evolution from Chapter 3 to the

Λ-CoAP architecture

over their current components, facilitating their maintenance and enabling their reuse. As can be seen in

Figure 5.4, the components are a part of containers and in turn can be managed by this component container.

Apart from enabling the management of containers, the Web UI enables the submission of new container

images that are automatically installed and available as new containers in the Smart Gateway.

5.3.2.3 Edge Computing Framework

Edge computing is enabled thanks to the inclusion of application logic at the edge of the network, which

reduces the communication latency and alleviates the bandwidth with the cloud. This component enables a

framework for the application development at the edge, in the Smart Gateway in this case. More specifically,

the framework is based on a browser-based editor that allows visual data flow programming. A set of compo-

nents have been created to filter and aggregate IoT data, so that application developers only need focus on the

application logic. This component decides what data should be processed immediately or should be sent to

the cloud. In the case of an IoT actuation, the communication latency will not depend on the communication

with the cloud infrastructure, therefore it should be reduced. Discovery and IoT interactions are transparently

done by the edge computing framework, thus application developers just need to focus on the application

logic. Moreover, resulting flows can be easily portable between Smart Gateways.

The edge computing framework has a component-based architecture enabling the reuse of components

in flows and allowing new components to be created for the application development. The development is

done visually with the creation component flows. Visual programming can provide a better user experience,

alongside a reduced perceived workload and a higher perceived success [43].
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5.3.3 CoAP Middleware

The CoM (continuation from Chapter 3) is responsible for abstracting communication, low-level acquisition

and discovering aspects in the IoT devices. The CoM provides an abstract layer for accessing low-level

components like sensors as well as actuating over the actuators components in the IoT devices.

The CoM also manages CoAP resources which can be identified by a URI. CoAP resources are com-

ponents responsible for the abstract operations in the IoT devices such as obtaining the value of a specific

sensor and performing the action over an actuator component. Querying the underlying sensors installed in

each device is performed through a resource with CoAP GET requests, whereas actuating over a component

is performed through a resource with CoAP PUT requests. The CoAP requests are generated by the CoAP

Connector of the Smart Gateways based on the HTTP requests. Therefore, through the Smart Gateways,

users can query and actuate over the IoT.

The discovery process is initiated when a new CoAP middleware is deployed in the system. The discovery

process has been designed to help the Smart Gateways to know how many CoM are deployed, which are alive

and which are their resources. When a CoM is deployed in the system, it sends a broadcast/multicast message

to discover a Resource Directory in the network. The Smart Gateway, upon the reception of the message,

responds to inform that a Resource Directory is available. Finally, CoMs register a new end point along with

their resources in the Resource Directory and keep an up-to-date representation of their registrations.

5.4 Implementation

5.4.1 Lambda Architecture

Based on the comparison done in Section 5.2.1, the Lambda architecture has been designed as the composition

of the following cloud computing components: Apache Kafka as the distributed queue; Apache Storm for

stream processing; Apache Hadoop for batch processing; and finally, Druid as the database for the serving

layer. Therefore, Apache Kafka is responsible for receiving all IoT data from the Smart Gateways, which

distributes the data stream to the real-time layer (Apache Storm) and the batch layer (Apache Hadoop). Real-

time and batch views are generated by Apache Storm and Apache Hadoop, respectively. Apache Hadoop

is also responsible for storing the master data. Finally, Druid unifies all pre-computed views with the last

up-to-date representation.

Managing and deploying these cloud computing components individually can lead to huge efforts of

maintenance and installation. To facilitate the management and deployment of these components, we have

used Apache Ambari. Apache Ambari is intended to make Apache Hadoop clusters management simpler

through an intuitive and easy-to-use management Web UI. Figure 5.5 shows a screenshot of the Apache Am-

bari management Web UI with the components of this Lambda architecture. Apache Ambari also monitors

the status of each component and displays some metrics in the dashboard, which facilitates the monitoring

of the components, otherwise it should be done individually. Note that Druid does not belong to the Hadoop

cluster and therefore is not available in Apache Ambari. However, Druid has been integrated as a new service
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Figure 5.5: Lambda architecture management with Apache Ambari

in Apache Ambari to be managed and deployed like the rest of components of the Lambda architecture.

Two Apache Kafka consumers have been implemented to consume the Kafka log in Apache Hadoop and

Storm. Whereas Apache Storm continually processes stream data and generates pre-computed views to the

serving layer, Apache Hadoop generates pre-computes views periodically. The application logic should be

the same in both the real-time and the batch layer.

5.4.2 Smart Gateway

As presented in Chapter 3, most of the Smart Gateway has been implemented in Python with the frameworks

Django (Web UI) and Wheezy Web (HTTP proxy).

Although there are various lightweight virtualisation technologies, Docker1 has been chosen for its com-

patibility with the target IoT Gateway e.g., Raspberry Pi2 and the REST API support, which will be integrated

into the Web UI. Containers will be fully managed with this API through an integration with the Web UI.

Moreover, the API also paves the way to third party integration to manage the Smart Gateways.

Thanks to the experience gained and good results obtained in Appdaptivity (Chapter 4), Node-RED has

been used for the edge logic development. A Websockets connection has been established between Node-

RED and the components in the Smart Gateway, obtaining a full duplex channel to receive data and actuate

over the IoT. As is true for Appdaptivity, application developers just need to focus on the application logic,

1https://www.docker.com/
2https://blog.hypriot.com/
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Figure 5.6: Edge computing framework web UI

while low-level aspects are managed by the framework. Figure 5.6 shows an overview of the framework for

the edge logic development. From the left-hand side, application developers can select nodes from the palette

to be part of the system, forming data flows as in Appdaptivity.

5.4.3 CoAP Middleware

The CoM has been extended from the solution in Chapter 3 to support new sensor libraries. Specifically,

libraries for supporting the TSL2561 light sensor, the CCS811 air quality sensor, the DHT22 humidity and

temperature sensor, the INA219 current sensor and a PIR sensor have been included. All of them have been

integrated into a portable solution with ZigBee communication (Figure 5.7b). Figures 5.7a and 5.7b show

the schematic and the integrated solution of the portable CoM. With the inclusion of the current sensor,

the energy consumption of the CoM can be observed, enabling the evaluation of the impact of the different

sensors deployed to the node in run-time.

5.5 Evaluation

In this section the λ-CoAP architecture is evaluated. The performance of the architecture has been evaluated

using different test scenarios. First, IoT traffic was generated from a developed data source (not in real

hardware) in order to generate multiple and high data rates without the need to use multiple hardware devices.

This scenario enables the Lambda architecture to be evaluated in larger deployments than those that could

be deployed in our research lab. Second, a real deployment with different IoT devices including the listed

sensors and communication has been deployed to evaluate the CoM in IoT devices.
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Figure 5.7: Portable solution with the listed sensors and communication. (a) Schematic of the

portable solution; (b) Portable solution integrated.

5.5.1 Lambda Architecture

The Lambda architecture has been deployed in the virtualisation infrastructure of the Ada Byron Research

Centre, at the University of Malaga. Specifically, 15 virtual machines have been deployed in VMware vCloud

with the following configuration:

• 4x Centos6 (x86 64) 6 OS, 8GB RAM, 2x core, 100GB harddisk

• 12x Centos6 (x86 64) 6 OS, 4GB RAM, 2x core, 100GB harddisk

Table 5.6 shows the components that comprise the Lambda Architecture. These components are respon-

sible for the batch and stream processing, in addition to consuming IoT data and storing the results. Note

that some components such as HDFS, MapReduce2 and YARN comprise Apache Hadoop, whereas other

components such as Apache ZooKeeper are required for the synchronisation and naming among other tasks

for the rest of components. In any case, all components are monitored and managed through Apache Ambari,

thereby they can be easily distributed or re-balanced when required.

The Lambda architecture has been evaluated through a developed client, which generated multiple data

records (a total of 5.000.000 records in each experiment) with different message sizes. The client was exe-

cuted in a Windows 7 PC with 8GB RAM, with an Intel core i7-4790 with 4 cores, and 1GB Ethernet, in the

research building where the Lambda architecture is deployed. This experiment aims to evaluate the Lambda

architecture with a high stress, and show the impact of the message size on its performance. Figures 5.8 and

5.9 show the throughput obtained in terms of bandwidth (MB/s) and records per second, respectively. Re-

sults demonstrate that the bandwidth increases when the message size is higher. This is due to the overhead

of processing each message, which dominates the ingestion time in most messaging systems. On the other

hand, the number of records processed per second decreases with respect to the message size. As can be
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Table 5.6: Lambda Architecture configuration used in the Λ-CoAP architecture

Units Component Platform

1
NameNode

HDFS 2.7.1.2.3
SNameNode

3

DataNodes

NFSGateways

ZooKeeper Server
ZooKeeper 3.4.6.2.3

2 ZooKeeper Client

1

History Server
MapReduce 2.7.1.2.3

MapReduce2 Client

App Timeline Server

YARN 2.7.1.2.3
ResourceManager

YARN Client

2 NodeManager

1
DRPC Server

Storm 0.10.0
Storm UI Server

2 Nimbus

4 Supervisors

1
Metrics Collector

Ambari 2.1.2.1Ambari Server

15 Metrics Monitors

1

Broker Node

Druid 0.9.1

Coordinator Node

Historical Node

Overlord Node

Tranquility Server

2
Middleware Node

Kafka Broker Kafka 0.8.2.2.3

seen, the message size creates a dualism between bandwidth and records per second. Taking into account that

the average message size in the λ-CoAP architecture is 45 bytes, this configuration could manage 137725,87

records per second with a bandwidth of 5,91 MB/s. Therefore, the λ-CoAP architecture could be deployed

in a global scenario with this configuration.

Finally, Figure 5.10 shows the average latency in the communications with the different message sizes.

Likewise for the records per second, when the message size is higher, the latency has worse results. With the

average message size in the λ-CoAP architecture, a total of 1804, 34ms is obtained, a considerable latency,

especially for critical scenarios. In the edge layer we will see how this latency can be decreased.

Note that the total processing time of a final application has not been included, since it depends the

particularity of the application and the complexity of its algorithms. As future work an evaluation of this

architecture with multiple algorithms and IoT scenarios is planned.
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Figure 5.8: Ingestion throughput in the Lambda architecture: Record Size vs Throughput (MBs)
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Figure 5.9: Ingestion throughput in the Lambda architecture: Record Size vs Throughput (records)
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Figure 5.10: Average latency in the Lambda architecture with multiple message size

5.5.2 Smart Gateway

As mentioned, the Smart Gateways comprise the edge computing layer, enabling the edge logic development

through visual data flow programming. This evaluation aims to demonstrate the benefits of using the edge

architecture, and how the latency can be reduced in IoT-cloud communications. The evaluation of the Smart

Gateway has been performed on a Raspberry Pi 3 model B with Raspbian Stretch OS and equipped with an

SD card of 16GB. In a similar way as the evaluation of the Lambda Architecture, a client generated stream

data to evaluate the performance. In this case, due to the lower capabilities of the IoT device, a total of 5000

records (more than intended to be generated by a Smart Gateway) were generated in each test.

Figure 5.11 shows the latency results obtained and its comparison with the Lambda Architecture. As can

be seen, excluding the processing time, the ingestion time is mostly lower than for the Lambda Architecture

(95, 4% lower in the average CoM packet). Therefore, this architecture reduces the latency when IoT data is

generated and the bandwidth, a key challenge for the upcoming mobile networks. On the other hand, Figures

5.12 and 5.13 show the throughput results in terms of MB/s and Records/s respectively. In this case, the

Lambda Architecture has better throughput in both cases. Although, this was expected due to the higher

capabilities of the Lambda Architecture, this is not the goal of the edge layer, rather than reducing the latency

and the bandwidth. In some situations, like processing the whole historical data, the edge layer may not be

suitable, but critical response situations could benefit from its lower latency.
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Figure 5.11: Average latency: cloud vs edge
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Figure 5.12: Ingestion throughput (MBs): cloud vs edge
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Figure 5.13: Ingestion throughput (records): cloud vs edge

5.5.3 CoAP Middleware

In this case, the evaluation was performed with the CoM installed in different platforms: Arduino Mega 2560

and Moteino Mega with the solution configuration shown in Figure 5.7. As was pointed out in Chapter 3,

the power consumption in Arduino Mega 2560 was rather high, whereas Moteino Mega was chosen as an

alternative to alleviate this. The results concur with this assumption. Figure 5.14 shows the power consump-

tion of both platforms with the inclusion of the sensors listed in Section 5.4.3. As can be seen, the power

consumption in Moteino Mega is at least 40% lower in all the cases.

Figures 5.15a and 5.15b show the Flash and SRAM of the CoM sketch in Arduino Mega and Moteino

Mega respectively. As can be noted, there is a difference between the two platforms. Arduino Mega has

double the size of flash capacity, whereas Moteino Mega has double the size of SRAM capacity. The results

show that that the CoM can run comfortably in both platforms. The increase in consumption with respect

to the results obtained in Chapter 3 is due to the inclusion of new sensors and libraries, which decrease

the available memory. It should be pointed out that the SRAM is usually the most restricted part in the

development, especially when debugging is included, so Moteino Mega has a good design, increasing its

capacity. This along with its power consumption and its price (half that of Arduino Mega) establish Moteino

Mega as a good candidate for the CoM.
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Figure 5.14: Power consumption of the CoM in Arduino Mega 2560 and Moteino Mega with

different sensors

5.6 Challenges and Open Research Issues

Security and Privacy are key challenges in the deployment of IoT infrastructures. IoT devices are normally

associated with constrained devices, so they are more vulnerable to attacks and threats. On the other hand,

in many situations IoT systems use sensitive information like personal information or critical infrastructures,

thus privacy with devices, cloud and network are key aspects. Roman et al. [183] mentioned the importance of

security and privacy to push the IoT distributed approach into the real world. They enumerated the security

mechanisms that can be integrated in the IoT: protocol and network security that offer end-to-end secure

communication mechanisms; identity management to achieve authentication and authorisation to assure that

the data is produced by a certain entity and to restrict the access control; privacy over generated data; trust

between entities and users interaction and governance to support political decisions and stability; and fault

tolerance to prevent and to detect attacks. Lastly, and the most difficult to avoid are attack models in the

IoT such as denial of service, physical damage, eavesdropping, node capture to extract information and

controlling entities. Moreover, security and privacy are one of the main concerns in cloud adoption.

Ipv6. The Internet is the main component of the Internet of Things, and everyone knows its address-

able limitations in IPv4. Moreover, the adoption of technologies like CoAP, which allow interaction with

embedded devices directly from the Internet, and the continued growth of the latter over the coming years,

represent a greater effort to get rid of network address translation mechanisms and to address each thing or

service in the world with a unique IP address. IPv6 has been designed to solve this problem through an IP
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128 bit address, bringing with it several advantages such as a native integration with the Internet, end-to-end

connectivity and a compliance with open REST interfaces [184]. In order to adopt the IPv6 in the embed-

ded devices of the IoT, 6LoWPAN is a suitable specification. Nevertheless, at the present time there are

not very many commercial platforms that have implanted these specifications. With the adoption of IoT, we

are moving from networks with human initiated activities towards networks in which machine-to-human and

machine-to-machine communications will be more numerous and IPv6 will pave the way. Moreover, current

efforts to put IPv6 over Low Power Wide-Area Networks (LPWAN) will enable the use of 6LoWPAN in

current disrupting network technologies like Lora and Sigfox, and with the LPWAN Static Context Header

Compression (SCHC), the use of CoAP on them.

Context-Aware Computing. Context-Aware computing has gained in importance thanks to the growth

of the IoT and its potential in it. Context-Aware computing allows us to store context information linked to

sensor data allowing an easy and meaningful interpretation [185]. Moreover, the European Union identified

context awareness as an important research area for Context-Aware IoT computing [186]. Context-Aware

computing will furnish the IoT with new information that can be used for new applications and obtaining

better-founded knowledge. Context-Aware computing also reopens the original use of ontologies as sources

of knowledge, although its proper integration with cloud computing remains a pending issue.
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Figure 5.15: Memory footprint of the CoM in Arduino Mega 2560 and Moteino Mega
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6
On Blockchain and its Integration with the Internet

of Things

This chapter analyses the current challenges in Blockchain, and the challenges inherent in its integration

with the IoT. Blockchain is a revolutionary technology that can be integrated with the IoT to keep its data

reliable. The problem statement and research goals are defined in 6.1. Section 6.2 introduces the blockchain

technology and analyses its main challenges. In Section 6.3 IoT and Blockchain integration is addressed,

analysing the challenges that this integration involves. A state of the art in blockchain platforms for the IoT

is presented in Section 6.4. Lastly, an evaluation and comparison of the performance of different blockchain

components in an IoT device is performed in Section 6.5.
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6.1 Problem Statement and Research Goals

In many areas where an exhaustive traceability of assets during their life cycle is required by regulations, data

immutability becomes a key challenge. Concretely, European Union regulations require food producers to

trace and identify all raw materials used in the elaboration of their food products in addition to the final des-

tination of each of them. For example, in the case of a large food company with thousands of manufacturing

suppliers and millions of clients, the information needs to be digitised and its processing automated to com-

ply with regulation. One example of strong regulation in terms of traceability is the pork supply, regulated in

many countries. In this scenario, in addition to tracing the raw material used in pig feed and treatments and

the final destination of the pork, the transportation of the animals between factories must also be registered

by law.

These scenarios involve many participants, some of them still relying on non-automated information

handling methods. In the case of food contamination, which has been an important issue for the world

population’s health throughout history, information that is lost or difficult to find implies delays in the location

of the problem’s focus. This can also result in the public’s mistrust of the contaminated products and a large

decrease in their demand. According to the World Health Organisation, it is estimated that every year around

600 million people in the world suffer illness from eating contaminated food, of which 420,000 die from

the same cause [187]. So, missing or inaccessible information can affect food security and customer health.

In these kinds of scenarios the IoT has the potential to transform and revolutionise the industry and society,

digitising the knowledge so that it can be queried and controlled in real time. This technology can be used to

improve current processes in many areas such as cities, industry, health and transportation.

Apart of having the information available, it also has to be reliable. Keeping information reliable and

immutable during its life cycle is critical in these environments. One way to provide trustworthiness in

IoT data is through a distributed service trusted by all its participants that guarantees that the data remains

immutable. If all participants have the data and they have the means to verify that the data have not been

tampered with since the first definition, trustworthiness can be achieved. For instance, having a system that

guarantees data reliability would allow governments to share and securely transfer information with citizens.

This is exactly what Blockchain does. This new disruptive technology aims to revolutionise the way in which

we share and access information. However, due to its novelty, the integration with the IoT is not yet well

addressed. This contribution aims to analyse current challenges in the integration of the IoT and Blockchain,

the potential advantages of their combined and the way they can be integrated.

6.2 Blockchain

The problem of trust in information systems is extremely complex when no verification nor audit mechanisms

are provided, especially when they have to deal with sensitive information, such as economic transactions

with virtual currencies. In this context, Satoshi Nakamoto, in 2008 [188] presented two radical concepts that

have had a great repercussion. The first of these is Bitcoin, a virtual cryptocurrency that maintains its value

without support from any centralised authority or financial entity. Rather, the coin is held collectively and
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securely by a decentralised P2P network of actors that make up an auditable and verifiable network. The

second of the concepts, whose popularity has gone even further than the cryptocurrency itself, is Blockchain.

Blockchain is the mechanism that allows transactions to be verified by a group of unreliable actors. It

provides a distributed, immutable, transparent, secure and auditable ledger. The blockchain can be consulted

openly and fully, allowing access to all transactions that have occurred since the first transaction of the system,

and can be verified and collated by any entity at any time. The blockchain protocol structures information in

a chain of blocks, where each block stores a set of Bitcoin transactions performed at a given time. Blocks are

linked together by a reference to the previous block, forming a chain.

To support and operate with the blockchain, network peers have to provide, the following functionality:

routing, storage, wallet services and mining [189]. According to the functions they provide, different types of

nodes can be part of the network. Table 6.1 summarises the most common node types in the Bitcoin network.

Table 6.1: Bitcoin nodes and functionality

Wallet Storage Mining Routing

x x x x Bitcoin core

x x Full node

x x x Solo miner

x x Light wallet

The routing function is necessary to participate in the P2P network, this includes transaction and block

propagation. The storage function is responsible for keeping a copy of the chain in the node (the entire chain

for full nodes, and only a part of it for light nodes). Wallet services provide security keys that allow users to

order transactions, i.e., to operate with their Bitcoins. Finally the mining function is responsible for creating

new blocks by solving the proof of work. The nodes that perform the proof of work (or mining) are known

as miners, and they receive newly generated bitcoins, and fees, as a reward. The concept of proof of work

is one of the keys to enable trustless consensus in blockchain network. The proof of work consists of a

computationally intensive task that is necessary for the generation of blocks. This work must be complex to

solve and at the same time easily verifiable once completed.

Once a miner completes the proof of work, it publishes the new block in the network and the rest of

the network verifies its validity before adding it to the chain. Since the generation of blocks is carried

out concurrently in the network, the block chain may temporarily fork in different branches (produced by

different miners). This discrepancy is solved by considering that the longest branch of blocks is the one that

will be considered as valid. This, together with the intensive nature of the block generation process provides

a novel, distributed-trustless-consensus mechanism. It is very computationally expensive for a malicious

attacker to modify a block and corrupt the block chain since the rest of the trusted miners would outrun the

attacker in the block generation process and therefore the trusted branch of blocks will invalidate the one

generated by the attacker. In technical terms, in order for a manipulated block to be successfully added to

the chain, it would be necessary to solve the proof of work faster than the rest of the network, which is
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computationally too expensive- it requires having control of at least 51% of the computing resources in the

network. Due to the large computational capacity needed to modify the blockchain, the corruption of its

blocks is practically impossible. This means that, even if the participants are not completely honest about the

use of Bitcoin, a consensus is always reached in the network as long as most of the network is formed by

honest participants. The solution proposed by Nakamoto was a great revolution in the reliability of unreliable

actors in decentralised systems. More details about the blockchain architecture can be found in [188, 190].

Blockchain has also provided a technology where the concept of smart contract can be materialised.

In general terms, a smart contract refers to the computer protocols or programs that allow a contract to be

automatically executed/enforced taking into account a set of predefined conditions. For example, smart con-

tracts define the application logic that will be executed whenever a transaction takes place in the exchange

of cryptocurrency. In smart contracts, functions and conditions can be defined beyond the exchange of cryp-

tocurrencies, such as the validation of assets in a certain range of transactions with non-monetary elements,

which makes it a perfect component to expand blockchain technology to other areas. Ethereum [111] was

one of the pioneer Blockchains to include smart contracts. Today smart contracts have been included in the

majority of existing blockchain implementations, such as Hyperledger [191], a Blockchain designed for com-

panies that allows components to be deployed according to the needs of users (smart contracts, services or

consultations among others) with the support of large companies such as IBM, JP Morgan, Intel and BBVA.

All of this has contributed to the expansion of blockchain technology to a large number of areas where the

features offered by this technology are needed: reliability, immutability and auditability. In fact, Blockchain

is currently one of the top research topics of recent times, with more than 1.4 billion dollars invested by

startups alone in the first 9 months of 2016 according to PwC [192].

6.2.1 Challenges

Although the key idea of Blockchain is simple, its implementation poses a great number of challenges. This

Section introduces the main ones that its use brings about.

6.2.1.1 Storage Capacity and Scalability

Storage capacity and scalability have been deeply questioned in Blockchain. In this technology, the chain is

always growing, at a rate of 1MB per block every 10 minutes in Bitcoin, and there are copies stored among

nodes in the network. Although only full nodes (a node that can fully validate transactions and blocks)

store the full chain, storage requirements are significant. As the size grows, nodes require more and more

resources, thus reducing the system’s capacity scale. In addition, an oversized chain has negative effects on

performance, for instance, it increases synchronisation time for new users.

Transaction validation is a key component of the distributed consensus protocol as nodes in the blockchain

network are expected to validate each transaction of each block. The number of transactions in a block and

the time between blocks, modulate the computational power required and this has a direct effect on transac-

tion confirmation times. Hence, the consensus protocol has a direct effect on the scalability of blockchain
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networks.

Taking into account the trust model of Bitcoin and its scalability limitations, Bitcoin-NG [193] proposes

a new Byzantine-fault-tolerant blockchain protocol which improves the consensus latency with respect to

Bitcoin. Litecoin [67] is technically identical to Bitcoin, but features faster transaction confirmation times

and improved storage efficiency thanks to the reduction of the block generation time and the proof of work,

which is based on scrypt, a memory intensive password-based key derivation function. GHOST [194] is

also intended to improve the scalability of Bitcoin by changing its chain selection rule. Off-chain solutions

[195] are intended to perform transactions off the chain, increasing the bandwidth at the same time as it

increases the probability of losing data. Another proposal suggests reducing the propagation delay in the

Bitcoin protocol [196], however it can compromise the security of the network. Rather than increasing

the scalability on blockchain, BigchainDB [197] adds blockchain characteristics to a big data distributed

database. BigchainDB combines the high throughput and low latency characteristics of big data distributed

databases with the immutability and decentralised system of Blockchain. Another important development is

the Inter Planetary File System (IPFS) [198]. IPFS is a protocol designed to store decentralised and shared

files enabling a P2P distributed file system to make the web safer, faster and more open. IPFS is intended to

increase the efficiency of the web at the same time as it removes duplication and tracks version history for

each file.

6.2.1.2 Security: Weaknesses and Threats

The Bitcoin protocol has been thoroughly analysed [199], and various vulnerabilities and security threats have

been discovered. The most common attack is the 51% attack or majority attack [200]. This attack can occur

if a blockchain participant is able to control more than 51% of the mining power. In this situation he/she

can control the consensus in the network. The boom and fast evolution of mining pools (with GHash.io4

temporarily reaching 51% of the Bitcoin mining power in 2014), has increased the probability of this attack

happening, which in turn could compromise the integrity of Bitcoin. In addition, the authors in [201] discuss

the possibility of reaching a majority of mining power through bribery. The solo mining incentive or P2P

mining would help to alleviate this problem. Many other consensus mechanisms proposed for blockchains

are also susceptible to majority attacks, especially those that centralise the consensus among a limited number

of users.

The double-spend attack consists in spending the same coin twice [202]. In Bitcoin a transaction should

be considered confirmed only after the block where the transaction is stored has a certain depth in the

blockchain, typically 5 or 6. This takes between 20 and 40 minutes on average [203]. There is a large

variance in the confirmation time since it depends on many factors. In fast payment scenarios the trader

cannot afford this wait. Therefore, in these scenarios, double-spend attacks are still possible.

Similarly, race attacks can work in these scenarios. To carry out this attack the user sends a transaction

directly to the merchant, who accepts the transaction too quickly. Then the user sends multiple conflicting

transactions to the network transferring the coins of the payment to himself. The second transaction is more

likely to be confirmed, and the merchant is cheated. Similarly, the Finney [204] attack is a more sophisticated
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double spend, since it requires the participation of a miner.

The well-known attacks Denial of Service (DoS), man in the middle or Sybil can also obstruct the network

operation. Most P2P protocols and IoT infrastructures are vulnerable to these kinds of attacks, since they

strongly rely on communications. In the eclipse attack [205], attackers can monopolise a node’s connections,

isolating it from the rest of the network and altering the view of the network for this node.

Code updates and optimisation in blockchain networks are usually supported by part of the cryptocur-

rency community and are intended to improve their underlying protocols. These improvements are known as

soft and hard forks in blockchain terminology. On the one hand, soft forks provide an update of the software

protocol that recognises backward-compatibility with the previous blocks. This requires an upgrading of the

majority of the miners to the new software. However, upgraded functionality can also be rejected by the

majority of the nodes keeping to the old rules. On the other hand, hard forks bring a radical change to the

protocol, with no compatibility with previous blocks and transactions. Consequently, all the nodes have to

upgrade to the latest update, and nodes with older versions will no longer be accepted. The community can

be divided when a hard fork happens, resulting in two different forks of the network. Hard forks can also be

cancelled if they have not built sufficient consensus like SegWit2x [206]. Noted examples of that division

are Ethereum and Ethereum Classic; and Bitcoin, Bitcoin Cash and Bitcoin Gold. The aforementioned hard

forks have progressed at the same time as the original networks and nowadays they are competing with each

other. Nodes and users have to decide on a version, and the fork continuity will depend on these decisions.

Hence forks, especially hard ones, can divide the community into two completely different blockchains and

this can represent a risk to the blockchain users.

A common problem of virtual currencies, beyond the controversy surrounding their real value, is the

problem of coin loss. If the wallet key is forgotten, there is no mechanism to operate with these coins. It has

been estimated that 30% of bitcoins are lost.

Finally, quantum computing could be seen as a threat to Bitcoin, since the computing power of these

computers could break the security of digital signatures. Furthermore, technology progresses over time and

every day new bugs and security breaches are discovered. These improvements and bugs can compromise

public blockchains with encrypted data since blockchain data is immutable.

6.2.1.3 Anonymity and Data Privacy

Privacy is not enforced in the Bitcoin protocol by design. A key feature of Bitcoin is its transparency. In

Blockchain each transaction can be checked, audited and traced from the system’s very first transaction.

This is indeed an unheard of new level of transparency that doubtlessly helps to build trust. However this

transparency has a knock-on effect on privacy, even though there is no direct relationship between wallets and

individuals, user anonymity seems to be compromised despite the mechanisms that Bitcoin provides, such as

pseudonymous and the use of multiple wallets. In this sense, some effort has been made to provide stronger

anonymity features in Bitcoin. On the other hand not just open virtual currencies, but many applications

based on public blockchain technology require a higher level of privacy in the chain, specifically those that

deal with sensitive data.

116



6.2. BLOCKCHAIN

Popular attempts to tackle the anonymity problem in Bitcoin are Zerocash [207] and Zerocoin [208]

which propose that Bitcoin extensions have completely anonymous transactions, hiding the sender, the re-

ceiver and the information itself. Monero [74] uses a ring of signatures to make transactions untraceable, so

that they cannot be easily traced back to any given person or computer.

Similarly, transaction mixing services or tumblers, provided by Bitcoin Fog [209] and Bit Laundry can

increase the anonymity. These services break up transactions into smaller payments and schedule them to

obfuscate transactions for a fee. However, these kinds of services are said to be prone to theft. Likewise,

the coin-mixing approach, originally proposed in CoinJoin [210] helps to anonymise Bitcoin. The idea is

that users agree on joint payments, so that it can no longer be assumed that transaction inputs are from

the same wallet. However the previous negotiation required between users, typically performed by mixing

servers, could lack the required anonymity depending on the implementation. Later, this approach inspired

Dark Wallet [211], a browser plugin that allows completely private anonymous Bitcoin transactions; Dash

[73], known as the first cryptocurrency focused on anonymity and privacy; MixCoin [212], that adds cryp-

tographic accountability mechanisms and randomised mixing fees to increase security; CoinShuffle [213]

that proposes a modification of CoinJoin in order to increase security; CoinSwap [214] that proposes a four-

transactions mechanism based on the inclusion of intermediaries that receive coins and make the payment

with unconnected coins; and Blindcoin [215] that increases the anonymity of the mixing server. In gen-

eral, these attempts to increase anonymity in Bitcoin typically embrace the idea of maintaining a deregulated

Bitcoin, and are therefore usually accused of encouraging illicit activities, such as the acquisition of illegal

products on the Darknet or money laundering.

In order to increase privacy, data in the blockchain can be encrypted. Hawk [216] stores encrypted

transactions. The Hawk compiler is responsible for translating the generic code written by programmers into

cryptographic primitives that enable information anonymity in transactions. The Enigma project [217], in

addition to encryption, splits data into unrecognisable chunks and distributes them through the network, in a

way that no node ever has access to the data. It uses a decentralised off-chain distributed hash-table (DHT)

accessible through the blockchain to store data references.

The problem of privacy in private blockchains can be tackled differently, since by definition they must

provide authentication and authorisation mechanisms. However, even inside a private blockchain, participants

want to preserve the privacy of their data. Quorum [218] for instance, is a private permissioned blockchain

based on Ethereum that uses cryptography to limit the visibility of sensitive data and segmentation to increase

privacy of data. Multichain [219] integrates user permissions to limit visibility and to introduce controls over

which transactions are allowed and which users can mine. Rockchain [220] is also based on Ethereum and

follows a data-centric approach, where public calculations can be performed on private data and accumulative

results can be obtained preserving data privacy. This approach offers a distributed file system that allows

users to manage data privacy through smart contracts in Ethereum. Hyperledger Fabric [191] provides a

distributed and scalable ledger focused on enterprise environments. To provide blockchain networks with

privacy control, Hyperledger Fabric provides an identity control service and access control lists through

private channels where users can control and restrict the access to their shared information in the network.
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Thanks to this mechanism, members of the network know each other through their public identities, but they

do not have to know the information that it is shared in the network.

Another approach to tackle data privacy is to store sensitive data outside the chain, commonly referred

to as the off-chain solution [221]. This kind of solution favours systems that manage large amounts of data,

since it would be impractical to store them inside the blockchain. In addition, they are particularly suitable

for systems that deal with highly sensitive data that should have a tighter access control, such as health care

applications. In this way the public blockchain can be used to store anchor data, so that proof to verify the

integrity and time stamps of data is available. Users can verify data without relying on authorities, just by

checking the blockchain, and data are safely stored outside. Obviously, these off-chain sources must be fault

tolerant and should not introduce bottlenecks or single points of failure. In [222] the authors propose using

a Kademlia, a well-known DHT to store key-value pairs (user identities and permissions) to access, control

and storage data. In [223] a pointer and a hash to validate the data obtained are stored in the chain. In this

way, the data in the chain are links to the private data, and the hash is the mechanism that verifies that the

information obtained has not been altered. Access control mechanisms for off-chain sources are provided to

ensure that only authorised parties can access the information. The information can therefore be obtained

from external sources in a secure and verified way with blockchain.

6.2.1.4 Smart Contracts

In 1993, Nick Szabo defined the smart contract as “a computerised transaction protocol that executes the

terms of a contract”. One of the key features of a smart contract is that it has a way to enforce or self-

execute contractual clauses. Until the emergence of blockchain technology, this was technologically unviable.

Blockchain has turned out to be the ideal technology to support smart contracts. In addition, smart contracts

have contributed significantly to the momentum of Blockchain, moreover this coupling has led to a second

generation of blockchains, commonly known as Blockchain 2.0. The combination of automatically executed

contracts in a trusted environment without centralised control promises to change the way current business is

done.

Basically, the smart contract code is stored on the blockchain, and each contract is identified by a unique

address, and for users to operate with it, they just send a transaction to this address. The correct execution of

the contract is enforced by the blockchain consensus protocol. Smart contracts introduce a set of advantages

such as cost reduction, speed, precision, efficiency, and transparency that have fostered the appearance of

many new applications in a wide variety of areas. Although Bitcoin offers a basic scripting language, it has

turned out to be insufficient, which has led to the emergence of new blockchain platforms with integrated

smart contract functionality.

The most prominent smart contract blockchain platform is Ethereum [111]. Ethereum is a blockchain

with a built-in Turing-complete programming language, that allows the definition of smart contracts and

decentralised applications. The code in Ethereum’s contracts is written in “Ethereum virtual machine code”,

a low-level, stack-based bytecode language.

Frequently, financial smart contracts require access to data about real-world states and events. This data
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is provided by the so-called oracles. These entities are crucial for the successful integration of smart contracts

within the real world, but they also create more complexity, since authentication, security and trust in oracles

have to be provided [224].

The advantages of smart contracts do not come without cost, as they are vulnerable to a series of attacks

[225, 226, 227] that bring new exciting challenges. Delegating contract execution to computers brings with

it some problems, since it makes them vulnerable to technical issues such as hacking, bugs, viruses or com-

munication failures. Bugs in contract coding are especially critical because of the irreversibly and immutable

nature of the system. Mechanisms to verify and guarantee the correct operation of smart contracts are neces-

sary for them to be widely and safety adopted by clients and providers. The formal validation of the contract

logic, and its correctness are research areas where contributions are expected to be made in the years to come

[228].

In addition, real-life contracts usually have clauses or conditions that are not quantifiable. In this sense,

there is still a lot of work to be done in order to model the conditions of the contracts in smart contracts, so

that they are representable and quantifiable for a machine to execute them. Additionally, efforts to provide

tools for users to be able to specify and understand smart contracts are needed [229].

6.2.1.5 Legal issues

The absence of a central authority, the non-existent minting entity, and therefore the total dearth of censorship

in Bitcoin is an attractive and at the same time dangerous peculiarity. Bitcoin users are commonly accused of

using the network for fraudulent purposes, and thus the technology is suspected of promoting or facilitating

illegal conduct. Bitcoin, as the first decentralised cryptocurrency has generated a lot of dispute [230]. On

the one hand, with regard to its value, some experts claim it is a fraud [231] and that it will totally collapse

[232], while at the same time others estimate that its value will reach 100.000 dollars in 10 years [233]. The

European Central Bank, has warned of its volatility risk but have also admitted its potential as a financial

innovation [234]. However, with regard to the lack of governance, many countries are developing new laws

in an attempt to regulate the use of virtual currencies. A map of Bitcoin regulation status is available at [235].

This situation creates a lot of uncertainty, and seems to be the reason behind its recent fall [236].

Banks and governments will have their say as to whether or not the currency becomes legal tender. Legal

implications in the context of currencies is an important concern, as they can directly and negatively affect

blockchain applications based on that currency.

Many private and permissioned blockchain applications have recently emerged. These are blockchains

that grant write permissions to a predefined peer or set of peers. This can bring some benefits to authorisation

and authentication mechanisms, for instance key recovery or transaction redemption, and can also contribute

to simplifying the problem of privacy and to reducing transaction latency. In fact, interesting market oppor-

tunities have arisen in insurance coverage for Bitcoins that would no longer be necessary if the authorities

handled this responsibility. The threat of mining pools controlling the network, together with other vulnera-

bilities, favours the development of such blockchains, and governments are obviously interested in a regulated

and controlled use of this technology in many applications. However, this means that the trustless network
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will regress to a third-party trust network, losing part of its essence. In addition, this can potentially cre-

ate bottlenecks if solutions include centralised entities. The features of these blockchains are closer to the

features of distributed databases.

On the other hand, the key to increasing confidence in this technology could be the involvement of gov-

ernments and/or large consortium of companies in their development. Ongoing initiatives in this direction

will be helpful [237, 238]. Currently, personal information is distributed among different entities: govern-

ment, universities, companies and so on. The information is spread across many entities and accessing it is

time consuming, even when said entities answer to the same authority, e.g., the government. This leads to

obstacles in accessing information in addition to a lack of a trustworthy service that guarantees the informa-

tion. A trustworthy and global identity service with the information of each person would be disruptive at the

present time. Nevertheless, each country has its own laws and regulations.

Initiatives such as Alastria [239] aim to involve multiple entities in the development of a national reg-

ulated blockchain, from public notaries to universities and private companies. They plan to enable a public

and legal wallet for each person. Companies can also be part of the network. Therefore, each personal wallet

could be a digital proof of possessions, companies where he/she has worked, college degrees and so on. This

information could be used in a legal and trustworthy way for many services. For instance, in the case of a

job interview, candidates could share their college degrees and work experience information with the inter-

viewers. This information is reliable and verifiable by definition. These initiatives are the key to expanding

blockchain inside government institutions, and the first step in creating a common and regulatory framework

for blockchain systems. Moreover, this could also facilitate the administrative transactions of the population

to obtain their information, the data transfer between countries, the reduction of corrupt information and a

seamless integration between population, companies, government and universities. However, this also brings

about an easy way to obtain highly private information, so the privacy and security considered in the rest of

the work should necessarily go hand in hand with these initiatives.

6.2.1.6 Consensus

Consensus mechanisms [240, 241, 242] are responsible for the integrity of the information contained in

blockchain, while defending against double-spend attacks, and therefore are an essential part of blockchain

technology. The final goal is to achieve consensus in a distributed network without central authorities and

with participants who do not necessarily trust each other.

The consensus based on the proof of work (PoW), which has worked so successfully in Bitcoin, forces

miners to solve a computationally-intensive easily-verifiable task in order to create a new block. Once solved,

the solution is published and the new block is added to the chain. The new block is spread across the

network and the rest of the participants verify it and append it to its local blockchain copy. This process

can simultaneously occur in different parts of the network. This is why the chain is in fact a tree. There are

several, valid branches existing simultaneously in the blockchain network. When peers append a new block,

they also have to check that the branch is the one with the most accumulated work (difficulty), that is, the

longest chain which is assumed to be the valid one. This allows consensus to be achieved quickly. A key
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drawback is that PoW makes Bitcoin dependent on energy consumption. The aforementioned 51% attack is

a potential attack on the Bitcoin protocol. Additionally, the incentives in PoW are unexpectedly promoting

centralisation as the proliferation of mining pools confirm. This together with the mint reduction, reward

diminution and fee increase could compromise the system [243] in the future. Certainly, PoW has certain

drawbacks such as high latency, low transaction rates and high energy expenditure that makes it unsuitable

for many applications. As stated, the latency, or block frequency of 10 minutes may also be impractical in

many scenarios. Despite this, some platforms do use or have adapted PoW, such as NameCoin, LiteCoin,

Ethereum, DogeCoin and Monero. Primecoin, for instance, mitigates the energy loss by proposing useful

computationally-intensive tasks, such as the prime numbers search that can have applications alongside.

Not surprisingly many attempts to change PoW have recently been proposed, probably underestimating

the complexity that this change implies, nevertheless it is not clear if they expose the security properties in

the same way as PoW. The most popular alternative approach to consensus in Blockchain is the Proof of

Stake (PoS). It is based on the fact that those users who own more coins, are more interested in the survival

and the correct functioning of the system, and therefore are the most suitable to carry the responsibility of

protecting the system. Basically, the idea behind using PoS is to move the opportunity costs from outside the

system to inside the system. The algorithm randomly determines the user responsible for the creation of each

block, based on the number of coins he/she owns. A common critique is that this approach does not provide

incentives for nodes to vote on the correct block (known as the nothing-at-stake problem). Additionally, it is

negative in the sense that it promotes enrichment of the rich. PoS was originally used by Peercoin and later in

Nextcoin, Nxt [68], Crave and Ethereum. A variant of PoS is the Delegate PoS (DPoS) of BitShares, Monax,

Lisk or Tendermint. In BitShares [70], a number of selected witnesses validate signatures and time stamps

of transactions by including them in blocks. The election is performed by voting, and each time a witness

successfully produces a block it is rewarded. This approach allows delegates to set the block latency, block

size and confirm transactions in just a second.

The Leased Proof of Stake allows users to lease funds to other nodes, so that they are more likely to

be selected for block creation, increasing the number of electable participants, and therefore reducing the

probability of the network being controlled by a single group of nodes. Rewards are proportionally shared.

The Proof of Burn (PoB) [244] proposes burning coins, that is, sending them to a verifiable unspendable

address, in order to publish a new block. Like PoW, PoB, is hard to do and easy to verify, but in contrast

requires no energy consumption. In addition, PoB has some economic implications that contribute to a more

stable ecosystem.

Nem’s [245] approach to consensus, called Proof of Importance, associates an importance value with

each account, in this way building a reputation system in the network. The chance of being chosen to create a

block depends on this value, the computation of it also takes into account the number of coins and the number

of transactions performed. In other words, productive network activity is also rewarded, not just the amount,

promoting the useful behaviour of the users.

Other extended variants are the activity test (PoA), a hybrid approach that combines both PoW and PoS,

and the Elapsed Time Test developed by IBM that uses a random choice of manager to mine each block based
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on runtimes within reliable execution environments. The Proof of Capacity [246], also known as proof of

storage or space, uses available hard drive space instead of computing resources. This approach is used in

Permacoin, SpaceMint and Burstcoin.

Private blockchains have specific features, since the number of participants is usually lower than pub-

lic blockchains and are semi-reliable. They are usually registered in the system with a predefined set of

permissions. These systems, therefore, require specific consensus mechanisms that fit these characteristics.

Some of these alternative mechanisms are Paxos [247], developed by Lamport and Microsoft based on

state machine replication; Chubby [248], based on the former and developed by Google, which is defined as

a distributed blocking service. These approaches have the advantage that they are adaptations of formal algo-

rithms, and therefore their features have been formally proved. RAFT [249] which separates key elements of

consensus such as choice of leaders, record replication and security, and forces a greater degree of consistency

to reduce the number of states that need to be considered. The Practical Byzantine Fault Tolerance (PBFT)

algorithm, which is based on state machine replication and replicate voting for consensus on state change, is

used in Hyperledger and Multichain. SIEVE [250], treats the blockchain as a black box, executing operations

and comparing the output of each replica. If there are divergences between the replicas, the operation is not

validated. Another variant of the PBFT is the Byzantine agreement Federated Byzantine Agreement (FBA).

In FBA each participant maintains a list of trusted participants and waits for these participants to agree on

a transaction before being considered liquidated. It is used in Ripple [66]. Stellar [251] is another variant

that employs the quorum and partial quorum concept. The quorum is a set of nodes, enough to reach an

agreement, the partial quorum is a subset of a quorum with the ability to convince another given node about

the agreement. HDAC [252] is a system, currently being implemented, which proposes an IoT Contract &

M2M Transaction Platform based on Multichain. HDAC is specially tailored to IoT environments. It uses

the ePow consensus algorithm whose main goals are to motivate the participation of multiple mining nodes

and to prevent excessive energy waste.

Finally, the HC Consensus, proposed in Hydrachain, is based on a list of validators of which no more

than one-third are unreliable.

To sum up, consensus mechanisms in public blockchains have been widely proposed but poorly, formally

proved. It is mandatory to understand the guarantees they offer and their vulnerabilities prior to using them

[253]. In this sense, the research community together with the industry have to work towards the validation of

these mechanisms in order to demonstrate their legitimacy. To the contrary, private blockchains have adopted

formal well-known solutions, but the limited list of participants in these blockchains also limit the diversity

and potential of applications.

6.3 IoT and Blockchain Integration

The IoT is transforming and optimising manual processes to make them part of the digital era, obtaining vol-

umes of data that provides knowledge at unheard of levels. This knowledge is facilitating the development of

smart applications such as the improvement of the management and the quality of life of citizens through the
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digitisation of services in the cities. Over the last few years, cloud computing technologies have contributed

to providing the IoT with the necessary functionality to analyse and process information and turn it into

real-time actions and knowledge [2]. This unprecedented growth in the IoT has opened up new community

opportunities such as mechanisms to access and share information. The open data paradigm is the flagship

in these initiatives. However, one of the most important vulnerabilities of these initiatives, as has occurred in

many scenarios, is the lack of confidence. Centralised architectures like the one used in cloud computing have

significantly contributed to the development of IoT. However, regarding data transparency they act as black

boxes and network participants do not have a clear vision of where and how the information they provide is

going to be used.

The integration of promising technologies like IoT and cloud computing has proven to be invaluable

(Chapter 5). Likewise, we acknowledge the huge potential of Blockchain in revolutionising the IoT. Blockchain

can enrich the IoT by providing a trusted sharing service, where information is reliable and can be traceable.

Data sources can be identified at any time and data remains immutable over time, increasing its security. In

the cases where the IoT information should be securely shared between many participants this integration

would represent a key revolution. For instance, an exhaustive traceability in multiple food products is a key

aspect to ensure food safety. Food traceability could require the involvement of many participants: manufac-

turing, feeding, treatment, distribution, and so on. A data leak in any part of the chain could lead to fraud and

slow down the processes of the search for infection which can seriously affect citizen’s lives and incur huge

economic costs to companies, sectors and countries in the case of a foodborne outbreak [254]. A better con-

trol in these areas would increase food safety, improving the data sharing between participants and reducing

the search time in the case of a foodborne outbreak, which can save human lives. Moreover, in other areas

such as smart cities and smart cars, sharing reliable data could favour the inclusion of new participants in the

ecosystems and contribute to improve their services and their adoption. Therefore, the use of Blockchain can

complement the IoT with reliable and secure information. This has started to be recognised as mentioned

in [255], where blockchain technology is identified as the key to solve scalability, privacy, and reliability

problems related to the IoT paradigm.

From our point of view the IoT can greatly benefit from the functionality provided by Blockchain and

will help to further develop current IoT technologies. It is worth noting that there are still a great number of

research challenges and open issues that have to be studied in order to seamlessly use these two technologies

together and this research topic is still in a preliminary stage.

More specifically, improvements that this integration can bring include (but are not limited to):

• decentralisation and scalability: the shift from a centralised architecture to a P2P distributed one

will remove central points of failures and bottlenecks [112]. It will also help prevent scenarios where

a few powerful companies control the processing and storage of the information of a huge number of

people. Other benefits that come with the decentralisation of the architecture are an improvement of

the fault tolerance and system scalability. It would reduce the IoT silos, and additionally contribute to

improving the IoT scalability.

• identity: using a common blockchain system participants are able to identify every single device. Data
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provided and fed into the system is immutable and uniquely identifies actual data that was provided

by a device. Additionally, Blockchain can provide trusted distributed authentication and authorisation

of devices for IoT applications [256]. This would represent an improvement in the IoT field and its

participants.

• autonomy: blockchain technology empowers next-gen application features, making possible the de-

velopment of smart autonomous assets and hardware as a service [118, 257]. With Blockchain, devices

are capable of interacting with each other without the involvement of any servers. IoT applications

could benefit from this functionality to provide device-agnostic and decoupled-applications.

• reliability: IoT information can remain immutable and distributed over time in Blockchain [116].

Participants of the system are capable of verifying the authenticity of the data and have the certainty

that they have not been tampered with. Moreover, the technology enables sensor data traceability and

accountability. Reliability is the key aspect of Blockchain to bring in the IoT.

• security: information and communications can be secured if they are stored as transactions of the

blockchain [100]. Blockchain can treat device message exchanges as transactions, validated by smart

contracts, in this way securing communications between devices. Current secure standard-protocols

used in the IoT can be optimised with the application of Blockchain [258].

• market of services: blockchain can accelerate the creation of an IoT ecosystem of services and data

marketplaces, where transactions between peers are possible without authorities. Microservices can

be easily deployed and micro-payments can be safety made in a trustless environment [108, 109, 110].

It would improve IoT interconnection and the access of IoT data in blockchain.

• secure code deployment: taking advantage of blockchain secure-immutable storage, code can be

safety and securely pushed into devices [112, 259]. Manufacturers can track states and updates with the

highest confidence [100]. IoT middlewares can use this functionality to securely update IoT devices.

Figure 6.1: Blockchain IoT interactions

Another aspect to take into account is related to the IoT interactions, i.e., the communication between the

underlying IoT infrastructure. When integrating Blockchain, it needs to be decided where these interactions
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will take place: inside the IoT, a hybrid design involving IoT and Blockchain, or through Blockchain. Fog

computing [260] has also revolutionised the IoT with the inclusion of a new layer between cloud computing

and IoT devices and could also facilitate this integration. Below, these alternatives (shown in Figure 6.1) are

described together with their advantages and disadvantages:

• IoT-IoT: this approach could be the fastest one in terms of latency, and security since it can work

offline. IoT devices have to be able to communicate with each other, which usually involves discovery

and routing mechanisms. Only a part of IoT data is stored in Blockchain whereas the IoT interactions

take place without using the blockchain (Figure 6.1.a). This approach would be useful in scenarios

with reliable IoT data where the IoT interactions are taking place with low latency.

• IoT-Blockchain: in this approach all the interactions go through Blockchain, enabling an immutable

record of interactions. This approach ensures that all the chosen interactions are traceable as their

details can be queried in the blockchain, and moreover it increases the autonomy of IoT devices.

IoT applications that intend to trade or rent such as Slock.it can leverage this approach to provide

their services. Nevertheless, recording all the interactions in Blockchain would involve an increase in

bandwidth and data, which is one of the well-known challenges in Blockchain (Figure 6.1.b). On the

other hand, all IoT data associated with these transactions should also be stored in Blockchain.

• Hybrid approach: lastly, a hybrid design where only part of the interactions and data take place in

the Blockchain and the rest are directly shared between the IoT devices. One of the challenges in this

approach is choosing which interactions should go through the Blockchain and providing the way to

decide this in run time. A perfect orchestration of this approach would be the best way to integrate both

technologies since it leverages the benefits of Blockchain and the benefits of real-time IoT interactions.

In this approach fog computing could come into play and even cloud computing, to complement the

limitations of Blockchain and the IoT. For example, fog computing involves fewer computationally-

limited devices such as gateways and it is a potential place where mining can take place in the same

way as other initiatives that use IoT devices [261, 262] (Figure 6.1.c).

In a typical IoT deployment, limited-resource devices are used as end nodes that communicate with a

gateway that is responsible for forwarding sensor data to upper layers (cloud or server). When integrating

Blockchain, if end nodes have to interact with the blockchain, cryptographic functionality could be provided

in IoT devices. This is key to realise IoT autonomy, which comes at a cost of a more sophisticated hardware

and higher computational expense (in Section 6.5 an evaluation of the cost of using Blockchain in IoT de-

vices is presented). Integrating gateways in these solutions is also plausible, in the same way as traditional

deployments do, however the benefits of using Blockchain in this way are fewer. Despite the expansion of

Blockchain, it would make no sense to use it in many applications, where databases provide enough function-

ality. Deciding when it is worth using a blockchain will mainly depend on the requirements of the application.

For instance, when high performance is required, Blockchain alone may not be the right solution, but a hy-

brid approach could be applied to optimise it. In [263] the authors present a methodology to identify whether
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a blockchain is useful depending on problem requirements. Next we focus on how this can be technically

achieved for IoT devices.

Alliances between well-known companies have started to appear, like the Trusted IoT Alliance [238],

to bridge the gap between the IoT and Blockchain. Also there are an increasing number of devices with

integrated blockchain capabilities available on the market such as [261, 262, 264]. EthEmbedded [261]

enables the installation of Ethereum full nodes on embedded devices such as Raspberry Pi, Beaglebone

Black and Odroid. Raspnode [262] and Ethraspbian [265] both support the installation of Bitcoin, Ethereum

and Litecoin full nodes on a Raspberry Pi. Antrouter R1-LTC [264] is a Wi-Fi router that also enables mining

Litecoin. Therefore, this type of router could be installed in smart homes and be part of a fog computing

ecosystem. Raspnode also enables wallet support for Bitcoin and Litecoin. As stated by Raspnode, mining

can be done on IoT devices, but it would be useless. Mining has become a specialised task for certain

hardware (ASIC chips) and it is useless to try it on IoT devices. That is the main reason why there is little

work on mining for IoT devices. There is still a lot of research to be done for enabling a wide integration of

IoT devices as blockchain components. Table 6.2 shows a summary of the surveyed IoT devices to be used

as part of blockchain platforms.

Full nodes must store the entire blockchain (currently more than 150 and 46 GB in Bitcoin and Ethereum,

respectively) for a full validation of transactions and blocks, thus their deployment can be very limited in IoT

devices. As stated, mining would be useless in the IoT due to its specific requirements. The consensus pro-

tocol could be relaxed to facilitate the inclusion of IoT devices, however this could compromise the security

of the blockchain implementation. This could be used in consortium blockchains where consensus protocols

are relaxed. In the deployment of lightweight nodes the authenticity of the transactions is validated without

having to download the entire blockchain, therefore they can contribute to the blockchain and are easy to

run and maintain in IoT devices. These nodes can be used in the IoT to be part of the blockchain network,

reducing the gap between the two technologies. This always has to be backed up with full nodes to validate

transactions and blocks. Nevertheless, many blockchains do not yet provide support for lightweight nodes as

is the case of Ethereum, which it is under development. In any case, Blockchain could be used as an external

service to provide a secure and reliable storage.

One clear alternative to the integration of Blockchain with the IoT is the integration between the IoT

and cloud computing (Chapter 5). This integration has been used in the last few years to overcome the IoT

limitations of: processing, storage and access. However, cloud computing usually provides a centralised

architecture, which in contrast to Blockchain, complicates reliable sharing with many participants. The inte-

gration between Blockchain and the IoT is intended to address previous limitations in addition to maintaining

reliable data. Fog computing aims to distribute and bring the computing closer to end devices, following

a distributed approach like Blockchain. This can incorporate more powerful devices than the IoT such as

gateways and edge nodes, which can then be reused as blockchain components. Therefore, fog computing

could ease the integration of the IoT with Blockchain.
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Table 6.2: IoT devices to be used as blockchain components

Source IoT device Mode Blockchain

EthEmbedded

Raspberry Pi

full node
Ethereum

BeagleBone Black

Odroid XU3/XU4

Wandboard

Ethcore Parity

Ethraspbian

Raspberry Pi
Raspnode

Bitcoin

light node

Litecoinfull node

Bitmain Antrouter R1-LTC miner

6.3.1 Challenges in Blockchain-IoT Integration

This Section studies the main challenges to be addressed when applying blockchain technology to the IoT

domain. The integration of blockchain technology with the IoT is not trivial. Blockchain was designed for

an Internet scenario with powerful computers, and this is far from the IoT reality. Blockchain transactions

are digitally signed, and therefore devices capable of operating with the currency must be equipped with this

functionality. Incorporating blockchain into the IoT is challenging. Some of the identified challenges are

presented in this section.

6.3.1.1 Storage Capacity and Scalability

As stated, storage capacity and scalability of Blockchain are still under debate, but in the context of IoT

applications the inherent capacity and scalability limitations make these challenges much greater. In this

sense, Blockchain may appear to be unsuitable for IoT applications, however there are ways in which these

limitations could be alleviated or avoided altogether. In the IoT, where devices can generate gigabytes of

data in real time, this limitation represents a great barrier to its integration with Blockchain. It is known that

some current blockchain implementations can only process a few transactions per second, so this could be a

potential bottleneck for the IoT. Furthermore, Blockchain is not designed to store large amounts of data like

those produced in the IoT. An integration of these technologies should deal with these challenges.

Currently, a lot of IoT data are stored and only a limited part is useful for extracting knowledge and

generating actions. In the literature different techniques to filter, normalise and compress IoT data with the

aim of reducing them have been proposed. The IoT involves embedded devices, communication and target

services (Blockchain, cloud), thus savings in the amount of data that the IoT provides can benefit multiple
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layers. Data compression can lighten transmission, processing tasks and storage of the high volume of IoT

data generated. Normal behaviours do not usually require extra, necessary information, unlike anomalous

data.

Last but not least, Blockchain, and especially its consensus protocol which causes its bottleneck, could

also be adapted to increase the bandwidth and decrease the latency of its transactions thereby enabling a better

transition to the IoT as demonstrated by the case of Bitcoin-NG [193].

6.3.1.2 Security

IoT applications have to deal with security problems at different levels, but with an additional complexity due

to the lack of performance and high heterogeneity of devices. In addition, the IoT scenario comprises a set of

properties that affect security, such as mobility, wireless communication or scale. An exhaustive analysis of

security in IoT is beyond the scope of this work but detailed surveys can be found in [266, 183, 267, 268].

The increasing number of attacks on IoT networks, and their serious effects, make it even more necessary

to create an IoT with more sophisticated security. Many experts see Blockchain as a key technology to provide

the much needed security improvements in IoT. However, one of the main challenges in the integration of the

IoT with Blockchain is the reliability of the data generated by the IoT. Blockchain can ensure that data in the

chain are immutable and can identify their transformations, nevertheless when data arrives already corrupted

in the blockchain they stay corrupt. Corrupt IoT data can arise from many situations apart from malicious

ones. The well-being of the IoT architecture is affected by many factors such as the environment, participants,

vandalism and the failure of the devices. Sometimes the devices themselves and their sensors and actuators

fail to work properly from the start. This situation cannot be detected until the device in question has been

tested, or sometimes it works properly for a while and changes its behaviour for some reason (short circuit,

disconnection, programmed obsolescence, and so on). In addition to these situations, there are many threats

that can affect the IoT such as eavesdropping, DoS or controlling [183]. For that reason, IoT devices should

be thoroughly tested before their integration with Blockchain and they should be located and encapsulated in

the right place to avoid physical damage, in addition to including techniques to detect device failures as soon

as they happen.

These devices are more likely to be hacked since their constraints limit the firmware updates, preventing

them from actuating over possible bugs or security breaches. Moreover, it is sometimes difficult to up-

date devices one by one, as in global IoT deployments. Therefore, run-time upgrading and reconfiguration

mechanisms should be placed in the IoT to keep it running over time. Initiatives such as GUITAR [32] and

REMOWARE [33] enable network and firmware updates in run-time and are essential to ensure a secure

integration of the IoT with Blockchain over time.

The IoT and Blockchain integration can also have repercussions on the IoT communications [258]. Cur-

rently, IoT application protocols such as CoAP and MQTT make use of other security protocols such as TLS

or DTLS to provide secure communications. These secure protocols are complex and heavy in addition to re-

quiring a centralised management and governance of key infrastructure, typically with PKI. In the blockchain

network each IoT device would have its own global unique identifier and asymmetric key pair installed once
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connected to the network. This would simplify current security protocols which usually have to exchange

PKI certificates and would allow them to be used in devices with lower capabilities.

One notable IoT project in terms of security with a blockchain adoption is Filament [257]. Filament is

a hardware and software solution that provides functionality for Bitcoin-based payments and smart contracts

in IoT. Filament devices have embedded cryptoprocessors that support five protocols: Blockname, Telehash

and smart contracts to operate, and additionally Pennyback and Bittorrent protocols. The device identity

management is done with Blockname, while Telehash, an open-source implementation of Kademlia DHT,

provides secure encrypted communications, and smart contracts define the way in which a device can be

used.

6.3.1.3 Anonymity and Data Privacy

Many IoT applications work with confidential data, for instance when the device is linked to a person, such

as in the e-health scenario, it is essential to address the problem of data privacy and anonymity. Blockchain

is presented as the ideal solution to address identity management in IoT, however as in Bitcoin, there may

be applications where anonymity needs to be guaranteed. This is the case of a wearable with the ability to

hide the identity of the person when sending personal data, or smart vehicles that safeguard the privacy of the

itineraries of users.

The problem of data privacy in transparent and public blockchains has already been discussed, together

with some of the existing solutions. However, the problem of data privacy in IoT devices entails more

difficulty, since it starts at data collection and extends to the communications and application levels. Securing

the device so that data are stored securely and not accessed by people without permission is a challenge since

it requires the integration of security cryptographic software into the device. These improvements should

take into account the limitation of resources of the devices and the restrictions related to economic viability.

Many technologies have been used to secure communications using encryption (IPsec, SSL/TLS, DTLS).

IoT device limitations often make it necessary to use less-constrained devices such as gateways to incorporate

these security protocols. The use of cryptographic hardware could accelerate cryptographic operations and

avoids the overload of complex secure software protocols.

Protection of data and privacy are key challenges for IoT, using blockchain technology the problem of

identity management in IoT can be alleviated. Trust is another key feature of the IoT where the integration of

Blockchain can play a role. In [269] the importance of trust in IoT systems is identified as one of the primary

goals to ensure its success. Data integrity techniques are another option to ensure data access at the same

time as they avoid overloading Blockchain with the huge amount of data generated by the IoT. This can result

in public systems, but with an efficient and restricted access control. MuR-DPA [270] provides dynamic

data updates and efficient verification though public auditing verification. In [271] the authors ensure the

data content through another privacy-preserving public auditing system. For a broad review of integrity

verification techniques, refer to [272].

Last but not least, there are laws that regulate data privacy, such as the EU’s data protection directives

that will need to be revised to cover the new models that the technology makes possible. The adoption of

129



CHAPTER 6. ON BLOCKCHAIN AND ITS INTEGRATION WITH THE INTERNET OF THINGS

Blockchain as a legal platform should address these regulations so as to ensure data privacy following the

law.

6.3.1.4 Smart contracts

Smart contracts have been identified as the killer application of blockchain technology, but as mentioned

there are several challenges yet to be tackled. IoT could benefit from the use of smart contracts, however the

way they fit into IoT applications is diverse.

From a practical point of view, a contract is a collection of code (functions) and data (states) that reside

in a specific blockchain address. Public functions in a contract can be called by devices. Functions can also

fire events, applications can listen for them in order to properly react to the event fired. To change the state of

the contract, that is, to modify the blockchain, a transaction has to be published in the network. Transactions

are signed by senders and have to be accepted by the network.

The IoT has the ability to sense and actuate over the Internet in many areas [2]. In the food traceabil-

ity example, food packaging would be equipped with sensors with the capability to measure environmental

conditions and connect to the blockchain (sign transactions). In the blockchain a contract would provide

functions to start shipping, finish shipping and log and query measurements. When measurements exceeded

a predefined threshold, an event would be fired. Management applications would be listening to these events,

and the shipping company, retailers, manufacturers and clients would be informed. If no events were raised,

then the blockchain would guarantee that the shipment was carried out in optimal conditions. Smart contracts

would provide a secure and reliable processing engine for the IoT, recording and managing all their interac-

tions. Actions would be the result of a reliable and secure processing. Therefore, smart contracts can securely

model the application logic of IoT applications. However, the following challenges should be addressed in

that integration.

On the one hand, working with smart contracts requires the use of oracles which are special entities that

provide real-world data in a trusted manner. Validating these smart contracts could be compromised since

the IoT can be unstable. Moreover, accessing multiple data sources could overload these contracts. Nowa-

days, smart contracts are distributed and decentralised, but they do not share resources to distribute tasks and

address a large amount of computation. In other words, execution of smart contracts is done in just a single

node whereas simultaneously the code execution is done by multiple nodes. This distribution is only done for

the validation process, instead of using it to distribute tasks. The IoT has leveraged the distributed capabilities

of cloud computing and big data to increase its processing power. Since then, data mining techniques have

been able to address the IoT data as a whole, enabling a better understanding of the IoT, i.e., the processing

power enlarged by cloud computing. Big data has enabled the processing of large amounts of data simulta-

neously, allowing knowledge to be extracted from large datasets, which was previously very hard to do. In

the integration of IoT with Blockchain, smart contracts should leverage their distributed nature to enable the

processing capabilities provided in other paradigms (big data and cloud computing) and needed in the IoT.

Smart contracts should also take into account the heterogeneity and constraints present in the IoT. Filter-

ing and group mechanisms should be complemented by smart contracts to enable applications to address the
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IoT depending on the context and requirements. A discovery mechanism could enable device inclusion on

the fly, making these applications more powerful. Lastly, actuation mechanisms directly from smart contracts

would enable faster reactions with the IoT.

6.3.1.5 Legal issues

The vision of an unregulated Blockchain is part of its essence, and partly responsible for the success of

Bitcoin. As seen, Blockchain, specifically in the context of virtual currencies, has brought with it a lot of

controversy regarding legality. The need, or opportunity, to introduce control elements over the network has

come in the form of permissioned, private and consortium blockchains.

The IoT domain is also affected by a country’s laws or regulations regarding data privacy, for instance

the data protection directive. Most of these laws are becoming obsolete and need to be revised, especially

since the emergence of new disruptive technologies such as Blockchain. The development of new laws and

standards can ease the certification of security features of devices, and in this way help build the most secure

and trusted IoT network. In this sense, laws that deal with information privacy and information handling are

still a big challenge to be tackled in IoT and will therefore be an even bigger challenge if used in combination

with Blockchain.

As stated, the lack of regulation creates disadvantages, because mechanisms for private key retrieval or

reset, or transaction reversion are not possible. Some IoT applications envision a global, unique Blockchain

for devices, however it is unclear if this type of network is intended to be managed by manufacturers or open

to users. In any case, it is expected it will require legal regulation. These regulations will have an influence

on the future of Blockchain and IoT and as such could possibly disrupt the decentralised and free nature of

Blockchain by introducing a controlling, centralised participant such as a country.

6.3.1.6 Consensus

In the context of IoT applications, the limited-resource nature of devices makes them unsuitable for taking

part in consensus mechanisms, such as PoW, directly. As stated, there are a wide variety of proposals for

consensus protocols, although they are, in general, immature and haven’t been tested enough. Resource

requirements depend on the particular type of consensus protocol in the blockchain network. Typically,

solutions tend to delegate these tasks to gateways, or any other unconstrained device, capable of providing

this functionality. Optionally off-chain solutions, which move information outside the blockchain to reduce

the high latency in Blockchain, could provide the functionality.

Although there are initiatives to incorporate blockchain full nodes into IoT devices [261, 262], mining is

still a key challenge in the IoT due to its limitations. IoT is mainly composed of resource-constrained devices

but globally the IoT has a potentially huge processing power, taking into account that it is expected that the

number of devices in it will reach anywhere between 20 and 50 billion by 2020. Research efforts should

focus on this field and leverage the distributed nature and global potential of the IoT to adapt the consensus

in the IoT.
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In Babelchain [273] a novel consensus protocol called Proof of Understanding that aims to adapt PoW

for IoT applications is proposed. With less energy consumption, the protocol, instead of using miners to

solve hash puzzles, proposes translating from different protocols. In this way the effort is more concentrated

on useful computation while simultaneously tackling a key problem in IoT communications. Peers in the

network instead of agreeing on transaction status, agree on message meaning (format, content and action).

Additionally, the blockchain data provide information to learn, like a learning set.

6.4 Blockchain platforms for IoT

Blockchain has been identified as a disruptive technology that can strongly affect many industries. The

number of platforms is so high and in constant change that it is impossible to analyse them all, in this section

we focus on the most popular and most suitable for IoT domains.

Bitcoin was the first cryptocurrency and the first blockchain platform. It provides a mechanism to carry

out monetary transactions in a fast, cheap and reliable way, which can be integrated into applications as a

secure payment system. In IoT domain, autonomous devices can use Bitcoins to perform micro-payments,

working mainly as wallets. In general when the use of Blockchain is limited to micro-payments, applications

are attached to the currency, which can be a drawback, since depreciation of the coin can negatively affect

the application. As stated, using smart contracts is a common solution when integrating Blockchain with IoT.

Bitcoin includes a scripting language that allows specific conditions to be set when carrying out transactions.

However, the scripting is quite limited compared with other smart contract platforms.

As mentioned one of the platforms that has had an important impact in recent times is Ethereum [111].

Ethereum was one of the pioneer Blockchains in including smart contracts. Ethereum can be described both

as a Blockchain with a built-in programming language (Solidity), and as a consensus-based virtual machine

running globally (Ethereum Virtual Machine). The inclusion of smart contracts moves the Blockchain away

from currencies and facilitates the integration of this technology in new areas. This along with its active

and broad community makes Ethereum the most popular platform for developing applications. Most IoT

applications use Ethereum or are compatible with it (see Table 2.3). The simplest approach is to define a

smart contract where devices can publish their measures and policies that react to changes.

Hyperledger [191] has also had a great impact. Hyperledger is an open-source platform on which various

projects related to Blockchain have been developed, among them Hyperledger Fabric, a Blockchain deprived

of permissions and without cryptocurrency on which commercial implementations like IBM’s Blockchain

platform are based. It provides different components for consensus and membership. Distributed application

can be developed in the blockchain using general purpose languages. IoT devices can supply data to the

blockchain through the IBM Watson IoT Platform, which manages devices and allows data analysis and

filtering. IBM’s Bluemix platform eases the integration of blockchain technology by offering it as a service.

The use of this platform speeds up application prototyping, and several use cases have been developed. There

is an ongoing project on food traceability that uses this platform [75].

The Multichain platform allows the creation and deployment of private blockchains. Multichain uses
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Table 6.3: Blockchain platforms for creating blockchain applications

Platform Blockchain Consensus Cripto cur-
rency

Smart con-
tracts

Ethereum Public and

permission-

based

PoS Ether (ETH) yes

Hyperledger Fab-

ric

Permission-

based

PBTF/SIEVE None yes

Multichain Permission-

based

PBTF Multi-

currency

yes

Litecoin Public Scrypt litecoins

(LTC)

no

Lisk Public and

permission-

based

DPoS LSK yes

Quorum Permission-

based

Multiple ETH yes

HDAC Permision-

based

ePoW,Trust-

based

Multiasset yes

an API that extends the core of the original Bitcoin API with new functionality, allowing the management

of portfolios, assets, permissions, transactions, etc. In addition, it offers a command-line tool for interacting

with the network, and different clients that can interact through JSON-RPC with the network such as Node.js,

Java, C # and Ruby. Multichain is a fork of Bitcoin Core, its source code compiles for 64 bit architectures. In

[274] multichain blockchain cluster is deployed on three nodes, one of them an Arduino board, as a proof of

concept of an IoT blockchain application.

Litecoin [67], as stated, is technically identical to Bitcoin, but features faster transaction confirmation

times and improved storage efficiency thanks to the reduction of the block generation time (from 10 minutes

to 2.5) and the proof of work, which is based on scrypt, a memory intensive password-based key derivation

function. This means that the computational requirements of Litecoin nodes are lower, so it is more suitable

for the IoT.

Lisk [275] offers a blockchain platform in which sub-blockchains or sidechains can be defined with

decentralised blockchain applications and a choice of cryptocurrencies to use (e.g. Bitcoin, Ethereum, etc.).

Known as the blockchain platform for JavaScript developers, Lisk also offers support to create and deploy

decentralised applications within the platform to be used directly by end users, creating an ecosystem of

interoperable blockchain services. The applications developed can use LSK currency or can create custom
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tokens. Lisk uses Delegated proof of stake consensus. Lisk is working with Chain of Things to examine

whether blockchain technology can be effective in establishing security within the IoT.

Quorum [218] is a blockchain platform developed to provide the financial services industry with a per-

missioned implementation of Ethereum with support for transaction and contract privacy. It allows multiple

consensus mechanisms and achieves data privacy through cryptography and segmentation. The platform

has recently integrated ZeroCash technology to obscure all identifiable information about a transaction. The

Quorum platform has been used by Chronicled [115] to create secure links between physical assets and

Blockchain.

HDAC [252] is an IoT contract and M2M transaction platform based on Blockchain currently under

development. The HDAC system uses a combination of public and private blockchains, and quantum random

number generation to secure these transactions. The HDAC cryptocurrency-enabled public blockchain can

be effectively used with multiple private blockchains. HDAC IoT contract proof of concept will be launched

this year.

Table 6.3 shows a comparison of the blockchain platforms for creating IoT applications surveyed in this

section. Smart contracts are present in most platforms, thus enabling application logic beyond cryptocurrency

transactions. In the case of a Blockchain deployment, there is a dualism among Blockchains with and without

a cryptocurrency. An established platform with a cryptocurrency like Ethereum can provide the needed

infrastructure for a blockchain application. This can be seen as deploying your own cloud infrastructure

or using AWS Amazon or Google Cloud Platform. However, in the case of Blockchain the distribution is

the linchpin of its trustworthiness. On the other hand, using a non-cryptocurrency platform like Hyperledger

Fabric requires joining a consortium and infrastructure to start a Blockchain. PBTF and PoS are the most used

consensuses. Permissions and privacy are in most platforms, therefore consortium and global applications

can be created from them.

6.5 Evaluation

To test the viability of running blockchain platforms on IoT devices we installed and ran different nodes from

different platforms on a Raspberry Pi 3 model B with Raspbian Stretch OS and Linux kernel 4.9.59-v7+. To

perform these experiments the device was equipped with an SD card of 128GB (Samsung EVO PLUS MB-

MC128GA/EU). Raspberry was connected to the Internet through Ethernet. The different types of nodes were

installed and run, connected to the public network. We measured energy consumption and collected some

measurements related to task performance for 30 minutes for each test. The energy consumption was obtained

by measuring the current between the power source and the Raspberry Pi, with a Moteino Mega equipped

with the INA219 DC current sensor. The results were obtained on a PC through a serial connection with the

Moteino Mega. To evaluate the task performance, a background process was run collecting the following

task data: percentage of use of CPU and memory, amount of virtual memory required by the task, and the

bandwidth consumption (sent and received bytes). This was done with the top (Top command: https:

//linux.die.net/man/1/top) Unix command and the monitor per process network bandwidth usage
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Table 6.4: Blockchain nodes evaluation on Raspberry Pi v3 (Synchronising (s), after

synchronisation (as))

avg en-
ergy
(mA)

avg
%CPU

avg
%Mem

avg VIRT
(MB)

Total sent
MB

Total
received
MB

Bitcoin light node 283.45 2.19 9.6 288 0.074 0.068

Litecoin light node 275.53 2.05 7.6 209 0.081 0.104

Ethereum full node (s) 599.72 256.82 85.96 1490 78.9 490

Ethereum full node (as) 371.26 47.39 29.36 1280 15.3 80.3

Bitcoin full node (s) 429.05 55.47 27.55 405 48 912

Litecoin full node (s) 437.62 117.80 19.36 341 17.1 546

Litecoin full node (as) 280.04 7.01 51.7 679 1.22 2.06

tool nethogs (Nethogs command: https://github.com/raboof/nethogs). Table 6.4 summarises

the results. CPU measurement is 100% for each core, so the maximum for our quad core device is 400%.

Note that the different types of nodes implement different functionalities, and the same types of nodes in

different blockchains also perform different tasks. Nodes were connected to public blockchain networks such

as Bitcoin, Ethereum and Litecoin to test the device in real working conditions. In addition, when connected

to the public network we had no control of the status of the network, i.e., the number of transactions published

during each experiment were not the same. Therefore, this evaluation is not intended to be an exhaustive

comparison of the performance of the different implementations, but rather to provide an idea of the viability

of using blockchain nodes on IoT and to state technical difficulties.

The nodes chosen for the experiment were those with Raspberry Pi compatibility that run in public net-

works, so the nodes can take part of the routing protocol. To be able to compare the results we also measured

the energy consumption of the Raspberry running Raspbian and without any node installed, obtaining 272.09

mA. Raspberry Pi is powered with 5V.

First, we measured the performance of light nodes. The Bitcoin light node (Electrum implementation),

for instance, increased the energy consumption by less than 4%, with respect to the Raspberry base measure-

ment (272.09 mA). Very similar to the values obtained for the Litecoin light node (Electrum implementation)

which reached a 5% increase. The Ethereum light node was not tested because it was under development.

Regarding the task performance, the CPU usage and virtual memory were also quite similar for both light

nodes. There was more difference in the use of memory, where Bitcoin consumed 2% additional memory.

Bandwidth consumption mainly differed in received bytes, where Litecoin downloaded almost 36Kb more.

Results show that these light nodes run comfortably on the Raspberry Pi, they provide the functionality to

make secure transactions, which is enough to benefit from blockchain features, and do not require an exces-

sive amount memory, nor high energy consumption.

Next the experiments were performed with full nodes: the Ethereum full node (Go implementation), the
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Bitcoin full node (Bitcoin core implementation) and the Litecoin full node (Litecoin core implementation). As

stated, the functionality of the Ethereum full node is not the same as the Bitcoin one. First of all, the different

consensus protocols, PoS and PoW, have radically different computational requirements. In addition, full

nodes require a synchronisation process to download the full chain, during this process the computational

requirements are expected to be higher. To evaluate the different consumption requirements, measurements

were taken during the synchronisation and after it. At the moment of testing Litecoin’s blockchain size was

14.03 GB, 49.47 GB for the Ethereum chain, and 155.8 GB for the Bitcoin chain. Note that the full Bitcoin

node after the synchronisation could not be tested since the current Bitcoin chain size exceeds the memory

of our test scenario. The Ethereum synchronisation took about 5 days (with several reboots, due to system

failures), and Litecoin about 2 days. Moreover, after a couple of days of being close to a full synchronisation

(fewer than 100 blocks to reach it), we decided to evaluate the Ethereum full node in its current state, 99.99%

for a full synchronisation. We considered that 99.99% is a good approximation for a full synchronisation.

The number of new blocks generated and the limited capabilities of the Raspberry Pi for that full node made

it difficult to reach a full synchronisation.

When compared with light nodes, the additional functionality that full nodes implement, which is mainly

the storage, is observed in higher consumption values, both in memory and CPU. Most values obtained after

the synchronisation were lower than during it, as expected. In the Ethereum full node after synchronising,

the average CPU used was 5 times lower, and average memory use 2.8 times lower, with respect to the values

during the synchronisation.

The energy consumption, when compared with the Raspberry base measurement (272.09 mA), increased

by 120% in the Ethereum node during synchronisation, whereas Bitcoin full node does it with 57% and

Litecoin with 60%. These values after the synchronisation were 36% increase for Ethereum and less than 3%

for Litecoin. The use of CPU and memory also rose in full nodes, especially during the synchronisation, the

highest consumption values were the Ethereum node that reached an average of 256% of CPU usage and 86%

of memory. However, after the synchronisation those values decreased to 47% and 29% respectively. For

Litecoin, CPU usage was 117% during synchronisation and only 7% after synchronisation. Block validation

is CPU intensive, so the CPU usage drop is normal after the chain synchronisation. In contrast memory usage

in Litecoin increased from 19% to 51% after synchronisation. This is probably due to its memory intensive

consensus protocol. As expected bandwidth values soared, when compared with light nodes, since they stored

the full chain. Whereas for light nodes bandwidth values were in the order of KB, for full nodes were in the

order of Mb. Bitcoin full node received 13 thousand times more bytes than its light node, and the Litecoin

full node during synchronisation, 5 thousand times more than its light version, and barely 20 times more after

synchronisation.

There are very few scenarios where it makes sense to use a full node IoT. We haven’t found any applica-

tion that uses it in IoT. It could be used in private deployments and for test purposes, but we understand that

in final applications there would be other more suitable devices to run these nodes. The evaluation results

show that the feasibility of using these nodes on the IoT is very limited. As stated, light nodes are a far better

fit for limited resource devices such as those in the IoT.
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The most noteworthy problems during the tests were the difficulties in finding up-to-date information

about the different node implementations on the pages found for IoT devices, along with the high installation

times in some cases and very high synchronisation times for full nodes. Moreover, the correct configuration

for IoT devices has been necessary in some cases, such as Ethereum, otherwise the full node would collapse

the Raspberry. The official documentation and implementations have been very useful for the deployment of

the aforementioned nodes.

137



CHAPTER 6. ON BLOCKCHAIN AND ITS INTEGRATION WITH THE INTERNET OF THINGS

138



7
Conclusions and Future Work

This chapter concludes this thesis summarising the conclusions and future work suggested by the contribu-

tions that support it. The organisation of this last chapter is as follows. Section 7.1 presents the conclusions.

Future work is highlighted in Section 7.2. Then, the publications that support this thesis and have been pro-

duced during the course of this research are shown in Section 7.3. Finally, the funding that has made this

research possible is detailed in Section 7.4.
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7.1 Conclusions

The IoT is a ubiquitous technology that is present in many situations of our everyday life. From smart homes

to manufacturing, the IoT is improving the quality of life and optimising many services through its capabilities

to sense and actuate over the physical world. Several research reports prognosticate a huge evolution of this

paradigm in coming years, so its adoption in our society will be more noticeable. However, the IoT has serious

limitations due to the resource-constrained nature of its devices, which drags out that expansion. This thesis,

IntegraDos, has aimed to provide different application enablers to facilitate the adoption of the IoT through

its integration with different technologies and paradigms. In particular, we have researched how to facilitate

the run-time management and deployment of physical components, the development of IoT applications, an

integration of the IoT with cloud computing, and how the IoT can be integrated with Blockchain has been

analysed and evaluated.

In Chapter 3, a system for run-time managing and deploying physical resources in microcontrollers is

presented. The goal of this solution is to reduce the gap between end users and customisable environments.

Hereafter, end users can install their own sensors and actuators on their microcontrollers through well-defined

interfaces without rebooting and programming these systems. The Constrained Application Protocol (CoAP)

and ZigBee have been used as the embedded web service and communication means allocated in the mi-

crocontrollers, thereby enabling a lightweight and low-power approach for interacting with resources. The

system provides a proxy to interconnect HTTP with CoAP in a Smart Gateway, in such a way that any HTTP

client can carry out the operations provided by the Smart Gateway. In fact, the latter also contributes to help-

ing the IoT towards the Web of Things. In addition, a Web UI has been incorporated to provide multi-device

access to end users. Storage and temporal limitations have been taken into account in the design, so that

the system provides objective middlewares and temporal behaviours. The results show the feasibility of the

system to incorporate new physical libraries to be managed at run-time.

Appdaptivity, a framework that enables the development of IoT applications abstracting application de-

velopers from the underlying physical infrastructure is presented in Chapter 4. The proposed solution reduces

the gap between IoT application and the underlying physical infrastructure, which is actually highly coupled

and carried to multiple vertical silos. The resulting applications are created intuitively, personalised, portable

and automatically adapted to changing contexts without recompiling and programming device-coupled ap-

plications. The Appdaptivity programming model is based on data flow programming, where application de-

velopers can create IoT applications connecting components through a Web UI. Application developers need

only to focus on the application logic, whereas the aspects of discovery and injecting a device’s information

into applications are provided by Appdaptivity. The solution is intended for heterogeneous scenarios, en-

abling the portability of IoT applications, various multi-deployment options and the integration with external

user applications. The underlying physical domain is supported through CoAP. Lastly, the final applications

that will be used by end users, known as user applications, are not targeted to a specific application, as Ap-

pdaptivity enables the integration of multiple applications and platforms through its well-defined API and

standards protocols. The evaluation was performed in the different scenarios that can be part of Appdaptivity

as secure and non-secure environments. The evaluation results confirm a good scalability of the system with
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respect to the user applications and the underlying physical infrastructure. Moreover, this work has also taken

into account an evaluation in an IoT area. A smart city use case has been modelled using Appdaptivity and

has been deployed with IoT devices and resource-constrained networks. The data flow programming model

used in Appdaptivity allows multiple configurations, or behaviours such as those discovered in this approach,

with only a few components while at the same time it enables the application development in a easy and

non-technical way.

The λ-CoAP architecture, an architecture to integrate the IoT and cloud computing with an edge com-

puting layer is presented in Chapter 5. The λ-CoAP architecture contributes to solving the problems of

processing, analysing and storing large amounts of IoT data through a paradigm known as the Lambda Ar-

chitecture. CoAP is the protocol used in the things side, hence its name, λ-CoAP. Some components and the

expertise from Chapters 3 and 4 have strongly contributed to the composition of this architecture. The archi-

tecture covers the entire scope of an edge computing deployment, from the IoT, going through the edge, to

the cloud. The λ-CoAP architecture incorporates a CoAP middleware so as to abstract the low-level aspects

of the IoT devices and provides a lightweight way to actuate with the IoT. Moreover, the IoT is abstracted

through Smart Gateways, allowing the access to it through different high level protocols. A lightweight vir-

tualisation technology has been adopted in the Smart Gateways to give a better control and isolation of the

running processes in addition to a visual framework to develop the edge logic through data flow program-

ming. Lastly, the Lambda architecture deployed in the cloud enables the processing and storing of large

amounts of IoT data. IoT applications such as structural health monitoring could leverage this architecture

to reduce their latency and alleviate the bandwidth to the cloud. The evaluation confirms a good scalability

of the architecture for a large IoT deployment, and how the edge computing can reduce the bandwidth and

latency in the IoT-cloud communications.

Blockchain was conceived as a revolutionary technology to keep data reliable. However, modifying this

technology without adequately guaranteeing its operation or applying it to scenarios where the cost does not

compensate the improvement are risks into which one can fall easily. Therefore, the benefits of applying

Blockchain to the IoT should be analysed carefully and taken with caution. Finally, Chapter 6 has provided

an analysis of the main challenges that Blockchain and IoT must address in order for them to successfully

work together. The key points where blockchain technology can help improve IoT applications have been

identified. An evaluation has also been provided to prove the feasibility of using blockchain nodes on IoT

devices. Existing platforms have also been examined to complete the study, offering a complete overview

of the interaction between blockchain technology and the IoT paradigm. It is expected that Blockchain will

revolutionise the IoT. The integration of these two technologies should be addressed, taking into account the

challenges identified. The adoption of regulations is key to the inclusion of Blockchain and the IoT as part of

government infrastructures. This adoption would speed up the interaction between citizens, governments and

companies. Consensus will also play a key role in the inclusion of the IoT as part of the mining processes

and distributing even more blockchains. Nevertheless, a dualism between data confidence and facilitating

the inclusion of embedded devices could arise. Lastly, beyond the scalability and storage capacity which

affect both technologies, research efforts should also be made to ensure the security and privacy of critical
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technologies that the IoT and Blockchain can become.

7.2 Future Work

This research has led us to define several open challenges that should be addressed. Firstly, the run-time

management and deployment system could ensure the compatibility of the system with different wireless

communication technologies for resource-constrained devices in order to evaluate them and establish the

most suitable for each environment. A run-time deployment and management of them in the same way

that until now has been done with physical resources would enable the use of multiple and configurable

wireless technologies over CoAP. Wireless communication technologies, like the IoT, are in a continuous

expansion. Noted examples are the new generation of wireless technologies Low-Power Wide-Area Networks

(LPWAN), such as Lora and Sigfox. Nevertheless, each technology has its own unique characteristics in terms

of coverage, connectivity, security and power consumption, so each is suitable for certain environments. This

approach should also take into account the efforts being made in enabling IPv6 connectivity over LPWA

networks. The adoption of an upper-layer protocol such as CoAP over these technologies would also ensure

the interoperability of them in the IoT.

On the other hand, Appdaptivity can enable multi-profile support in secure communications with the user

applications, thereby facilitating the global adoption of the system. Currently, the single-certificate support

in secure communications limits the expansion of the system when there are multiple profiles. Moreover,

the definition of the secure connection of each CoAP server in the framework used has to be done manually

and could be automated. Appdaptivity can also integrate the management of RESTlet components. RESTlet

components enable the definition of application logic directly in IoT devices through CoAP. This would

optimise the logic positioning between Appdativity and the underlying physical infrastructure enabling a

distributed intelligence. An integration between the λ-CoAP architecture and Appdaptivity could also be

considered.

It is also necessary to evaluate the λ-CoAP architecture in a larger IoT use case. Currently, the evaluation

does not cover the IoT scenario that could be. Nevertheless, results confirm the capabilities of the architecture

for a larger use case. For that reason, we have recently applied for a research project in collaboration with

another research group at the University of Malaga that aims to monitor university spaces, optimising their

use and detecting anomalies.

Lastly, the analysis of the challenges and open issues in the integration of Blockchain and IoT has es-

tablished the guidelines for our future work to overcome this challenge. In the near future, this topic will be

addressed with the goal of keeping IoT data and communications reliable.

7.3 Publications

The following subsections list the publications that have been produced during the course of this research

(listed by category and in reverse chronological order).
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A
Resumen

A.1 Introducción

El Internet de las cosas (IoT, por sus siglas en inglés), fue un nuevo concepto introducido por K. Asthon en

1999 para referirse a un conjunto identificable de objetos conectados a través de RFID (siglas de Radio Fre-

quency IDentification, en español identificación por radiofrecuencia) [3]. Actualmente, el IoT no comprende

únicamente el campo de RFID, sino que engloba otras áreas, como redes de sensores inalámbricas (WSN, por

sus siglas en inglés). El IoT se caracteriza por ser una tecnologı́a ubicua que está presente en un gran número

de áreas, como puede ser la monitorización de infraestructuras crı́ticas, smart home, smart city, sistemas de

trazabilidad o sistemas asistidos para el cuidado de la salud. En la Figura A.1 se muestra un ejemplo de áreas

donde el IoT es aplicado. El IoT está cada vez más presente en nuestro dı́a a dı́a, cubriendo un gran abanico

de posibilidades con el fin de optimizar los procesos y problemas a los que se enfrenta la sociedad. Es por ello

por lo que el IoT es una tecnologı́a prometedora que está continuamente evolucionando gracias a la continua

investigación y el gran número de dispositivos, sistemas y componentes emergidos cada dı́a.

Sin embargo, los dispositivos involucrados en el IoT se corresponden normalmente con dispositivos em-

bebidos con limitaciones de almacenamiento y procesamiento, ası́ como restricciones de memoria y potencia.

Además, el número de objetos o dispositivos conectados a Internet contiene grandes previsiones de crecimien-

to para los próximos años, con unas expectativas de 500 miles de millones de objetos conectados para 2030

[4]. Por lo tanto, para dar cabida a despliegues globales del IoT, además de suplir las limitaciones que existen,
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Figura A.1: El mundo conectado a través de Internet de las Cosas

es necesario involucrar nuevos sistemas y paradigmas que faciliten la adopción de este campo. Diferentes in-

tegraciones han sido investigadas durante esta tesis doctoral para suplir las limitaciones del IoT. Entre ellas,

cabe destacar a cloud computing (computación en la nube), también conocido como el cloud de las cosas

[8], que ha intentado solventar las limitaciones del IoT. Cloud computing permite un acceso bajo demanda a

un conjunto configurable de recursos, proveyendo capacidades ilimitadas en términos de almacenamiento y

procesamiento [9], las principales limitaciones en el IoT. Aunque la integración con cloud computing provee

al IoT de las capacidades mencionadas, las necesidades actuales de extraer conocimiento de información en

tiempo real implican pensar más allá. Recientes paradigmas como fog y edge computing intentan abordar

este último problema, moviendo el procesamiento lo más cerca posible a dónde es generado, reduciendo por

tanto la latencia y el ancho de banda en las comunicaciones entre el IoT y el cloud. Otro de los protocolos que

ha tenido una gran repercusión en el IoT y que ha sido ampliamente utilizado en esta tesis, es el protocolo

CoAP, que tiene como objetivo proveer servicios web RESTful en dispositivos con recursos limitados.

A.1.1 Constrained Application Protocol (CoAP)

Actualmente, el número de servicios web que intercambian información en Internet está en auge. Tales ser-

vicios proveen una gran cantidad de datos y servicios accesibles globalmente y de forma abierta a través de

Internet. El movimiento del IoT a Internet proporcionarı́a un conjunto más amplio de servicios en Internet,

incorporando servicios ciber-fı́sicos y logrando la inclusión o integración del mundo fı́sico en los servicios

tradiciones de información. Este paradigma es también conocido como la web de las cosas. Además, los

servicios web son accesibles en múltiples plataformas con conexión a Internet, como pueden ser ordenado-

res personales, tablets, smartphones o PDAs. Por lo que a partir de Internet, además de proveer información
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Client Server
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Figura A.2: Observando un recurso en CoAP

accesible de forma global, el IoT proveerá un acceso global a un gran número de dispositivos y sistemas de

información.

A pesar de ello, los servicios web actuales suelen trabajar sobre protocolos como HTTP o TCP, que

pueden ser demasiado pesados para dispositivos con limitaciones de recursos, como los involucrados en el

IoT. CoAP [7] es un protocolo web diseñado por el Grupo de Trabajo de Ingenierı́a de Internet (IETF, por sus

siglas en inglés) para dispositivos con recursos limitados. CoAP sigue el mismo estilo que los servicios web

RESTful tradicionales, soportando la identificación de recursos mediante URIs y un modelo como HTTP.

Pero CoAP hace uso del protocolo UDP, lo que conlleva a una reducción de la sobrecarga de transferencia y

la cabecera de TCP. Unido a que CoAP contiene únicamente 4 bits de cabecera, lo convierten en un protocolo

prominente para llevar a cabo la web de las cosas y poder instalar servidores de recursos en dispositivos

embebidos.

Además, CoAP soporta una comunicación ası́ncrona y multicast, no disponible en TCP y deseable en

dispositivos con limitaciones de recursos. A partir de la comunicación ası́ncrona, conocida como observe, se

establece una subscripción entre los servidores CoAP y los clientes interesados en la información. Los datos

son enviados cuando están disponibles en los servidores CoAP, evitándose la sobrecarga de peticiones por

parte de los clientes. La Figura A.2 muestra un ejemplo de una comunicación entre un cliente y un servidor

con una subscripción. El cliente interesado en observar un recurso inicia una petición para obtener sus datos

ası́ncronamente. A partir de ese momento, el cliente recibirá los cambios de estado del recurso deseado. Por

último, la observación termina cuando el cliente la cancela.
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A.1.2 Motivación

A pesar de las mejoras introducidas por los anteriores protocolos y paradigmas en el IoT, la adopción del IoT

todavı́a presenta un gran número de desafı́os para llegar a ser una realidad. Entre los desafı́os se encuentran

la volatilidad y movilidad de sus aplicaciones, las limitaciones de sus dispositivos, y las necesidades de

un procesamiento con baja latencia y datos confiables. Durante el desarrollo de esta tesis doctoral hemos

identificado cuatro diferentes motivaciones que han inspirado nuestra investigación para facilitar la adopción

del IoT.

Por una parte, las aplicaciones del IoT todavı́a siguen diseñándose acopladas a los dispositivos finales,

lo que conlleva a que tales aplicaciones no se adapten a los continuos cambios que puedan producirse en la

infraestructura subyacente. En el caso de la inclusión de nuevos dispositivos a estas aplicaciones, o incluso

de su desconexión debido al consumo de su baterı́a, aún es necesario reconfigurar las aplicaciones y dispo-

sitivos para adaptarse a los nuevos cambios del entorno. En el IoT, donde la cantidad de dispositivos crece

sin precedentes y los dispositivos presentan una gran volatilidad, estas limitaciones dificultan con creces su

expansión. Por ejemplo, en el caso de la monitorización medioambiental, las aplicaciones desacopladas de

los dispositivos podrı́an mostrar mediciones sobre los sensores desplegados dinámicamente en función de las

necesidades de los usuarios. Además, las aplicaciones del IoT son personalizadas, es decir, la infraestruc-

tura del IoT subyacente se puede diseñar para que funcione con ciertos perfiles de usuarios. Esto aumenta

enormemente la complejidad en el desarrollo de aplicaciones. Por ejemplo, el desarrollo de toda la lógica

personalizada para una aplicación personalizada para más de cien usuarios finales puede suponer un mayor

esfuerzo de desarrollo que toda la arquitectura en sı́ misma. Por último, pero no menos importante, los usua-

rios finales pueden formar parte de diferentes aplicaciones del IoT en diferentes escenarios. En este caso,

serı́a deseable tener un mejor control sobre estas aplicaciones con la mı́nima configuración posible y el uso

de una interfaz común.

Aparte de la portabilidad software, las soluciones del IoT comprenden una multitud de componentes

hardware que pueden ser intercambiados o requeridos en diferentes entornos dependiendo de las necesidades

de los usuarios. En la mayorı́a de las situaciones, los dispositivos del IoT se pueden dividir en dos tipos de

categorı́as. Por un lado, los dispositivos pueden constituir una caja negra con sensores especı́ficos, lo que

dificulta su configuración. Un ejemplo de ello son las pulseras inteligentes. Por otro lado, los dispositivos

del IoT pueden ser compuestos a través de microcontroladores configurables, permitiendo la creación de

entornos personalizados. Estos dispositivos están más cerca de la visión del IoT de tener dispositivos autóno-

mos y configurables, también conocidos como dispositivos plug&play. Sin embargo, las herramientas y el

conocimiento necesarios para programar y configurar tales sistemas no están actualmente accesibles a toda

la población. Además, este proceso deberı́a de poder ser realizado en tiempo de ejecución para evitar la in-

terrupción del servicio de los dispositivos. Esto podrı́a conllevar también a un ahorro energético (crı́tico en

dispositivos del IoT), desactivando los componentes hardware no necesarios cuando sea requerido. Múltiples

escenarios de aplicación hacen uso de sensores y actuadores para su operación, tales como smart cities y

aplicaciones ambientales, por lo que este desafı́o podrı́a tener un efecto positivo en múltiples escenarios del

IoT.
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Por otra parte, las limitaciones de los dispositivos del IoT dificultan la aplicación de paradigmas, como

big data, que convierten datos en bruto en información útil, requiriendo grandes capacidades en términos de

procesamiento y almacenamiento. Paradigmas como cloud computing han sido integrados con el IoT para

superar sus limitaciones y proveer las capacidades necesarias. Aunque estas integraciones pueden superar

tales limitaciones, las necesidades actuales de extraer conocimiento de datos en tiempo real implican pensar

más allá. Aplicaciones en entornos crı́ticos, como la monitorización de la salud estructural de infraestructuras,

no sólo requieren de grandes capacidades de cómputo a través de aprendizaje profundo sino también un bajo

tiempo de respuesta, en otro caso, la información podrı́a dejar de ser útil. En tales escenarios, donde la latencia

de propagación de la información sobre la red podrı́a no cumplir con los requerimientos de las aplicaciones,

conducen a que cloud computing pueda no ser adecuado debido a una alta latencia. Paradigmas actuales como

fog y edge computing deberı́an de ser tenidos en cuenta para llevar a cabo la integración del IoT con cloud

computing y cumplir con los requisitos de tiempo de las citadas aplicaciones, sin olvidar las limitaciones de

los dispositivos del IoT.

Por último, esta gran expansión del IoT debe de ser soportada por mecanismos y protocolos estándares

como los vistos anteriormente para reducir la existente heterogeneidad en este campo. Esta heterogeneidad

conduce hasta soluciones verticales y acopladas, lo que dificulta la adopción del IoT. Sin embargo, aparte

de la heterogeneidad presente en el IoT, la confiabilidad de su información es también un asunto importante

a tener en cuenta. Hoy en dı́a confiamos en la información de las entidades financieras y gubernamentales

entre otras, pero, ¿podemos estar seguros de que la información proveı́da por otra entidad externa no ha

sido alterada, falsificada o manipulada de cualquier manera? Esta es una pregunta difı́cil de responder en

sistemas centralizados donde toda la información reside en un único lugar. Entidades no confiables pueden

alterar la información acorde a sus propios intereses, por lo que la información que proveen puede no ser

completamente confiable. Esto trae la necesidad de verificar que la información no ha sido modificada durante

su ciclo de vida. Aunque el IoT puede facilitar la digitalización de la información en sı́, la confiabilidad en la

información sigue todavı́a siendo un desafı́o. En ese sentido, una nueva tecnologı́a que nació con la primera

criptomoneda descentralizada, tiene el potencial de ofrecer una solución al problema de confiabilidad de la

información: Blockchain. La integración con el IoT permitirı́a la mejora de ambas tecnologı́as. Dominios de

aplicación que gestionan datos sensibles, como atención médica y vigilancia policial podrı́an hacer uso de

esta integración para adquirir más información de sus procesos y almacenarla de forma confiable.

Los desafı́os anteriores han motivado el trabajo de esta tesis doctoral. Especı́ficamente, esta tesis aborda

las siguientes preguntas de investigación:

• ¿Cómo puede facilitarse la gestión y despliegue de recursos fı́sicos en el IoT?

• ¿Cómo podemos definir intuitivamente aplicaciones del IoT portables, adaptables, personalizadas y

desacopladas de los dispositivos?

• ¿Cómo puede ser el IoT integrado con cloud computing teniendo en cuenta la gran cantidad de datos

generados, una baja latencia y las limitaciones de sus dispositivos?

• ¿Cómo puede ser el IoT integrado con Blockchain?, y ¿cuáles son los potenciales beneficios y desafı́os
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de tal integración?

A.1.3 Contribuciones

Esta tesis doctoral pretende investigar los anteriormente mencionados desafı́os de investigación. El principal

objetivo de esta tesis doctoral (IntegraDos) es facilitar la adopción del IoT a través de los desafı́os de investi-

gación e integraciones identificados. La Figura A.3 muestra una visión general de las contribuciones de esta

tesis. En ella se pueden diferenciar cuatro componentes principales: el IoT, cloud, blockchain y edge. Todos

ellos han sido tenidos en cuenta para superar las limitaciones del IoT. Por un lado, ha sido abordado cómo

puede ser facilitado la gestión de sensores y actuadores en dispositivos fı́sicos sin programar y resetear sus

sistemas (1). Por otro lado, un sistema para programar aplicaciones del IoT portables, adaptables, personali-

zadas y desacopladas de los dispositivos ha sido definido (2). También, han sido analizados los componentes

para una integración del IoT y cloud computing, concluyendo en la arquitectura λ-CoAP (3). Por último,

los desafı́os para una integración del IoT y Blockchain han sido analizados junto con una evaluación de las

posibilidades de los dispositivos del IoT para incorporar nodos de Blockchain (4).

Facilitating device management

Portable, adaptable, personalised
and device-decoupled IoT applications

Apache Kakfa

Apache Storm

Druid

Apache Hadoop
(Master Data)

λ Architecture
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Smart 
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Figura A.3: Visión general de las contribuciones de la tesis

En particular, las siguientes contribuciones han sido proporcionadas en esta tesis doctoral para responder

a las preguntas de investigación formuladas:

• Un sistema para el despliegue y gestión de sensores y actuadores que reduce la brecha originada

entre los usuarios finales y los entornos personalizados. A través de este sistema, los usuarios finales
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pueden incorporar nuevos sensores y actuadores en sus microcontroladores sin tener que acceder y

programar las placas de desarrollo. Dominios de aplicación con una alta densidad de componentes

hardware serán beneficiados de este sistema en la gestión de sus componentes. Las limitaciones de

los dispositivos para soportar librerı́as han sido tenidas en cuenta con la definición de un middleware

objetivo para determinados entornos.

• Un marco de desarrollo que permite el desarrollo de aplicaciones del IoT portables y desacopladas

de los dispositivos finales, que a su vez pueden ser adaptables en contextos cambiantes, conocido

como Appdaptivity. A través de Appdaptivity, los desarrolladores de aplicaciones pueden crear intui-

tivamente aplicaciones portables y personalizadas, con una completa abstracción de la infraestructura

subyacente. Esto permite el desarrollo de aplicaciones que se adaptan a los continuos cambios en

la infraestructura subyacente. Los desarrolladores de aplicaciones sólo necesitan concentrarse en la

lógica de la aplicación, mientras que los detalles de bajo nivel de la infraestructura subyacente son

gestionados por Appdaptivity. Esta contribución cumple con los requerimientos del desarrollo de apli-

caciones del IoT en general, y especı́ficamente de aquellas que tienen comportamientos dinámicos y

componentes plug&play.

• Un amplio análisis de los componentes para una integración del IoT y cloud computing, incluyendo

integraciones y propuestas existentes. El estudio comprende desde componentes de bajo nivel para

el IoT, como IoT middlewares, hasta plataformas multidisciplinarias de cloud computing. El análisis

condujo hasta la definición de la arquitectura λ-CoAP, que presenta una integración de cloud compu-

ting con el IoT. La arquitectura λ-CoAP tiene como objetivo procesar, analizar y consultar grandes

cantidades de información del IoT con una baja latencia. Esta baja latencia es lograda en parte gracias

a una capa edge que ha sido incorporada tanto para reducir la latencia como el ancho de banda en las

comunicaciones entre el IoT y el cloud. Dominios de aplicación que requieren de un procesamiento

de datos a gran escala con una baja latencia, como la monitorización de la salud estructural, podrı́an

hacer uso de esta arquitectura para superar sus desafı́os.

• Un exhaustivo estudio de los desafı́os y los problemas existentes en la nueva disruptiva tecnologı́a

para la confiabilidad de información, Blockchain, y su integración con el IoT. El estudio también

analiza plataformas actuales de Blockchain y aplicaciones, y provee una evaluación y comparación del

rendimiento de diferentes nodos de Blockchain en dispositivos del IoT. Por último, esta contribución

pretende analizar los desafı́os y los problemas abiertos para una integración del IoT con Blockchain

en un futuro próximo con el fin de asegurar la confiabilidad de la información en aplicaciones del IoT.

Por tanto, el objetivo general de esta tesis doctoral, facilitar la adopción del IoT, ha sido abordado a través

de las contribuciones anteriores. Tales contribuciones no están estrictamente relacionadas entre sı́, sino que

contribuyen al objetivo general de este tesis como vamos a ver a continuación. En primer lugar, las contri-

buciones del sistema de gestión y despliegue de recursos fı́sicos en tiempo de ejecución y la arquitectura

λ-CoAP han sido diferentes iteraciones del mismo proyecto y están perfectamente integradas. Esto puede

abrir más oportunidades, como aplicaciones que requieran de un gran procesamiento de datos y la gestión de
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componentes hardware. Por ejemplo, un caso de uso de una aplicación podrı́a procesar los datos recibidos y

decidir qué componentes fı́sicos no son necesarios para su desactivación, ahorrando energı́a en los dispositi-

vos del IoT. Por otra parte, Appdaptivity fue desarrollado durante una estancia de investigación en el grupo de

investigación IDLab de la Universidad de Gante. Este proyecto contribuye al objetivo general definido en esta

tesis doctoral y es parte del grupo de investigación IDLab. Por tanto, este proyecto no ha sido inicialmente

integrado con el resto de contribuciones, sin embargo, esto podrı́a ser logrado gracias a su arquitectura basada

en componentes. Esta integración deberı́a de tener en cuenta la distribución de la lógica de las aplicaciones en

la arquitectura λ-CoAP, permitiendo el desarrollo de aplicaciones con baja latencia, portables, desacopladas

de los dispositivos y que requieran de grandes capacidades de cómputo, lo que representarı́a un gran desafı́o

de investigación. Por último, la contribución de la integración del IoT y Blockchain es un estudio exhaustivo

de los problemas abiertos y los desafı́os en un tema innovador y actual con el fin de ser abordado e integrado

con el resto de contribuciones en un futuro próximo.

A.2 Despliegue y gestión de recursos fı́sicos CoAP en tiempo de ejecu-

ción

Los recursos en CoAP representan una operación en un servicio web embebido. Las operaciones en los

recursos pueden representar tanto a sensores (por ejemplo, un sensor de temperatura) como actuadores (por

ejemplo, un actuador de luz). Normalmente, los recursos se definen en tiempo de compilación, lo que dificulta

la gestión de los recursos cuando el sistema está ejecutándose. Aunque CoAP define las directrices para crear

recursos en tiempo de ejecución a través de peticiones de tipo POST, no establece las reglas para administrar

y desplegar recursos con componentes fı́sicos como sensores y actuadores. El objetivo de este sistema es

aprovechar las capacidades de CoAP para proveer un mecanismo de gestión y despliegue de recursos con

componentes fı́sicos en tiempo de ejecución. Esto último no requiere la programación o la instalación de

componentes externos, por lo que los usuarios finales podrán incorporar nuevos sensores o actuadores en sus

microcontroladores sin tener que acceder y programar la placa de desarrollo.

El sistema de gestión y despliegue de recursos fı́sicos está compuesto por tres componentes principales.

Por un lado, una interfaz web provee una forma accesible y amigable de gestionar recursos pertenecientes a

los CoM (CoAP Middleware) asociados. A través de la interfaz web los usuarios finales pueden tanto crear

un nuevo recurso en un CoM, como editar y eliminar los recursos previamente creados. Por otro lado, una

pasarela inteligente provee un proxy para traducir de HTTP a CoAP, que no es únicamente utilizado por la

interfaz web sino que también puede ser usado por clientes HTTP externos a través de su interfaz REST.

La pasarela inteligente también comprende una base de datos/caché que almacena información sobre los

recursos de los CoM conectados y sus datos con el fin de proteger los CoM de altas tasas de acceso. Por

último, los CoMs ofrecen un servidor CoAP y un conjunto de recursos que puede ser gestionados por las

pasarelas inteligentes y la interfaz web.

Conectar sensores o actuadores en microcontroladores requiere de la conexión de ellos en determinados

conectores o pines. Este es el principal enfoque por el cual este sistema ha sido desarrollado. Los usuarios
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pueden conectar un sensor o un actuador en una placa de desarrollo. Una vez que este ha sido conectado

correctamente, los usuarios pueden registrar el sensor/actuador instalado junto con sus conectores con el fin

de establecer el recurso disponible para poder interactuar con él en el CoM correspondiente. Para ello, se

ha modificado el protocolo CoAP de tal forma que permita la gestión de este nuevo tipo de recursos. Por lo

tanto, los usuarios pueden crear un nuevo recurso conectándolo en las placas de desarrollo y registrándolo en

la interfaz web.
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Web UI 
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Web 
Server
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Connector

Database 
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Smart Gateway
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Figura A.4: Visión general del sistema de gestión y despliegue de recursos fı́sicos en tiempo de

ejecución

La Figura A.4 muestra una visión general de la arquitectura con los componentes mencionados anterior-

mente y el flujo de datos entre ellos. El flujo de datos comienza con una petición HTTP para realizar una

operación o interactuar con un recurso desde la interfaz web o un cliente HTTP externo. A continuación,

la pasarela inteligente traduce la petición HTTP a CoAP y la transmite al middleware CoM. Finalmente, la

pasarela inteligente responde a través de HTTP cuando obtiene del CoM el resultado de la operación. A partir

de este flujo se permite la gestión y despliegue de sensores y actuadores en los diferentes CoM en tiempo de

ejecución.

Aunque algunos sensores y actuadores no requieren de librerı́as externas para interactuar con ellos, co-

mo algunos sensores analógicos, muchos otros requieren de librerı́as externas para su funcionamiento. Las

librerı́as necesarias para el funcionamiento de tales sensores y actuadores pueden requerir de una importante

cantidad de memoria. Por tanto, los dispositivos del IoT con ciertas limitaciones están lejos de ser soportados.

Para aliviar esta problemática, cada servidor CoAP define un middleware objetivo en el cual se dará soporte

para un determinado número de librerı́as. También, hemos modificado el protocolo CoAP para soportar la

comunicación en dispositivos embebidos, en este caso a través de ZigBee. ZigBee es un protocolo de co-

municación basado en el estándar IEEE 802.15.4. ZigBee ha sido elegido porque proporciona un modo de
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funcionamiento de baja potencia y una comunicación segura y global para el IoT.

A.3 Appdaptivity: un sistema para el desarrollo de aplicaciones por-

tables y desacoplados de los dispositivos del IoT

En aplicaciones desacopladas de los dispositivos, el desarrollo se centra en la lógica de la aplicación, en vez

de diseñar aplicaciones para dispositivos especı́ficos. Esto permite un gran desacoplamiento de las aplica-

ciones de los dispositivos, y una perfecta adaptación de las aplicaciones a los cambios en el entorno. Esta

segunda contribución, conocida como Appdaptivity, permite el desarrollo de aplicaciones independientemen-

te de la infraestructura fı́sica subyacente. A través de un proceso de descubrimiento, la infraestructura se

adhiere al sistema cuando está disponible. El descubrimiento puede realizarse en múltiples escenarios gracias

a la involucración de los usuarios finales. En cualquier caso, el descubrimiento se realiza dinámicamente en

segundo plano y la infraestructura subyacente puede ser descubierta en múltiples contextos. Esto conlleva a

que la lógica de la aplicación sólo tenga que definirse una vez y este proceso de descubrimiento permita la

portabilidad de aplicaciones a múltiples y heterogéneos entornos.

Una abstracción ha sido adoptada para categorizar la infraestructura subyacente y los cambios de contex-

to para los usuarios finales: la localización. La localización hace referencia a una localización lógica donde

una infraestructura fı́sica ha sido desplegaba, por ejemplo, una habitación. La localización permite modelar

el mundo fı́sico tal y como ha sido concebido. Todos los cambios de contexto que hayan ocurrido en las

localizaciones se verán reflejados en la lógica de aplicación definida. Esto requiere que la infraestructura sub-

yacente tenga que soportar la localización para correlacionar sus dispositivos con las localizaciones lógicas

definidas. Habilitar la localización en dispositivos embebidos puede incurrir en una pérdida de rendimiento.

Por tanto, trabajos anteriores han sido tenidos en cuenta para no afectar en el rendimiento de los dispositivos

[129]. Lo mismo ocurre con el desarrollo de aplicaciones personalizadas, donde se ha tenido en cuenta tra-

bajos anteriores para gestionar el acceso en dispositivos embebidos [130], de tal forma que sólo las personas

autorizadas tenga acceso a los dispositivos. En el proceso de descubrimiento, la infraestructura subyacente es

descubierta para el usuario que tenga permisos en ella, y será actualizada con cualquier cambio. Si una deter-

minada lógica depende de una situación (por ejemplo, un valor de temperatura), la lógica de la aplicación no

será activada hasta que todos los correspondientes componentes han sido recibidos. Por lo tanto, el desarrollo

de aplicaciones puede realizarse de forma global para todas las aplicaciones personalizadas, ya que la lógica

de aplicación será activada dependiendo de los permisos de cada usuario.

Appdaptivity ha adoptado un modelo de programación basado en flujo de datos [39] para definir aplica-

ciones de usuario intuitivamente. En el desarrollo basado en flujo de datos los usuarios definen las aplicacio-

nes a través de un grafo conectado de nodos, modelando un flujo de acciones que los datos deberı́an de tomar.

Los nodos tienen una función que no depende en otros nodos, por lo que forman componentes altamente

reusables y portables para el desarrollo de la lógica de aplicaciones. Además, Appdaptivity provee un gran

conjunto de nodos para definir aplicaciones, que pueden ser definidas sin una lı́nea de código fuente. Este me-

canismo permite que los usuarios no técnicos encuentren más fácil utilizar el sistema, lo que a su vez facilita
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la expansión de la solución propuesta. Otros marcos de desarrollo proveen algunas de las capacidades para

desarrollar aplicaciones personalizas, desacopladas de los dispositivos, y que se adapten a contextos cambian-

tes. Hasta donde tenemos conocimiento, este enfoque es el primero en proporcionar un marco de desarrollo

para la creación intuitiva de aplicaciones del IoT que pueden ser portables, personalizadas y adaptadas a

contextos cambiantes.

Appdaptivity comprende el Portability Core (PoCo), que es el componente encargado de habilitar la

programación basada en flujo de datos a través de una interfaz web accesible y transparente. El PoCo permite

el desarrollo de aplicaciones con localizaciones para los usuarios finales. Las aplicaciones resultantes pueden

ser dinámicamente portables a otros entornos. Una adaptación para diversos escenarios de despliegue ha sido

tenida en cuenta, y el PoCo permite una variedad de despliegues para diferentes casos de uso. La lógica de la

aplicación comprende diferentes comportamientos en el desarrollo basado en flujo de datos, mientras que las

aplicaciones de usuario son un conjunto de clientes que reciben y envı́an datos al PoCo con la información

originada en el sistema y la información requerida para activar los flujos de datos. Los comportamientos

comprenden la lógica de las aplicaciones resultantes y serán siempre actualizados con los cambios en la

infraestructura. Las aplicaciones de usuario son normalmente aplicaciones para smartphones que muestran

una representación actualizada de los comportamientos con la infraestructura subyacente proveı́da por el

PoCo para los usuarios finales.
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Figura A.5: Arquitectura de Appdaptivity

Los dispositivos del IoT son otra parte importante en el sistema, y la más limitada, ya que se corresponden

con dispositivos con recursos limitados. Por esta razón, Appdaptivity ha adoptado CoAP como el protocolo de

aplicación para interactuar con los dispositivos finales. En el ámbito de esta contribución, habrá sensores que

podrán ser monitorizados y actuadores con los que se podrá interactuar, por lo tanto, un estándar ligero como

CoAP con recursos accesibles representa un protocolo adecuado. Tolas las redes de sensores inalámbricas

que soportan CoAP son conocidas como redes de CoAP en esta contribución. Las redes de CoAP proveen
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los sensores, actuadores y la información de los dispositivos que son accesibles a través de CoAP para crear

aplicaciones del IoT. El PoCo es el encargado de interactuar con las redes de CoAP y permite la definición

de flujo de datos con los recursos de CoAP obtenidos, que compondrán los diferentes comportamientos en

las aplicaciones de usuario. Una visión general del sistema es presentada en la Figura A.5. En ella se muestra

el conjunto de componentes que permite las funcionalidades de Appdaptivity. En este caso, el PoCo ha sido

desplegado en el cloud, pero también puede ser desplegado de forma local y embebida. En aplicaciones del

IoT globales, las redes de CoAP son desplegadas en diferentes en diferentes localizaciones fı́sicas, como

por ejemplo, Málaga y Gante. Appdaptivity gestiona el proceso de portabilidad de las aplicaciones en tales

entornos, al mismo tiempo que permite la definición de comportamientos personalizados con una interfaz

intuitiva.

A.4 λ-CoAP: una Integración de Internet de las Cosas y Cloud Com-

puting

El IoT genera grandes cantidades de datos, lo cual se espera que continúe en crecimiento para los próximos

años [143]. Las limitaciones de los dispositivos del IoT hacen que abordar paradigmas actuales como big

data o aprendizaje profundo, sea una tarea muy complicada, ya que requieren de grandes capacidades de

procesamiento y almacenamiento. Tales paradigmas intentan extraer conocimiento y generar acciones sobre

información del IoT. En los últimos años, la integración del IoT con tecnologı́as disruptivas como cloud

computing [2] han proveı́do las capacidades necesarias en el IoT para abordar los anteriores paradigmas. Sin

embargo, esto ha resultado en un incremento de latencia en las comunicaciones entre el IoT y el cloud, y

una dependencia en factores externos como disponibilidad, enrutamiento y redes, lo que implica el uso de

servicios externos. En determinadas ocasiones es necesario actuar con una latencia muy reducida, como el

caso de la detección anticipada de un terremoto o una explosión. Un nuevo paradigma conocido como edge

computing [10] tiene como objetivo reducir el tiempo de respuesta y el ancho de banda en comunicaciones

entre el IoT y el cloud, moviendo la computación al borde (edge) de la red. Las nuevas generaciones de coches

autónomos pretenden generar hasta 1GB de información por segundo, por lo que edge computing jugará un

papel clave para reducir la latencia y el ancho de banda. En otro caso, supondrı́a un cuello de botella para las

redes de comunicaciones.

La integración del IoT con cloud computing empezó con un análisis de los componentes requeridos pa-

ra tal integración. Los componentes requeridos fueron clasificados en dos categorı́as teniendo en cuento las

necesidades tanto en el IoT como en el cloud. Por un lado, el análisis abordó plataformas cloud multidisci-

plinarias para satisfacer las limitaciones del IoT, ofreciendo nuevas oportunidades de negocio y una mayor

escalabilidad. Por otro lado, el análisis abordó la comparación de diferentes middleware del IoT para abs-

traer las limitaciones de los dispositivos del IoT. A través de los middleware IoT, los dispositivos tendrán un

mecanismo ligero e interoperable de comunicación entre ellos mismos y con los sistemas cloud.

El análisis facilitó la definición de la arquitectura λ-CoAP, que provee una integración de cloud compu-

ting con el IoT con una capa de edge computing. Por un lado, la heterogeneidad dentro de los dispositivos
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Figura A.6: Una visión general de la arquitectura Λ-CoAP

del IoT involucrados es abstraı́da al mismo tiempo que se permite el acceso a servicios web ligeros a través

de CoAP. Por otra parte, la arquitectura lambda permite el procesamiento, actuación y análisis en tiempo real

de las grandes cantidades de datos generados por el IoT. Una capa edge que reside entre el IoT y la arquitec-

tura lambda tiene como objetivo reducir la latencia y el ancho de banda entre las comunicaciones del IoT y

el cloud. La arquitectura λ-CoAP se complementa con una pasarela inteligente que permite interconectar la

arquitectura lambda, HTTP y CoAP; un middleware para instalar CoAP en dispositivos embebidos; y com-

ponentes externos, como una interfaz web de usuario y un componente para gestionar y actuar sobre el IoT

subyacente, respectivamente.

La Figura A.6 muestra una visión general de la arquitectura λ-CoAP. En la parte inferior, los dispositivos

finales incorporan un middleware basado en CoAP cuyas funciones principales son abstraer la comunica-

ción con las capas superiores para consultar información y actuar sobre los dispositivos, ası́ como abstraer

aspectos de descubrimiento y bajo nivel. Este middleware también ha sido utilizado en la contribución de

gestión y despliegue de recursos fı́sicos, Sección A.2. En la parte central residen las pasarelas inteligentes y

la capa edge. Al principio (Sección A.2), las pasarelas inteligentes actuaban como un puente de interconexión

entre la arquitectura lambda, los dispositivos subyacentes y los usuarios finales. Sin embargo, las pasarelas

inteligentes han sido adaptadas para soportar una arquitectura de edge computing, además de ser dispositivos

autónomos con capacidades propias de procesamiento y con una tecnologı́a de virtualización ligera. Por lo
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que en ellas se permite definir la lógica de la aplicación de la capa edge a través de una interfaz web intuitiva,

de forma similar que en la Sección A.3. De hecho, los buenos resultados y la experiencia adquirida en App-

daptivity ayudaron a la adopción de esta interfaz en la capa edge. Con su procesamiento se puede recudir la

latencia de comunicación y aligerar el ancho de banda de las redes. Por lo tanto, la capa edge comprende las

pasarelas inteligentes desplegadas en la arquitectura. Por último, en la parte posterior, el cloud es responsable

de distribuir los componentes de la arquitectura lambda.

A.5 La Integración de Blockchain e Internet de las Cosas

En muchas áreas donde una exhaustiva trazabilidad de activos durante su ciclo de vida es requerida por

regulaciones, la inmutabilidad de la información se convierte en un desafı́o. Concretamente, regulaciones de

la Unión Europea requieren que los productores alimentarios realicen una trazabilidad de todas las materias

primas utilizadas en la elaboración de sus productos alimentarios, además del destino final de cada uno

de ellos. En el caso de una gran compañı́a alimentaria con miles de proveedores y millones de clientes,

la información necesita de estar digitalizada y su procesamiento automatizado con el fin de cumplir con

tales regulaciones. Un ejemplo de una gran regulación en trazabilidad es la industria porcina. En este sector,

además de una trazabilidad de las materias primas, los tratamientos y el destino de cada pieza, también debe

de ser registrado el traslado de animales entre factorı́as.

Estos escenarios involucran muchos participantes, muchos de ellos todavı́a confiando en procesos de

información no automatizados. En el caso de una intoxicación alimentaria, que ha sido uno de los mayores

problemas para la salud de la población mundial a lo largo de la historia, la información que se pierde

o es difı́cil de encontrar implica demoras en la ubicación del foco del problema. Esto puede provocar la

desconfianza de la población hacia los productos contaminados, y por ende, una gran disminución de su

demanda. De acuerdo con la Organización Mundial de la Salud, se estima que cada año 600 millones de

personas en el mundo sufren una enfermedad a causa de una intoxicación alimentaria, de las cuales 420.000

padecen por la misma causa [187]. Por lo tanto, tener información inaccesible o incluso su pérdida puede

afectar gravemente a la seguridad alimentaria y a la salud de los consumidores. En este tipo de escenarios el

IoT tiene el potencial de transformar y revolucionar la industria y la sociedad, digitalizado el conocimiento

de tal forma que pueda ser consultado y controlado en tiempo real.

Aparte de tener la información disponible, la información también necesita de ser confiable. Mantener

la información confiable e inmutable durante su ciclo de vida es crı́tico en estos entornos. Una forma de

proveer integridad en información es a través de un servicio distribuido confiable por todos sus participantes

que garantice que toda la información permanece inmutable. Si todos los participantes tienen la información

y tienen la forma de verificar que esa información no ha sido alterada desde su primera creación, la integridad

puede ser lograda. Tener un sistema que garantice la confiabilidad de la información permitirı́a entre otras

cosas a los gobiernos compartir información de forma segura con sus ciudadanos. Esto es exactamente lo que

hace Blockchain. Esta nueva tecnologı́a pretende revolucionar la forma en la que intercámbianos y accedemos

a la información. Sin embargo, debido a su novedad, su integración con el IoT todavı́a no ha sido bien
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abordada.

Esta última contribución tiene como objetivo analizar los desafı́os en la integración del IoT y Blockchain,

y los potenciales beneficios que la integración puede proveer. Especı́ficamente, se han analizado los desafı́os

en Blockchain y su integración con el IoT. Este análisis ha mostrado como el almacenamiento, la escalabi-

lidad o los aspectos legales son unos de los problemas a tener en cuenta a la hora de abordar la integración

de ambas tecnologı́as. También, se han comparado diferentes plataformas de Blockchain que podrı́an com-

poner tal integración. Por último, una evaluación de nodos de Blockchain en dispositivos del IoT muestra las

capacidades de esta tecnologı́a en este tipo de dispositivos

A.6 Conclusiones y Trabajos Futuros

A.6.1 Conclusiones

El IoT es una tecnologı́a ubicua que está presente en muchas situaciones de nuestro dı́a a dı́a. Desde casas

inteligentes hasta procesos de fabricación, el IoT está mejorando la calidad de vida y optimizando muchos

servicios a través de sus capacidades de monitorizar y actuar sobre el mundo fı́sico. Varios informes de inves-

tigación pronostican una gran evolución de este paradigma para los próximos años, por lo que su adopción

en nuestra sociedad será aún más notable. Sin embargo, el IoT presenta severas limitaciones debido a los

recursos limitados de sus dispositivos, lo que su condiciona notablemente su expansión. Esta tesis docto-

ral, IntegraDos, tiene como objetivo proveer diferentes sistemas que permitan facilitar la adopción del IoT a

través de la integración con diferentes tecnologı́as y paradigmas. Especı́ficamente, ha sido investigado cómo

facilitar la gestión y despliegue de componentes fı́sicos, el desarrollo de aplicaciones del IoT, una integración

del IoT con cloud computing, y se han analizado y evaluado cómo puede ser integrado el IoT con Blockchain.

La primera contribución de esta tesis doctoral se corresponde con un sistema para gestionar y desplegar

recursos fı́sicos presentado en la Sección A.2. El objetivo de esta solución es reducir la brecha entre los

usuarios finales y los entornos personalizados. De aquı́ en adelante, los usuarios finales podrán instalar sus

propios sensores y actuadores en sus microcontroladores a través de interfaces bien definidas y sin tener que

programar ni resetear sus sistemas. CoAP y ZigBee han sido usados como servicio web embebido y el medio

de comunicación en los microcontroladores respectivamente, por lo tanto permitiendo un enfoque ligero y de

bajo consumo para interactuar con recursos. El sistema provee un proxy para interconectar HTTP con CoAP

en una pasarela inteligente, de tal forma que cualquier cliente HTTP puede llevar acabo las operaciones

proveı́das por la pasarela. De hecho, esto último contribuye a realizar aún más la idea de la web de las cosas.

Además, una interfaz web ha sido incorporada para proveer un acceso multidispositivo a los usuarios finales.

Appdaptivity, un marco de desarrollo que permite el desarrollo de aplicaciones del IoT abstrayendo a

los desarrolladores de aplicaciones de la subyacente infraestructura, se corresponde con la segunda aporta-

ción, presentada en la Sección A.3. La solución propuesta pretende reducir la brecha entre las aplicaciones

del IoT y la subyacente infraestructura, que está normalmente demasiado acoplada, conllevando a soluciones

verticales. Las aplicaciones resultantes son creadas intuitivamente, personalizadas, portables y automática-

mente adaptadas a los cambios de contexto, sin necesidad de recompilar y programar aplicaciones acopladas
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a los dispositivos. El modelo de programación de Appdaptivity está basado en programación de flujo de da-

tos, donde los desarrolladores de aplicaciones pueden crear aplicaciones del IoT conectando componentes

a través de una interfaz web. Los desarrolladores de aplicaciones sólo necesitan centrarse en la lógica de la

aplicación, mientras que otros aspectos de descubrimiento y la inyección de la información de los dispositi-

vos son gestionados por Appdaptivity. La solución está pensada para escenarios heterogéneos, permitiendo

la portabilidad de las aplicaciones del IoT, varias opciones de despliegue y la integración con aplicaciones de

usuario externas. La infraestructura subyacente está soportada a través de CoAP. Por último, las aplicaciones

finales que serán usadas por los usuarios, no están enfocadas en una única aplicación, sino que Appdaptivity

permite la integración de múltiples aplicaciones y plataformas a través de sus interfaces bien definidas y sus

protocolos estándares.

La arquitectura λ-CoAP, una arquitectura para integrar el IoT con cloud computing con una capa de edge

computing ha sido presentada en la Sección A.4. La arquitectura λ-CoAP contribuye a resolver los problemas

de procesamiento, análisis y almacenamiento las grandes cantidades de información providentes del IoT, a

través de la arquitectura lambda. CoAP es el protocolo usado en el lado de los dispositivos, de ahı́ su nombre

λ-CoAP. Algunos componentes y la experiencia obtenida de las contribuciones de las secciones A.2 y A.3

han contribuido fuertemente para conformar esta arquitectura. La arquitectura cubre una visión completa

de un despliegue de edge computing, desde el IoT, pasando por el edge, hasta el cloud. La arquitectura λ-

CoAP incorpora a middleware CoAP que abstrae los aspectos de bajo nivel de los dispositivos del IoT y

provee una forma ligera de interactuar con el IoT. Además, el IoT es abstraı́do con las pasarelas inteligentes,

permitiendo el acceso a través de diferentes protocolos de alto nivel. Una tecnologı́a de virtualización ligera

ha sido adoptada en las pasarelas inteligentes para tener un mejor control y aislamiento de los procesos

en ejecución además de un marco de desarrollo visual para la programación de la lógica en el edge. Por

último, la arquitectura lambda desplegada en el cloud permite el procesamiento y almacenamiento de grandes

cantidades de datos procedentes del IoT. Aplicaciones del IoT como monitorización de la salud estructural

podrı́an aprovechar esta arquitectura para reducir su latencia y aliviar el ancho de banda con el cloud.

Blockchain es concebida como una tecnologı́a revolucionaria que mantiene la información confiable.

Sin embargo, modificar la tecnologı́a sin garantizar adecuadamente su operación o aplicarla a escenarios

donde los costes no compensan, son riesgos en los que se puede caer fácilmente. Por tanto, los beneficios de

aplicar Blockchain en el IoT deben ser analizados cuidadosamente y tomados con precaución. Por último, la

Sección A.5 ha proveı́do de un análisis de los principales desafı́os que Blockchain y el IoT deben abordar para

poder trabajar juntos exitosamente. Se han identificado los puntos clave donde Blockchain puede ayudar a

las aplicaciones del IoT. Además, una evaluación de diferentes nodos de Blockchain en dispositivos del IoT y

una comparación de varias plataformas analizan la factibilidad de la tecnologı́a. Es esperado que Blockchain

revolucione el IoT. Por lo tanto, la integración de estas dos tecnologı́as deberı́a ser abordada teniendo en

cuenta los desafı́os identificados en esta última contribución.
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A.6.2 Trabajos Futuros

Esta investigación nos ha conducido a definir varios desafı́os abiertos que pueden ser abordados. Por un

lado, el sistema de gestión y despliegue podrı́a garantizar la compatibilidad con diferentes tecnologı́as de

comunicación inalámbrica para dispositivos con recursos limitados, con el fin de evaluarlas y establecer la

más adecuada para cada entorno. Un despliegue y gestión de ellas en tiempo de ejecución de la misma forma

que se realiza en el sistema de gestión y despliegue, permitirı́a el uso de múltiples y configurables tecnologı́as

inalámbricas sobre CoAP. Las tecnologı́as de comunicación inalámbricas, como el IoT, están en una continua

expansión. Ejemplos destacados son la nueva generación de redes de gran alcance LPWAN, como Lora y

Sigfox. Sin embargo, cada tecnologı́a tiene sus caracterı́sticas únicas en términos de cobertura, conectividad,

seguridad y consumo, por lo que cada una es adecuada para determinados entornos. Este enfoque también

tendrı́a que tener en cuenta los esfuerzos para habilitar IPv6 en redes LPWAN. La adopción de una capa

superior como CoAP sobre estas tecnologı́as asegurarı́a también la interoperabilidad de ellas en el IoT.

Por otro lado, Appdaptivity podrı́a habilitar un soporte multi-perfil en comunicaciones seguras con las

aplicaciones de usuario, facilitando por tanto la adopción global del sistema. Actualmente, el soporte de un

único certificado en comportamientos personalizados limita la expansión del sistema. Además, la definición

de la conexión segura de cada servidor CoAP es realizada manualmente en el framework usado y podrı́a ser

automatizada. Appdaptivity también podrı́a integrar los componentes RESTlet. Los componentes RESTlet

permiten la definición de la lógica de la aplicación directamente en los dispositivos del IoT. Eso optimizarı́a el

posicionamiento de la lógica entre Appdaptivity y la subyacente infraestructura, permitiendo una inteligencia

distribuida. Una integración entre la arquitectura λ-CoAP y Appdaptivity también podrı́a considerarse.

También, se podrı́a llevar a cabo una evaluación de la arquitectura λ-CoAP en un caso de uso de una

mayor envergadura. Actualmente, la evaluación realizada no cubre un escenario del IoT como podrı́a serlo.

Sin embargo, los resultados confirman las capacidades de la arquitectura para un caso de uso de mayor

envergadura. En este sentido, hemos solicitado recientemente un proyecto de investigación en colaboración

con otro grupo de investigación de la Universidad de Málaga que tiene como objetivo monitorizar los espacios

universitarios, optimizando su uso y detectando anomalı́as.

Por último, el análisis de los desafı́os y los problemas abiertos en la integración de Blockchain y el IoT

establecieron las pautas de nuestro trabajo futuro para superar este desafı́o. En un futuro cercano, este tema

se abordará con el objetivo de mantener la confiabilidad de los datos y las comunicaciones del IoT.
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[144] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural health monitoring, vol. 90. John Wiley
& Sons, 2010.

[145] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT press
Cambridge, 2016.

[146] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,”
in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, Incline
Villiage, Nevada, USA, pp. 1–10, May May 2010.

[147] “Mapreduce tutorial.” Available online: http://hadoop.apache.org/docs/r1.2.
1/mapred_tutorial.html. (accessed on 20 December 2015).

174

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://ionicframework.com/
https://www.ietf.org/rfc/rfc7390.txt
https://www.youtube.com/watch?v=ioB-rYuKJfY
https://www.youtube.com/watch?v=ioB-rYuKJfY
https://www.ugent.be/ea/idlab/en/research/research-infrastructure/homelab.htm
https://www.ugent.be/ea/idlab/en/research/research-infrastructure/homelab.htm
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html


BIBLIOGRAPHY

[148] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet another resource negotiator,” in
In Proceedings of the 4th annual Symposium on Cloud Computing, Santa Clara, CA, USA,
p. 5, ACM, Oct 2013.

[149] “Apache hive.” Available online: https://hive.apache.org/. (accessed on 20 De-
cember 2015).

[150] “Apache pig.” Available online: https://pig.apache.org/. (accessed on 20 Decem-
ber 2015).

[151] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster com-
puting with working sets,” in In Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, Boston, MA, USA, pp. 10–10, June 2010.

[152] “Apache spark.” Available online: https://spark.apache.org/. (accessed on 20
December 2015).

[153] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli, “Druid: a real-time
analytical data store,” in In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pp. 157–168, ACM, 2014.

[154] “Druid.” Available online: http://druid.io/. (accessed on 20 December 2015).

[155] “Apache hbase.” Available online: http://hbase.apache.org/. (accessed on 20 De-
cember 2015).

[156] “Apache phoenix.” Available online: http://phoenix.apache.org/. (accessed on
20 December 2015).

[157] “Cloudera impala.” Available online: http://www.cloudera.com/content/
cloudera/en/products-and-services/cdh/impala.html. (accessed on 20
December 2015).

[158] “Opentsdb.” Available online: http://opentsdb.net/. (accessed on 20 December
2015).

[159] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham, et al., “Storm@ twitter,” in In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, Snowbird, Utah, USA, pp. 147–
156, ACM, 2014.

[160] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: an efficient
and fault-tolerant model for stream processing on large clusters,” in In Proceedings of the
4th USENIX conference on Hot Topics in Cloud Computing, Boston, MA, USA, pp. 10–10,
USENIX Association, June 2012.

[161] “Apache spark streaming.” Available online: https://spark.apache.org/
streaming/. (accessed on 20 December 2015).

175

https://hive.apache.org/
https://pig.apache.org/
https://spark.apache.org/
http://druid.io/
http://hbase.apache.org/
http://phoenix.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://opentsdb.net/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/


BIBLIOGRAPHY

[162] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log pro-
cessing,” in In Proceedings of 6th International Workshop on Networking Meets Databases
(NetDB), Athens, Greece, 2011.

[163] “Apache kafka.” Available online: http://kafka.apache.org/. (accessed on 20 De-
cember 2015).

[164] D. Dossot, RabbitMQ Essentials. Packt Publishing Ltd, 2014.

[165] “Rabbitmq.” Available online: https://www.rabbitmq.com/. (accessed on 20 De-
cember 2015).

[166] “Apache ambari.” Available online: http://ambari.apache.org/. (accessed on 20
December 2015).

[167] K. Aberer, M. Hauswirth, and A. Salehi, “The Global Sensor Networks middleware for ef-
ficient and flexible deployment and interconnection of sensor networks,” tech. rep., 2006.
Sumitted to ACM/IFIP/USENIX 7th International Middleware Conference.

[168] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth, “A middleware frame-
work for scalable management of linked streams,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 16, pp. 42–51, 2012.

[169] F. Jammes, A. Mensch, and H. Smit, “Service-oriented device communications using the
devices profile for web services,” in In Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing, Grenoble, France, pp. 1–8, ACM, 2005.

[170] “Web services for devices.” Available online: http://ws4d.org/. (accessed on 20 De-
cember 2015).

[171] “Microsoft web services on devices.” Available online: https://msdn.microsoft.
com/en-us/library/windows/desktop/aa826001(v=vs.85).aspx. (ac-
cessed on 20 December 2015).

[172] J. Cubo, A. Nieto, and E. Pimentel, “A cloud-based internet of things platform for ambient
assisted living,” Sensors, vol. 14, no. 8, pp. 14070–14105, 2014.

[173] “The omg data-distribution service for real-time systems (dds).” Available online: http:
//portals.omg.org/dds/. (accessed on 20 December 2015).

[174] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for billions of
tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–67, 2012.

[175] M. Castro, A. J. Jara, and A. F. Skarmeta, “Enabling end-to-end coap-based communications
for the web of things,” Journal of Network and Computer Applications, pp. –, 2014.

[176] “Linksmart.” Available online: https://linksmart.eu/. (accessed on 20 December
2015).

176

http://kafka.apache.org/
https://www.rabbitmq.com/
http://ambari.apache.org/
http://ws4d.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa826001(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa826001(v=vs.85).aspx
http://portals.omg.org/dds/
http://portals.omg.org/dds/
https://linksmart.eu/


BIBLIOGRAPHY

[177] D. Hughes, K. L. Man, Z. Shen, and K. K. Kim, “A loosely-coupled binding model for
wireless sensor networks,” in In SoC Design Conference (ISOCC), 2012 International, Jeju
Island, Korea (South), pp. 273–276, IEEE, Nov 2012.

[178] J. Maerien, S. Michiels, D. Hughes, C. Huygens, and W. Joosen, “Seclooci: A comprehensive
security middleware architecture for shared wireless sensor networks,” Ad Hoc Networks,
vol. 25, pp. 141–169, 2015.

[179] N. Marz and J. Warren, Big Data: Principles and best practices of scalable realtime data
systems. Manning Publications Co., 2015.

[180] M. Villari, A. Celesti, M. Fazio, and A. Puliafito, “Alljoyn lambda: An architecture for the
management of smart environments in iot,” in In Smart Computing Workshops (SMART-
COMP Workshops), 2014 International Conference on, Hong Kong, China, pp. 9–14, IEEE,
2014.

[181] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Legiot: a lightweight edge gateway for
the internet of things,” Future Generation Computer Systems, vol. 81, pp. 1–15, 2018.

[182] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: a per-
formance comparison,” in Cloud Engineering (IC2E), 2015 IEEE International Conference
on, Tempe, AZ, USA, pp. 386–393, IEEE, 2015.

[183] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and privacy in
distributed internet of things,” Computer Networks, vol. 57, no. 10, pp. 2266–2279, 2013.

[184] S. Ziegler, C. Crettaz, and I. Thomas, “Ipv6 as a global addressing scheme and integrator
for the internet of things and the cloud,” in In Advanced Information Networking and Ap-
plications Workshops (WAINA), 2014 28th International Conference on, Victoria, Canada,
pp. 797–802, IEEE, May 2014.

[185] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for
the internet of things: A survey,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 1,
pp. 414–454, 2014.

[186] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,” Industrial Informat-
ics, IEEE Transactions on, vol. 10, no. 4, pp. 2233–2243, 2014.

[187] “World health organization food safety fact sheet.” Available online: http://www.who.
int/mediacentre/factsheets/fs399/en/, 2017. (accessed on 1 February 2018).

[188] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” Available online: https:
//bitcoin.org/bitcoin.pdf, 2008. (accessed on 1 February 2018).

[189] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies. O’Reilly Me-
dia, Inc., 2014.

[190] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportuni-
ties: A survey,” International Journal of Web and Grid Services, 2017.

177

http://www.who.int/mediacentre/factsheets/fs399/en/
http://www.who.int/mediacentre/factsheets/fs399/en/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


BIBLIOGRAPHY

[191] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” arXiv preprint arXiv:1801.10228, 2018.

[192] J. Kennedy, “$1.4bn investment in blockchain start-ups in last 9 months, says pwc expert.”
Available online: http://linkis.com/Ayjzj, 2016. (accessed on 1 February 2018).

[193] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A scalable blockchain
protocol,” in 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’16), Santa Clara, CA, USA, pp. 45–59, 2016.

[194] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction processing,” Fast Money
Grows on Trees, Not Chains. IACR Cryptology ePrint Archive, vol. 881, 2013.

[195] C. Decker and R. Wattenhofer, “A fast and scalable payment network with bitcoin duplex
micropayment channels,” in Symposium on Self-Stabilizing Systems, Edmonton, AB, Canada,
pp. 3–18, Springer, 2015.

[196] C. Stathakopoulou, C. Decker, and R. Wattenhofer, A faster Bitcoin network. Tech. rep.,
ETH, Zurich, Semester Thesis, 2015.

[197] “Bigchaindb: The scalable blockchain database powering ipdb..” Available online: https:
//www.bigchaindb.com/, 2017. (accessed on 1 February 2018).

[198] “Ipfs is the distributed web.” Available online: https://ipfs.io/, 2017. (accessed on
1 February 2018).

[199] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security of blockchain
systems,” Future Generation Computer Systems, p. In press, 2017.

[200] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Inter-
national conference on financial cryptography and data security, San Juan, Puerto Rico,
pp. 436–454, Springer, 2014.

[201] J. Bonneau, E. W. Felten, S. Goldfeder, J. A. Kroll, and A. Narayanan, “Why buy when you
can rent? bribery attacks on bitcoin consensus,” 2016.

[202] G. Karame, E. Androulaki, and S. Capkun, “Two bitcoins at the price of one? double-
spending attacks on fast payments in bitcoin.,” IACR Cryptology ePrint Archive, vol. 2012,
no. 248, 2012.

[203] “Bitcoin average transction confirmation time.” Available online: https:
//blockchain.info/es/charts/avg-confirmation-time, 2017. (accessed
on 1 February 2018).

[204] H. Finney, “The finney attack(the bitcoin talk forum).” Available online: https://
bitcointalk.org/index.php?topic=3441.msg48384, 2011. (accessed on 1
February 2018).

178

http://linkis.com/Ayjzj
https://www.bigchaindb.com/
https://www.bigchaindb.com/
https://ipfs.io/
https://blockchain.info/es/charts/avg-confirmation-time
https://blockchain.info/es/charts/avg-confirmation-time
https://bitcointalk.org/index.php?topic=3441.msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384


BIBLIOGRAPHY

[205] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s peer-to-peer
network.,” in USENIX Security Symposium, Washington, D.C., USA, pp. 129–144, USENIX
Association, 2015.

[206] “Segwit2x backers cancel plans for bitcoin hard fork.” Available online: https:
//techcrunch.com/2017/11/08/segwit2x-backers-cancel-plans-
for-bitcoin-hard-fork/, 2017. (accessed on 1 February 2018).

[207] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash:
Decentralized anonymous payments from bitcoin,” in Security and Privacy (SP), 2014 IEEE
Symposium on, San Jose, CA, USA, pp. 459–474, IEEE, 2014.

[208] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed e-cash
from bitcoin,” in Security and Privacy (SP), 2013 IEEE Symposium on, Berkeley, CA, USA,
pp. 397–411, IEEE, 2013.

[209] “Bitcoin fog.” Available online: http://bitcoinfog.info/, 2017. (accessed on 1
February 2018).

[210] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world.” Available online: https://
bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902,
2013. (accessed on 1 February 2018).

[211] A. Greenberg, “’dark wallet’is about to make bitcoin money laundering easier than ever,”
URL http://www. wired. com/2014/04/dark-wallet, 2014.

[212] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten, “Mixcoin:
Anonymity for bitcoin with accountable mixes,” in International Conference on Financial
Cryptography and Data Security, San Juan, Puerto Rico, pp. 486–504, Springer, 2014.

[213] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical decentralized coin mix-
ing for bitcoin,” in European Symposium on Research in Computer Security, Heraklion,
Crete, Greece, pp. 345–364, Springer, 2014.

[214] G. Maxwell, “Coinswap: Transaction graph disjoint trustless trading,” CoinSwap: Transac-
tiongraphdisjointtrustlesstrading (October 2013), 2013.

[215] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for bitcoin,” in Interna-
tional Conference on Financial Cryptography and Data Security, San Juan, Puerto Rico,
pp. 112–126, Springer, 2015.

[216] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts,” in Security and Privacy (SP), 2016
IEEE Symposium on, San Jose, CA, USA, pp. 839–858, IEEE, 2016.

[217] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation platform with
guaranteed privacy,” arXiv preprint arXiv:1506.03471, 2015.

[218] “Quorum whitepaper.” Available online: https://github.com/jpmorganchase/
quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf, 2016. (ac-
cessed on 1 February 2018).

179

https://techcrunch.com/2017/11/08/segwit2x-backers-cancel-plans-for-bitcoin-hard-fork/
https://techcrunch.com/2017/11/08/segwit2x-backers-cancel-plans-for-bitcoin-hard-fork/
https://techcrunch.com/2017/11/08/segwit2x-backers-cancel-plans-for-bitcoin-hard-fork/
http://bitcoinfog.info/ 
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf


BIBLIOGRAPHY

[219] G. Greenspan, “Multichain private blockchain—white paper.” Available online: https:
//www.multichain.com/download/MultiChain-White-Paper.pdf, 2015.
(accessed on 1 February 2018).

[220] S. Jehan, “Rockchain a distributed data intelligence platform.” https:
//icobazaar.com/static/4dd610d6601de7fe70eb5590b78ed7cd/
RockchainWhitePaper.pdf, 2017. (accessed on 20 October 2017).

[221] A. Lazarovich, Invisible Ink: blockchain for data privacy. PhD thesis, Massachusetts Institute
of Technology, 2015.

[222] G. Zyskind, O. Nathan, et al., “Decentralizing privacy: Using blockchain to protect personal
data,” in Security and Privacy Workshops (SPW), 2015 IEEE, San Jose, CA, USA, pp. 180–
184, IEEE, 2015.

[223] D. Houlding, “Healthcare blockchain: What goes on chain stays on chain.” Available online:
https://itpeernetwork.intel.com/healthcare-blockchain-goes-
chain-stays-chain/, 2017. (accessed on 1 February 2018).

[224] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An authenticated data
feed for smart contracts,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, pp. 270–282, ACM, 2016.

[225] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards creating
a safe smart contract: Lessons and insights from a cryptocurrency lab,” in International
Conference on Financial Cryptography and Data Security, Christ Church, Barbados, pp. 79–
94, Springer, 2016.

[226] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts
(sok),” in International Conference on Principles of Security and Trust, Uppsala, Sweden,
pp. 164–186, Springer, 2017.

[227] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of
things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[228] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, pp. 254–269, ACM, 2016.

[229] C. K. Frantz and M. Nowostawski, “From institutions to code: towards automated generation
of smart contracts,” in Foundations and Applications of Self* Systems, IEEE International
Workshops on, Augsburg, Germany, pp. 210–215, IEEE, 2016.

[230] C. K. Elwell, M. M. Murphy, and M. V. Seitzinger, “Bitcoin: questions, answers, and analy-
sis of legal issues.” Available online: https://fas.org/sgp/crs/misc/R43339.
pdf, 2013. (accessed on 1 February 2018).

[231] “Bitcoin is a fraud that will blow up, says jp morgan boss.” Available online:
https://www.theguardian.com/technology/2017/sep/13/bitcoin-

180

https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://icobazaar.com/static/4dd610d6601de7fe70eb5590b78ed7cd/RockchainWhitePaper.pdf
https://icobazaar.com/static/4dd610d6601de7fe70eb5590b78ed7cd/RockchainWhitePaper.pdf
https://icobazaar.com/static/4dd610d6601de7fe70eb5590b78ed7cd/RockchainWhitePaper.pdf
https://itpeernetwork.intel.com/healthcare-blockchain-goes-chain-stays-chain/
https://itpeernetwork.intel.com/healthcare-blockchain-goes-chain-stays-chain/
https://fas.org/sgp/crs/misc/R43339.pdf
https://fas.org/sgp/crs/misc/R43339.pdf
https://www.theguardian.com/technology/2017/sep/13/bitcoin-fraud-jp-morgan-cryptocurrency-drug-dealers
https://www.theguardian.com/technology/2017/sep/13/bitcoin-fraud-jp-morgan-cryptocurrency-drug-dealers


BIBLIOGRAPHY

fraud-jp-morgan-cryptocurrency-drug-dealers, 2017. (accessed on 1
February 2018).

[232] “Bitcoin could be here for 100 years but it’s more likely to ’totally collapse,’ nobel lau-
reate says.” Available online: https://www.cnbc.com/2018/01/19/bitcoin-
likely-to-totally-collapse-nobel-laureate-robert-shiller-
says.html, 2018. (accessed on 1 February 2018).

[233] “Bitcoin could hit $100,000 in 10 years, says the analyst who correctly called its
$2,000 price.” Available online: https://www.cnbc.com/2017/05/31/bitcoin-
price-forecast-hit-100000-in-10-years.html, 2017. (accessed on 1
February 2018).

[234] E. B. Centralny, “Virtual currency schemes–a further analysis.” Available online: https://
www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemesen.pdf,
2015. (accessed on 1 February 2018).

[235] “Bitlegal.” Available online: http://bitlegal.io/, 2017. (accessed on 1 February
2018).

[236] “Regulatory fears hammer bitcoin below $10,000, half its peak.” Available online:
https://www.reuters.com/article/uk-global-bitcoin/regulatory-
fears-hammer-bitcoin-below-10000-half-its-peak-idUSKBN1F60CG,
2017. (accessed on 1 February 2018).

[237] “R3.” Available online: https://www.r3.com/, 2017. (accessed on 1 February 2018).

[238] “Trusted iot alliance.” Available online: https://www.trusted-iot.org/, 2017.
(accessed on 1 February 2018).

[239] “Alastria: National blockchain ecosystem.” Available online: https://alastria.io/,
2017. (accessed on 1 February 2018).
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[263] K. Wüst and A. Gervais, “Do you need a blockchain?,” IACR Cryptology ePrint Archive,
vol. 2017, p. 375, 2017.

[264] “Ant router r1-ltc the wifi router that mines litecoin.” Available online: https:
//shop.bitmain.com/antrouter_r1_ltc_wireless_router_and_asic_
litecoin_miner.htm, 2017. (accessed on 1 February 2018).

[265] “Ethraspbian.” Available online: http://ethraspbian.com/, 2017. (accessed on 1
February 2018).

[266] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018.

[267] J. Lopez, R. Rios, F. Bao, and G. Wang, “Evolving privacy: From sensors to the internet of
things,” Future Generation Computer Systems, vol. 75, pp. 46–57, 2017.

[268] M. Banerjee, J. Lee, and K.-K. R. Choo, “A blockchain future to internet of things security:
A position paper,” Digital Communications and Networks, 2017.

[269] C. Fernandez-Gago, F. Moyano, and J. Lopez, “Modelling trust dynamics in the internet of
things,” Information Sciences, vol. 396, pp. 72–82, 2017.

[270] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen, “Mur-dpa: Top-down levelled
multi-replica merkle hash tree based secure public auditing for dynamic big data storage on
cloud,” IEEE Transactions on Computers, vol. 64, no. 9, pp. 2609–2622, 2015.

[271] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for data storage
security in cloud computing,” in INFOCOM, 2010 Proceedings IEEE, San Diego, California,
USA, pp. 1–9, Ieee, 2010.

[272] C. Liu, C. Yang, X. Zhang, and J. Chen, “External integrity verification for outsourced big
data in cloud and iot: A big picture,” Future Generation Computer Systems, vol. 49, pp. 58–
67, 2015.

[273] “Bitcoin fog.” Available online: http://www.the-blockchain.com/2016/05/
01/babelchain-machine-communication-proof-understanding-new-
paper/, 2016. (accessed on 1 February 2018).

[274] M. Samaniego and R. Deters, “Internet of smart things-iost: Using blockchain and clips to
make things autonomous,” in Cognitive Computing (ICCC), 2017 IEEE International Con-
ference on, Honolulu, Hawaii, USA, pp. 9–16, IEEE, 2017.

[275] “The lisk protocol.” Available online: https://docs.lisk.io/docs/the-lisk-
protocol, 2017. (accessed on 1 February 2018).

183

http://ethembedded.com/
http://raspnode.com/
https://shop.bitmain.com/antrouter_r1_ltc_wireless_router_and _asic_litecoin_miner.htm
https://shop.bitmain.com/antrouter_r1_ltc_wireless_router_and _asic_litecoin_miner.htm
https://shop.bitmain.com/antrouter_r1_ltc_wireless_router_and _asic_litecoin_miner.htm
http://ethraspbian.com/
http://www.the-blockchain.com/2016/05/01/babelchain-machine-communication-proof-understanding-new-paper/
http://www.the-blockchain.com/2016/05/01/babelchain-machine-communication-proof-understanding-new-paper/
http://www.the-blockchain.com/2016/05/01/babelchain-machine-communication-proof-understanding-new-paper/
https://docs.lisk.io/docs/the-lisk-protocol
https://docs.lisk.io/docs/the-lisk-protocol


BIBLIOGRAPHY

(Dalı́as, Almerı́a, Spain). “Buscando
norte y guı́a, siguiendo sendas de virtud.”

184

http://www.dalias.es/

	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline of this Thesis

	2 State of the Art and Related Work
	2.1 Constrained Application Protocol (CoAP)
	2.2 Run-time deployment and management
	2.3 Device-decoupled applications and portability in the Internet of Things
	2.4 Internet of Things and Cloud Computing Integration
	2.5 Blockchain and Internet of Things Integration

	3 Run-time Deployment of Physical Resources in the IoT
	3.1 Problem Statement and Research Goals
	3.2 Run-time Deployment and Management of CoAP Resources
	3.2.1 CoAP Middleware
	3.2.2 Smart Gateway
	3.2.3 Web UI

	3.3 Implementation
	3.4 Evaluation
	3.4.1 Smart Home case study
	3.4.2 Memory Footprint
	3.4.3 Data Transmission
	3.4.4 Power Consumption
	3.4.5 Communication Delay
	3.4.6 Comparison with other proposals


	4 Appdaptivity: An Internet of Things Device-Decoupled System
	4.1 Problem Statement and Research Goals.
	4.2 Appdaptivity System
	4.2.1 Requirements
	4.2.2 Approach and Design
	4.2.3 System Deployments
	4.2.4 CoAP Network
	4.2.5 Portability Core (PoCo)
	4.2.5.1 Personalised Behaviours
	4.2.5.2 PoCo Components

	4.2.6 User Applications

	4.3 Implementation
	4.3.1 PoCo and Interconnection
	4.3.2 User Applications
	4.3.3 CoAP Network

	4.4 Results and Discussion
	4.4.1 Underlying IoT Infrastructure
	4.4.2 User Applications
	4.4.3 Smart Cities: Portability of IoT Services in Different Districts
	4.4.4 Appdaptivity in HomeLab

	4.5 Differences between CoAP, the CoAP++ Framework and Appdaptivity

	5 An Internet of Things and Cloud Computing Integration
	5.1 Problem Statement and Research Goals
	5.2 Integration Components
	5.2.1 Cloud Platforms
	5.2.1.1 Batch Processing
	5.2.1.2 Distributed Databases
	5.2.1.3 Real-time Processing
	5.2.1.4 Distributed Queues
	5.2.1.5 Management, Monitoring and Deployment

	5.2.2 Middleware for IoT

	5.3 The Lambda-CoAP Architecture: an IoT and Cloud Computing Integration
	5.3.1 Lambda Architecture
	5.3.2 Smart Gateway
	5.3.2.1 Lightweight Virtualisation
	5.3.2.2 IoT Devices and Virtualisation Management Web UI
	5.3.2.3 Edge Computing Framework

	5.3.3 CoAP Middleware

	5.4 Implementation
	5.4.1 Lambda Architecture
	5.4.2 Smart Gateway
	5.4.3 CoAP Middleware

	5.5 Evaluation
	5.5.1 Lambda Architecture
	5.5.2 Smart Gateway
	5.5.3 CoAP Middleware

	5.6 Challenges and Open Research Issues

	6 On Blockchain and its Integration with the Internet of Things
	6.1 Problem Statement and Research Goals
	6.2 Blockchain
	6.2.1 Challenges
	6.2.1.1 Storage Capacity and Scalability
	6.2.1.2 Security: Weaknesses and Threats
	6.2.1.3 Anonymity and Data Privacy
	6.2.1.4 Smart Contracts
	6.2.1.5 Legal issues
	6.2.1.6 Consensus


	6.3 IoT and Blockchain Integration
	6.3.1 Challenges in Blockchain-IoT Integration
	6.3.1.1 Storage Capacity and Scalability
	6.3.1.2 Security
	6.3.1.3 Anonymity and Data Privacy
	6.3.1.4 Smart contracts
	6.3.1.5 Legal issues
	6.3.1.6 Consensus


	6.4 Blockchain platforms for IoT
	6.5 Evaluation

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.3 Publications
	7.4 Funding

	A Resumen
	A.1 Introducción
	A.1.1 Constrained Application Protocol (CoAP)
	A.1.2 Motivación
	A.1.3 Contribuciones

	A.2 Despliegue y gestión de recursos físicos CoAP en tiempo de ejecución
	A.3 Appdaptivity: un sistema para el desarrollo de aplicaciones portables y desacoplados de los dispositivos del IoT
	A.4 Lambda-CoAP: una Integración de Internet de las Cosas y Cloud Computing
	A.5 La Integración de Blockchain e Internet de las Cosas
	A.6 Conclusiones y Trabajos Futuros
	A.6.1 Conclusiones
	A.6.2 Trabajos Futuros


	Bibliography



