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In the last decades, mobile networks have gained an ever increasing importance in the world

of telecommunications. What started mainly with the objective of providing global voice service

has moved recently towards an almost exclusively broadband data oriented service, embodied

in the LTE network. With new services launching continuously, users demand faster networks,

with better quality of service and at lower prices. This forces a harsh competition among oper-

ators, that need to reduce costs as much as possible and reduce downtimes due to improvement

works or problems in the network. To achieve this, Self-Organizing Network (SON) function-

alities provide the tools to automate Operation and Maintenance tasks, making them faster

and maintainable by a small team of experts. SON functionalities are divided into three main

groups: Self-con�guration (new elements are automatically con�gured), Self-optimization (the

network parameters are automatically updated for best service) and Self-healing (the network

automatically recovers from problems).

In the competitive arena of mobile communications, downtimes due to problems in the

network cause a great cost of opportunity, because they a�ect the user experience. Self-healing

is the SON function that deals with the automation of troubleshooting. The main objective of

Self-healing is reducing the time required for solving a problem and freeing experts from repetitive

tasks. Self-healing has four main processes: detection (identifying that there are problems in a

cell), compensation (redirecting the resources to cover the a�ected users), diagnosis (�nding the

root cause of a problem) and recovery (performing the required activities to restore the a�ected

elements to normal operation).

Of all the SON functionalities, Self-healing (especially diagnosis) is the most challenging,

and therefore it is the least developed. There are no commercial systems that perform automatic

diagnosis with enough reliability to convince network operators. This underdevelopment is due to

the lack of information for the design of automatic diagnosis systems. There are no databases that

collect performance data of problematic cases tagged with their root cause that can be analyzed

and studied to �nd the best solutions. Nevertheless, Arti�cial Intelligence (AI) methods have

been proposed for diagnosis, based on the limited knowledge available. These AI algorithms

require a training stage that must be fed with realisitic information. Again, since there are no

real fault databases, the training data normally comes from simulations and is unrealistic. The

cause of the lack of data is that troubleshooting experts do not register the cases as they are

solved. In the competitive scenario of mobile network services, the time of the troubleshooting

experts is a scarce resource that must be invested in resolving problems, and not in registering

them. In the case that such databases were collected, one major aspect to take into account

would be the volume, variability and generation velocity of the collected data, that quali�es as

a Big Data problem.

The main problem of automated diagnosis systems is the lack of expert knowledge. To solve

this, expert knowledge must somehow be converted into a usable format. This process is known as

Knowledge Acquisition (KA). There are two main approaches to KA: manual (through interviews

or direct involvement of the experts in the development) or through data analytics (datamining

of databases that contain the results of the work of the experts). This thesis studies the data

analytics approach, using Knowledge Discovery and Datamining (KDD). For this approach to

work, a fault database is required, which is currently a major challenge.

The overall vision of the KA system proposed in this thesis is one where each time that

vi



a new diagnosis is done by an expert, he or she can easily and with minimum e�ort report it

and store it in the system. The central part of the system is an evolving diagnosis algorithm

(in this thesis, a fuzzy logic controller) that improves and learns with each new example, until

experts can rely on its precision for the most commonly identi�ed problems and move on to new

ones. New problems can then be added one at a time as they are discovered by troubleshooting

experts. In the end, experts are free from repetitive tasks, and can spend their valuable time on

more rewarding tasks. Therefore the �rst objective of this thesis is collecting a fault database.

A data collection interface is designed taking into account that experts cannot have a deep

involvement, and therefore simplicity is a major requirement. Once data is collected, it will be

analyzed to better understand its properties and acquire the information needed for the design

of the algorithms. Another objective of this thesis is to create a model of LTE faults, �nding the

relation between the performance of the network and the occurrence of certain problems. KA is

done by applying data analytics on the collected fault data. A KDD process that extracts the

parameters of a fuzzy logic controller is designed and used over the collected database. Finally,

this thesis aims to do an analysis of the Big Data aspects of the Self-healing problem, and taking

them into account throughout the design of the algorithms.

vii
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En las últimas décadas, las redes móviles han cobrado cada vez más importancia en el

mundo de las telecomunicaciones. Lo que empezó con el objetivo de dar un servicio de voz a

nivel global, ha tomado recientemente la dirección de convertirse en un servicio casi exclusivo de

datos en banda ancha, dando lugar a la red LTE. Como consecuencia de la continua aparición

de nuevos servicios, los usuarios demandan cada vez redes con mayor capacidad, mejor calidad

de servicio y a precios menores. Esto provoca una dura competición entre los operadores, que

necesitan reducir costes y cortes en el servicio causados por trabajos de mejora o problemas. Para

este �n, las redes autoorganizadas SON (Self-Organizing Network) proporcionan herramientas

para la automatización de las tareas de operación y mantenimiento, haciéndolas más rápidas

y mantenibles por pequeños equipos de expertos. Las funcionalidades SON se dividen en tres

grupos principales: autocon�guración (Self-con�guration, los elementos nuevos se con�guran de

forma automática), autooptimización (Self-optimization, los parámetros de la red se actualizan

de forma automática para dar el mejor servicio posible) y autocuración (Self-healing, la red se

recupera automáticamente de problemas).

En el ambiente competitivo de las redes móviles, los cortes de servicio provocados por prob-

lemas en la red causan un gran coste de oportunidad, dado que afectan a la experiencia de

usuario. Self-healing es la función SON que se encarga de la automatización de la resolución

de problemas. El objetivo principal de Self-healing es reducir el tiempo que dura la resolución

de un problema y liberar a los expertos de tareas repetitivas. Self-healing tiene cuatro procesos

principales: detección (identi�car que los usuarios tienen problemas en una celda), compensación

(redirigir los recursos de la red para cubrir a los usuarios afectados), diagnosis (encontrar la causa

de dichos problemas) y recuperación (realizar las acciones necesarias para devolver los elementos

afectados a su operación normal).

De todas las funcionalidades SON, Self-healing (especialmente la función de diagnosis) es

la que constituye el mayor desafío, dada su complejidad, y por tanto, es la que menos se ha

desarrollado. No hay sistemas comerciales que hagan una diagnosis automática con la su�ciente

�abilidad para convencer a los operadores de red. Esta falta de desarrollo se debe a la ausencia de

información necesaria para el diseño de sistemas de diagnosis automática. No hay bases de datos

que recojan datos de rendimiento de la red en casos problemáticos y los etiqueten con la causa

del problema que puedan ser estudiados para encontrar los mejores algoritmos de tratamiento

de datos. A pesar de esto, se han propuesto soluciones basadas en la Inteligencia Arti�cial (IA)

para la diagnosis, tomando como punto de partida la limitada información disponible. Estos

algoritmos a su vez necesitan ser entrenados con datos realistas. Nuevamente, dado que no

hay bases de datos de problemas reales, los datos de entrenamiento suelen ser extraídos de

simulaciones, lo cual les quita realismo. La causa de la falta de datos es que los expertos en

resolución de problemas no registran los casos conforme los van solucionando. En el ambiente

competitivo en el que trabajan, su tiempo es un recurso limitado que debe ser utilizado para

resolver problemas y no para registrarlos. En el caso en que tales bases de datos fueran recogidas,

un aspecto importante a tener en cuenta es que el volumen, variabilidad y velocidad de generación

de los datos hacen que éste sea considerado un problema Big Data.

El problema principal de los sistemas de diagnosis automática es la falta de conocimiento

experto. Para resolver esto, el conocimiento experto debe convertirse a un formato utilizable.

Este proceso se conoce como adquisición del conocimiento. Hay dos aproximaciones a la adquisi-
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ción del conocimiento: manual(a través de entrevistas o con la implicación de los expertos en

el desarrollo) o a través de la analítica de datos (minería de datos en bases de datos que con-

tienen el resultado del trabajo de los expertos). Esta tesis estudia la aproximación de la analítica

de datos, utilizando las técnicas KDD (Knowledge Discovery and Datamining). Para que esta

aproximación pueda ser utilizada, se requiere la existencia de una base de datos de casos reales

de fallo, lo cual es un gran desafío.

La visión general de esta tesis es una plataforma en la que cada vez que un experto diag-

nostica un problema en la red, éste puede reportarlo con un esfuerzo mínimo y almacenarlo en

el sistema. La parte central de este sistema es un algoritmo de diagnosis (en esta tesis un con-

trolador de lógica borrosa) que evoluciona y mejora aprendiendo de cada nuevo ejemplo, hasta

llegar al punto en el que los expertos pueden con�ar en su precisión para los problemas más

comunes. Cada vez que surja un nuevo problema, se añadirá a la base de datos del sistema,

incrementando así aún más su potencia. El �n es liberar a los expertos de tareas repetitivas, de

modo que puedan dedicar su tiempo a desafíos cuya resolución sea más grati�cante. Por tanto,

el primer objetivo de esta tesis es la colección de una base de datos de casos reales de fallos.

Para ello, se diseña una interfaz de usuario para la recolección de datos teniendo en cuenta como

requisito prioritario la facilidad de uso. Una vez que se dispone de datos recogidos, se analizarán

para comprender mejor sus propiedades y obtener la información necesaria para el diseño de los

algoritmos de analítica de datos. Otro objetivo de esta tesis es la creación de un modelo de

fallos de LTE, encontrando las relaciones entre el rendimiento de la red y la ocurrencia de los

problemas. La adquisición del conocimiento se realiza mediante la aplicación de algoritmos de

analítica sobre los datos recogidos. Se diseña un proceso KDD que extrae los parámetros de

un controlador de lógica borrosa y se aplica sobre la base de datos recogida. Finalmente, esta

tesis también tiene como objetivo realizar un análisis de los aspectos Big Data de las funciones

Self-healing, y tenerlos en cuenta a la hora de diseñar los algoritmos.
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Chapter 1

Introduction

In this chapter, the purpose and the motivation of this thesis are explained, along with a more

detailed list of objectives and the document structure.

1.1 Motivation

In the last decades a paradigm shift towards mobile communications has taken place. Commu-

nication used to involve transmitters attached to a place, but after this paradigm switch, the

focus is set on communication among users that may be moving at great speeds. This new

approach involves a wide and ever growing range of services, to a continuously increasing user

base. The consequence is that mobile communications represent an increasing proportion of

the telecommunications industry, and are acquiring a role in modern society that is growing in

importance.

Mobile communications for the masses started with telephony, and gradually moved towards

data services. The precedents of mobile telephony date back to the Second World War. Nev-

ertheless, it is commonly acknowledged that the �rst mobile phone call using a prototype of a

modern cellular network took place in Manhattan on April 3, 1973, by Motorola employee Mar-

tin Cooper, who called the headquarters of Bell Labs in New Jersey. In the early 90s, a minor

feature of the Global System for Mobile Communications (GSM) began gaining attention from

the users: the �rst machine-generated message was sent using the Short Message Service (SMS)

in the UK on December 3 1992. In 1993, the �rst person-to-person SMS was sent in Finland.

SMS was adopted widely by the users due to its low cost, marking a new and unexpected trend

in mobile communications. The voice service was no longer the only option. In the late 90s,

data transfer started to be o�ered by mobile network operators. Mobile communications have

evolved to a point where voice is no longer the mainly used service. Nowadays, mobile networks

are mainly data-oriented, and mobile communication terminals have evolved to smartphones,

that are more close to portable computers than the portable phones sold in the 90s.

To cope with these changes over time, several generations of cellular networks have been
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developed, deployed and operated to provide service. The First Generation (1G) of cellular

networks started in Japan in 1979 and in the Nordic countries in 1981. Throughout the 80s, 1G

networks were deployed in other regions. These networks were all analog and incompatible among

them. In the 90s, the Second Generation (2G) of cellular networks appeared. Two competing

standards arised; GSM in Europe and Code Division Multiple Access (CDMA) in the USA. These

networks improved 1G with digital transmission instead of analog, increased security, SMS and

mobility among countries that used the same standard. With 2G, mobile communications became

widespread among users, and the demand for bandwidth started growing and pushing for new and

improved technologies. As a response to this growth, the Third Generation (3G) was introduced

in the �rst decade of the new millennium. 3G was designed with data transmission as the main

use case (packet switching instead of circuit switching, typically used in telephony; although 3G

supports both). The 3G network had only one protocol, Universal Mobile Telecommunications

System (UMTS), �nally enabling worldwide roaming. With an ever growing demand for data

bandwidth, the Fourth Generation (4G) was soon needed. Long Term Evolution (LTE) was

adopted as the protocol for 4G, and has recently been deployed in networks worldwide. LTE

not only introduced a greater bandwidth, but the network architecture was fully redesigned and

simpli�ed and new mechanisms for improving the quality of service were introduced. Currently,

research and standardization is ongoing towards the Fifth Generation (5G) of mobile networks.

Higher bandwidths are predicted, along with improved Operation and Maintenance (O&M) that

will reduce costs and downtimes.

In all this scenario of growing demand for data bandwidth, coverage and quality, the invest-

ment in infrastructure (Capital Expenditure, CAPEX) must be high. O&M acquires a key role

since networks must always be optimized to o�er the best possible service and troubleshooting

must be done with the minimum impact on service. As a consequence, the required investment

in O&M (Operational Expenditure, OPEX) increases. In a market with a very high competition,

minimizing OPEX is a key competitive advantage.

To reduce OPEX, automation is used where possible in O&M tasks, freeing human experts

for non-repetitive tasks. Networks with a high degree of automation are called Self Organizing

Networks [1] (SON, Figure 1.1). The SON functions belong to three categories: Self-con�guration

(new elements are automatically con�gured), Self-optimization (the network parameters are au-

tomatically updated for best service) and Self-healing (the network automatically recovers from

problems). The interest of both network operators and research groups has resulted in the de-

velopment of seveal research projects and consortiums: CELTIC Gandalf [2], FP7 E3 [3], FP7

SOCRATES [4], SELF-NET [5], UniverSelf [6], SEMAFOUR [7] and COMMUNE [8]. These

projects do not cover the di�erent SON topics equally; Self-healing has been the least studied

problem because of the limitations and challenges present in this line of work, as it will be

explained in Section 1.3.

Self-healing has four main processes: detection (identifying that there are problems in a

cell), compensation (redirecting the resources to cover the a�ected users), diagnosis (�nding

the root cause of a problem) and recovery (performing the required activities to restore the

a�ected elements to normal operation). Among these processes, there is signi�cant research in

detection [9][10][11][12], whereas diagnosis has not received as much attention, despite being a

key component of Self-healing. This thesis studies the problem of automated diagnosis, exploring

2



1.2. PRELIMINARIES

Figure 1.1: Self-Organizing Network and Self-healing functionalities

Arti�cial Intelligence (AI) algorithms for performing this operation. Although some studies have

been done on the subject [13][14][15][16][17][18][19][20][21], at this moment automated diagnosis

does not have a wide adoption from the market because of the lack of techniques and platforms

to easily train and tune the AI algorithms. These algorithms usually need to be trained by

troubleshooting experts, that usually have no availability to spend the required time and e�ort.

Therefore, the main aim of this thesis is to devise methods to train those algorithms with minimal

intervention from human experts in order to obtain accurate fault diagnoses.

1.2 Preliminaries

The Mobile Network Optimization (MobileNet) research team belongs to the Ingeniería de Co-

municaciones Group (TIC-102). The main research line of the group is the development of

techniques for the improvement of current and future mobile networks. MobileNet was cre-

ated in 2003 by six associate professors from the Communications Engineering Department of

the University of Málaga (UMA), in the advantageous occasion of a 4 year joint venture with

Nokia Networks to develop a mobile system engineering centre at the Parque Tecnológico de

Andalucía (PTA). Over these years, the group has grown to hire more than 30 engineers, and

it has taken part in many regional, national and international projects, as well as in projects

with the main international operators and vendors: Nokia-Siemens, Ericsson, Alcatel-Lucent,

Telefónica, Orange-France Telecom, etc. The group is a leader in the subject of SON, having

started as early as in 2G, when the term SON was not even created yet. The team participated

in Gandalf (CP2-014 EUREKA/GANDALF: Monitoring and self-tuning of radio resource man-

agement parameters in a multi-system network, 2005-2007), which is one of the �rst and mostly

cited projects in the topic, in a partnership with France Telecom R+D, Ericsson R+D Ireland,

Moltsen Intelligent SW, Telefónica R+D and the University of Limerick. The Gandalf project

aimed to develop self-optimization techniques for networks with multiple radio access technolo-
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gies and automatic diagnosis tools. In 2012 a new partnership with Optimi-Ericsson was started,

with the focus set on the development of SON functions for LTE networks. This partnership is

still ongoing and has supported part of this PhD.

1.3 Research challenges and objectives

The main objective of this thesis is to lay the foundations of a system that overcomes the limita-

tions currently holding back the development, testing, deployment and active use of automatic

diagnosis systems. Figure 1.2 shows the main objectives of this thesis on the current scenario in

automatic diagnosis.

Although the automation of LTE troubleshooting (speci�cally diagnosis) is a necessity for

operators because of the gains in time, quality of service and costs, it has not been widely adopted

yet. In spite of the fact that several approaches based on AI algorithms have been proposed

[13][14][15][16][17][18][19][20][21] in literature, they have not been implemented in commercial

tools. The cause of this low adoption rates is the lack of well performing automatic diagnosis

systems that caters for the needs of operators in real scenarios (Challenge 1). Therefore,

currently, fault diagnosis is mainly a manual task, engaging human experts for hours or days

and increasing the costs. Valuable expert time is spent in the resolution of repetitive tasks that

can otherwise be e�ciently handled by Decision Support Systems (DSS) based on well known

AI algorithms. In this thesis, Fuzzy Logic Controllers [22] (FLCs) are chosen as the core of a

DSS for diagnosis (Objective 4), due to their easily understandable structure and the relative

portability of their knowledge base, that ease the tasks of importing, exporting and integrating

expert knowledge.

Generally, DSS are created following several steps: development (or selection among the

numerous readily available solutions [23][24][22][25][26][27]) of a core AI algorithm that performs

the analysis of the available data (where the lack of the information on the properties of data

from real troubleshooting scenarios limits the reach and realism of the tests that have been done

in prior studies for diagnosis), training of the solution over the target system (that requires

either real data in order to train the AI algorithms or experts that are willing to spend the

time and e�ort to manually con�gure them) and exploitation over the lifetime of the solution

(involving regular checks and updates of the system that, again, require either real data or

manual con�guration). Although many AI solutions are available and well studied, in the case

of diagnosis, the selection of the speci�c algorithm is hindered by the lack of an analysis of the

nature of the data (Challenge 2). Therefore, this thesis aims to study the properties of data

that troubleshooting experts use for manually performing diagnosis (Objective 2), in order to

have a well-informed choice.

DSS systems need to have a codi�ed expert knowledge that drives their decision making

capabilities. This knowledge is stored in a codi�ed manner in the system, with a format that

widely varies according to the type of AI algorithm used. The inclusion of this knowledge requires

a process of Knowledge Acquisition (KA), where the experience of troubleshooting engineers

is elicited and saved into machine-understandable format. This can be done by two di�erent

paths: either with human intervention (by means of an interview [28][29][30][31] or by teaching

the experts how to con�gure the chosen AI method, which is usually a cumbersome process

4



1.3. RESEARCH CHALLENGES AND OBJECTIVES

leading to a lack of collaboration -Challenge 4- and ultimately to an underdevelopment in the

�eld of automatic diagnosis -Challenge 1), or by Knowledge Discovery and Datamining (KDD

[32][33]), which performs data analytics of the inputs and outputs of the experts work in order to

�nd reproducible patterns and translate them into usable knowledge. KDD greatly reduces the

burden of the training stage of DSS, decreasing the intrusiveness of the process in the work�ow

of the troubleshooting engineers. But even with the availability of KDD methods for training

automatic diagnosis systems [34][35][36][37], they still have not seen a great adoption by major

network operators. KDD has been used in some mobile network studies, such as [38], where

KDD is used for automatic Radio Resource Management, and [39], where it is used for detecting

cells with bad Radio Access Channel con�guration.

One common aspect of all the steps in the creation of DSS based automatic diagnosis is the

need for representative data. As already stated, the design (or selection) of the AI algorithm that

will perform the diagnosis requires prior knowledge on the kind of data that will be processed.

This information cannot be obtained unless real troubleshooting data is available. Training

the chosen algorithm with data analytics is also impossible without real cases. The lack of

such data (Challenge 3) often leads to training the algorithms using simulated data, which

does not produce optimal results and is often unconvincing for the network operators. Another

common solution is using unsupervised learning methods, which in the case of diagnosis entrails

learning patterns without knowing the associated problem. This leads to KA systems that

require the intervention of troubleshooting engineers to identify and tag the detected patterns,

making the whole system again depend on the availability of such experts. There is a clear need

for real troubleshooting cases, so one of the targets of this thesis is creating a database of real

troubleshooting cases (Objective 1). The volume of data available from current networks for

troubleshooting, as well as the variety of formats it is given in, can be overwhelming for traditional

computation algorithms (Challenge 5), which may require the use of Big Data techniques.

With a dataset of real troubleshooting cases, most of these reported shortcomings can be

addressed. The lack of information on the nature of the data can be solved by analyzing this

dataset, �nding the best techniques for processing it (Objective 2, Objective 6) and creating

a model (Objective 3) that clearly identi�es the behaviour of each variable under di�erent

situations. A model of the data can also help with the lack of data, since it can be used to

improve and validate the results of simulated scenarios; as well as for generating new datasets

that imitate network faults.

The speci�c objectives (summarized in Figure 1.2) are the following:

Objective 1: Collection of a fault database: Although performance data is widely avail-

able in operators databases, the root cause or diagnosis related to these data are

not usually saved or documented (Challenge 3) together with the a�ected data,

because it is a task out of the scope of the daily work of troubleshooting experts

(Challenge 4). The main reason for this is that the process of manually fetching

the data, joining it with a report and saving it in a common database is a cum-

bersome process that has little value in the short-term for the troubleshooting

experts. Therefore, a system that can quickly perform this task with the mini-

mum intervention of the expert is required. If the information is collected from a

tool that experts already use to inspect the values of performance data to carry
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out the diagnosis process, the required e�ort is minimal. In that case, the col-

lection process would be tightly integrated with the observations of the experts,

only expecting them to tag data with a diagnosis and letting the system do the

rest of the collection, processing and storage tasks. In this thesis, a software plat-

form that only requires three variables (name of the a�ected sector, date when

the problem was diagnosed and diagnosis) is developed. When integrated into a

data visualization tool that experts use frequently, two of these three variables

(name of the a�ected sector and date) can be extracted from the context of use

(i.e. the data that is displayed on the screen). Therefore, experts only need to

give a diagnosis (responding to Challenge 4). This system is then used to col-

lect a number of real troubleshooting cases. This database contains performance

data for a speci�ed time window of cells a�ected by a known problem, together

with a tag that identi�es the problem as diagnosed by troubleshooting experts.

The existence of such a database solves the lack of real data (Challenge 3) that

hinders the development of automated diagnosis.

Objective 2: Analysis of the collected troubleshooting data: Once the problem of lack

of data is solved by the collected database, the missing knowledge on the nature

of this data (Challenge 2) can be approached. This stage of the study includes

the characterization of the di�erent types of data that have been collected in

order to better design the AI algorithms that will perform diagnosis. Also, since

the collected data has a set of properties that may not be compatible with the

requirements of the Data Mining (DM) methods that will train the AI algorithms,

one of the main tasks in this stage is to determine the required processing and

design the methods to carry it out. In fact, these preprocessing steps are part of

the data analytics process. This stage solves the lack of knowledge and paves the

way for designing better AI algorithms as well as training them with real data

from the LTE network.

Objective 3: Creation of models for the most common LTE faults: with the double

purpose of generating new plausible fault data and also for having a better un-

derstanding of the problems under study, a model of the collected database is

generated. The individual performance measurement variables are characterized

using statistical models conditioned to the occurrence of each of the most com-

mon faults. This model can also be used to validate simulations, since it gives

a ground truth to which simulated results must conform. The �nal product of

this stage helps to better understand the behaviour of the data (responding to

Challenge 2) and solves the lack of cases for testing AI algorithms by enabling

the generation of new realistic cases (Challenge 3).

Objective 4: Study of AI methods for diagnosis: with the available knowledge on the

behaviour of the network performance data, the most common problems and the

manual process of troubleshooting, the next logical step is to design an AI al-

gorithm that serves to the purpose of automatic diagnosis. In this thesis, Fuzzy

Logic Controllers [23][24] are chosen as the best option, since they are easily under-

standable both by humans (by using a language that is close to spoken language)
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and by machines. FLCs make it easy to create troubleshooting rules automati-

cally and fuse them with previously known ones. This solution is also attractive

for network operators, since its understandability makes it less obscure than other

alternative methods, such as Bayesian Networks [25] or Neural Networks [27].

Objective 5: Design and test of a KA platform: in order to obtain good diagnosis re-

sults, the chosen AI method must be trained with real network data, so that it

has knowledge of the problems it will be encountering once deployed. For this,

a data analytics process for the FLC is designed in this thesis, based on the in-

formation and the processes extracted from the stage of analysis of the collected

fault database. The product of this stage will be a software system that when

given a full database of real faults, returns a set of diagnosis rules that can be

used in an FLC. These rules are adapted to the real scenarios where they will be

used (responding to Challenge 1). This software can also be coordinated with

the collection platform, so when new data arrives to the database, the knowledge

model of the FLC is improved.

Objective 6: Analysis of Big Data aspects and design considerations: in modern net-

works, especially in LTE, the amount of performance and con�guration data is

large. This data comes from varied sources (such as the user devices, the access

nodes, etc.) and in very diverse formats (di�erent �le types, temporal resolutions,

etc.), which requires additional homogenization steps the data analytics process.

Also, due to the large amount of events that occur throughout the network, data

is continuously generated in a fast velocity. All these aspects (Challenge 5)

conform to the Big Data [40] paradigm. In Big Data analytics problems, tra-

ditional processing techniques do not satisfy the performance requirements (i.e.

they are unable to cope with the amount of work in the available time), therefore

new techniques must be used. This thesis will study the Big Data aspects of the

troubleshooting data used in diagnosis and take them into consideration for the

design of all the algorithms and processes.

The combination of these parts constitutes the overall system that this thesis envisions: one where

each time that a new diagnosis is done by an expert, he or she can easily and with minimum

e�ort report it and store it in the system. The central part of the system is an evolving diagnosis

algorithm that improves and learns with each new example, until experts can rely on its precision

for the most commonly identi�ed problems and move on to new ones. New problems can then be

added one at a time as they are discovered by troubleshooting experts. In the end, experts are

free from repetitive tasks, and can spend their valuable time on more rewarding tasks. Also, an

array of additional helpful intermediate results can be used as feedback to the troubleshooting

engineers: models of the most common problems, results of data preprocessing, etc.

1.4 Document structure

This thesis is divided into seven chapters. These chapters can be grouped into three blocks

(Figure 1.3).
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Figure 1.2: Main challenges and objectives

Figure 1.3: Organization of the thesis
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The �rst block contains the chapters that describe the research background and State of the

Art in the diverse areas that this thesis covers. In Chapter 1 an introduction has been given,

brie�y describing the scope of the thesis and giving an outline of the challenges and objectives.

Next, in Chapter 2 a brief introduction to LTE networks is provided to help understand the

troubleshooting process. A more in-depth review of Self-Organizing Networks, with emphasis on

automated troubleshooting is given in this Chapter, along with an exploration of the State of

the Art.

The second block contains the bulk of the research work of this thesis. In this block, the

main objectives described in Figure 1.2 are addressed. Chapter 3 will explore the AI algorithms

commonly used in diagnosis. The FLC algorithm will be explored in full detail, and its use

on diagnosis will be explained (Objective 4), explaining details of the FLC algorithm used in

this thesis and how it interacts with the process of KA. In Chapter 4 the KA process is fully

described, with emphasis on its application to the problem of diagnosis. The data collection

platform will be described in this Chapter (Objective 1). Chapter 5 analyzes the collected

data, describing in detail its main features. With a better understanding of the properties of

the collected data, as well as the needs of the KA process, a set of preprocessing algorithms is

proposed for treating the data (Objective 2). In this Chapter the process for modelling the

database is also explained (Objective 3). In Chapter 6 the Data Mining algorithms designed

for the KA process are described and tested using the data extracted from the network, thus

completing the full data process from collection to extraction of expert knowledge (Objective

5).

The last block contains Chapter 7, where the conclusions of this thesis are presented and

the achievement of the objectives is summarized.
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Chapter 2

Automated troubleshooting in LTE

In this chapter, the basic network technologies will be described. The LTE network will �rst be

introduced, showing its features and its emergence and adoption by operators. Next, the need

for automating its Operation and Maintenance (O&M) will be discussed, and the solution to this

need, Self-Organizing Networks (SON), will then be presented. In subsequent chapters, these

concepts will be expanded, and solutions to open issues will be proposed.

2.1 LTE networks

2.1.1 Introduction

In the last decade, cellular mobile networks have grown rapidly in size and complexity. More

speci�cally, the advent of mobile multimedia devices, such as smartphones, tablets and laptops,

has driven an increase in the demand of data rates and quality of service. Figure 2.1 shows the

increase in data usage over the last years. In this scenario, the bandwidth used by the traditional

voice services is dwarfed by the demand of newer Internet-based tra�c, showing that the market

demands a essentially data oriented network.

Responding to this paradigm shift, new technologies are required to complement the exist-

ing GSM and 3G networks. Long Term Evolution (LTE) [41], commercially known as 4G, is

the technology that was developed by the 3rd Generation Partnership Project (3GPP) to this

avail. It introduces a new network architecture, the Evolved Packet System (EPS), where data

transmission is the target use-case and voice services are provided as Voice over IP (VoIP). LTE

de�nes a new Radio Access Network (RAN), the Enhanced RAN (E-UTRAN), and a new packet

switched network, the Evolved Packet Core (EPC).
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Figure 2.1: Increase of data tra�c over the last years vs voice tra�c in mobile networks.

2.1.2 LTE development

The initial design requirements for LTE were de�ned with respect to the existing HSPA technol-

ogy [42]:

• Packet switched, simpli�ed network with simple User Equipments (UEs).

• Peak user throughput of 100 Mbps in the downlink and 50 Mbps in the uplink for a 20 MHz

channel. The throughput must escalate linearly with the allocated bandwidth. Average

throughput three to four times higher than HSPA in the downlink and two to three times

higher in the uplink under loaded conditions.

• Transition time to active state lower than 100 ms.

• At least 200 active users per cell with a 5 MHz spectrum allocation.

• Round trip time lower than 10 ms.

• A spectral e�ciency (bits/sec/Hz/site) three to four times higher than HSPA in the down-

link and two to three times higher in the uplink under loaded conditions.

• Mobility transparent to the user, optimized for 0-15 km/h and able to maintain communi-

cations to up to 350 km/h or 500 km/h (depending on the selected frequency).

• All requirements must be achieved for UEs located up to 5 km from the cell tower, and

with a slight degradation, up to 30 km.

• Flexible bandwidth allocation from 1.25 MHz up to 20 MHz.

• Able to coexist, share tra�c and hand over connections with legacy 3GPP RAT (GERAN/UTRAN).

Handovers between technologies should take less than 300 ms.
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Figure 2.2: Timeline of 3GPP Releases related to LTE

Figure 2.2 shows the timeline of the de�nition of LTE by 3GPP. The �rst LTE speci�cations

were de�ned in 2005 as part of the LTE Study Item (SI), that is, the feasibility study. After the

standardization process (Work Item, WI), the �rst LTE speci�cations were included in 3GPP

Release 8 in September 2006. Further work improved LTE in 3GPP Release 9. In Release 10,

new features were described for LTE-Advanced (LTE-A), mainly improving data rates, increasing

coverage and reducing latency. Release 11 de�nes new Quality of Service (QoS) speci�cations

for LTE, as well as Self Organizing Network (SON) enhancements. Further enhancements have

been subsequently added in Releases 12 (enhancements over the physical layer, such as small

cells, carrier aggregation, dual connectivity, MIMO, elevation beamforming, etc) and 13 (LTE

in unlicensed bands, improvement for Machine Type Communications). Future development in

Release 14 is expected to add enhancements in energy e�ciency, mission critical communications

and Massive Machine Type Communications, among other aspects.

2.1.3 LTE architecture

EPS (the network architecture of LTE, Figure 2.3), is composed of the E-UTRAN and the EPC.

The EPS is optimized to provide IP connectivity to the UEs, using the concept of EPS bearer.

An EPS bearer de�nes a pipe where IP tra�c is routed between the UE and the data network,

with some Quality of Service (QoS) parameters associated.

The E-UTRAN o�ers a downlink based on Orthogonal Frequency Division Multiple Access

(OFDMA) in order to maximize the number of simultaneous connections and variety of o�ered

QoS. The uplink uses Single Carrier Frequency Division Multiple Access (SC-FDMA) to min-

imize the power consumption of the UEs. The UEs interface with the eNodeBs (through the

Uu interface), which are the providers of the radio service, and therefore contain all the radio

functionalities, protocols and layers (Figure 2.4): the Physical layer, the Medium Access Control

(MAC) and the Radio Link Layer (RLC). The Packet Data Convergence Protocol (PDCP) is an

additional layer that adds security to the communications with the UE. In the Control Plane,

and additional Radio Resource Control (RRC) layer applies QoS policies for admission control,

scheduling and resource administration. The E-UTRAN is the mesh composed of the eNodeBs

interconnected through the X2 interface.

The EPC o�ers a packet switched service to the end user over the E-UTRAN. It has three

kinds of logical elements (Figures 2.3 and 2.4):

• Mobility Management Entity (MME): manages the UE access to the network, the setup of

connections through the EPC, etc.
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Figure 2.3: LTE architecture

• Serving Gateway (S-GW): provides access for a UE over the E-UTRAN.

• Packet Data Network Gateway (P-GW): provides connectivity with external packet switched

networks.

2.1.4 LTE adoption and deployment

LTE has been adopted by the operators as the latest radio access technology. The most common

scenario of LTE adoption is where operators �rst introduce LTE sectors in restricted urban areas,

usually reusing infrastructure of the GSM and 3G networks to provide a limited experimental

service. These patches of LTE network gradually expand to cover all the urban areas. The main

requirement in this scenario is to integrate LTE with the existing technologies. In zones where

the tra�c is very high, small cells may complement the usual macro cells to add capacity.

The deployment of LTE networks must also cope with regulatory policies, such as the avail-

able spectrum of the digital dividend (the spectrum freed after the change from Analog to Digital

TV). An example of policies a�ecting the deployment of LTE is the german regulation for the

800 MHz band, where rural areas must be covered before urban areas.

The LTE standard de�nes a broad range of carrier frequencies. The use of these frequencies

depends on the regulation of each country and the policies of the operator. For instance, in

Europe the 700, 800, 900, 1800 and 2600 MHz bands are used, whereas in North America, the

700, 750, 800, 850, 1900, 1700/2100 (AWS), 2500 and 2600 MHz bands are used.
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(a) User plane

(b) Control plane

Figure 2.4: LTE protocol stack

2.2 Self Organizing Networks

2.2.1 Motivation

A mobile network is composed by all the elements of the infrastructure (in the case of LTE the

eNodeBs, the components of the EPC, etc.), and also the terminals that access and interact with

it (the UEs). The degree of management complexity of a network arises from the large number

of elements, the entangled interdependencies among the con�gurations of each one of them and

the large number of events that take place during the operation and service. Another dimension

of complexity is added to the management when several di�erent technologies must coexist and

cooperate (Heterogeneous Networks or HetNets), which is the most common scenario in LTE.

This causes an increase in O&M costs, since as the network grows, the workforce requirements

grow with it. Also, the demand of the users for a higher quality, and therefore, the reduced

tolerance for downtime increases the opportunity cost whenever a problem is not quickly solved

or the network is not correctly optimized. In a very competitive market, operators cannot cope

with this pressure, and therefore, an increase in automation in the O&M of the network is

required. Automation reduces the need for repetitive work from human operators, and therefore

the workforce requirements are reduced. Also, the downtime is reduced when problems are

automatically detected and solved. Summarizing, automation reduces the costs of O&M in

mobile networks.
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2.2.2 SON functionality

The NGMN Alliance [43] de�nes SON as a set of principles and concepts to add automation to

mobile networks so that they require less maintenance than traditional networks while improving

service quality. Ideally, human operation is restricted to adjusting high-level guidelines that are

more in sync with commercial decisions than low level functionality.

NGMN de�ned a list of SON use cases, based on common problems faced by network oper-

ators. These use cases belong to four categories:

• Planning: Site location, con�guration parameters and network integration.

• Deployment: installation and initial con�guration, testing, network authentication, setup

transport/radio and network integration.

• Optimization: transport and radio parameters.

• Maintenance: HW/SW upgrade or replacement, failure recovery and network monitoring.

These operational use cases in�uenced the standardization of SON functions by 3GPP in

Release 11 [44] [45]. SON functionalities are classi�ed in three large categories:

• Self-Con�guration [46]: functionalities that automate the planning and deployment of the

network. Self-Con�guration reduces the cost of deployment, since adding elements to the

network becomes much easier and faster.

• Self-Optimization [46]: functionalities that automate the optimization of the network, that

is, functionalities that keep the con�guration parameters always working in the optimal

level to o�er the best QoS, adapting them to changes in the environment. Self-Optimization

reduces the need for new elements in the network and increases the quality perception of

users.

• Self-Healing [1]: functionalities that automate the solution of problems, reducing human

intervention and minimizing downtime. Ideally, Self-Healing functions can do proactive

healing, that is, solve problems before they occur. Self-Healing reduces the cost of main-

tenance by reducing the workforce needed for �xing common problems and the cost of

opportunity by reducing downtime in the service.

2.2.3 SON implementation

SON functionalities are usually implemented with Arti�cial Intelligence (AI) algorithms. The

inputs to these functionalities are measurements taken on the network. These measurements

have a wide variety of origins: the eNodeBs[47] [48][13][31][14][34][9][49][50][51], the UEs[52], the

complaint department of customer service, etc. This variety, along with the large volume and

the needs for quick results qualify the SON scenario as a Big Data[40] problem. The output

of these SON functions are also varied, and their nature depends on the target of the speci�c

algorithm. The output may range from human-readable reports to automated action commands

that trigger other SON functions (for instance, a Self-healing algorithm may detect and diagnose

a problem and its output may be the activation of an automated recovery function that solves

the problem without human intervention; or a Self-optimization algorithm may indicate that

part of the tra�c of one cell should be handled by a neighboring cell and therefore it may send

commands to both cells in order to adjust their handover parameters). Some AI algorithms that
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have been used in SON are Fuzzy Logic Controllers (FLCs)[47] [48][53][54], Bayesian Networks

(BNs) [13][31], Case Based Reasoning (CBR) [14][34] or Neural Networks [9][49][50][51].

An important decision when implementing SON functions is their location inside the LTE

network infrastructure. The main decision is among a distributed (among the elements of the

network) or centralized (in the O&M center) location. Each option has some advantages and

drawbacks. If SON functions are distributed, they usually will have a quicker access and reaction

time to the events of the network, since there is no time lost in transmissions to a centralized

location. On the other hand, their local scope prevents that these implementations have a com-

prehensive view of the network, and therefore, many SON functionalities cannot be implemented

this way. Centralized implementations have access to all the data of the network, with the asso-

ciated delay of collection and an increased execution time due to the large amount of required

processing.

2.2.4 Research projects

Some major research projects have been done to advance SON functionalities:

• Gandalf (2005-2006): Part of the Celtic European research and development programme.

The main objectives of the Gandalf project were the automation of HetNets (GSM, 3G

and WLAN). Some investigated issues were Joint Radio Resource Management (JRRM),

automated con�guration and diagnosis of problems. The project made a wide use of AI

algorithms, such as BNs for diagnosis or Q-Learning and fuzzy logic for automated con-

�guration of some parameters. The results were validated with simulations and a reduced

network testbed, as well as with real data collected from networks (for automated trou-

bleshooting).

• COST 2100 SWG 3.1 (2006-2010): This project was mainly targeted at improving the

available data for SON, because traditionally only data from simulations was used to test

the SON algorithms. This project aimed to collect live network data (for instance, from

drive tests) for its use in SON research.

• E3 (End-to-End E�ciency) (2008-2009): European research project targeted towards the

investigation of Cognitive Management and Control. Learning algorithms were used to

improve the Self-Optimization functionality.

• Socrates (2008-2011): European research project that had as main objective the solution

of eight SON use cases: Load Balancing, Handover Parameters, Home eNB, Admission

Control, Packet Scheduling, Interference Coordination, Cell Outage Management and Au-

tomatic Generation of Initial Parameters for eNB Insertion. The developed solutions were

validated with simulations.

• UniverSelf (2010-2013): European research project with the main objectives of unifying

the management of networks based on diverse technologies and the integration of SON

functions.

• COMMUNE (2012-2014): This project was targeted towards the study of uncertainty in

mobile networks. It highlighted uncertainty as the main cause of the low development and

adoption of the SON functions.

• SEMAFOUR (2012-2015): European research project with focus on Heterogeneous Net-
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works. Multi-RAT and multi-layer SON functions are studied, with the aim of creating an

integrated SON management system.

• Selfnet (2015-2018): Part of the Horizon 2020 program, Selfnet is a framework for self-

organized network management in virtualized and software de�ned networks. The main

objective is to design new SON functions for future 5G networks.

Summarizing, SON functions help operators reduce the costs of the O&M of the LTE net-

work. Also, the downtimes due to optimization or fault recovery are reduced, so the overall QoS

of the network increases.

2.3 Self-healing

2.3.1 Manual troubleshooting

One of the most important O&M tasks is troubleshooting. The main objective of troubleshooting

is �nding and �xing malfunctions in the network, minimizing the impact on the quality of the

o�ered service. In the currently deployed LTE networks, this task is mainly manually done, that

is, human experts monitor some variables that re�ect the state of the network (Performance In-

dicators, Alarms, Call Traces, etc.). Within SON, self-healing aims to automate troubleshooting

tasks. The manual troubleshooting work�ow (Figure 2.5) has 4 main subtasks:

• Detection: the process of determining that there is a problem in the network, and pinpoint-

ing the element or elements that are a�ected. To do this, troubleshooting engineers will

usually monitor a very reduced set of Key Performance Indicators (KPIs), that is, variables

that re�ect the high level behaviour of the network. When one or more of these KPIs are

degraded, a list of the Worst O�enders is extracted, that is, the elements (eNodeBs, for

instance) that are degrading mostly the KPI averages. This helps to �nd the problematic

elements.

• Diagnosis: also called Root Cause Analysis. Once the problematic elements have been

determined, troubleshooting engineers must �nd out the Root Cause (why they are failing).

The study of low level Performance Indicators (PIs), as well as logs or event records may

help in the determination of the Root Cause. In some cases, the analysis of the available

data is not enough, so active measurements are taken, such as drive tests.

• Recovery: once the root cause is known, the required actions to �x it are taken. These

actions are diverse in complexity, ranging from simple resets or con�guration changes that

can be ordered remotely, to hardware �xes or replacements that need on site reparations.

Since the cost of resetting an element is very low, it is often the �rst action taken. If it

does not resolve the problem, then more complex actions are taken. The recovery action

may or may not solve a problem, so the results of the action are taken into account on

subsequent repetitions of the Diagnosis subtask.

• Compensation: the troubleshooting process may take anywhere between minutes to several

days. Therefore, it is important to redirect the resources of the network temporarily to

provide service to the users in the a�ected area, e.g. by providing coverage with neighboring

cells to a cell in outage . Since this temporary con�guration is sub-optimal, the users may
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Figure 2.5: Manual troubleshooting work�ow

perceive a reduced QoS, but the alternative is the total lack of service, and therefore a

huge cost of opportunity.

The troubleshooting process uses data sources that indicate the state and behaviour of the

network. These data sources contain information about the performance of the eNodeBs (Per-

formance Management -PM- counters), the faults that occur during their operation (Fault Man-

agement -FM- alarms) and their con�guration (Con�guration Management -CM- parameters).

Other data sources are sometimes used, such as measurements of the performance of individ-

ual calls (call traces) or previously reported problems (trouble tickets). These data sources are

de�ned in Chapter 4.

All these data sources are manually processed by troubleshooting experts. To better under-

stand the meaning of the data, experts often use statistical techniques to simplify the representa-

tion. For instance, to detect degradations on PIs or KPIs, thresholding is often used, that is, the

value is considered degraded if it is above or below a certain threshold. Thresholding is specially

important in the detection stage, but it is also used to discretize the value of PIs, classifying

them in either good or bad values. With quantized variables, heuristic rules of the �if ... then ...�

type are often used in the diagnosis process. This pattern is generally used by experts in their

observation of low level PIs, and sometimes these rules are used in the database containing the

PM, FM and CM variables to test for known fault states. Another technique that is sometimes

used to test the relations among variables is correlation. For instance, alarms or engineer actions

are correlated with PIs to see to what extent are they responsible for the observed behaviour.

The results of all these tests are pondered by troubleshooting experts to come up with a

solution for a problem. All this process relies entirely on the experience of the engineer, and it

is therefore prone to human errors. Also, since it is an iterative process, it may take long for a

problem to be e�ectively solved.

Automation of all these actions will bring speed to the overall process, and since human

intervention is reduced, there is no dependence on the expertise of the engineer. Automation also

reduces the workload of experts by solving common and repetitive problems, therefore enabling
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them for more challenging tasks.

2.3.2 Automated troubleshooting: Self-healing

Self-healing [1] is de�ned as the set of functionalities that automate troubleshooting. According

to the NGMN use cases [43], Self-healing covers four speci�c scenarios:

• Hardware extension/replacement: In some cases, a problem in a network may be caused by

a hardware component. This may be due either to malfunction or lack of resources. The

task of Self-healing in this case should be to detect the exact problem and to determine the

solution that would cost less. Self-healing may also play a role of preventive troubleshooting

if the need for hardware extension or replacement is done in a predictive manner.

• Software upgrade: Other scenarios may be caused by software issues. Since software is usu-

ally improved on a continuous basis, the solution to known bugs is usually available soon

after it is detected. Self-healing should intervene in the task of identifying and reporting

these problems, applying the necessary corrections and automatically incorporating soft-

ware �xes as they are available. Software upgrades may also be done as part of preventive

troubleshooting, when a problem is known to exist in the platform even if it has not caused

faults.

• Network monitoring: Faults may happen at any time in any place in the network. The task

of troubleshooting is often di�cult to detect the a�ected elements and to determine the

root cause. Therefore, Self-healing plays a major role in minimizing the e�ort and costs of

troubleshooting. Again, Self-healing may play a role of preventive fault diagnosis before a

root cause has triggered degradations in the service.

• Failure recovery: Once a problem is detected and diagnosed, the course of action to be taken

may sometimes be di�cult to plan. The task of Self-healing is to reduce this complexity by

communicating with the a�ected elements to automatically change the settings that cause

a problem or at least by determining the best solution that can be done with the lowest

possible cost.

To perform all these tasks, Self-healing (just as the other SON functions) uses AI techniques.

These algorithms usually take some observations as their inputs, and produce actions at their

outputs. These actions are either commands to other network elements or reports that tell

operators what changes should be done on the network. The observations are data that are

available from many di�erent and varied sources (such as the PM counters or PIs), that usually

match those that human experts query in order to perform their tasks. In fact, Self-healing

algorithms usually try to imitate human experts in order to translate the observations into

actions.

Self-healing functions therefore need an additional input: expert knowledge. This knowl-

edge is what lets the algorithms know what to do with the input data. Nevertheless, expert

knowledge is neither simple to acquire (it is usually a product of many years of �eld experience)

nor to transfer to an AI algorithm (KA [28][29][30][31]). Two approaches are used in order to

�t human knowledge into AI algorithms: either manually, by letting experts tune the appro-

priate functions, or automatically, by using KDD [32][33] techniques. Such techniques normally

require the availability of large databases of variables that experts have observed paired with
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their conclusions.

This thesis is focused speci�cally in the diagnosis functionality, that is, the identi�cation of

the root cause of a problem once the a�ected element is known. The development and adoption

by operators of this functionality greatly depends on the e�ciency of the KA processes since

they are a crucial part of creating AI algorithms for diagnosis. Therefore, in this thesis, the task

of KA is covered both in theoretical and practical levels. This thesis stresses the importance of

KA being an unintrusive process (i.e. that does not force experts to do tasks that are out of the

scope of their daily work), because otherwise it is prone to being disregarded by troubleshooting

experts and ultimately leading to bad diagnosis systems that would not be commercially useful.

2.3.3 State of the art

Self-healing systems have seen a great research e�ort in the last years, especially in the context of

the progress towards 5G networks. This increase in activity is also demanded from the industry,

since the increase in competition among operators and the users demand for better service creates

the inevitable need for automation of the O&M tasks. Self-healing reduces the costs caused by

network faults, either by preventing them, or by �xing them quickly with minimum impact on

the service.

The most studied problem in Self-healing is detection [55][9][10][11][12][56]. Detection al-

gorithms monitor a certain number of PIs to determine when a cell is having a problem. Some

algorithms that have been proposed for this task are correlation [12][57], neural networks [9] or

clustering [10]. In [9] a method for improving the capability of the detection system by adding a

learning functionality is proposed. In some cases, the detection task is limited to only one kind

of problem; a typical example is the detection of sleeping cells [11][49][58].

Diagnosis has also raised interest in the research community [14][15][16][17][18][19][20][21][52][59],

although the complexity of the task has lead to a lower number of functional systems. KBS such

as Bayesian Networks (BNs) have been proposed [13] for this task. In BNs, probabilistic relations

between the root causes and the symptoms (i.e. the observable e�ects, such as abnormal values

in PIs, etc...) are represented. With these relations, the BN assigns probabilities of occurrence of

each root cause for each diagnosed case. The UniverSelf project [6] proposes a diagnosis system

based on a combination of BNs and Case Based Reasoning (CBR) [14][34]. The proposed method

�rst builds a BN based on the observations of the problem, and then uses CBR (i.e. past stored

cases) to optimize the BN inference process by only using a subset of the network. The COM-

MUNE [8][60] project uses a system based on comparing cases under study with stored instances

labeled with their root causes [15]. The system holds a group of pro�les of normal/abnormal

values of PIs grouped by root cause, and calculates the relative frequencies of occurrence of

anomalies for each group. New cases are then diagnosed with the root cause which best matches

their anomaly pattern.

The processes of compensation [49][50][51][61][62][63] have been covered in several studies.

Compensation is usually performed by modifying the antenna tilt of neighboring sectors so that

a�ected users are given service by their coverage while their original cell is down.

In this study, FLCs are used for diagnosis in the LTE RAN. FLCs have been used in other

processes, such as Self-optimization [47][48][53][54] and for diagnosis in other �elds, such as
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industrial processes [64], machinery operation [65] [66] or medical diagnosis [67].

2.4 Conclusions

This Chapter introduced the most current cellular network technology (LTE) and the trou-

bleshooting process.

The concept of SON was introduced afterwards. SON techniques automate the process of

operation and maintenance in current LTE networks, greatly reducing costs and downtimes. The

state of the art was also reviewed, emphasizing that, of the three SON functions, Self-Healing

was the least studied.

Finally, the manual troubleshooting process in LTE networks was described, and the Self-

Healing technologies that aim to automate it were described. In the next Chapter, the AI

technologies that power Self-Healing are described in detail.
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Chapter 3

Artificial Intelligence

In this chapter, Knowledge Based Systems (KBS) and the problem of Knowledge Acquisition

(KA) in the context of Big Data will be introduced. First, the implementation based on KBS of

Self-Healing functionalities described in Chapter 2 are presented. These KBS systems are built

using KA techniques. A high level KA solution based on Knowledge Discovery and Data Mining

(KDD) is proposed in this chapter, along with a brief introdution to Big Data systems. Both

KA and Big Data concepts applied to Self-Healing will be further discussed in Chapter 4.

3.1 Decision Support Systems

3.1.1 Expert Knowledge in Decision Making

When confronted with a problem, human experts often use heuristic reasoning [68], that is, by

using guesses or rules of thumb. One or several lines of thought are followed towards the solution

of a problem and only those which look promising are followed. It is not always possible to follow

a single algorithmic way of solving a problem.

An expert [28] is a person that has speci�c knowledge and experience on a speci�c subject

(or domain) that allows him to perform a task e�ectively (with a high success rate), e�ciently (as

quickly and straight forward as possible), with versatility (performing well when unexpected fac-

tors come into play) and with awareness of his limitations (knowing when additional information

is required or a problem cannot be solved).

Because of these capacities, experts are extremely valuable. Their expertise as problem

solvers allows certain tasks to be performed quicker and with a lower cost. In mobile network

troubleshooting, it is especially important that problems are solved as soon as possible, there-

fore, expert workforce is crucial. Experts are also consulted as providers of information when

important decisions must be taken, and as explainers when certain events rooted on their domain

occur. Troubleshooting experts therefore have important roles in other areas such as network

optimization and commercial expansion.

23



CHAPTER 3. ARTIFICIAL INTELLIGENCE

Figure 3.1: Generic KBS components

3.1.2 Knowledge-Based Systems

Expert's time is a valuable, scarce and often expensive resource. Therefore, for repetitive tasks

it is a waste of resources to assign experts if the same task can be done by a machine. By

automating such tasks with Decision Support Systems (DSS), the costs decrease, the process is

done faster and the expert's time can be used on more challenging tasks. DSS provides algorithms

that imitate the human thinking and decision making processes that may be applied to these

tasks.

As stated in Section 3.1.1, experience in a speci�c �eld is the di�erentiating capacity of

experts. Knowledge-Based Systems (KBS) [69] are DSS systems that use this expert knowledge

in order to automate their work. The objective of a KBS is to obtain the same results as an

expert when confronted to the same problem in the same knowledge domain. There are several

key advantages of KBS over any other type of algorithm that could be used to solve a speci�c

problem [70]:

• Separation between knowledge and its application.

• Use of speci�c domain knowledge.

• Heuristic approach to the knowledge and its use.

The separation of knowledge and application permits the reuse of KBS among problems that

have the same structure in completely di�erent domains. Therefore, there are two components

in a generic KBS (Figure 3.1):

• Knowledge Base (KB): The compilation and/or model of the domain knowledge that will

be used in the KBS. The KB contains usually domain knowledge that is highly speci�c for

the target task.

• Inference Engine (IE): The methods that are used to apply the knowledge in order to

solve the problem. The IE is usually composed of heuristic algorithms, such as rule-based

systems or probabilistic methods.

Once an IE is implemented, it can be used with any KB, regardless of the meaning of its contents.

The only condition is that the KB is always coded in a format that can be used by the IE. At the

same time, the creation of the KB is independent of the IE, so it can be created and debugged

with a minimum amount of work. The same KB can also be used with any IE that understands

its format. Therefore, the IE and the KB can be created at di�erent times, by di�erent experts

and reused in di�erent scenarios. As it will be shown in Section 3.2, this property is key in the

process of creation of the KB.
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3.1.3 Knowledge-Based Systems in Diagnosis

In Section 2.3, diagnosis was introduced as a part of Self-Healing. This process is usually done

by experts using domain knowledge and experience, so DSS can be used to automate it. Experts

use the values of CM, PM and FM parameters as input to the diagnosis process, the output

being a hypothesis of the possible root cause that is later con�rmed by additional measurements

or by applying the corrective actions and observing the result.

A high number of well known Knowledge-Based Systems are available for the implemen-

tation of DSS for diagnosis. Among others, Bayesian Networks (BNs) [71][13][14][34] and Case

Based Reasoning (CBR) [72][14][34][15] have been used. BNs represent the probabilistic relations

between the observed symptoms (e.g. unusual values on certain PIs, the activation of an alarm,

etc.) and the underlying root causes. Using the Bayes Theorem, BNs calculate the probability

of each root cause given the presence or absence of the symptoms. BNs have the advantage of

being computationally easy to process, since only numerical computations are required. On the

other hand, their structure is not similar to the though process of human experts, since they do

not explicitly use probabilistic relationships with speci�c conditioned probabilities. CBR uses

a simpler approach that �ts more closely the human thought process, with the disadvantage of

having a higher computational cost. In CBR, a database of previous solved cases is searched

each time that a new case is diagnosed. The diagnosis of the current case will be the same as

the diagnosis of the solved case that mostly resembles it. The resemblance is measured using

the euclidean distance or similar methods. A large and comprehensive data base is required in

order to guarantee that the most resembling case is not an instance of a completely di�erent

problem. A larger database implies a higher the precision of the CBR system, but also a higher

computational cost.

In order to solve the diagnosis problem, the experts commonly use a heuristic process based

on �if ... then ...� rules. Therefore, an appropriate way to express the knowledge is through the

coding of these rules in the KB. These rules are composed of an antecedent (the if part) and a

consequent (the then part). The antecedent contains assertions about the values of the inputs,

such as �is equal to� or �is higher/lower than�. But more often, the assertions that experts do on

the values of parameters are imprecise, expressing approximate behaviours such as �is high/low�

or �is normal�. Therefore, another aspect that should be coded in the KB is the mapping between

exact numerical values and imprecise descriptive behaviours. Fuzzy Logic Controllers (FLCs)

[22] are KBS that match this way of working. In Section 3.1.4 a detailed description of FLCs is

given.

To imitate diagnosis experts, DSS will predict a possible root cause based on the value of

the inputs. In order to assess the quality of these predictions, some �gures of merit must be

de�ned. In the case of diagnosis, three measurements are important:

• Diagnosis Error Rate: number of incorrect diagnosis over the total number of problems,

excluding the problems that are not diagnosed (i.e.: are labelled as being normal) and the

false positives. This measurement indicates the accuracy of the diagnosis system. It is

given by:

Ed =
Nde

Np
(3.1)
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Where Nde is the number of wrong diagnosis and Np the total number of problems. In the

case of multiple diagnosis, Nde will be increased by a fraction that depends on the number

of simultaneous diagnoses (i.e. the number of equally activated rules). The increase in the

total number of errors for each diagnosed problem is given by ∆Nde(i) = 1 − (1/Nd(i))

where Nd(i) is the number of diagnoses for problem i. In this scenario, Nde is given by:

Nde =
∑
i

∆Nde(i) (3.2)

• Undetected Rate: number of problems that are not diagnosed at all over the total number

of problems. This measurement indicates the ability to detect a problem, that is, the

reliability of the diagnosis system. It is given by:

Eu =
Nun

Np
(3.3)

Where Nun is the number of problematic cases that are labelled as normal.

• False Positive Rate: number of normal cases that are diagnosed as a problem over the total

number of normal cases. A high False Positive Rate indicates that there is a high chance

of false alarms. It is given by:

Efp =
Nfp

Nn
(3.4)

Where Nfp is the number of normal cases diagnosed as having a problem and Nn is the

total number of normal cases.

Note that Ep = Ed + Eu constitutes the total error rate over the input problems (that is,

the probability that a problematic case in the input of the diagnosis system produces a wrong

diagnosis in the output). The overall error (that is, the probability that a speci�c diagnosis is

wrong) is given by:

E = Pn · Efp + Pp · Ep (3.5)

Where Pn and Pp are respectively the proportion of normal and problematic cases. In a normal

live network, it is expected that Pn >> Pp for an acceptable service, therefore even a small

Efp can greatly degrade the diagnosis of the KBS. A large number of false alarms will decrease

the usability of the diagnosis system. The probability that a given positive diagnosis is a false

positive (the complementary of the Positive Predictive Value) is given by:

Pfp = 1− PPV =
Pn · Efp

Pn · Efp + Pp · (1− Eu)
(3.6)

When Pn >> Pp, Pfp → 1, so a separate detection system must be added that separates normal

behavior from problematic cases. This detection system would reduce Pn, and therefore Pfp. The

addition of such a system also changes the meaning of Eu, since cases that are not assigned any

diagnosis are still detected as problematic. Therefore Eu becomes the proportion of problematic

cases that cannot be diagnosed (instead of being completely ignored and marked as normal).
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Figure 3.2: Fuzzy Logic Controller

3.1.4 Fuzzy Logic Controllers

Fuzzy Logic [23] is a branch of arti�cial intelligence modelling human thinking. To do this, it

transforms numerical values of variables into descriptive values (such as �high� or �low�). FLCs

are KBS that use the principles of fuzzy logic to assign values to output variables based on

some input values. FLCs are often used in control systems where the input variables re�ect the

state of the system and the output variables are control actions. Therefore, FLCs are a good

implementation for a diagnosis system that takes PM, FM and CM variables as an input and

returns a list of possible diagnoses. Figure 3.2 shows the diagram of a generic FLC. For diagnosis,

the observations would be the CM/PM/FM variables and the actions, the diagnosis. The KB of

an FLC is divided into two parts:

• Data Base (DB): contains information about the input and output variables.

• Rule Base (RB): contains heuristic �if ... then ...� rules.

An FLC applies three consecutive processes in its IE: fuzzi�cation that converts crisp nu-

meric values to fuzzy descriptive values, a fuzzy reasoning that assigns fuzzy values to output

variables based on fuzzy values of input variables, and defuzzi�cation, that transforms the fuzzy

value of the output variable into a crisp value.

To transform normal crisp values to fuzzy values, several fuzzy sets (S1, S2, ...) are de�ned

over the domain of the crisp variable. A crisp variable is a common numerical non-fuzzy variable,

and its domain is the universe of discourse (U). A fuzzy set comprises the values of U that have

a common characteristic as perceived by a human (for instance, �high� or �low� values for a PI).

Each fuzzy set Si has an associated membership function µSi ∈ [0, 1] that de�nes the degree

of truth of each crisp value belonging to that fuzzy set. Membership functions are de�ned and

stored in the DB of the FLC. In Figure 3.3 an example of how membership functions work is

depicted. A crisp variable x has two fuzzy sets de�ned on its domain: S1 and S2. For a given

crisp value x1 of x, the membership degree for each set is given by µS1(x1) and µS2(x1), the

membership functions of sets S1 and S2, respectively. A fuzzy variable is formed by the linguistic

labels identifying a fuzzy set and their membership functions. In Figure 3.3, the fuzzi�ed value

of x1 is �S1 in µS1(x1) degree and S2 in µS2(x1) degree�.

For the purposes of diagnosis in LTE, two fuzzy sets will be de�ned for each PI, representing

�low� and �high� values. The membership functions for each set will be trapezoidal, similar to

those depicted in Figure 3.3, where S1 is the �low� set and S2 is the �high� set. Both membership

functions share two points:
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Figure 3.3: Fuzzi�cation process using the membership functions

• Low threshold : below which µlow(x) = 1 and µhigh(x) = 0

• High threshold : above which µlow(x) = 0 and µhigh(x) = 1

For some KPIs, the �high� values are normal and the �low� values will represent a degradation,

whereas for others the opposite is true.

Fuzzy reasoning in a FLC is done through �if ... then ...� rules, similar to those used

by experts in the diagnosis process (Section 3.1.3). Just as expert rules, these fuzzy rules are

composed of two main parts: the antecedent and the consequent. The degree of truth of the

consequent is obtained by calculating the degree of truth of the antecedent.

The antecedent contains assertions about input variables belonging to fuzzy sets (for ex-

ample �x1 is S1�). The degree of truth of these assertions is the degree of membership of the

variables (µS1(x1)). Several assertions can be done in the same antecedent, joined by AND or

OR operators. Usually in these cases, the degree of truth of the antecedent is the minimum

or product of all the individual assertions (with AND operators) or the maximum (with OR

operators).

The consequent contains an assertion about an output variable. The degree of truth of

the antecedent modi�es the membership function of the fuzzy set of the value assigned in the

assertion, either by truncating it or by obtaining the product. The full process of assigning a

degree of truth to a variable in the consequent based on the degree of truth of the antecedent

is depicted in Figure 3.4. The antecedent of the rule has two assertions: �x is S1� and �y is

S3�. The minimum degree of truth of both assertions (in this case, µS3(y1)) is assigned to the

consequent. The degree of truth of the consequent truncates the membership function µSO1(z)

of the fuzzy set SO1 assigned by the assertion �z is SO1�.

The crisp value of an output variable z can be inferred through the aggregation of the

outputs of individual rules. A truncated membership function µ
(T )
SO1(z), µ

(T )
SO2(z), ... is obtained

for each rule on the domain of the output variable according to the results of the linguistic

reasoning. For each point of the domain of the output variable, the maximum degree of truth

among the output membership functions is taken, that is a combined function µO(z) is de�ned as
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Figure 3.4: Linguistic reasoning with fuzzy rules

µO(z) = max(µ
(T )
SOi(z)). A crisp value is then obtained from this function in the defuzzi�cation

process. The crisp value can be taken according to a speci�c policy:

• SOM (Smallest Of Maximum): The smallest point with the maximum degree of truth.

• Centroid : The average of all points with the maximum degree of truth.

• LOM (Largest Of Maximum): The largest point with the maximum degree of truth.

Figure 3.5 depicts this process. The output of two individual rules (functions µ
(T )
SO1(z) and

µ
(T )
SO2(z)) are aggregated, creating a combined membership function. The crisp value for variable

z is one of the points where this new function is maximum. z1, z2 and z3 are the values for z if

the defuzzi�cation method is SOM, centroid and LOM, respectively.

In diagnosis, the output variable will contain several delta membership functions, each one

representing a distinct root cause (Figure 3.6). After aggregating the output and obtaining the

combined membership function, the tallest delta will mark the selected diagnosis. In case of

draw, the policy (either SOM or LOM), will decide which diagnosis is chosen. A modi�cation of

a traditional FLC can also be done, and select all the diagnoses that have the highest score. In

this case, the system will be able (either correctly or incorrectly) to return multiple diagnoses.

Another option is to extract the aggregated function without defuzzifying, and obtain a list of

the diagnoses ordered by the height of their deltas as their weight.

3.2 Knowledge Acquisition

KBS use knowledge and replicate the work of the experts in a certain domain. Since computers

have a high processing power, they may even outperform experts in their own work where complex

calculations and data analysis are required. Nevertheless, they cannot do this by themselves; the

knowledge must be inserted into the KB (elicited) somehow. The process of collecting expert

knowledge and compiling it into a KB that can be used by a KBS is called Knowledge Acquisition

(KA). KA has traditionally been described as a knowledge transfer process that is performed

manually. Several manual KA techniques have been used:
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Figure 3.5: Defuzzi�cation process

Figure 3.6: Aggregated membership function of the diagnosis output variable
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• By interviewing the experts. This option involves a knowledge engineer [29] who has the

knowledge about the DSS operation and translates the knowledge that the expert provides

into the appropriate format. It is both a time consuming and intrusive process for the

expert and it requires an additional specialist.

• By teaching the expert the particularities of the DSS so that the knowledge is directly

coded by him. It is even more intrusive than the previous option and involves a steep

learning curve.

• By using forms that simplify the insertion of the KB parameters. This is a semi-automated

process that substitutes the knowledge engineer with a computer program that has a

friendly interface. This approach is used in [31], where a Knowledge Acquisition Tool

is described. This tool will ask troubleshooting experts for the conditioned probabilities

that de�ne a BN, without the need of them knowing the details of how these values must

be used in the underlying system.

The CommonKADS [73] method contains a full methodology for creating complex KBs, involving

the manual creation of models of di�erent types of knowledge. CommonKADS is the reference

for traditional KA, since it has a full description of all the involved steps.

All these methods of KA rely heavily on the expert's involvement. Unfortunately, in the

industry of mobile communication network management, the time of the experts is a scarce

resource. Therefore, the attempt of creating a RB by traditional KA is bound to failure.

The knowledge modelling approach used by CommonKADS can be extended with Data

Mining (DM). In this case, the KA process consists of extracting and modelling the knowledge

implicitly contained in the byproducts of the work of experts with DM. The DM process takes as

inputs the observations done by experts and their results, and creates a model of the knowledge

that can be used as a KB. This approach requires a much lesser involvement from experts, since

they are only required to provide data, instead of explicitly asking them for the knowledge. [74]

explores the information that can be extracted from a CBR database in order to model relations

among PIs, alarms and root causes for 3G networks. [75] proposes a hybrid between CBR and

rule based system for diagnosing problems in web services. The CBR part covers the cases for

where rules are not available. New rules are then generated as new cases accumulate in the CBR

database; having the same e�ect as performing KDD over a set of solved cases for KA.

3.3 Knowledge Discovery and Data Mining (KDD)

As stated in the previous section, DM can be used to extract a KB as a model of a certain database

of inputs and expected outputs of the KBS. More generally, DM is part of the Knowledge

Discovery and Data Mining (KDD) �eld. The purpose of KDD is making sense of raw data

through data analytics; therefore, it covers all the phases starting from reading raw, untreated

data, to a representation of the knowledge that can be used by human operators or a KBS. The

applications of KDD are found in a broad variety of �elds where data is generated and knowledge

required, such as in electronic commerce [76][77] and banking [78], sensor networks [79][80] and,

in the case of this thesis and some other studies such as [38] and [39], mobile communication

networks. For KDD to be applied, it is required that a stable collection system gathers enough
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data so that the target knowledge is completely contained.

A KDD system includes models of the formats that data takes during the knowledge ex-

traction process and the techniques that transform one format into the next one. There are �ve

main sequential steps in the process of knowledge extraction:

• Selection: the set of data where the target information is contained must be provided

to the system, so only the relevant information is processed. The input of this process

is all the available raw data, and its output contains only the relevant raw data. In

troubleshooting, two dimensions must be considered: time and place where the problem

occurred. For detection, the time frame is usually only the last few measurement intervals

(each measuring normally 15 minutes), whereas diagnosis may need to look more into the

past for the last hours/days. The place where the problem occurs is usually given by the

sector or the eNodeB. Additionally, the data sources (location where troubleshooting data

is stored) must be given to the system. This is usually done in the installation process of

the KDD system, where the connections and the access permissions are con�gured.

• Preprocessing: once the selected data is extracted, it must be treated in order to improve

its quality, by removing noise and �lling missing data that may produce bad results. The

output of this process is clean data that has no missing points or outliers. In the large

and complex data gathering systems of cellular networks, missing data due to connectivity

problems or bad con�gurations is a common problem.

• Transformation: since the data comes in a large variety of formats, the process may need

to unify or change it in order to adapt it for the DM process. Also, in this step, a data

reduction algorithm may be needed. Data reduction eliminates super�uous information

and therefore the processing power required by the DM process. The output of this step

is simpli�ed, normalized and properly formatted data.

• Data Mining: DM is the process of �making sense� of the data, that is, the step that

extracts the target knowledge. The nature and implementation of the speci�c algorithm,

as well as the formats of its inputs and outputs depends heavily on the purpose of the

algorithm. The output of this step is a model of the input data. It is no longer raw data,

but the core information contained in it, a manageable model of the knowledge.

• Interpretation/Evaluation: the model of the knowledge is used to extract concrete insights

on the input data. In the case of network troubleshooting, the results of the previous stage

will directly be used on a KBS to perform diagnosis.

The KDD process can be applied to automate KA; in this case, the input is the information

that is available from the experts and the output is a KB that can be used in a KBS. Since

expert's time is a scarce resource, one of the main focuses of the KA process is to reduce the

time and e�ort required from them. Therefore, some restrictions must be applied when designing

the process. These restrictions will be discussed in detail in Chapter 4.

The input to the KA system are therefore instances of solved troubleshooting problems

(solved cases). Each instance must contain values of PM, CM and FM for the duration in time

where the problem was observed, and a label representing the diagnosis given by the expert for

that particular case. Since DM �nds common patterns and discards the rest of the information,

many varied instances of problems caused by each root cause must be available.
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3.4 Big Data

As a consequence of the decrease in the prices of storage hardware, as well as the increase in

bandwidth in mobile networks and the growth in the number of connected electronic devices,

the volume of data generated by our society is exponentially increasing. All these data contain

information about a wide spectrum of aspects that may be interesting for all types of businesses.

For instance, the analysis of web searches or Twitter hashtags is commonly used for determining

social trends, tra�c information is used to plan the fastest route between two places and email

exchanges among experts are used to extract knowledge.

As produced data grow, the information contained in them increases in two ways:

• Quantity: the number of samples taken for measuring a speci�c aspect is larger and easier

to take. Topics that previously required a big e�ort and speci�c data gathering actions can

now be easily studied and with a low cost. For instance, the measurement of TV audience

of a program is traditionally done via interviews or special measurement equipment dis-

tributed to a randomly selected sample of users. The advent of social media has enabled

new ways of measuring the viewership of TV programs on a wider audience in real time

without any need of interaction with the subjects.

• Detail: the range of topics covered by the information is wider; aspects that used to

remain hidden are now revealed. Continuing with the example of TV audiences, social

media contains real time information not only of the number of viewers, but also of their

reactions.

These new possibilities are very interesting for businesses in order to better understand and

operate in the market. But all of these advantages come at a cost. The amount of available data

is often too big and unstructured to be treated with traditional statistic methods to achieve the

results and speed to cater for the needs of the market, so new techniques must be used. Big

Data is the new paradigm that encompasses the principles and techniques for making sense of

data in this new scenario. A data set is considered Big Data compliant when it follows a set of

principles known as the 3 V's [40] of Big Data:

• Big Volume: the quantity of data that must be processed is large, either because there are

many individual small information units or because each information unit is large. The

exact boundary for the volume of data to be considered Big Data is largely dependent on

the application, the time constraints and the available hardware.

• High Velocity: the information is produced at a rate that requires special techniques in

order to process it before new data is produced. Again, there is no exact boundary to

consider a data source as fast; it depends on the hardware resources that are available.

• High Variety: the data sources have varied formats (that require a preprocessing for homog-

enization or altogether separate processing pipes), often contain unstructured data (that

requires a preprocessing in order to structure it so it can be processed) and are extracted

from di�erent physical/logical interfaces (requiring special equipment or hardware drivers).

Also, the data units may contain information about di�erent entities that may or may not

be needed for a speci�c application.

Data that complies with these features is complex and di�cult to process. Big Data makes
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use of the latest software and hardware developments to achieve a high data processing power

in order to extract the useful information in a reasonable time. Data sets that are voluminous

are divided into smaller chunks that can be processed and stored by a network (or cloud) of

interconnected CPUs instead of a single processor. Big Data makes heavy use of distributed

computing for two main purposes:

• Cloud Computing: the processing is done in a remote location, that is �in the Cloud�, which

contains the hardware resources. These resources are dynamically allocated depending on

the requirements of the client. For small requests, a small amount of physical processors is

allocated, whereas for large processes, a grid of processors working in parallel is dedicated.

The whole process is transparent for the clients. When the processing power is large (as

is the case in Big Data), the algorithms in the cloud must be parallelized. It is important

to note that all the KDD steps described in Section 3.3 are Big Data problems in mobile

network troubleshooting, and they must therefore have a parallelizable implementation.

Some de-facto standards are the Lambda system architecture [81] for the high level design of

Big Data systems and the MapReduce [82] programming architecture for low level algorithm

design.

• Data Warehousing: data storage is distributed �in the Cloud� instead of in a single server.

Distributed storage has many advantages over centralized storage, such as a higher re-

liability and faster storage and retrieval times. Several technologies improve the storage

performance even more: new formats that are optimized for the unstructured data (NoSQL

[83] databases) or in-memory databases that greatly speed up the storage and retrieval of

data.

In Chapter 4, the automation of KA for LTE Self-Healing will be reformulated as a Big Data

problem, and the requirements that this introduces in the design process will be considered.

3.5 Conclusions

This Chapter has introduced the AI concepts involved in the Self-Healing process (speci�cally

diagnosis). Firstly, the need for DSS was introduced to assist the experts in the process ofdi-

agnosis. The role of expert knowledge was described and KBS were introduced as the type of

systems that use it to perform actions such as diagnosis. The application of KBS to diagno-

sis was shown in full detail through the description of FLCs, which is the system that will be

further used for diagnosis in this thesis. The concept of KA was described to transform expert

knowledge into a speci�c format that may be used by KBS. In this thesis, KDD is proposed as

a method for KA, as an alternative to traditional manual KA. Finally, the Big Data paradigm

was introduced, showing the requirements of a problem to be considered a Big Data problem.

In the next Chapter, the data used in diagnosis will be described in full detail, showing how it

complies with the described Big Data principles.
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Chapter 4

Knowledge Acquisition for

Diagnosis systems in LTE networks

In Chapter 3 the concept of KA was introduced as the process of generating a KB that contains

the knowledge of �eld experts. Two di�erent approaches to KA were described; the transfer

approach, where the knowledge was elicited from the experts and manually introduced into a

KB, and the modelling approach, where a KB was extracted from a large data set where the

knowledge was contained. The second approach, which has the advantage of requiring a small

degree of involvement from the �eld experts, can be implemented using KDD systems.

For automating diagnosis in LTE, KBS can be used. Speci�cally, the use of FLCs is described

in Section 3.1, along with the format of the KB that needs to be generated. The KA process

based on KDD has two inputs: the network data and the experts analysis of the data. In this

Chapter, in Section 4.1, the type of data available in LTE for the KDD process that will extract

the knowledge and generate the KB will be analyzed and characterized as Big Data (Section

3.4). Section 4.2 will then propose a tool that will let experts insert their analysis of the data in

the KA process (in this case, their diagnosis of the problem).

4.1 Formulation of Self-Healing data as Big Data

This Section will describe in detail the data that is available from LTE networks. These data are

used by troubleshooting experts for detecting and diagnosing problems. In Chapter 5, the data

extracted from real networks will be used to create a model that can later be used to emulate

problems and use them in DM algorithms.

These data contain the information that reveals the presence of a problem. In order to �nd

that information, KBS use the knowledge that is contained in their KB, which is generated based

on the experts knowledge. The KA process will therefore collect the data that experts observe

and, along with their diagnosis, use it to extract the expert knowledge.
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Figure 4.1: Architecture of the PI data collection system

4.1.1 Data Sources

The troubleshooting process uses data that indicate the state and behaviour of the network.

These data are usually recorded on-site in the eNodeB, which is connected to a data collection

subsystem (depicted in Figure 4.1) that regularly gathers all the information in a centralized

database.

Several types of data sources are present in the network. They are collected and stored at

di�erent network elements and accessed by the data collection subsystem. The most commonly

used data sources for troubleshooting are:

• Performance Management (PM) metrics: each eNodeB keeps an array of counters that

increase with speci�c events, such as established or dropped connections. These counters

are accumulated over a variable time period known as Report Output Period (ROP), that

is usually 15 minutes. Other measurements are also taken and averaged during this time

interval, such as the received power or the instantaneous CPU load of the eNodeB.

• Fault Management (FM) alarms: along with the counters, eNodeBs monitor speci�c prob-

lematic events. The occurrence of these events is registered in a binary indicator (i.e.

the alarm). The nature of alarms is varied, such as software errors or hardware integrity

problems.

• Con�guration Management (CM) parameters: the con�guration parameters of each eN-

odeB are adjusted by the engineers or SON functions. These parameters regulate the

network operation, so they are important information sources for better understanding

how the events are a�ecting the network performance.

• Call Traces: measurements taken in the time interval and channel where a communica-

tion takes place. Each call trace contains registers (such as counters and alarms) and

measurements related to a speci�c connection (session) between a UE and the network.

• Others: other information sources that are sometimes used in the troubleshooting process

are trouble tickets (previously known problems of the a�ected sector or neighboring sec-

tors), engineer actions (time-stamped actions taken toward solving a previous problem or

optimizing the performance), drive tests (on-site measurements of the radio signals received

by the UEs), customer complaints, etc.
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Figure 4.2: Data types and their relations

Figure 4.2 shows the data types and their relations. The PM, CM and FM data are reported

to a centralized location each ROP, where the values are stored in a time-stamped database.

The aggregation method of PM counters will depend on the measurement that is being taken.

For event counters, the number of occurrences is added, whereas for counters that monitor a

magnitude (such as the received signal strength), the average is taken. CM parameters, on

the other hand are usually �xed for each ROP, and FM alarms change only once if they are

triggered. Therefore, for each ROP, a time-stamped vector is saved for each eNodeB in the

centralized database. These values are then used for calculating Performance Indicators (PIs),

that are composite variables that may contain information from several counters, con�guration

parameters and alarms. PIs can then be aggregated on several time levels (ROP, hourly or

daily). They measure high level magnitudes, such as the connection establishment success rate.

But there are also some PIs that measure simple low-level magnitudes, by reproducing the value

of a counter (such as the number of connection attemptss).

A reduced subset of the PIs re�ects the general behaviour of the node; showing a degraded

behaviour when the performance of the network is degraded. These are the Key PIs (KPIs),

a set of high level PIs that experts use to detect which cells must be further screened to �nd

a problem. KPIs are also aggregated in space, that is, over a group of eNodeBs, to re�ect

the general behaviour of the group. This organization lets experts do a top-down approach on

problem detection (as described in Section 2.3); they start by observing the KPIs of the whole

network and then drill down on speci�c groups or individual eNodeBs by using a list of worst

o�enders to �nd the problematic spots.
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Figure 4.3: Format of the PI data stored in the central database

In the centralized database, for each eNodeB, a time-stamped table with all these measure-

ments is saved. Therefore, each PI, KPI, PM, CM and FM value is represented as a time series,

that is, each entry in the fault database is a matrix with two dimensions (the measurements and

time). This is the format of the performance data that experts observe to troubleshoot problems

(Figure 4.3). While a graphical representation of a time series is a very appropriate format for a

human expert that will study each PI separately, the time dimension adds some complexity when

the data is processed on a KBS that analyzes all PIs in a parallel manner. In this scenario, a KBS

would need to analyze a large number of time series (one per PI) in order to obtain a diagnosis.

This would either increase the processing time or the required hardware, ultimately increasing

the costs of operation. Therefore, a method to reduce the dimensionality of the data would be

required. Such a method should ideally eliminate the time dependency with the minimum loss

of information. Traditionally, troubleshooting experts work with aggregated values to eliminate

time dependency. The average of the values over a period is taken (hourly or daily), which can

potentially cause the loss of information on degradations since a higher proportion of normal

values may mask the abnormal ones. The complexity of the fault database may be much higher

if other performance measurements are included, such as call traces or trouble tickets. In that

case, an additional layer of data formatting that converts all the information to a single format

would be required.

All these data create a detailed picture of the state of the network. Any event is somehow

re�ected in these data sources. When a problem (the root cause) occurs, it may cause the

degradation of one or several of these indicators. An indicator is considered to be degraded when

its value is either too high or too low compared to what it should be if the operation of the

eNodeB (or group of eNodeBs) was normal. To determine if a value is degraded or not, experts

use thresholding (Section 2.3), although usually with imprecise thresholds (Section 3.1.3).

Normally, it is a combination of problems and circumstances that cause a visible e�ect;

therefore, some root causes may be present at a speci�c moment and not cause degradations. In

that case, the problem may be undetectable. It is important to take into consideration this fact

when working with aggregated values. If an indicator su�ers a degradation for a brief interval of

time (for instance, 1 hour), and its value is aggregated over a much longer period (for instance 1

day), it is possible that the degradation is masked, that is, the normal values compensate for the

degraded value. When observing the aggregated value, no degradation would then be detected

at all. The same applies for spatial aggregation; a degraded indicator of a speci�c eNodeB may

not cause a visible e�ect on the aggregated indicator over the whole group. For this reason, drill

down lists (i.e. lists that show the values of KPIs for the individual eNodeBs of a group) are
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always important, regardless of the global indicator being degraded or not.

4.1.2 Data Dimensionality

The data sources that are used both for troubleshooting (either manual or automatic) and KA

were described in Section 4.1.1. In this Section, the dimensionality of that data will be discussed,

to demonstrate that automatic diagnosis and KA can be classi�ed as Big Data problems. In

Section 3.4, it was stated that a dataset could be considered Big Data if it had three properties:

big volume, high velocity and high variety. These three aspects can be found in the data collected

from the network:

• Volume: there are many individual small information units (such as PM counters that are

very simple and structured, but are generated by a large number of eNodeBs) and also less

numerous but large information units (like call traces that contain variable �elds, many

measurements and the information is potentially referred to several di�erent eNodeBs). In

LTE networks, for each ROP (every 15 minutes), each sector of an eNodeB produces and

transmits a vector to the centralized database. Each of these vectors has PM counters,

CM parameters and FM alarms. The speci�c number of values depends highly on the

manufacturer of the equipment, but the number is in the hundreds or thousands. That

number must be multiplied �rst by the number of sectors per eNodeB (normally 3 or

6) and then by the number of eNodeBs in the network (that ranges in the thousands).

With these numbers, the volume of CM, PM and FM is several million of values per ROP.

Other measurements add even more volume; for instance, each of the millions of individual

connections occurring in the network generates a call trace, that on itself may contain

hundreds of variables.

• Velocity: In an LTE network, the data is generated every ROP. Therefore, the whole data

must be collected, stored and processed during this time interval. It is crucial to have

quick results that help to prevent severe degradations in the performance of the network.

In the case of troubleshooting, the whole processes of detection, diagnosis, recovery and

compensation must be done before users perceive a severe loss in QoS. The time frames for

this range between minutes and hours. However, currently, with manual troubleshooting,

it is common that problems take days to be resolved.

• Variety: As shown in Section 4.1.1, there is a variety of data sources, each having its own

formats and rules. For instance, PM and CM variables are given as numerical values,

whereas FM variables are boolean. Call traces register individual events, and for each

event, a di�erent set of measurements is provided. Other variables, such as trouble tickets

or user complaints are much more complex, and may contain important information for

troubleshooting.

It is therefore necessary to apply specially developed algorithms that take into account the

dimensionality of the data.
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Figure 4.4: Lambda architecture

4.1.3 Big Data techniques applied to Self-Healing

In Section 3.4, the Lambda architecture was introduced as one of the de-facto Big Data tech-

nologies for cloud computing. Figure 4.4 shows the Lambda Architecture. This architecture is

specially designed for data sources where information is being accumulated over time and live

results are requested. The Lambda Architecture has two data pipelines:

• Batch Layer: in this layer, the algorithms are applied over datasets spanning over a long

period of time to extract detailed information. This pipeline is slow, since it deals with

large volumes of data, so it does not o�er immediate results when new data is added.

Nevertheless, it must still be fast enough to process the data at the rate that it is produced.

• Speed Layer: it is often necessary to obtain an approximate result that is available immedi-

ately after new data is collected. This pipeline processes the latest data along with a data

set spanning over a small period of time into the past. It can also use the output of the

batch layer for previous periods of time. The results of the Speed Layer tend to be more

inaccurate and prone to errors (due to missing data, input errors, etc.), since the focus is

always on speed. In environments where a proactive detection of problems is performed,

the early approximate results of the Speed Layer are vital.

This architecture can be adapted to the processing of network data for automatic trou-

bleshooting and KA. Normally, troubleshooting is more time sensitive and since it deals only

with the most recent data, it can be easily optimized for speed. Therefore, the KBS that per-

forms diagnosis can be integrated in the Speed Layer. On the other hand, KA deals with a much

larger dataset, spanning over a long time in order to �nd examples of each problem. At the same

time, precision is more important than speed, since a good KB will result in a high performing

KBS for the diagnosis.

In order to be able to deal with the data, its dimensionality must be reduced at some point.

In the case of LTE data, the temporal dimension increases the complexity of the data and the

required processing power. Therefore, a crucial action is to reduce the time series of each PI (or

KPI, CM, PM, FM, etc) to a reduced set of single values that capture the essential information.

In Chapter 5, this step will be further discussed and an implementation will be given. Also,

redundant or super�uous variables must be eliminated from the processing pipelines.
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Figure 4.5: MapReduce parallelization

As exposed in Section 3.4, Cloud Computing is a key technology in the Big Data ecosystem.

Cloud Computing makes heavy use of parallelization to reduce the processing time, specially

when big datasets are involved. The time that a process may take is reduced roughly by the

factor of the number of independent processors on the computing cloud where the process is

run. A common architecture for parallelization, which can be applied in cellular networks, is

MapReduce (Figure 4.5), where the data is processed using two functions. The map function is

applied over each data unit that is independent (that contains the required information without

need of other data units) in a separate process in the computing cloud. The outputs of the map

function over each data unit is then aggregated with the reduce function.

For an algorithm to be parallelizable, its design must guarantee that the �nal result is the

same when it is run as a single process and when the task is divided among multiple instances.

The input is �rst divided into subsets that keep coherent data. Each subset is then processed

independently, without interactions among the processes. Ideally, each process is run on a sepa-

rate processor, therefore minimizing the execution time. Finally, the results of the independent

instances of the algorithm are aggregated to obtain the output.

4.1.4 Use cases

This section presents some Self-Healing examples and how they can be addressed by means of

Big Data techniques.

Sleeping cell detection

A common problem in mobile networks is Cell Outage or Sleeping Cells, that is, cells that should

be providing service but are not doing it at all for some reason. In scenarios where the density of

cells is high, this problem is specially hard to detect, since the users are redirected to neighboring

cells. Sleeping cells produce a low QoS, since the optimal cell for the a�ected users is not being

used. This is usually done using some availability KPIs and alarms that indicate that the cell

is down. But in a major outage where the whole eNodeB is down and not responding to status

queries (such as a major software fault or power outage) the network operators will not be able

to detect the fault quickly. An alternate approach to outage detection is using the neighboring

eNodeBs measurements to detect the outage by calculating its impact. Since in a network the

number of eNodeBs is normally large, and for each one, all the data from its neighbors is used,

it is easily determined that this is a Big Data problem. Moreover, the timeframe to detect and

correct an outage is usually low, since the service for the a�ected users is degraded, leading to a
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Figure 4.6: Terrain division for the detection of sleeping cells

bad user experience.

In [56], an algorithm for detecting sleeping cells based on the decrease of handovers with

neighboring cells is described. To �nd sleeping cells, for each eNodeB, the number of incoming

handovers for the current and previous ROP is aggregated from the neighbor eNodeBs outgoing

handovers. If the handovers have suddenly dropped to zero and the readings of other PIs (or the

lack of PIs) of the cell indicate a malfunction, the cell is marked as a sleeping cell. To apply this

algorithm under the Big Data principles, it should be considered that the full network has to be

analyzed over a limited time (one ROP, before new data is received). Thus, it is essential that

multiple instances of the algorithm analyze separate parts of the network. In order to achieve

this, the terrain can be divided in partitions that are the size of the maximum distance between

neighbors, as shown in Figure 4.6. Each instance of the algorithm tests sequentially each of the

eNodeBs contained in one partition by looking into the data of its neighbors, that are contained

in the adjacent partitions. Therefore, each parallel instance only works with a reduced database

containing only the data of the current and adjacent partitions. An alternative partitioning can

be done by taking neighboring relations into account; in this case, instead of reading the KPIs

of all the eNodeBs in the adjacent partitions, only those that are con�gured as neighbors are

considered. This will increase the initial processing time for creating and delivering the tasks to

the di�erent processes, but with the bene�t of reducing the potential amount of data that each

one must read.

Figure 4.7 shows the results obtained in [56] for the algorithm compared with other methods

when applied to a simulated LTE network: Availability PIs (the detection is made by monitoring

certain PIs of the cell) and Lack of PIs (a cell is selected as sleeping cell if there are no PIs

available). For each method, the results show the False Positive Rate and the False Negative

Rate (i.e. the percentage of non detected cases among the total of normal cases simulated).

The results show that the proposed method is able to detect most simulated outages, leading

to a low percentage of false negatives (5.9%), while Availability PIs and Lack of PIs methods

present a high percentage of false negatives. These results show that the increase in the volume

of processed data improves the detection capacity.
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Figure 4.7: Comparison between the proposed Big Data method and other common techniques

Diagnosis based on KPI correlation

In diagnosis a very important source of information is to �nd which PIs correlate the most with

the occurrence of the problem. Since the KPIs are an indication of the general behaviour of the

eNodeB, a list of the most correlated indicators will give an important clue to the root cause

analysis. In [57], a method that performs this analysis is described. This algorithm takes into

account the PIs of the a�ected eNodeB and the neighboring sectors in order to simplify the task

of diagnosis. The process of calculating the correlation of two time series is a computationally

heavy operation, and the number of correlations that must be done is high (all the PIs of the

analyzed sector, plus all the PIs of each neighboring sector), qualifying it as a Big Data problem;

but since each PI can be processed independently, the algorithm is easily parallelizable. The

correlation process is implemented as a map function, and a reduce function creates a list of

PIs ordered by correlation. In Figure 4.8, a time series of a KPI in the diagnosed eNodeB (the

Number of Radio Resource Control Connections) is shown, along with a highly correlated PI of

a neighboring eNodeB (a counter of Bad Coverage reports) and their correlation.

4.2 Troubleshooting Data Collection

In Section 4.1 the data from the network was described. In this Section, the process for collecting

that data and creating a fault database for the KA process is described. The automated KA

process has two inputs; the data and the experts analysis of the data. The expert's input must

contain enough information so that the appropriate time interval and spatial aggregation can be

used to collect the data.

The automatic KA process has two main parts regarding the expert's point of view (Figure

4.9):

• Knowledge Capture: collection of the information from the expert and use that information

to �lter by time and space the network data. On the KDD scheme (Section 3.3), Knowledge

Capture corresponds to the Selection step.
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Figure 4.8: Correlation between the KPI and a PI of a neighboring sector

• Knowledge Modelling: creation of a model of the knowledge that will be used to create

a KB. Knowledge Modelling encompasses the rest of the KDD steps, that do not require

human intervention.

This Section explores the Knowledge Capture step. Speci�cally, a troubleshooting data collection

application will be described. This application will let experts indicate when a diagnosis has been

done, and the time frame that they observed for the a�ected sector in order to �nd out the root

cause. Knowledge Modelling is further studied in Chapters 5 and 6.

The output of the application will be a small dataset containing labeled tables of CM, PM

and FM parameters (and optionally more variables). Each table will contain the data of an

a�ected sector (and optionally its neighbors) over the period of time where the problem was

observed. This database can then be used for multiple purposes, such as modelling problems,

generating a KB or even training new experts.

4.2.1 Requirements of a Troubleshooting Data Collection System

The troubleshooting data collection application has three interfaces: a Graphical User Interface

(GUI) for the experts to insert the diagnosis and two database connections: an input interface

that will collect the data from the Operations and Support System (OSS) centralized database

and an output connection that will save the output of the algorithm in a database to further

process the data. On the user side, some requirements must be taken into account:

• A major issue with specialists is time. Therefore, the UI must be easy to use, and straight-

forward, ideally taking no time out of the experts work�ow for learning or operating it.

• The UI must only take information once the work rush of troubleshooting is �nished, so

the process of reporting a solved problem is not intrusive.
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Figure 4.9: Knowledge Acquisition parts from the point of view of the expert

• It would also be important that the UI o�ers an incentive to its users. Since the strong

point of the system is the collection and processing of information, it could o�er strategical

information to its users about a problem under study.

These requirements were provided by troubleshooting experts when queried about their experi-

ence with current software solutions for troubleshooting.

The input database connection is vendor-speci�c, and it can be implemented usually using

the appropriate Application Programming Interface (API) that will take care of all the require-

ments. Regarding the input data, the requirement for the purpose of creating a model of the

problems is that there must not be too many missing or incorrect data. In subsequents steps

of KDD, minor errors can be corrected, but large errors (i.e. long periods of time with missing

data) may cause malfunctions.

On the output of the application, the data must be varied, that is, for each problem there

must be as many di�erent examples as possible, so that the DM process can �nd the common

patterns and discard those that are not related.

4.2.2 Troubleshooting Data Collection Tool

Considering the requirements described in Section 4.2.1, an application has been developed in

order to collect troubleshooting data. The application takes two inputs (the experts information

inserted through the GUI and the network data retrieved through a database connection) and

produces one output (the data of one troubleshooting case). The outputs are accumulated in

a database of solved problems that is populated as new cases come in. Figure 4.10 shows the

general diagram of the tool. The application has four main components:

• Main module: The part of the application that coordinates the operation and interaction

of the other modules.

• GUI: The interface between the user and the system. It must follow the guidelines described

in Section 4.2.1. The interaction of the experts with the application is shown in Figure

4.11. Once launched, the application o�ers a form that the expert must �ll. To simplify
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Figure 4.10: Components of the data collection application

and minimize the intervention of the experts, the interface only asks for the date of start

and end (the exact hour is optional since degradations are isolated in the transformation

step, as shown in Chapter 5), the name of the a�ected eNodeB or sector and a single

tag for the diagnosis. Optionally, the experts can include extra comments, indicate if the

problem is solved or ongoing and the solution to the problem. Experts submit the form

and the collection of data is performed in the background. Finally, the application o�ers

a summary. In this point, the application can provide with a useful report on the inserted

data, such as detection of degradations (this process is described in Chapter 5), or �nding

similar cases in the database. Figure 4.12 shows a screenshot of the diagnosis submission

form.

• Input database interface: interface between the OSS database and the system. This com-

ponent receives the information collected from the GUI and performs a query on the OSS

side to retrieve the data. The date and site information are used as �lters in the query.

• Output database interface: interface between the system and the solved problems database.

The application joins the data retrieved from the network with the information provided

by the expert (mainly the root cause, but also the additional optional information if it was

included). The output is saved in a local database or �lesystem.

The application has been developed on the Django [84] platform based on Python [85], that

o�ers a web interface for the GUI and lets the user launch processes on the server (using the

Celery [86] library). The Django platform uses a Model-View-Controller (MVC) [87] architecture.

In this application, the input and output interfaces are de�ned by the model, the GUI by the view

and the main module corresponds to the controller. The input interface is implemented using

the SQL database interface provided by the SQLAlchemy [88] library, since the OSS database
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Figure 4.11: Interaction between the user and the application

uses this protocol to access the data. The output database interface uses both a separate native

Django interface to save data on a local database and the Pandas [89] library in order to perform

some analysis on the data and save to CSV �les. The rest of the KA processes on the data are

launched with a Celery worker.

These design decisions are based on the ease of use and convenience of a web interface, that

is in sync with the latest trends in software product development (Software as a Service [90]).

Also, the high capabilities of Python for data processing and the availability of libraries for both

the web and the database interfaces, drove to its choice for the implementation.

The application described in this Chapter was deployed over a live network. As reports of

new problems were received, they were fed into the application, slowly collecting a database of

solved problems. In the next Chapter, the problems collected with this application are used to

generate a model of the problems in the LTE network. This model will be used to further study

and characterize the behaviour of the KA process; but in a full deployment of the automated

KA and troubleshooting system (using the Lambda architecture), the modelling step would be

optional (although very useful if the number of collected cases is low). In this scenario, once

the application has collected a reasonable number of problematic cases, the rest of the KDD

functions (preprocessing, transformation and DM) are launched.

4.3 Conclusions

In this Chapter, the KA process for diagnosis systems was described. Firstly, the data available

both for diagnosis and for KA was described, specifying the data sources and formats. The

dimensionality of these data was also described, showing how it can be quali�ed as a Big Data

problem. The Big Data concept applied to Self-Healing was further explored, describing several

processing techniques and scenarios where they can be applied.
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Figure 4.12: Screenshot of the form where the expert inserts a diagnosis

To perform KA using KDD techniques, large datasets must be collected. The requirements

of an application to collect these data were described, including UI requirements. Finally, an

application developed for collecting troubleshooting data from real networks is described. This

application only requires a very reduced quantity of information from the experts, namely, the

date where the problem occurred, a label describing the problem and the a�ected eNodeB. In the

next Chapter, the data collected from a real network with this application will be fully described.
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Chapter 5

LTE Fault Database Modeling

In this Chapter, the database of collected problems will be studied in detail. A modelling process

for the database will be proposed and applied to summarize the relations between the indicators

and the problems. The full process that is applied on the original raw database is shown in

Figure 5.1. Finally, the model will be used to emulate vectors of solved cases for their use in

data mining.

5.1 Collected Fault Database

In Chapter 4, a process for collecting a raw database of solved problems was described. An

application using that process was developed and deployed. In this Section, the network over

which the application was deployed is described, along with the description of the collected

database.

At the moment when the database collection started, the network was recently deployed (less

than 2 years) by a major United States operator and optimization was still ongoing by Ericsson.

The network was growing, so new sectors were added frequently, with optimization problems in

the beginning. The network covers a major urban area in the United States and it is part of a

larger network owned by the operator. The network has 19879 sectors (5366 eNodeBs), divided

among 4 large clusters, each subdivided into smaller groups that cover speci�c neighborhoods of

the urban area. To use the resources more e�ciently, two carriers were deployed.

5.1.1 Building of the Fault Database

The troubleshooting of a network of this size is a complex task that requires work division among

several troubleshooting experts. Each cluster is assigned to a single expert that oversees its

behaviour. If degradation is detected on the high level KPIs of the cluster (such as Accessibility,

Retainability, Handover Success Rate, etc.), a top down process is started where a list of worst

o�enders is constructed for that speci�c KPI to �nd which sectors are degrading it. Further
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Figure 5.1: Process applied over the original dataset. Actions marked in green show the manually
done actions and those in blue show the automated steps.

analysis of the lower level KPIs of the worst o�enders is performed in order to diagnose the

problem if possible. Each sector may also raise alarms if a failure is observed, and depending on

its priority, it may need to be addressed by the troubleshooting engineer without being a worst

o�ender. Additional measurements may need to be taken on-site by a team of engineers in order

to have more information for the diagnosis. Some diagnosis are partial, requiring additional

information from other sources (such as hardware or software problems that can only be fully

diagnosed by the vendors). If there are no visible degradations on the cluster level, experts

usually still inspect the worst o�ender lists in case that a speci�c sector is having problems

although its e�ect on the overall behaviour of the cluster is not important. Also, incident reports

may be raised from other sources (such as user complaints) directly pointing to a failing sector.

In all this process, there is a high volume of information being transmitted among trou-

bleshooting experts. The information of each case and an iteration of suggestions and tests is

shared between the responsible engineers of each sector and the troubleshooting teams (that in-

clude experts in several �elds). Once the problem is diagnosed, the corrective actions are taken.

These actions may or may not solve the problem; in a negative case, new solutions are proposed,

whereas if the problem is solved, the a�ected sector is monitored for a time to assure that the

solution has worked.

In this scenario, the application described in Section 4.2.2 was used to summarize the in-

formation contained in the email exchange of each case. For each one, some important aspects

were saved:

• Start and end date: approximate start of the problem, or, if not explicitly stated, the date
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Figure 5.2: Timeline of the collected cases

of submission of the �rst email identifying the problem. The date of the end is taken as the

date where a solution was applied, or the last email refering to the problem was submitted,

if the problem remained unresolved. These dates are taken for the records, but actual data

is gathered starting two weeks prior to the problem and �nishing on the end date; in order

to perform a search for trends prior to the visible degradation.

• Sector name: name of the a�ected sector or sectors.

• Summary of the problem and a label identifying the problem. The label must be the same

for similar problems.

• Summary of the solution (if any).

As explained in Section 4.2.2, once the basic information is collected, the application au-

tomatically downloads the data of the sector (CM, PM, FM and KPIs) and saves it to a local

database.

5.1.2 Collected Database Summary

Following the interchange of emails of troubleshooting experts for a period of 10 months (from

June 2013 to April 2014) has produced a list of 475 cases.

In the database, each case represents a problem and it is composed of a set of collected PIs

and a label identifying the problem. The data collection was performed in three di�erent stages

(Versions 1 through 3), where the list of collected PIs was successively improved. Version 1 (100

cases) of the PI list included only a closed set of KPIs. Version 2 (360 cases) extended that list

to all available PIs, and Version 3 (15 cases) further increased the list with PM counters, FM

alarms and CM parameters. Figure 5.2 shows a timeline of the collected cases.

The timeline shows a large amount of cases obtained around June 2013. These cases were
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collected using the results of a manually-coded rule based diagnosis algorithm. This algorithm

was executed as a set of SQL queries generated from a user-friendly MS Excel interface; therefore

it is an example of traditional KA, where the experts are asked to manually insert the knowledge

in the system. Nevertheless, the whole system was a prototype that could not be easily extended

with new PIs and rules. Any minor change required an intensive task of SQL and MS Excel pro-

gramming. Since the algorithm was executed only once, the results were collected at the instant

where the analysis took place, resulting in a large concentration of cases on the same day. The

results of this collection campaign had a very high number of false positives. Furthermore, the

algorithm only returned the IDs of the a�ected cells in the last ROP; therefore, this information

was fed to the data collection platform described in the previous Chapter. The convention used

to automate the data collection was to mark the end of the problem as the date of collection

and the start as two weeks prior. The label of the problem was given by the SQL query (each

representing one rule, and therefore, one problem) that had retrieved it. No additional details

were available on this cases, so the summary fed to the collection system was empty. A large

number of cells appeared into more than one category (due to the high False Positive Rate of the

algorithm). The rest of the cases were collected feeding the basic information into the data col-

lection platform as new reports were received during the data collection stage between November

2013 and April 2014. These cases were mostly reported through an internal mailing list.

Each of these cases is diagnosed with a summary that may be more or less complex, but in

this thesis they have been classi�ed in a set of labels that group cases that have a very similar

behaviour according to the troubleshooting reports. These labels are more or less informative; in

some cases they describe the root cause, and in others they just indicate that a speci�c behaviour

is common along all the cases, without there being a clear indication that the underlying root

cause is the same for all cases. These labels are not mutually exclusive. Speci�cally, 21 types of

problems have been collected. The full list and description is given in Appendix B.

Figure 5.3 shows the proportions of the problems. The number of RRC Storm cases is the

highest, because this situation was reported automatically by a specially designed algorithm.

This algorithm would monitor certain PIs and restart automatically the eNodeB if there was

any possibility that the problem was happening. Since it was deployed on a network in service,

and the cost of restarting an eNodeB was relatively low, no care was taken for minimizing the

false positives of the algorithm. Therefore, this class was unusable for the purpose of modelling

because of the high false positive rate and also because the number of collected PIs (Version 1)

was insu�cient. Low Coverage (in the downlink and in the uplink) are the second and third most

commonly collected problems since the number of border cells is high. These two classes and the

rest of the most common problems (shown in Figure 5.3a) are collected using the results of the

previously mentioned manually coded rule-based diagnosis algorithm, that also had a relatively

high False Positive Rate. These cases had to be manually analyzed in order to make sure that

the diagnosis was correct, and many cases were discarded because it was not clear that there

actually was a problem or that the diagnosed problem was correct. This step is required in

the case shown in this thesis because cases were collected in an environment which was actively

being developed. In a real deployment, this step should be performed at the time of inserting the

cases in the system. The classes with the lower proportions (Figure 5.3b) were collected based

on direct reports by troubleshooting experts.
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(a) Most common problems

(b) Other problems

Figure 5.3: Proportions of collected problems
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Figure 5.4: Proportions of root causes among selected cases

From these problems, only a reduced set of them is taken for the development of the system.

Cases that have a very low number of incidences (such as Outage) are discarded because of the

low variety of situations. This would cause over�tting in the DM process. For instance, in a case

of Interference, the HOSR may or may not be degraded; but that is not correlated with the main

cause of the problem (i.e. the degradation would be caused by another root cause). If the only

examples of Interference have a degraded HOSR and their number is low, the DM algorithm

would �nd a 100% correlation between HOSR degradation and Interference. Another reason for

discarding problem types (such as RRC Storm) is that the diagnosis would require the analysis

of non collected data (such as PIs from neighbors or �eld test results).

With these considerations, a reduced list of problems has been selected for the extraction

of diagnosis rules. These problems have been analyzed in order to extract the root cause with

the help of the experts, and have been classi�ed under four labels: High Tra�c, No Tra�c, High

CPU Utilization, Low Coverage. Note that these labels indicate the root cause, whereas the

previous labels classi�ed the cases according to their symptoms. Figure 5.4 shows the number

of cases for each root cause.

For these cases, a variable number of PIs has been collected, depending on the Version of

the data collection mechanism. The list of PIs that have been used in this thesis, along with

their descriptions is given in Appendix A.

5.2 Processing LTE performance data

To perform the DM process, a learning set composed by labeled vectors of PIs is required. But

when the data is collected from the network, their format is totally di�erent. Therefore, a data

preprocessing must be done to create these vectors without loss of information. Two steps are
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required in order to do this transformation: data cleaning, where missing values are replaced with

a calculated value in order to improve the quality of the results, and data reduction, where the

originally downloaded data is converted into an appropriate format with a lower dimensionality.

This process corresponds with the Preprocessing and Transformation stages of KDD (Section

3.3). The input of the process is composed of the data collected from the network, given as a

matrix of time series per PI (or PM/CM/FM values), and the output is a set of vectors with one

element per PI.

5.2.1 Data Cleaning

When data is collected from the network, some �dirt� may be collected. Depending on the nature

of the collected data, the �dirt� may take di�erent forms:

• Outliers: When measuring a magnitude over a large set of sources an abnormally high

or low value will have a high impact on the overall behaviour of the measurement. For

instance, when measuring the averageDownlink RSSI over all the UEs of a sector, one single

very high measurement (e.g. due to a user that is located near an external interference

source) may drive up the average and standard deviation, giving an inaccurate picture of

an otherwise well-behaving sector.

• Missing data: When monitoring a magnitude over time in �xed intervals, an event may

happen that prevents the measurement over one period. In the case of CM/PM/FM

monitoring, many factors may cause this situation: an outage in the eNodeB where mea-

surements are taken, a failure in the transmission over the monitoring network, a fault in

the operator's database host, human errors, etc ...

• Wrong data: Some measurements may be outright wrong, due to a bad con�guration of the

measurement mechanism or a fault when transmitting or reformatting data at some point.

Unless the error causes illegal values (such as negative values for a counter or proportions

higher than 1), these errors are really di�cult to detect.

In this thesis, it is considered that there are no outliers or wrong data (i.e. the counters are

considered reliable). In fact, in the software used for data gathering in the OSS central database,

collected variables are checked and left empty if their values are illegal (e.g. percentages larger

than 100%). This leaves the possibility of faults in the data gathering system which cause missing

data; which is a fairly common issue. Since the data reduction technique described in Section

5.2.2 needs time series without gaps, an algorithm must be used to deal with these missing data.

Traditionally, several simple techniques are used:

• Default value: when a missing value is encountered, it is �lled with a default value; for

instance, 0 for a counter, or 0 % for a proportion. The issue with this technique is that it

creates �fake� values that may a�ect the preprocessing results. But since these values are

still valid, they are di�cult to discard.

• Variable removal: the variable is completely discarded. Normally this is used in combina-

tion with other techniques for a certain threshold in the proportion of missing values. If

the number of missing values is above the threshold, the variable is discarded. Otherwise,

missing values are �lled. If the discarded variable is required in some process further down

the preprocessing line, this may cause a failure. Therefore, if this technique is used, a
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Figure 5.5: The Number of ERAB Connections, like many other PIs, has a daily periodicity.

recovery strategy must be de�ned, in the dependent processes.

• Reconstruction: a value is arti�cially created in order to �ll the gap. It may be a simple

interpolation of the non-missing values that surround the gap. Although this technique

may create fake values, in small proportions it may increase the quality of a time series so

it can be processed.

The technique used in this study is a reconstruction algorithm that uses statistical properties of

the mobile network data. Speci�cally, it relies on the 24 hour periodicity that is usually observed

in the values of PIs. Figure 5.5 shows an example of a PI over consecutive days. It can be

observed how the general behaviour repeats on a daily basis.

Missing data is �lled using the hourly average, that is, the average of the PI for the sector

under study and the hour of the day when the missing value is located. This value is adjusted

to the behaviour of the PI for the last 48 hours. The formula for a missing value xm is

xm =
x48

x
xH(h) (5.1)

where x48 is the average of the PI for the last 48 hours prior to the missing value, x is the

historic average for the a�ected sector and xH(h) is the historic average at hour h (the hour of

the day when the missing value occurs).

This method has some limitations; it may introduce inaccuracies in the data if used for

many consecutive missing values, since reconstructed values are always an estimation. Also if

the behaviour of the sector changes in the missing time interval, or in the last 48 hours, the

resulting estimation may be skewed towards the old behaviour. Outliers in the values used

for calculating the three averages (especially in the last 48 hours) may increase the inaccuracy.

Finally, in order to correctly �ll the data, the algorithm needs at least 48 hours of prior data.
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Figure 5.6: NRMSE of the data �lling method compared with �lling with a constant (the absolute
average) and the hourly average.

The algorithm has been tested over real cases, simulating missing data by hiding known

values and estimating them. To test the accuracy, the Normalized Root Mean Square Error

(NRMSE) of the estimation is calculated for each case, given by:

Ee =
1

R

√√√√√ nT∑
i=n1

(Vr(i)− Ve(i))2

nT
(5.2)

where R is the range of the PI, Ve(i) is the estimated value at instant i, Vr(i) is the real value

at instant i, n1 is the time of the �rst missing data and nT the time of the last one. Figure 5.6

shows the averaged NRMSE of the results applied over 100 di�erent time series of the same KPI

(Number of Connection Attempts) for increasingly long periods of missing data. The NRMSE

of the proposed data �lling method is compared with using the absolute average of the time

series and the hourly average. It can be seen that the proposed method improves the NRMSE,

although for increasing amount of times, it grows. Nevertheless, this method should not be used

for very long periods of time, since it relies on the data being predictable; therefore, it will not

be able to �ll correctly values that are abnormal.

The output of this algorithm is a matrix of time series that do not have missing values,

enabling the application of algorithms that do a sequential processing over the data, such as the

data reduction algorithm presented in Section 5.2.2.
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Figure 5.7: Input and output formats of the Data Reduction algorithm

5.2.2 Data Reduction

As shown in Section 4.1.1 (speci�cally, in Figure 4.3), the data collected from each eNodeB

is given as a time dependent matrix, where each column is a time series representing a PI or

CM/PM/FM value. Each troubleshooting solved case has one of these matrices and a label

indicating the problem. But this format is complex for being processed by automatic algorithms

and usually has super�uous information. The Data Mining algorithms described in this work

(Chapter 6), require vectors of information where each element represents the value of a PI,

labeled with the problem (without the temporal dependency). Also, a major issue with the

original data format is its volume. Normally the number of indicators is high, and there is one

entry per indicator per time unit. The high volume of data (and the proportion of super�uous

information) will slow down the Data Mining process. Therefore, a data reduction process that

reduces both the dimensionality and the volume of data is required. Figure 5.7 shows the input

and output formats of the process.

Traditionally, there are several techniques for data reduction, and their use depends on the

features of the data and the requirements of the Data Mining algorithm:

• Aggregation: data is aggregated (summed or averaged) over one dimension.

• Variable selection: detect and remove irrelevant, weakly relevant or redundant variables.

For instance, PM counters that are used for calculating a PI but have no meaning on their

own.

• Dimensionality reduction: encode the data set to reduce the size (e.g. Wavelets, DFT,

Principal Component Analysis) and remove one dimension.

• Numerosity reduction: replace data by creating models. Models may be either parametric

(a set of parameters for a known function) or non parametric (such as a set of samples or

a histogram).

In this study, several of these techniques are used. Variable selection is performed based on

a manually compiled list; although this can be improved by automating the creation of the list

using criteria of correlation with the occurrence of degradations. In order to �nd such relations,

the problem database must be studied. The list of manually selected PIs, along with their

descriptions is given in Appendix A.

A dimensionality reduction algorithm is proposed and used in combination with an aggre-

gation method. The dimensionality reduction algorithm will detect the intervals of time on a

downloaded data matrix where the behaviour of the eNodeB is degraded (hereby named as De-

graded Intervals or DIs). Once determined, the values of the PIs are aggregated using their
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Figure 5.8: Transformation of time dependent matrix into a vector of averages

average in that period of time. Figure 5.8 shows this process.

To detect the DIs, one or more driving PIs are used. A driving PI is an indicator that

highly correlates with the general behaviour of the sector. Whenever a degradation occurs in

the eNodeB, at least one of the PIs in the set of the chosen driving PIs must be degraded. For

each driving PI, two thresholds are de�ned: a good threshold, above (or below) which the PI

is considered as having a normal behaviour, and a bad threshold, below (or above) which the

PI is showing a degraded behaviour. Values between these thresholds are considered to have an

a�ected behaviour that would normally indicate that there might be a problem in the sector that

is slighlty a�ecting the PI. These thresholds are equivalent to the parameters of the membership

functions described in Section 3.1.4.

To de�ne if the overall behaviour of a sector is degraded, a state machine (Figure 5.9) will

be used. Three states are de�ned:

• Normal : All the KPIs are in the normal behaviour state.

• A�ected : At least one KPI is in the a�ected behaviour state, but there is none in the

degraded behaviour state.

• Degraded : At least one KPI is in the degraded behaviour state.

The algorithm will consider a DI any sequence of states that starts with a degraded overall state

and contains only degraded or a�ected states. The DI will then start with the �rst degraded state

of the sequence and �nish when the last degraded state ends. Figure 5.10 shows a full example

of a detection using two KPIs: Accessibility (proportion of successful connection attempts) and

Retainability (proportion of calls ended without a drop). Both of this KPIs are percentages, and

are considered degraded if they are below 98% and a�ected if they are between 98% and 99%.

At 10:00 Retainability falls below 98% (degraded), initiating the DI. At 11:00 it climbs above

98%, but it doesn't reach 99% (a�ected), so the DI is not �nished. At 13:00 Accessibility also

becomes degraded, forcing the total state to be degraded too. At 16:00 Retainability becomes

normal (above 99%) and Accessibility a�ected. At 18:00 Accessibility returns to normal values.

This also causes the overall state to be normal, retroactively marking 16:00 (the end of the last

degraded state) as the end of the DI.

Once the DIs have been determined, the values of the PIs are averaged in the time interval

to obtain a vector.
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Figure 5.9: State machine of the detection algorithm

Figure 5.10: Example of a DI detection using two KPIs
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Figure 5.11: Proportions of problems in the reduced database

5.2.3 Processed Fault Database

In Section 5.1.2, the original database was described. Once the data preprocessing has been

applied, a new reduced database is obtained. In this case, each entry (DI) will be accounted for

as a separate occurrence of a problem, although each case in the original database may produce

several entries.

The reduced database has 359 entries, distributed according to the proportions shown in

Figure 5.11.

The number of detected DIs greatly modi�es the proportions (as compared to Figure 5.4).

The No Tra�c problem causes 279 degradations out of 15 cases. The Low Coverage problem,

that originally had the least cases (8) now has 22 DIs, 3 more than CPU Overload.

The total size of the database in elements is also reduced. The size in elements in the original

database (SO) is given by:

SO =

NC∑
i=0

NK(i) ·NH(i) (5.3)

where NC is the number of cases, NK(i) is the number of PIs and CM/PM/FM variables

collected for the case i, and NH(i) the number of hours collected for case i. With this formula,

the original database has 10929065 elements. The size of the reduced database is given by:

SR = NK ·ND (5.4)

where ND is the number of detected DIs and NK is the size of the set of PIs collected for all

the cases (585). Not all of these PIs will be used in the model, but all of them will be considered

for the reduced database. With this formula, the number of entries in the reduced database is
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Figure 5.12: PIs with conditioned averages more than one standard deviation above or below
the normal average.

210015, which represents a reduction of 98.08% on the original volume.

The data in the reduced database is much simpler; there is one value per PI for each

occurrence. This makes possible the measurement of the behaviour of the PIs conditioned to the

occurrence of each root cause. An in-depth study and model extraction based on this premise is

shown in Section 5.3. A more general overview is shown in Figure 5.12; this �gure shows which

PIs have an average that is more than one standard deviation above (red) or below (blue) the

normal average, conditioned to the occurrence of each problem. This gives an idea of whether a

PI will have a �high� or �low� value for a speci�c problem.

5.3 Modeling Fault Databases

After data reduction, each solved case is composed of one or more labelled vectors. Each vector

can be considered an independent entry in a training set for a data mining algorithm. In order

to better understand the relations among the PIs and the root causes, a modelling process has

been developed. This modelling process extracts the Probability Density Function (PDF) of the

average value of each PI conditioned to the occurrence of a problem.

The creation of such a model will also permit the emulation of vectors, which is useful for

obtaining additional training vectors for data mining algorithms. Emulated training vectors may

be used for increasing the quality of the data mining process; for instance, by increasing the

62



5.3. MODELING FAULT DATABASES

Table 5.1: PDFs used in the �tting process

Distribution PDF

Unbounded

Normal 1
σ
√

2π
e−

(x−µ)2

2σ2

Laplace 1
2be

(
− |x−µ|

b

)
Gumbel-R 1

β e
−(z+e−z) where z = x−µ

β

Gumbel-L 1
β e

z−ez where z = x−µ
β

Semibounded

Gamma βα

Γ(α)x
α−1e−βx

Exponential λe−λx

Log-normal 1
xσ
√

2π
e−

(lnx−µ)2

2σ2

Bounded

Beta xα−1(1−x)β−1

B(α,β)

Arcsine 1

π
√
x(1−x)

Johnson SB δ
λ
√

2πz(1−z)e
−0.5(γ+δln(z/(1−z)))2 where z = x−χ

λ

number of cases belonging to a class that has a small number of real examples and equalizing

the proportions of each class in the training vector.

5.3.1 Modeling Process

In order to estimate a Probability Distribution Function (PDF) for a PI conditioned to a fault

cause, the zeroes are removed from the list of values in the PIs that are de�ned above zero

(such as counters) and modelled as a delta. This process is also done for ones in PIs that are

proportions. The proportion of zeroes and ones in the samples is given as two parameters: P0

and P1. With the remaining values, a set of known PDFs are �tted to those values. Table 5.1

shows the possible distributions used for each type of PI, depending on them being unbounded

(i.e. PIs that theoretically do not have a maximum or minimum value), semibounded (such as

counters that are de�ned above zero) or bounded (PIs that have a maximum and a minimum

such as proportions between 0 and 1). The list of tested distributions has been selected because

of their resemblance with the normalized histograms that are usually observed for the data.

For each �tted PDF, a Kolmogorov-Smirnov (K-S) test [91] is performed to obtain a good-

ness of �t indicator (the D-Value that indicates the distance between the empirical distribution

function of the PI values and the Cumulative Distribution Function of each tested distribution).

The PDF with the lowest K-S statistic is selected for the model of the conditioned PI. An exam-

ple of some tested PDFs is shown in Figure 5.13. With P0, P1 and the �tted distribution p(x)

with the highest D-Value, the PDF for the model of a PI m(x) is given by:

m(x) = P0δ(x) + (1− P0 − P1)p(x) + P1δ(x) (5.5)
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Figure 5.13: Histogram of Average Number of Active UEs conditioned to High Tra�c with the
�tted PDFs superposed.

5.3.2 Resulting Model

Appendix C shows the parameters of the estimated PDFs. The PDF selection algorithm is

implemented using the Scipy library [92] under Python [85], and the �tted parameters are de�ned

in [93]. Appendix B depicts all the standard PDFs �tted to each PI/problem pair, along with

their D-Values.

As representative examples, Figure 5.14, shows the PDFs of some PIs. These PDFs show

that for each PI, there is a high level of overlapping for di�erent causes, i.e. the PI might have

similar values under di�erent causes. This characteristic complicates the design of diagnosis

systems, causing a low performance in traditional rule-based algorithms. As expected, the PDFs

for the Number of ERAB Attempts show great di�erences between the No Tra�c and High Tra�c

classes, which are the two extreme cases for this PI. The No Tra�c has a delta on 0, showing

that in 42% of the cases (P0 = 0.42), the value for this PI is 0. The Low Coverage and CPU

Overload classes sit in a middleground, showing a behaviour that is close to the Normal class,

since in these two classes the tra�c is not a relevant feature. For the Number of Bad Coverage

Reports PI, it can be observed that the Low Coverage class stands out as having a specially high

values. In fact, once a problem is detected, this PI is what troubleshooting experts would consult

to see if there is a high number of terminals with bad coverage. The next class with a higher

number of reports is High Tra�c, which may be explained because when the number of terminals

increases, so does the number of potential bad coverage reports. Also, border cells may often be

tagged as having a high tra�c, since they cover a larger area containing terminals with a low

signal reception. Another representative PI is Number of CPU Overload Alarms, where the High
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CPU Load cases have the highest values. It is the only case not having a large delta on 0. The

High Tra�c class is the second with a high number of alerts. When the number of connections

that an eNodeB processes is high, it is expected that the CPU load increases and ocassionally

triggers alarms. In fact, the eNodeB software has the functionality to deal with these situations,

so service to the already connected users su�ers the least possible degradation. On the other

hand, in the High CPU Load class, the overload alarms are triggered despite there being a low

(or at least not high) number of connections. That is, the high CPU load is not traceable to

a high number of managed connections. For the No Tra�c problem there is actually no case

with CPU overload alarms. Figure 5.13 shows the histogram of the Average Number of Active

UEs conditioned to the occurrence of High Tra�c along with the distributions �tted using the

algorithm. Since it is a semibounded PI, Gamma, Exponential and Log-normal distributions

are tested. In can be seen that the Log-normal distribution is the best for approximating the

histogram, since its D-Value is the minimum.

5.3.3 Emulating Troubleshooting Cases

The model described in Section 5.3.2 on its own provides information about the behaviour of the

PIs, and it can also be used to generate emulated vectors that represent DIs. For each emulated

problem, a random number generator can be programmed with the conditional PDF of each PI,

creating a plausible vector.

These vectors can be used for the training and testing of DM algorithms and diagnosis sys-

tems. Since in these cases, a large number of cases is required, emulation provides the possibility

of multiplying the number of available cases starting from a reduced set of available cases; which

is often the case in mobile networks.

5.4 Conclusions

This Chapter has described the collected fault database and the process for adapting these data

for DM.

Firstly, the collected fault database has been described in full detail, specifying the collected

problems and which cases are selected for the DM process.

Once the subset of the fault database used for KA has been selected, the data preparation

stage is applied. Two processes have been described in this section: data cleaning, to �ll missing

values, and data reduction, to transform time-dependent matrices into single vectors representing

occurrences of problems. The result is a dataset of vectors that can easily be used for DM.

Finally, in this Chapter, a process for modelling a dataset of problems is described and

applied over the collected problems. This model determines the PDFs of the PIs conditioned to

the occurrence of each problem, and creates the possibility of generating new emulated vectors

representing problems.

65



CHAPTER 5. LTE FAULT DATABASE MODELING

(a) Conditioned PDF of the Number of ERAB At-

tempts PI

(b) Conditioned PDF of the Number of Bad Coverage
Reports PI

(c) Conditioned PDF of the Number of CPU Over-

load Alarms PI

Figure 5.14: Examples of PDFs obtained in the modelling process
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Chapter 6

Data Mining in LTE

In KDD (Section 3.3), once data has been prepared (collected, cleaned and reduced as shown

in Section 5.2), it is ready to be processed for the extraction of the target information in the

Data Mining (DM) step. In the case of this study, the target information are diagnosis rules for

LTE networks. These rules will be extracted from a set of CM/PM/FM vectors labeled with the

problem. This Chapter starts with a brief introduction to DM and the types of algorithms that

have been proposed. Next, the algorithms designed for this study are described in full detail and

the tests that validate and compare them are shown.

6.1 Data Mining

To begin, the role of DM is framed in the overall process of KDD. Afterwards, the types of

available DM algorithms are described, according to several taxonomies. The selection of the

type of algorithm among these taxonomies is highly dependent on where and how is the DM

algorithm used.

6.1.1 Introduction

As shown in Chapter 3 (speci�cally Section 3.3), KDD has �ve stages (selection, preprocessing,

transformation, DM and interpretation/evaluation). The purpose of DM is to extract a model

out of a data set by exploring the underlying patterns. Since a preprocessing has been previously

done, the problems of data quality, heterogeneity and format are abstracted in this stage. In the

case of applying KDD for KA, the model resulting from DM represents the expert knowledge on

diagnosis.

The inputs of the DM stage in the KA process for network diagnosis are mainly the

CM/PM/FM data (as described in Section 4.1.1) and other information on the behaviour of

the eNodeBs that can be extracted in the preprocessing stage (as shown in Section 5.2). Each

individual entry in the training set is a case that represents the occurrence of a problem, and it is
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Figure 6.1: Format of a case

a tuple formed by an n-dimensional attribute vector (in this case, the values of PIs) and a class

label that identi�es the class to which the case belongs (i.e. the diagnosis), as shown in Figure

6.1. These vectors must be complete (i.e. no missing data) in order for the DM algorithms to

work, and correct (i.e. as few diagnosis errors as possible and no wrong variable values) in order

for the resulting model to be as accurate as possible.

The previous steps in KDD assure that these requirements are satis�ed. Speci�cally, for

mobile networks, a signi�cant e�ort has been done in order to �ll missing data and perform a

format change in order to transform time dependent CM/PM/FM values into time independent

vectors representing DIs. The only requirement that is out of the reach of the designed KA process

is the correctness of the problem labels, which relies on the expertise of the troubleshooting

experts.

One of the most important factors for designing the DM algorithm is the desired format for

the output. Ultimately this depends on the nature of the patterns that are targeted and where the

extracted information will be used. Very often, the extracted knowledge is meant to be presented

to experts that are analyzing the data. In this case, the �nal step consists of formatting the data

in a user-friendly manner, with sophisticated visualization tools (graphs, plots, tables, etc ...).

The output of the KDD system may also be used in another automated system that is somehow

related with the input data. In these cases, the last step will give the output of the DM process

a speci�c format (coded instructions, executable �les, etc ...) dependent on the requirements of

the second system.

In the case of the KA system in this thesis, the latter is the main scenario; since the output

of the KDD process is bounded to an FLC controller that performs diagnosis. The output of

the DM process will therefore take the format described in Section 3.1.4, with a Data Base (DB)

containing thresholds for the input values of the FLC and a Rule Base (RB) containing the

diagnosis rules.

Once the input and output formats are settled, the DM design process must concentrate on

obtaining the best possible results; but this is normally a di�cult step that must be adjusted

iteratively (as shown in Section 6.3). The design process will also take into account additional

external constraints. These requirements depend strongly on the scenario where the KDD process

is deployed. In the case of mobile network troubleshooting, some factors that must be taken into

account are:

• Human factor: experts sometimes make mistakes when diagnosing. This is a very di�cult

issue and there really is no solution that can totally solve it. A wrong input will always

produce a wrong output. Nevertheless, assuming that experts are experts for a reason, it

can be considered that the input data has a very low proportion of wrong diagnoses. With

some diagnosis error tolerance built in the DM process, the impact of a small proportion

of problems can be reduced, with the possible cost of not covering very unsual situations.

• Economic factor: processing time costs money. Not only the occupation of resources is
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costly, but also the results not being ready on time cause an opportunity cost. As it

was stated in Section 4.1.2, the data sets obtained from a mobile network require a special

treatment using Big Data techniques. This problem has already been partially dealt with in

the data preparation step, but in the DM stage, it is also important to take it into account.

From the point of view of the design, this factor calls for a parallelizable algorithm that

can be executed on a cloud computing platform.

The human factor has some additional rami�cations on the requirements for the output.

For instance, the fact that experts will always trust (and therefore use) more a system that can

be easily understood (such as a simple FLC with heuristic rules as opposed to a Neural Network

with hidden layers) guides the choice for the output format. In this study, this was a major

concern and the reason why FLCs were chosen.

The need for parallelization poses a practical requirement on the designed DM algorithm:

the aggregated results of several instances of the algorithm must be equal to the results of a

single instance. Also, in order to have a net bene�t by parallelizing, the input variables must be

processed independently (i.e. each single input value must be processed only once by any of the

instances).

6.1.2 Types of Data Mining algorithms

Since KDD covers a broad range of problems, there are also many di�erent algorithms for DM.

There are several taxonomies that can help when choosing a DM algorithm for a problem. For

instance, according to the type of problem approach:

• Classi�cation: the DM creates a classi�er, that is, a function that, given several variables

as input, computes one value on the output that corresponds to a class in a set of �nite

classes. The FLC that is used for diagnosis is a type of classi�er (considering that only the

most likely diagnosis is always used). Classi�cation problems are found everywhere: object

recognition in images, insurance fraud detection, etc ...

• Regression: the output of the DM is a function that approximates the behaviour of an

unknown function. Regression is used very often for �nantial or weather forecasting.

• Clustering: The DM �nds clusters in the data, that is, groups of individual data points that

have something in common. This helps to understand the data better, since clustering can

be done usually with a minimal prior knowledge of the data. Clustering is used in marketing

applications for �nding new trends; and it can also be used in mobile communications to

�nd new, previously unknown, root causes.

• Summarization: The objective of the DM process in this case is obtaining a simpli�ed

model of the input data. An example of this type of DM is the modelling method shown

in Section 5.3.1 (in fact, in this thesis there are really two parallel KDD processes that

share the stages prior to DM: one for extracting a model of the fault database, and another

one for creating an FLC based on the data). Usually the output of summarization is a

human-readable report that provides insight of the input data.

• Dependency modelling: The DM �nds the dependency relations among the input variables.

Classi�cation trees are an example of the output of these types of DM algorithms.

• Change and deviation detection: In these types of problems the focus is on �nding anoma-
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lies in the data. The DI detection algorithm described in Section 5.2.2 could be used in

this phase as a DM algorithm in a problem of this type. Some examples of these type of

problem are intrusion detection systems or extrasolar planet detection.

A certain problem can be classi�ed in more than one type. For instance, to some degree,

a classi�cation problem can be considered a dependency modelling problem, since the relations

among variables are ultimately used to create the classi�er. The selection of the problem type

will depend on how it is approached, and the choice will lead to a set of DM algorithms that are

more appropriate for that approach.

DM algorithms (mainly those used for classi�cation) can also be classi�ed according to the

information available at the input in two families:

• Supervised learning: when the input contains both information on the input and the output

of the DM's target model. In the case of classi�ers, the training set has both the values of

the observed data and the class that each data point belongs to.

• Unsupervised learning: when there is no information on the desired output, either because

it is unavailable or unknown. These cases usually call for clustering.

In this thesis, since it is assumed that the input contains the root cause of each case, a supervised

learning algorithm can be used.

The implementation of the DM algorithm also creates a taxonomy, since some families of

computing techniques can be used over a varied set of problems. This would be a very long list

of techniques that include Neural Networks, Evolutionary Computing, Swarm Intelligence, Data

Driven methods, etc...

The moment when the DM process takes place is also a relevant factor in the overall design of

the KDD system. If the data is processed as it is received (i.e. when a new data point is received,

the KDD updates its output), the DM is an online process, whereas if data is accumulated and

only processed at a certain time or size of the input, it is an o�ine process. Usually online

implementation tends to be used when speed is more important than accuracy, whereas o�ine

processing is usually slower but more robust. The Lambda architecture described in Section 4.1.2

uses the advantages of both approaches for Big Data systems; using online DM in the speed layer

and o�ine DM in the batch layer.

6.2 Designed Data Mining algorithms

This section describes in detail the two DM algorithms designed in this thesis and used for the

extraction of the RB. After the description, a set of sensitivity tests will be done on the designed

algorithms to study the e�ects of the parameters. The dataset used for the sensitivity tests will

be also used with a commercially available DM algorithm that extracts a Bayesian Network for

diagnosis in order to compare results. Next, manually processed real cases from the network will

be used to compare the behaviour of the algorithms with real data. Finally, one of the algorithms

is integrated in the full KDD process (together with another data mining algorithm for the DB,

that is, the thresholds that determine when each PI is high or low), using the cases generated with

the model exposed in Chapter 5 in order to extract rules that apply to the collected database.

The reason that there are two DM algorithms is that �rst, a genetic algorithm was developed
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and tested, and some shortcomings were observed. Speci�cally, the execution time was long, the

algorithm was di�cult to debug and the parallelization was not possible since the output of each

thread could not be aggregated and produce the same output as an individual thread. This

drove to the development of a second algorithm that was more dependent on the structure of

the data, but also faster, simpler and parallelizable. Due to its improved capabilities, this data

driven algorithm was chosen for inclusion in the KDD process.

6.2.1 Genetic Algorithm

Genetic algorithms [94] [95] imitate the process of natural selection, that is, they seek the solution

of problems by a trial and error method, repeated generation after generation. All genetic

algorithms have three common elements:

• A population of individuals, each being a possible solution to the problem. Each individual

is a collection (genome) of traits (gens) that determine the behaviour of the solution and

are subject to variation when the individual reproduces.

• Operators that de�ne the birth of new individuals. Speci�cally, there are two big groups

of operators:

� Crossing: when the traits of two individuals are combined to produce a new improved

individual.

� Mutation: when a new individual is created by copying another individual and intro-

ducing minor (usually random) changes.

• A �tness function that assigns a score to each solution based on its quality.

A typical genetic algorithm has three processes:

• Reproduction: new individuals are created either by crossing two chosen rules, by mutation,

or a combination of both. Usually, a high mutation rate produces a high exploration ratio

(i.e. proportion of random search for new solutions as opposed to improvement upon

already found solutions), since random changes are introduced. This will prevent the

algorithm of �nding only a subset of the possible solutions. In some algorithms, the parent

rules are eliminated once the reproduction is done.

• Evaluation: the �tness of each individual is obtained using the �tness function. This

value will determine the probability of the individual to survive and reproduce in future

generations.

• Selection: This process decides which rules survive to pass on to the next generation. The

rules with a higher �tness have higher chances of surviving.

The training data is a set of cases following the format shown in Figure 6.1. The values of

PIs in the vector contained in the case are crisp.

The algorithm proposed in this work follows the �owchart shown in Figure 6.2 and imple-

ments the typical functions of genetic algorithms as follows:

• Individuals: each individual represents a rule. The genome of an individual has two com-

ponents:

� Antecedent (the �if ...� part): a vector, {a1, a2, ..., aL}, of length L equal to the

number of inputs of the diagnosis system. Each entry ai in this vector represents
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Figure 6.2: Flowchart of the algorithm

the fuzzy value that the i-th PI (PIi) should take for the rule to be activated. If

PIi should be �low�, then ai = 1; if it should be �high�, then ai = 2, and if the

rule does not require any particular value for PIi, then ai = 0. The last value of ai
allows the existence of incomplete rules. Incomplete rules are calculated at the end

of the algorithm, and are also used in the process of reproduction, but there are no

individuals representing incomplete rules during the execution of the algorithm.

� Consequent: (the �then ...� part): an integer, d, representing the problem diagnosed

by the rule for the fuzzy values of the antecedent.

Each individual has an associated scoreW that represents its �tness. The initial population

is generated with random valid values in the antecedent vector and the consequent.

• Reproduction: the rules are chosen randomly to reproduce. Crossing and mutation are

done separately. For each individual, the probability of being chosen for reproduction

by crossing is given by Pcross = W · R, where W is the score of the rule, and R is the

reproduction ratio. Only the best rules are chosen for crossing, so the best traits are

passed on. For mutation, the probability is Pmut = 1−Pcross, so the worst rules (that have
not been killed) are given a chance to improve.

Crossing (Figure 6.3) happens between parent rules that have the same consequent. A

random cutting point cp ∈ [0, L − 1] is chosen. Each parent rule antecedent is divided

into two fragments [a0...acp ] (�rst fragment) and [acp+1...aL] (second fragment). A score is

given to each of the four fragments (two per parent). For this purpose, each fragment is

extended with zeros into a valid antecedent of its own, and a partial rule is created with

this antecedent. The partial rules are then evaluated with the training cases to see which

of them are activated more often by calculating the average degree of activation (DoA).
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Figure 6.3: Example of crossing two rules to obtain a child.

The DoA of a rule for an input vector is the degree of truth of the antecedent. A partial

score (a) is assigned to each fragment:

a = DoAfragment ·Wparent (6.1)

where Wparent is the score of the parent rule. The child is then created with an antecedent

that is the combination of the best (highest partial score) �rst fragment with the best

second fragment. The parents and the child are kept in the population.

The mutation process creates several copies of an individual, each with one gene randomly

altered. Either one of the components of the antecedent vector or the consequent are given

a random value between the valid values it can take.

• Evaluation: the score W of the rules is calculated as the product of two separate terms:

W = B · S (6.2)

The Base (B) represents the statistic relevance of the rule and the Success Rate (S) rep-

resents the accuracy of the rule, that is the percentage of covered cases ful�lling the rule.

The Base is de�ned as:

B = 1− 1

1 + α c
N

(6.3)

Where α is a parameter that adjusts the sensitivity of the Base to uncommon cases (the

higher is α, the easier it is to obtain a high Base even with a low number of covered cases),

c is the number of covered cases and N is the total number of cases in the training set. A

case is considered covered when the DoA of the antecedent for that case is greater than a
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Figure 6.4: Example of fusion of two rules.

prede�ned threshold Minimum Degree of Activation (MDA).

• Selection: the algorithm �nds the rules that have a score equal to 0 and eliminates them.

• Postprocessing: Rules are grouped according to their consequents, and they are fused into

incomplete rules. Two rules are fused if they are both correct. A rule is considered to be

correct if its score is higher than the Minimum Inclusion Degree (MID). In that case,

the contradictions between them are resolved by ignoring the non-common parts of the

antecedent. Rules whose score is lower than MID are removed. An example of rule fusion

is shown in Figure 6.4. Since Rule 1 and Rule 2 have di�erent restrictions over PI1, and

if both rules are correct, then it will be considered that the value of PI1 is not relevant

for detecting the cause 'Problem 1'. PI2 has the same restrictions in both rules, so the

observation of a HIGH value in this PI leads to the detection of 'Problem 1'.

All these elements and processes describe the operation of the algorithm. Since the operation

of many of the individual processes depend on speci�c values, a set of 7 con�gurable parameters

is provided to adjust the behaviour of the algorithm and �ne tune the results:

• Uncommon case sensitivity (α) ∈ (0,+∞): adjusts the sensitivity of the algorithm to

uncommon cases. A too low value may disregard cases that are important although they

are uncommon. A too high value may give relevance to cases that are wrongly diagnosed.

• Minimum inclusion degree (MID) ∈ (0, 1): minimum score a rule must have to be part of

the �nal rule set.

• Minimum degree of activation (MDA) ∈ (0, 1): indicates the minimum DoA of a rule on

a case to consider that the rule covers it.

• Initial rules ∈ [1,+∞): Number of random initial rules. If none of the initial rules survives

the �rst iteration of the algorithm, an extinction of the population occurs and the algorithm

stops.

• Number of loops ∈ [1,+∞): Number of iterations of the genetic algorithm. The number of

loops must be high enough for the algorithm to converge to a correct solution.

• Reproduction ratio (R) ∈ (0, 1]: the proportion of cases that will reproduce (supposing all

the cases have W = 1). This parameter is a population growth control.

• Mutation multiply factor (MMF ) ∈ [1,+∞): Number of children that a rule produces

when mutation takes place. A small value will produce a low exploration rate, whereas a

too high value will increase the execution time.
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6.2.2 Data Driven Algorithm

The second developed algorithm is a faster data driven DM method. The input and output

formats are the same as for the genetic algorithm (i.e. both algorithms are interchangeable),

although the results do not necessarily match, especially since the genetic algorithm has a random

underlying nature. The development of this algorithm is also focused from the beginning on

parallelization in order to cope with Big Data issues (Section 3.4). The new data driven learning

algorithm is based on the WM [96] method, introducing some modi�cations (i.e. the formula for

assigning a score to each generated rule taking into account parallelization and the procedure

for fusing multiple rules into one per diagnosis) in order to better adapt to the obtention of the

rules used in troubleshooting of LTE networks. The WM method is a well known algorithm that

can easily be parallelized since the creation of new rules from the data is independent from the

creation of previous rules. Therefore, the data can be divided among several worker processes

arbitrarily without loss of information. Each worker process is an independent instance of the

algorithm running as a separate execution thread. A �nal step can fuse the results of di�erent

worker processes, allowing them to run in parallel over di�erent processors or cores. Another

advantage of the WM method is that it is deterministic, that is, the results of two equal training

sets are always equal, independently from the order that the data is provided or how it is divided

among parallel processes.

The algorithm obtains the RB of an FLC from the training set composed of labeled cases.

Given each case as the tuple C = (k, d) composed of the PI vector k = {k1, k2...kN} representing
the values of PIs PI = {PI1, P I2...P IN} and a label d as the class label among possible root

causes RC = {RC1, RC2...RCM}. The algorithm has three consecutive steps:

1 Generate fuzzy rules from training tuples: the variable values in k are assigned the fuzzy

sets where their truth degree is the highest, creating a vector kF ; that is, for each kn ∈ k
a new fuzzy value kFn = Tn | µTn(kn) = max(µT1n(kn), µT2n(kn)) is de�ned, where T1n

and T2n are two fuzzy sets identifying opposing qualitative states (such as high or low) of

PIn, µT1n(kn) and µT2n(kn) are the membership functions of T1n and T2n de�ned over the

domain of PIn and evaluated for kn and Tn is the chosen state. In the unlikely case that

both membership functions have the same value for kn, two di�erent antecedents will be

created, in order to cover both cases. The label d is also assigned the set RC | µRC(d) =

max(µRCm(d))∀RCm ∈ RC representing the root cause. This process is depicted with an

example in Figure 6.5. A training set with two variables (PI1 and PI2) and a class label

(d) is depicted. The variables take values k1 and k2 respectively. The truth degree for

each fuzzy set is calculated for these values, and the variables and the label are assigned

the set with the highest truth degree. In classi�cation, the consequent will always have a

membership degree of 1 in the set representing the class and 0 in the others.

With the fuzzy linguistic labels R = (kF , RC) established in this step, an AND rule is

created: �if PI1 is kF1 and PI2 is kF2 ... and PIN is kFN then root cause is RC�. Once

the rule is created, the training set is explored for cases that are covered by the same

rule (that is, cases that are identical once fuzzi�ed) with a certain degree of activation

a = min(µTn(kn))∀kn ∈ k where Tn is the fuzzy set assigned by the rule for PIn). A

list keeps track of the cases that have been covered by a rule. The marked cases are not
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Figure 6.5: Rule creation process. A training set with two input variables (PI1 and PI2) and
one output variable (RC) is depicted. These variables take values k1, k2 and d respectively. The
truth degree for each fuzzy set is calculated for these values, and the input variables are assigned
the set with the highest truth degree. With these sets, a rule is created

used for generating rules in future iterations, so the same rule is not generated more than

once and also to reduce the computation time and memory footprint. The list is a boolean

indexed list, so there is one entry for each rule. Each entry is started with a False value,

since no case is covered in the beginning. Once a case is used for generating a rule, or

is found to be covered by a rule, the corresponding entry in the list is changed to True.

This step can be parallelized by dividing the learning set. This may lead to repeated rules

among di�erent worker processes, but this will be solved in the next step.

2 Assign a score to each rule representing its con�dence. The score of each rule is composed

of two terms: the Base and the Success Rate. Just like in the genetic algorithm, the Base

represents the statistical signi�cance of the antecedent of the rule. Rules that cover few

cases get a lower score, so spurious cases (or human errors) are �ltered out. The Base is

given by B = 1−(1/(1+αc/N)), where c is the number of cases covered by the antecedent,

N is the total number of cases and α is an adjustable parameter that can take values in

the (0,+∞) interval. The Success Rate is the number of successfully diagnosed cases ns
over the number of covered cases in the training set S = ns/c. In the �rst pass through

the training set, S < 1 only if there are contradicting cases (same fuzzi�ed KPI vector,

di�erent diagnosis). The score is given by W = B · S. Thus, when the number of covered

cases is small, the score of a rule is limited by the Base term; and if it gets statistical

signi�cance, the score is determined mostly by the Success Rate. To compute the score of

each rule, it is required that the equal rules found by di�erent workers have their bases

aggregated with B =
Nw∑
w=1

Bw where Nw is the total number of workers and Bw is the Base

found for worker w. Their success rates must conversely be aggregated by S =
W∑
w=1

Bw
B Sw,

where Sw is the Success Rate found by worker w. The rules, along with their total scores,

are stored in a common rule base prepared for the next step.
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3 Reduce the number and complexity of the rules: The rules obtained so far are complete

rules. To obtain incomplete rules, several complete rules are fused together. The rules

to be fused are required to have the same consequent and a score higher than a minimal

threshold, to avoid the inclusion of spurious or incorrect rules. Given two rules R1 and

R2 with the same consequent RCC , a new rule R1+2 = (kF1+2, RCC) is de�ned where

kF1+2 = kF1 ∩ kF2. Once two rules meet the requirements and are fused, the score is

calculated again by testing over the training set. This step is the same as in the genetic

algorithm, depicted in Figure 6.4, and in this case it can also be parallelized if each worker

takes a subset of the original rules and a subset of the data to calculate the score of the

fused rules that it calculates. Once all the rules that comply with the conditions for rule

fusion are fused, the scores are aggregated over all the workers as explained in Step 2, and

a new reduced rule base is created. This step is iteratively repeated until there are no more

possible rule fusions.

In the case that successive fusions generate an empty antecedent, it is considered that

the particular root cause is not diagnosable with the current set of PIs, since there are

occurrences of the problem with every possible combination of fuzzy values of the PIs.

The rules that do not meet a minimum score requirement are also removed from the RB

in this step. The possible con�icts between rules (same antecedent, di�erent consequents)

are solved by selecting the rule with the highest score.

In Figure 6.6 the �owchart of the algorithm is depicted.

Figure 6.6: Flowchart of the algorithm.

This algorithm has three parameters which are common with the genetic algorithm described

in 6.2.1:

77



CHAPTER 6. DATA MINING IN LTE

• Uncommon case sensitivity (α) ∈ (0,+∞): sensitivity of the algorithm to uncommon cases,

used in the scores assigned in step 2 to the generated rules.

• Minimum Inclusion Degree (MID) ∈ (0, 1): minimum score a rule must have to be used in

the process of fusion with other rules of the same consequent. E�ectively, it is the minimum

threshold for the score of a rule to be included in the �nal rule base.

• Minimum Degree of Activation (MDA) ∈ (0, 1): minimum DoA for a case to consider it

as part of the Base of a rule in step 2.

6.3 Tests

In this Section, the tests performed over the algorithms are shown. These tests are divided

into two parts for each algorithm: a sensitivity test to assess the behaviour of the con�guration

parameters and tests with the real cases extracted from the collected database described in

Chapter 5.

6.3.1 Description of the tests

Both algorithms have numerous con�guration parameters. In order to show the e�ect of each

one, tests with a speci�c data set are done sweeping values on each parameter one by one.

The dataset used for this purpose is generated by an emulator using a theoretical model. The

generated dataset has 5 PIs:

• Accessibility : it re�ects the ability to establish a connection in the network. It is the inverse

of the Blocking Rate. Its values range between 0 and 100%, and it is considered normal

above 99% and low below 98%. These values are a commercial requirement.

• Retainability : it re�ects the ability to end a call correctly. It is the inverse of the Dropped

Call Rate. Its values range between 0 and 100%, and it is considered normal above 99%

and low below 98%. These values are also a commercial requirement.

• Handover Success Rate (HOSR): percentage of initiated handovers that end successfully.

Its values range between 0 and 100%. It is considered normal above 98.5% and low below

95%. These values are also a commercial requirement.

• 95 percentile of RSRP : value of RSRP under which 95 percent of the samples fall. Experts

consider it low if it is below -100 dBm and high if it is above -80 dBm.

• 95 percentile of RSRQ : value of RSRQ under which 95 percent of the samples fall. Experts

consider it low if it is below -23 dB and high if it is above -12 dBm.

The model used by the emulator is not the same as the one described in Section 5.3 because

at the time of the design of the algorithms, the number of collected cases was too low to create a

model. Each PI is modelled in a similar way as described in Section 5.3, but with di�erent PDFs.

Instead of extracting these PDFs from data, they were provided by experts. Speci�cally, Table

6.1 describes the used PDFs. With this model, 2000 training cases (containing 600 problems and

1400 normal cases) and 5000 testing cases (1500 problems and 3500 normal) have been generated.

Both sets contain the proportions for each problem de�ned in Table 6.2. The algorithms are

�rst trained with the training cases, and afterwards, they are tested with the testing cases. This
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Table 6.1: PI modelling. PDF of each PI conditioned to an existing problem

PI Type
Parameters/Cause

Nor SW Cov Qual Mob

Acc. beta
α 2 12 1.391 450.3 2
β 0.1 3 0.028 23. 7 0.5

Ret. beta
α 17 11.756 10 11 9
β 0.5 1.306 1.5 1.9 2

HOSR beta
α 4 4.62 3 5 42.5
β 0.02 0.024 0.02 0.04 7.5

RSRP norm
avg -70 -75 -107 -72 -80
σ 3 6 5 7 10

RSRQ norm
avg -6.5 -6 -10 -13 -11
σ 1.1 2 5 2 3

Table 6.2: Proportions of problems

Fault category Proportion (%)

SW Problem 13

Coverage 25

Quality 34

Mobility 28

process is repeated 100 times and the average values are calculated for the genetic algorithm. This

repetition of experiments is not necessary for the data driven algorithm due to its deterministic

nature.

6.3.2 Genetic Algorithm sensitivity tests

These tests evaluate the in�uence of the most important parameters of the genetic algorithm.

Initially, a random population of 5 rules is generated to seed the algorithm. The genetic

process is repeated for 50 generations; that is, 50 cycles of reproduction, evaluation, selection

and death. Table 6.3 shows the tested values for each parameter.

Test 1: α

This experiment �nds the in�uence of α. This variable regulates the sensitivity of the

algorithm to rare cases. A small value of α gives a low score to rules that cover uncommon cases.

A higher value lets the score of a rule grow rapidly as its Base increases.

The Diagnosis Error Rate, Undetected Rate and False Positive Rate are depicted in Figure

6.7. The Diagnosis Error Rate is not very sensitive to the value of α. The False Positive Rate

increases with α, whereas the Undetected Rate decreases with α. A value of α between 12

and 18 provides a good compromise in the values of both the Undetected Rate and the False

Positive Rate. However, if minimizing the Undetected Rate is considered more important than

minimizing the False Positive Rate, then a high value of α should be selected.

Test 2: MID
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Table 6.3: Parameter values for the genetic algorithm

Test Variable Default
value

Tested values

1 α 24 6, 12, 18, 24, 30,
36, 42, 48, 54,
60

2 MID 0.2 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8,
0.9

3 MDA 0.4 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1

4 Reproduction
ratio

0.5 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1

5 MMF 5 1, 2, 3, 4, 5, 6,
7, 8, 9, 10

6 Training
cases

Only
problem-
atic

Only problem-
atic, problem-
atic + normal

The MID parameter determines the minimum score that a rule should have to be fused

with other rules to produce more general rules. The results are shown in Figure 6.8.

The Diagnosis Error Rate and False Positive Rate decrease as MID increases. For MID =

0.9, both error rates are zero. Nevertheless, the Undetected Rate is 1, which means that abso-

lutely no problem is diagnosed; there is no actual diagnosis system, as shown in Figure 6.9, where

the average number of rules is depicted. As MID increases, the number of rules decreases. A

highMID is more restrictive, thus including less rules in the �nal rule set. ForMID = 0.9 there

is no rule with the required score to be included in the �nal rule set, so nothing is diagnosed.

There is a direct relation between the number of rules and the Undetected Rate. Likewise, as

the number of rules decreases, the False Positive Rate also decreases, as less rules produce a

smaller chance of a wrong diagnosis. Given the values Pn = 0.7, Pp = 0.3, and taking the values

of Efp and Eu for the default value of MID = 0.2 (0.3179 and 0.0075, respectively), according

to Equation 3.6, Pfp = 0.4277. That is, 42.77% of the times, when the system indicates positive,

it is a false alarm. This is for a network where 30% of the sectors have problems. For a better

network, that number would increase. This stresses the need of a detection phase that �lters

normal cases, avoiding their analysis by the diagnosis fuzzy logic controller. Supposing that an

ideal detection phase is used, Pn = 0 and Pp = 1 by de�nition. Applying Equation 3.6, Pfp = 0.

Anyway, a detection phase might still have a small error rate that lets some false positives

pass, so it still makes sense to try to keep a low False Positive Rate, even though this criterion

is not the priority. Since the Diagnosis Error Rate is relatively insensitive to the variation of

MID, the main criterion will be to minimize the Undetected Rate. As a conclusion, to keep a

low Undetected Rate, MID should be low (around 0.2).
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Figure 6.7: Error rates for variable α.

Test 3: MDA

This experiment evaluates the in�uence of the MDA parameter over the error rate. This

parameter regulates the minimum degree of truth of an antecedent for a case to consider it

covered. This modi�es the Base of the rules, and consequently their scores. Figure 6.10 depicts

the results.

Again, the trade-o� between Undetected Rate and False Positive Rate is observed. Since a

higher MDA is more restrictive, the e�ect in the number of rules is similar to the case of MID,

as Figure 6.11 shows.

The best value of MDA depends on the priorities when tuning the algorithm. To obtain a

minimum Undetected Rate, the value for MDA should be lower or equal to 0.3. Nevertheless,

for values 0.1 and 0.2, both the Diagnosis Rate and False Positive Rate are at their maximum.

For 0.3, the Diagnosis Error Rate decreases to almost a third of its maximum value. Therefore,

0.3 is a good choice that has a low Undetected Rate and a relatively low Diagnosis Error Rate.

To obtain a low False Positive Rate a good choice would be a value of 0.5 for MDA, which has

a slightly worse Undetected Rate. Since the addition of a detection stage would eliminate (or

at least reduce) the number of normal cases in the input of the FLC, the False Positive Rate

would no longer be an important factor. The Undetected Rate would be transformed into the

proportion of cases that are known to be problematic, but cannot be diagnosed. Therefore, the

minimization of the Undetected Rate should be prioritized over the minimization of the False

Positive Rate.

Test 4: Reproduction ratio

The reproduction ratio adjusts the probability of reproduction for each rule. A high value

of this parameter increases the number of combinations tested in the algorithm, at the cost of

an increased execution time. In Figure 6.12 the measured errors are represented. The execution

time with di�erent reproduction ratios relative to the execution time taken with the default

con�guration is shown in Figure 6.13.
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Figure 6.8: Error rates for variable MID.

The results show that for a low reproduction ratio (lower than 0.5), the Undetected Rate

decreases as the reproduction ratio increases. At the same time, the False Positive Rate increases.

For values higher than 0.5, all the rates are stagnant. On the other hand, the relative execution

time increases as the reproduction ratio grows. Therefore, a value of 0.5 for the Reproduction

Rate is the optimal, since it o�ers results as good as those obtained for higher ratios, without

increasing the execution time.

Test 5: MMF

TheMMF adjusts the number of rules that are created each time that a rule reproduces by

mutation. A high value of MMF provides an increased exploration capacity, but also increases

the execution time as it adds rules to the system. Figure 6.14 depicts the error rates as a function

of theMMF and Figure 6.15 shows the relative execution time as compared to the con�guration

with a default value for MMF (MMF = 5).

As the number of mutated o�spring grows, the algorithm produces better results. The

Diagnosis Error Rate is more or less stagnant all along the executions. The Undetected Rate

shows a large decrease as the number of mutated o�spring grows, and the False Positive Rate

grows at the same time. The increased exploration provided by this method greatly in�uences

the results.

For values of MMF higher than 6, the Undetected Rate reaches its minimum. Therefore,

for values lower than 6, the higher MMF is the better the solution, at the cost of computing

time. For values higher than 6, the quality of the solution does not improve, despite the increase

of execution time.

Test 6: Training using normal cases

In all the previous tests, the training was done using only cases that had problems. In this

experiment, the training will be done with the default values of all parameters (Table 6.3), but

using normal cases in the training phase together with the problematic cases. Also, to isolate
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Figure 6.9: Number of output rules for variable MID.

the e�ects of α, the default value is used when not using normal cases, and α · Np+Nn
Np

when using

normal and problematic cases in the training. When using this modi�ed value of α in Equation

6.3, the absolute number of cases c that a rule must cover in order to obtain a certain Base B is

the same. Therefore, the variations in the results are only dependent on the fact of using normal

cases in the training. The results are depicted in Figure 6.16.

The Diagnosis Error Rate and Undetected Rate su�er a slight degradation, whereas the

False Positive Rate is clearly improved. This is due to the the fact that the algorithm evolves the

rules with knowledge about normal cases. Therefore, it will be less likely that rules that classify

normal cases as problematic are considered valid. Thus, the rules are more evolved towards

avoiding false positives. The improvement of the False Positive Rate comes at the cost of an

increased execution time, due to the increase in the number of individual applications of rules

over cases when the evaluation in the genetic loop is done (appr. 3.5 times higher execution

time when including normal cases). When no normal cases are used in training, each individual

rule is evaluated on 30 percent of 2000 cases (600), and when normal cases are used, each rule

is evaluated over all the cases. The decision of using normal cases in training or not will depend

mostly on whether there will or will not be a preliminary detection phase. In case there is, since

false positives are not a problem, the training should be done without normal cases, because of

the reduced execution time and slightly better error rates. On the other hand, if no detection

phase is used, reducing the False Positive Rate will result in a more usable diagnosis algorithm.

6.3.3 Data Driven Algorithm sensitivity tests

These tests evaluate the behaviour of the parameters of the data driven algorithm. The simulated

dataset is the same as the one used for the genetic algorithm sensitivity tests. Table 6.4 shows

the tested parameter values.

Test 1: α
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Figure 6.10: Error rates for parameter MDA.

Table 6.4: Parameter values for the data driven algorithm

Test Variable Default
value

Tested values

1 α 48 6, 12, 18, 24, 30,
36, 42, 48, 54,
60

2 MDA 0.4 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8,
0.9, 1

3 MID 0.1 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8,
0.9

This experiment �nds the in�uence of α. This variable regulates the sensitivity of the

algorithm to rare cases. Just as in the case of the genetic algorithm small value of α gives a low

score to rules that cover uncommon cases and higher value lets the score of a rule grow rapidly

as its Base increases.

The Diagnosis Error Rate, Undetected Rate and False Positive Rate are depicted in Figure

6.17.

The Diagnosis Error Rate and Undetected Rate decrease as α increases. Both errors are

maximum for α = 6, whereas the False Positive Rate is minimum for this value. The False

Positive Rate grows with α. The increase in α means that the score increases rapidly as the

Base of a rule grows. This increases the diversity of rules that achieve the minimum score

to be integrated in the �nal RB; resulting in a RB that covers more cases (lower Undetected

Rate). This comes at a cost, because the larger number of covered cases (especially rare cases)

drives to an increase in false positives up to 34.5%. Therefore, there is a trade-o� between the

Undetected Rate (reliability) and the False Positive Rate, which has a great in�uence on the
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Figure 6.11: Average number of rules for MDA parameter.

performance of the resulting FLC. To illustrate the relation between the False Positive Rate

and the performance, by using Equation 3.6 the complementary of the Positive Predictive Value

can be obtained, re�ecting the probability that a certain diagnosis is a false positive. With a

proportion of normal and problematic cases of 70% and 30% respectively, and the results for the

default values (Efp=0.345, Eu=0) the probability results in Pfp=0.446 (44.6%). This remarks

the importance of using a detection stage prior to the diagnosis. This stage should separate the

abnormal cases from the normal cases. Supposing an ideal detection stage, the False Positive

Rate would have no meaning anymore. The Undetected Rate would re�ect the proportion of

cases that the diagnosis system cannot classify; but at least those cases are detected and can be

diagnosed manually.

Summarizing, the optimal value of α would be α > 6, since for these values, the Undetected

Rate is almost 0. Between 12 and 48, the Diagnosis Error Rate is around 5%. For α ≥ 54, the

Undetected Rate is 0, but the Diagnosis Error Rate rises to 6%. The default selected value is

48%, because for that value both Undetected Rate and Diagnosis Error Rate are low.

Test 2: MID

The MID parameter determines the minimum score that a rule must have to be fused with

other rules to produce more general rules. The results are shown in Figure 6.18.

The Diagnosis Error Rate shows a stagnant behaviour as MID increases. For MID = 1,

the Diagnosis Error Rate is 0, but as observed in the Undetected Rate, there are no diagnosis

in that case. MID determines the minimum score that a rule must have to be included in the

�nal RB, so a high value of MID reduces the diversity of the RB. Since no rule reaches a score

of 1, there is no output RB for MID = 1. This is expected, since an increase in MID means

an increase in restrictions for including rules that cover rare cases (also for rules that have a low

Success Rate), the Undetected Rate grows when MID increases, and the False Positive Rate

decreases. The best interval for this parameter is 0.1 ≤ MID ≤ 0.3, because the Undetected

Rate is minimum.
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Figure 6.12: Error rates for the reproduction ratio.

Test 3: MDA

This experiment tests the in�uence of theMDA parameter over the error rate. This param-

eter regulates the minimum degree of truth of an antecedent for a case to consider it covered.

This modi�es the Base (that is, the term of the score of the rule that depends on the number of

covered cases) of the rules, and consequently their scores. Figure 6.19 depicts the results.

It is observed that the Undetected Rate and the False Positive Rate remain almost stagnant

for all values of MDA. The Undetected Rate grows slightly as MDA increases. The Diagnosis

Error Rate is high for low values ofMDA (27.67% forMDA = 0), and decreases until it reaches

a minimum between 0.4 and 0.9. For MDA = 1, the Diagnosis Error Rate increases slightly.

Since the Diagnosis Error Rate shows the classi�cation errors, its increase shows that the rule

that identi�es a problem A is actually also covering certain instances of another problem B.

Since a high value of MDA is restrictive for cases that have not very clearly classi�ed PIs, it

means that some rules that should have appeared have not been created, and therefore, the cases

covered by them are confused with a di�erent cause. On the other hand, for low values ofMDA,

the restrictions of loosely covered cases are lower, so some rules that cause confusion (i.e. they

cover cases that should not be covered) are created and included in the �nal rule set, therefore

increasing the classi�cation error.

Summarizing, the recommended values for this parameter are 0.4 ≤ MDA ≤ 0.5, which

minimize the Undetected Rate and Diagnosis Error Rate.

Test 4: Training using normal cases

The tests with the default parameters have been repeated using the normal cases in the

training set. The result with the three measurements is shown in Figure 6.20.

When using the normal cases in the training, the Diagnosis Error Rate and the Undetected

Rate grow slightly, whereas the False Positive Rate decreases signi�cantly. To better visualize

the meaning of this change, the calculation described in Equation 3.6 is used, and results in

Pfp=0.347 (34.7%, against 44.6%). Although there is a slight improvement in Pfp, the gain is
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Figure 6.13: Relative execution times for di�erent values of the reproduction ratio.

insigni�cant, since the system still needs a detection stage. This small gain comes at the cost

of an increase in execution time due to an increase in the number of operations when including

normal cases. The execution time increases by a factor of 4.95. This increase may not have a

great impact in the diagnosis system, since the training phase is done o�ine. Nevertheless, since

a prior detection stage is needed anyway, the primary objective is to minimize the Diagnosis

Error Rate and the Undetected Rate, and therefore it is recommended not to use normal cases

in training.

6.3.4 Comparison between expert elicited and learned rules

Some experts were requested to manually de�ne the rules relating the selected causes and symp-

toms (Table 6.5). In this experiment, the three error measurements were compared for the expert

elicited rules versus the learned rules (Tables 6.6 and 6.7) using the proposed algorithms (with

default parameters of each one, training without normal cases). Results are shown in Figure

6.21.

Table 6.5: Expert elicited rules

Acc. Ret. HOSR RSRP RSRQ Cause

LOW LOW HIGH HIGH HIGH SW Problem
LOW LOW HIGH Coverage

LOW LOW HIGH HIGH LOW Quality
LOW LOW Mobility

It can be seen that there are signi�cant reductions in the Undetected Rate when using

learned rules. On the other hand, False Positives are much greater when using learned rules,

while Diagnosis Error Rate is similar. It can be concluded that the parameters used in these

tests favor the reduction of the Undetected Rate. This might be an advantage depending on the
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Figure 6.14: Error rates for MMF .

Table 6.6: Rules learned with the genetic algorithm

Acc. Ret. HOSR RSRP RSRQ Cause

LOW HIGH HIGH HIGH SW Problem
LOW HIGH LOW Coverage

LOW LOW HIGH HIGH LOW Quality
LOW LOW Mobility

Table 6.7: Rules learned with the data driven algorithm

Acc. Ret. HOSR RSRP RSRQ Cause

LOW HIGH HIGH HIGH SW Problem
HIGH LOW Coverage

LOW HIGH HIGH LOW Quality
LOW LOW Mobility

requirements of the �nal system.

6.3.5 Comparison with state-of-the-art algorithm

Bayesian Networks (BNs) have also been previously proposed for troubleshooting in mobile

networks [13]. In this Section, the simulated cases used in the sensitivity tests will be used for

training a BN. Figure 6.22 depicts the BN equivalent to the fuzzy system trained by the proposed

DM algorithms.

The BN is designed, trained and validated in the GeNIe software package [97]. Each PI is

discretized with a single threshold. This threshold will be the middle point between the high

and low values previously used in the fuzzy set membership functions described in Section 3.1.4.

The discretized cases are then used for supervised learning.

The results are shown in Figure 6.23. Two di�erent tests are done, one excluding normal
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Figure 6.15: Relative execution times for di�erent con�gurations of MMF .

Figure 6.16: Results comparing the presence and lack of normal cases in the training set for the
genetic algorithm.

cases from the training set and one including them.

When normal cases are not used, the BN is not trained to recognize them. Therefore, since

the BN always provides a diagnosis, it will obtain a high probability for one of the problems,

producing a False Positive Rate of 1 and an Undetected Rate of 0. This e�ect vanishes when

using normal cases in the training, so the False Positive Rate is reduced to 14.5%. On the other

hand, the Undetected Rate increases from 0 to 17.4%. The Diagnosis Error Rate also increases

slightly when using normal cases from 21.9% to 25.5%.

The �rst conclusion from these results is that, although using normal cases reduces the False

Positive Rate of the BN at the cost of reducing the reliability and the accuracy, it is still too

high. Therefore, a detection stage is still required.

Secondly, it can be concluded that, under the same conditions, the proposed methods pro-

duce a more accurate diagnosis system, speci�cally, for the data driven method a Diagnosis Error

Rate of 5.1% versus 21.9% of the BN is achieved. In addition, the use of fuzzy logic has other

side advantages over BN, such as producing understandable rules and simplifying the process of
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Figure 6.17: Error rates for variable α

Figure 6.18: Results for variable MID

integration of learned and manually elicited rules.

6.3.6 Tests with manually selected real cases

In order to have more information when choosing among the genetic or the data driven algo-

rithms, a test comparing them head to head on cases extracted from a real network was carried

out. This test was done before the full data preparation steps were available, so the test cases

were selected and processed manually.

There are 72 available cases, belonging to four possible categories (missing neighbor, inter-

ference, high CPU usage and normal), each one having 18 cases. Note that in a real network,

the proportion of normal cases will be much higher. In this test, the proportions have been mod-
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Figure 6.19: Error rates for parameter MDA

i�ed in order to better understand the behaviour of the DM algorithm when using problematic

cases. Each case has values for 5 PIs (accessibility, retainability, HOSR, Average Received Signal

Strength Indicator (RSSI) and a CPU overload indicator).

Due to the reduced available number of cases, a cross validation technique has been applied.

The set of cases is divided in two partitions, each containing 9 random instances of each problem.

One partition is used for training and the other for validating the results. Since the normal cases

are not used in the training process, they are all included in the validation set. This process is

repeated 100 times with di�erent training and validation sets, and the errors are averaged.

The results for both algorithms are shown in Figure 6.24 For the genetic algorithm, using

the default values for the parameters, the obtained results are very poor. This is mainly due to

the small number of available cases. This has a complex e�ect on the evolution of the population.

Since the number of rules is low, a rule with a low Success Rate has less probabilities of surviving.

Therefore, bad rules die earlier. This reduces the initial population rapidly, and, therefore, the

gene pool, that is, the reserve of �not-so-good� rules that may produce very successful rules via

a small mutation. In this population bottleneck, only the best rules survive, and they may not

cover all the cases. Since the best rules have a lower probability of mutating, there is a lower

chance that new rules covering the gaps in the training sets appear, and therefore, the Undetected

Rate increases. To �x this, it is important that the algorithm has the opportunity of exploring

many possibilities. Therefore an immediate action that can be taken is increasing the MMF

to increase the exploration. Also, in this situation of a small gene pool, it will help to increase

the chances of exploring rules that would otherwise be ignored. Therefore, the number of initial

rules is also increased. A new set of enhanced parameters is created where the number of initial

rules is 20 and the MMF is 10. The results are clearly improved, although still the Undetected

Rate is higher than in the tests due to the very small number of training cases.

With the data driven algorithm parameters adjusted to the default values (α= 48,MDA=0.4,

MID = 0.1), the Undetected Rate is 14.3%, which is better than the improved results obtained

by the genetic algorithm. The Diagnosis Error Rate shows that the system is very accurate when
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Figure 6.20: Results comparing the presence and lack of normal cases in the training set for the
data driven algorithm

a diagnosis is produced, given that the case is not a normal case. Again, the parameters can

be manipulated to adapt them to the low number of training cases. Since the algorithm does

not have enough information, the aggregated rules are too restrictive, that is, they impose a

value on a PI that may be irrelevant. For example, missing neighbor cases are identi�ed by the

experts when the retainability and HOSR are low, regardless of other values in the set of PIs

chosen here. In one of the executions of the algorithm, the rule obtained for diagnosing these

problems is �if (accessibility is high) and (RSSI is low) and (CPU overload is false) and (HOSR

is low) then (problem is missing neighbor)�. Therefore, a case that behaves as the experts expect,

but has a low accessibility (for instance due to a high tra�c at the same time as the missing

neighbor problem), will not be classi�ed as a missing neighbor problem, and will contribute to

the Undetected Rate. The only way that the algorithm can overcome this problem is if that case

(or several similar cases) is present in the training set. In this scenario, the only action that can

be taken to improve the performance of the resulting FLC is to loosen the parameters so even

one occurrence in the training set produces a rule with a score high enough to be part of the �nal

RB. With this objective, the MID setting can be changed to 0, so the score does not in�uence

the validity of a rule for its inclusion in the RB. Repeating the same experiment with the new

MID settings, the Diagnosis Error Rate is still 0, the Undetected Rate is slightly reduced to

10% and the False Positive Rate remains 0.

These results show that the data driven algorithm can perform better also on real cases an

in scenarios with small training sets. This adds up to the slightly better results observed on the

sensitivity tests.

As previously pointed out, the reasons behind creating a new DM algorithm were varied.

The main reason was to create a parallelizable algorithm that could be used in Big Data systems.

Other resons were the long execution times of the genetic algorithm and the randomness of the

results (that could be overcome with a high number of loops, i.e. a higher execution time). After
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Figure 6.21: Results comparing expert elicited and learned rules.

Figure 6.22: BN used for troubleshooting.

the tests, the decision of creating the data driven algorithm is further justi�ed. Given these

advantages, the data driven algorithm was chosen over the genetic algorithm for its inclusion in

the full KDD process.

6.4 Inclusion in KDD process

In this Section, the designed algorithm will be integrated in the overall KDD system. In Chapter

5 a model of a real fault database was created in order to better understand the behaviour of

the PIs conditioned to the occurrence of each problem. In this Section, the model will be used

to create a training and a testing set in order to extract an FLC for diagnosis. This FLC will

then be tested again over the original cases for validation.

As previously stated, FLCs have two sets of parameters that must be extracted in KDD

93



CHAPTER 6. DATA MINING IN LTE

Figure 6.23: Results for BNs trained with supervised learning compared to FLCs trained with
the proposed methods.

process: the Data Base (DB) and the Rule Base (RB). In Section 6.2 the data driven algorithm

used for the extraction of the RB was described. The tests were all performed with a previously

known DB. Nevertheless, in the �nal system, the DB must be extracted from the data. For this

purpose, two parameters (xLOW and xHIGH) are required in order to de�ne the low (µLOW (x))

and high (µHIGH(x)) fuzzy sets for each PI. To obtain these parameters, an algorithm based

on Entropy Minimization Discretization (EMD) [98] is used. The EMD algorithm returns one

threshold that divides the domain of a PI in two intervals. Since two thresholds are required, in

this study, the EMD algorithm is used twice; �rst, to divide the domain in two intervals, and

a second time for each interval to obtain a threshold to divide it into two sub-intervals. The

thresholds obtained for each sub-interval are used as the low and high thresholds.

Figure 6.25 shows the overall diagram of the DM algorithms integrated in the full KDD

system. The output of the DB learning algorithm is used in the RB learning algorithm along

with the training set.

The DM stage is then used on a training set generated by a problem emulator using the

model extracted from the fault database. The resulting KB (a rule set) will then be used in an

FLC to diagnose a testing set generated with the same model and �nd the error rates. The FLC

will also be used on the original set to test how the rules that were obtained from the model

behave with its original source. Figure 6.26 depicts this process. Speci�cally, 5000 training

vectors will be created, 1250 for each type of problem. The reason behind using a model instead

of the original cases is twofold; as shown in Section 5.1.2, the number of original cases is low

(359 training vectors) and the distribution among the di�erent classes is unbalanced (i.e. there

are great di�erences in the number of vectors in each class).

With these considerations, Table 6.8 shows the fuzzy sets extracted by the DB learning

algorithm. Using the parameters described in Table 6.10, the data driven algorithm is used over

the generated training set, resulting in the rules described in Table 6.9.
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Figure 6.24: Results for both algorithms using manually processed real cases

Figure 6.25: Diagram of the DM process in the overall KDD system.
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Figure 6.26: Experimental procedure

Table 6.8: Fuzzy sets

PI xLOW xHIGH
Average CQI 5.99 10.78

Average Number of Active UEs 0.01 0.7

Average RSSI -118.8 -109.14

CS Fallback Rate 0.04 4.03

Handover Success Rate 40.69 99.9

Interfreq HO Preaparation Rate 0.17 72.22

Intrafreq HO Preaparation Rate 43.18 100.0

iRAT rate 0.0 2.05

Number of Bad Coverage Reports 1.75 367.0

Number of CPU Overload Alarms 0.0 6.63

Number of ERAB Attempts 20.5 8480.83

Tra�c Volume (DL) 0.05 1.14

Tra�c Volume (UL) 0.01 0.16
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Table 6.9: Rules learned from the generated cases
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Table 6.10: Learning algorithm parameters

α MDA MID

50 0.3 0.1

The obtained fuzzy sets and rules are then included in an FLC that is used for diagnosis

over the testing set, measuring the errors described in Section 3.1.3. The results are shown in

Table 6.11.

To further understand the origin of the errors, the diagnosis results will be represented in

a confusion matrix (Table 6.12). The confusion matrix represents the accuracy of a classi�er

broken down into each class, and enabling the distinction on where most of the errors occur. In

the case of the diagnosis system, the confusion matrix represents for each real root cause (row),

the distribution of diagnosis given by the system. For instance, In Table 6.12, the High Tra�c

root cause (second row), is diagnosed 87% of the time correctly, 12% as CPU Overload and 1%

as Low Coverage (which sums up a total Diagnosis Error Rate of 13% for High Tra�c cases).

There is no confusion of High Tra�c cases with No Tra�c and there are no cases where the

diagnosis system does not detect a High Tra�c problem (Undetected Rate is 0%). The False

Positive Rate can be calculated by inspecting the Normal row; since only 1% of Normal cases

are marked as Normal, the False Positive Rate is 99%. This problem with the normal cases can

be also observed in Table 6.11. Nevertheless, as already seen in the sensitivity tests, a detection

phase is normally required, which will �lter out the normal cases. For example, assuming a

detection phase with an 80% accuracy (which is not very high), the False Positive Rate will be

19.74%.

It can also be observed that CPU Overload is the most accurately diagnosed problem,

whereas Low Coverage is only diagnosed correctly 74% of the time. Most of the errors for this

class are confused with High Tra�c (14 %). This is due to the fact that in the original set of

cases, many problems marked as Low Coverage were due to border sectors, which usually also

have a high tra�c. Table 6.13 shows the confusion matrix over the original data set. In Table

6.11 it can be observed that the results are similar to those obtained on the modelled testing set.
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Table 6.11: Results of the learning tests

Set Diagnosis
Error Rate

Undetected
Rate

False Posi-
tive Rate

Testing set 3.64 % 9.48 % 98.72 %

Original DB 0 % 3.48 % 100 %

Table 6.12: Confusion matrix

Normal High Tra�c No Tra�c CPU Overload Low Coverage

Normal 0.01 0.33 0.23 0.01 0.41

High Tra�c 0.0 0.87 0.0 0.12 0.01

No Tra�c 0.13 0.0 0.87 0.0 0.0

CPU Overload 0.0 0.0 0.0 1.0 0.0

Low Coverage 0.02 0.14 0.01 0.1 0.74

Table 6.13: Confusion matrix over the original cases

Normal High Tra�c No Tra�c CPU Overload Low Coverage

Normal 0.0 0.41 0.47 0.01 0.11

High Tra�c 0.0 0.88 0.0 0.09 0.03

No Tra�c 0.0 0.0 1.0 0.0 0.0

CPU Overload 0.0 0.0 0.0 1.0 0.0

Low Coverage 0.0 0.18 0.09 0.09 0.64

6.5 Conclusions

The rules obtained in Section 6.4 are the �nal target of the overall KDD system. These rules have

been extracted from a set of cases accumulated with only a minor human intervention: indicating

the sector where the problem occurred, the day when it happened and a label identifying the

problem. In this Chapter the �nal and most important step, DM, has been described. It is in

this stage where the expert knowledge is e�ectively extracted and transformed into an FLC that

imitates a troubleshooting expert. Nevertheless, this stage would not have been possible without

the intervention of all the previous KDD steps. The full design process for the DM stage has

been described and its behaviour has been tested �rst on simulated and controlled cases, and

then on the collected fault database.
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Chapter 7

Conclusions

In this Chapter, the conclusions of this thesis will be reviewed. The results, contributions and

future work will be summarized.

For each contribution, its role in the thesis are described and the results of its tests are

shown. Design decisions on the overall process are analyzed based on the results of each part of

the thesis.

7.1 Results

In this Section, the results obtained in this thesis are reviewed. Speci�cally, the results obtained in

the network under study are analyzed. These results can be easily obtained for any other network

by using all the stages from the beginning (data collection) to the end (data mining). Therefore,

although the results may not always re�ect the behaviour of all networks, understanding them in

the context of a known scenario is a very valuable resource for future deployments. In addittion,

the proposed data analytics methodology is applicable to all networks.

7.1.1 LTE fault database

The LTE fault database collected in Chapter 5 is the �rst step of the data analytics process. It

is the output of the selection phase (described in Chapter 4), therefore, it is the �rst subproduct

that contains expert knowledge.

The fault database must meet some requirements, such as having enough coverage of each

problem (both in time and selected PIs), variety in the types of collected problems and accuracy

in the diagnosis. Some of these requirements depend on the quality of the work of the experts,

whereas others depend on the design of the system. For instance, in order to have a good

coverage in time of each problem, the data collection process was designed to collect data for two

weeks prior to the diagnosis. The selection of this number was done as a compromise between

the advantages of using a short period (less data volume, lower probabilities of covering two
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independent problems under the same label) and a long period (covering possible hidden trends

that could predict the occurrence of a problem even before experts would notice it). Two weeks

was considered a good trade-o� based on experience, since it covered the detection, diagnosis and

recovery stages (more or less one week for long standing problems) plus an additional previous

margin.

The collection system software platform was designed with a set of criteria oriented towards

minimizing the impact on experts work�ow.

The database extracted with this method covered a period of 10 months (from June 2013

to April 2014). In this time interval, a total of 475 cases were reported and collected in the

database. A total of 21 types of problems were covered.

The collection system went through several redesign stages to improve in each step both the

ease of use and the quality of the collected data. As a consequence, three versions of the PI list

were produced, so cases collected at di�erent times had di�erent levels of detail.

Some di�culties were found on the collection stage that had to be solved before moving

on to data analytics. Firstly, a high imbalance among the number of instances of each problem

was observed, since some problems were much more common than others. Secondly, for some

problems, the false positives were very high, especially in the cases collected by a manually coded

rule engine used as an early prototype for automatic diagnosis. Thirdly, some of the diagnosis

inserted in the system were changed later as new evidence (either in the same case or in a

similar one) was found, creating some invalid entries. Finally, there was some reticence from the

troubleshooting experts for using the system, especially in the earlier versions, that were more

complicated to use. The solution for this problem was to integrate the system into the tool that

they used for inspecting problems, but this feature was still not implemented at the time of this

writing.

This factor drove to the decision of using only a reduced subset of the collected database for

further analysis. To select this subset, another followed criterion was that the class must have

been collected at a time where enough PIs where considered, and all classes must have the same

PIs. This drove to a reduced database of 47 cases divided among 4 problem types for the data

mining process.

7.1.2 Data preparation for LTE faults

Although the core process for extracting knowledge is DM, data preparation is an indispensable

step. Without data preparation, the patterns that the DM process searches for would be hidden

among noise. In the case of the LTE fault database, data preparation plays the role of cleaning

the data (that is, �lling missing values), reducing the dimensionality and translating to a viable

format (by eliminating the time dependence).

The result of the data preparation stage must be a training set for the DM composed of

individual vectors containing PI values for a degraded time interval and a label indicating the

diagnosis of the problem causing the degradation. There must be one vector per degradation,

although each problem in the database usually registers more than one degradation.

The data preparation process used in this thesis has two main stages: data cleaning (�lling

missing values) and data reduction (�nding the degraded intervals and averaging the PIs for said
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intervals).

The data cleaning stage was tested by arti�cially creating missing data, showing that the

error introduced with respect to the original data was lower than other state-of-the-art methods,

and that it increased for growing time intervals of missing data.

The data reduction algorithm used a state machine to determine degraded time intervals.

Each time interval was translated into a single instance of a problem. Due to the nature of the

data reduction algorithm, it was applied after the data cleaning stage. The result was a database

of 359 vectors.

The major di�culties found in this stage were mainly due to missing data. Some periods

of missing data were far too long to be �lled with the algorithm without signi�cantly increasing

the error. Moreover, these periods were frequently present in the data near the occurrence of

problems, since the a�ected sectors were subject to inspection, recon�gurations, restarts and

to be shut down. These periods were easy to detect and discard (although they caused loss of

information). In cases where the eNodeBs were still on, but had the PI collection subsystem

disabled, the reported PI values were adjusted to a constant value (normally 0). This was a big

issue, since these values were still valid and therefore could not be considered missing values. The

solution for this problem was to mark long intervals where the KPIs were 0 as missing values,

although this could cause some errors in extreme cases.

7.1.3 LTE fault modelling

The next step in the study of the fault database was the creation of a model of the relations

between the selected problems and a subset of the PIs selected by the experts. Such a process

is in fact a DM stage. Although this step is not part of the overall KA system, since it does not

directly create a ruleset out of the input database, in this thesis it has been used to improve the

results due to the low number of problem occurrences and the imbalance among root causes.

The result of the modelling is a set of PDFs for each PI conditioned to the occurrence of

each problem. With this objective, the vectors extracted from the data preparation stage were

analyzed. For each pair of PI/problem, a set of prede�ned PDFs was adjusted and the PDF that

minimized the error (using the D-Value of the K-S test) was chosen as the model for that pair.

The resulting model was shown in Appendix C and explained in Section 5.3. It was subsequently

used for generating a large emulated database with equal number of samples for each problem.

This database is a better input for the DM algorithm used for rule extraction, since the number

of samples is larger and the problems are balanced (i.e. there are equal samples for each class).

The di�culties described in earlier stages (namely, wrong diagnosis and wrong values caused

by missing data) had an observable e�ect in this stage. Once these problems were detected and

studied, new procedures were added in the appropriate stage and the whole process was repeated.

7.1.4 Datamining of LTE troubleshooting rules

The DM stage is the main part of the KA algorithm. With the cleaned and reduced data, the

DM stage extracts an FLC that will be used for diagnosis.

Since FLCs have two parts (DB containing the fuzzy sets and RB containing the fuzzy rules),
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two DM algorithms were used over the training data. The resulting FLC contains the boundaries

and rules adapted to the target network and based on the knowledge of the troubleshooting

experts. First, the DB was extracted using an algorithm that maximized the entropy of the sets

de�ned by the boundaries. The extracted fuzzy sets were then used along with the training set to

extract the RB using a speci�cally designed algorithm. Two RB supervised learning algorithms

were designed and tested with another emulated dataset. The �rst developed algorithm (a genetic

algorithm) was discarded because of execution speed issues and its inability to scale up for Big

Data scenarios. The second algorithm (data driven) was chosen and used on the cases from the

network under study.

The results of the DM algorithm were then tested over the original set of vectors, showing

a high success rate.

In this stage, the unavailability of real cases was a major di�culty in the beginning. Due

to this reason, a model based on experience was developed and used for training and validation.

This situation was later compensated by using the cases in the collected database, showing the

behaviour of the system from data collection to generation of diagnosis rules.

7.2 Contributions

In this Section, the contributions of this thesis will be reviewed. The overall contribution of

the thesis was the development of a methodology for KA in LTE troubleshooting (Objective

5) based on data analytics. The product of this methodology is an automatic diagnosis system

based on fuzzy logic. This system will save experts time when dealing with repetitive issues,

and has the capacity to improve as new problems arise and become common. Therefore, experts

usually will be able to focus on new and more challenging problems. Also, the problems that

are diagnosed by the automatic system can be solved earlier, driving to reduced downtimes and

therefore a better user experience.

This thesis also has individual subproducts in each stage of the processing pipeline.

7.2.1 LTE fault database

Another contribution of this thesis was the LTE fault database (Objective 1) that contains

real troubleshooting cases as opposed to data from simulations, which most studies use. This

database is a tool that can be used for many applications related to troubleshooting. The range of

applications includes training of new experts, planning for improvement and optimization works,

analysis of the progress of a network over time, etc. Another scenario where a fault database

can be (and has been) used is in the development of SON functions. In this thesis, speci�cally,

a Self-Healing system has been developed with the fault database. A fault database also re�ects

the state of the network and how optimization e�orts have a�ected it over time.

The lack of such databases is often a problem and the knowledge of this fact may cause

surprise at �rst sight. The reason for this shortage is that experts are usually focused on trou-

bleshooting problems as soon as possible and do not have time or incentives to create a solid

database on their work. On the other hand, developers are usually focused on creating products

based on requirements that usually do not take real data into account (because there are no
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comprehensive databases with solved cases). A middleground between troubleshooting experts

and tool developers is required where the creation of a database is done with the knowledge of

troubleshooting experts but minimizing the e�ort required from them. This thesis has proposed

a method and a software platform based on data analytics for achieving this middleground. The

requirements for these types of platforms have been collected using feedback from experts that

used the tool in its early development stage.

7.2.2 Data preparation for LTE faults

In data analytics, one of the main tasks is data preparation. This task is highly dependent on the

nature of the data and the targeted DM method (which would not work without a data prepa-

ration stage). This thesis studied the properties of troubleshooting data and the requirements

of automated troubleshooting systems (Objective 2) and proposed data preparation methods

speci�cally prepared for this purpose. This thesis has also studied the Big Data aspects of

troubleshooting data, justifying why traditional data processing algorithms do not provide the

required performance. Firstly, in this thesis, a method for data cleaning that uses features of

mobile network data has been proposed. This method uses the periodicity of the data to impute

missing values. Secondly, an algorithm has been proposed for data reduction. This algorithm

exploits the concept of degraded time intervals, that is, time intervals where an underlying prob-

lem visibily a�ects the performance of a network. This method delimits degradations in time,

allowing the creation of time independent vectors of PIs for the DM algorithm. This methodol-

ogy is also useful for marking degradations on time series for other uses, such as visualizations,

training of troubleshooting personnel, etc.

7.2.3 LTE fault modelling

This thesis has proposed a method to create an LTE fault database model (Objective 3). This

model studies the relation between problems and PIs in a real scenario, as opposed to other

studies where these relations are studied on simulations. The model can be used for creating

synthetic fault databases in order to train AI algorithms. In fact, this method was used to train

a DM algorithm with good results over the original dataset, as shown in Chapter 6. The model

can also be used for better understanding each problem or each PI on its own, as well as the

relations among problems and PIs for the network where the analysis was done; and this can

lead to better decisions on improving the network. The proposed methodology can be extended

to other networks, with di�erent sets of problems and PIs, to automatically extract models that

describe their behaviours.

7.2.4 Datamining of LTE troubleshooting rules

Other contributions of this thesis were the study of the application of FLCs to diagnosis (Ob-

jective 4) and the design and implementation of two data mining methods to adjust an FLC for

network troubleshooting based on a fault database (Objective 5). In the data mining process,

the Big Data nature of the troubleshooting data was taken into account in one of these algorithms

(the data driven method) by making it parallelizable. Although the FLC that was extracted was
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particularized for the target network, the DM method can be applied on any network (with a

previous data preparation stage) to obtain a �ne tuned automatic troubleshooting system. The

only requirement is that experts of the troubleshooting team of these networks provide the re-

quired information when problems occur. Each new addition of a problem will then improve the

accuracy of the system.

The rules extracted from di�erent scenarios can also be collected in a centralized location

in order to have a large knowledge base on LTE fault situations. Since FLCs have an RB and

a DB, rules learned in one network can be applied in other networks using their adapted fuzzy

sets. Also, expert knowledge extracted by other means (such as interviews) can be mixed with

rules extracted by the DM algorithm.

Finally, the automatically extracted rules and fuzzy sets also have an informative value on

their own, and can be used to better understand the causes of problems and the distributions of

the PI values.

7.2.5 Knowledge Acquisition for LTE Self-healing

This thesis has studied closely the problem of KA, reviewing di�erent approaches and determining

the advantages of using data analytics. Speci�cally, KDD using troubleshooting information

contained in fault databases is proposed.

The requirements for a KA platform have been enumerated, di�erentiating between require-

ments from the technical perspective concerning the fault data and performance monitoring

subsystem; and the human perspective concerning the experts and taking into account the di�-

culties of engaging them in a time consuming process.

With the studied requirements, a KA platform was designed (Objective 5), developed and

used to collect the fault database (Objective 1). The design process had into account the

functionalities of the data preparation stages, so the information required from the expert was

reduced to only three parameters: date, sector and diagnosis. This would make the inclusion of

the KA process into the work�ow of experts much more simple, since it could be integrated into

the software that they already use to monitor network performance.

7.2.6 Big Data aspects of Self-healing

The use of data analytics in Self-healing is subject to the characteristics of the underlying fault

data. This thesis has studied the properties of this data (Objective 2), determining that,

due to their volume, variability and velocity of generation, they can be considered as Big Data

compliant. The Big Data nature of the Self-healing problem has therefore been further studied

(Objective 6).

Big Data aspects have been taken into consideration throughout the thesis, designing all the

algorithms ensuring that they can be executed in a parallel manner without loss of accuracy.

Additionally, to further illustrate the Big Data principles in Self-healing, several published

algorithms have been redesigned in order to run as parallelizable processes, therefore enabling

the use of cloud computing to increase their performance.
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7.3 Future work

In this Section, the lines of research that could continue the work of this thesis are described.

Although the concept of KA using data analytics described in this thesis has been proven feasible,

and its usefulness has been demonstrated and measured, there is still a long way to go until a

marketable solution arises. In order to achieve this objective, several points must be addressed

in the future:

• Improve the KA interface, providing them with more incentives for usage. Speci�cally,

a point that was proposed was integrating the DI detection and processing in the KA

interface, so when experts introduced the information on a problem, the DIs were shown

to them with statistical information. Also, similar DIs on past cases could be shown to

them.

• Further collection of problems, with a higher variety of networks and kinds of problems.

This will help into creating more comprehensive models and more complete diagnosis sys-

tems.

• Automatic selection of relevant PIs. In this study, the PIs that were used in the DM stage

were manually selected by experts. A very important future development will be to �nd a

way of automatically deciding which PIs are good predictors for the faults.

• Development of online learning that can improve the quality of the output as new inputs

are received without the need of executing the full DM process.

• More tests and improvements on the DM algorithm for the DB (the fuzzy sets).

• More studies and optimizations on the performance of the algorithms, specially in the Big

Data aspect (i.e. implementation as parallel algorithms and study of its performance).
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Appendix A

Description of modelled PIs

This Appendix collects the descriptions of the PIs modelled in Chapter 5. These PIs are also

used in the data mining algorithm tests in Section 6.4.

PI Range Description

Average CQI [1, 15] Average Channel Quality Indicator re-

ported by the user terminals to the eN-

odeB during the ROP. It re�ects the in-

terference present in the downlink channel.

CQI reports are usually periodic, but they

can also be requested by the eNodeB. CQI

values determine the modulation scheme

to be used in the communication between

the UE and the eNodeB; therefore, there

is a direct relation between the CQI and

the throughput available to the UEs.

Average Number of Active

UEs

[0,∞) Average number of active users in the

Downlink in the ROP. In practice, the

number of users is limited by the network

equipment. Originally, the LTE design ob-

jectives were to be able to serve at least

200 users with a 5 MHz spectrum alloca-

tion. A growing number of users will re-

duce the amount of available resources for

each user.
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Average RSSI (−∞, +∞) dBm Average RSSI (Received Signal Strength

Indicator) in the Uplink. It re�ects the

total signal level received in the eNodeB.

The power measured by the RSSI includes

both the signal and noise terms. A high

RSSI is usually an indication that there

are interference sources from either inside

the LTE newtork (neighboring nodes from

the same or other operators) or from out-

side (other radio systems). A high RSSI

may also be the consequence of a large

number of UEs, indicating a high tra�c.

CS Fallback Rate [0,100]% Proportion of calls transferred to 2G/3G

(Circuit Switched fallback). Some calls are

transferred to 2G or 3G for special needs

of the call (for instance, lack of support of

Voice Over LTE in the network). A high

CS fallback rate indicates that many users

are attempting to use a service that is only

supported by Circuit Switched networks.

The solution is to deploy services such as

Voice Over LTE.

Handover Success Rate [0,100]% Proportion of handovers to neighboring

or cosite cells that are correctly �nalized.

Low HOSR values are indication of in-

correct mobility con�gurations (e.g. bad

neighbor relations) or of problems on the

target cell (e.g. congestion causing the re-

jection of new connections).

Interfreq HO Preaparation

Rate

[0,100]% Proportion of handovers that are done be-

tween cells in di�erent carriers (frequen-

cies). New carriers are deployed on sites

where there is normally a large number of

users in order to increase capacity.

Intrafreq HO Preaparation

Rate

[0,100]% Proportion of handovers that are done be-

tween cells in the same carrier.

iRAT rate [0,100]% Proportion of handovers that are done be-

tween cells of di�erent technologies. This

can be done for o�oading tra�c from the

LTE network in case of congestion or in

cases where other technologies (such as

2G/3G) o�er a better quality of service.
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Number of Bad Coverage

Reports

[0,∞) Number of Bad Coverage reports collected

from the users of the cell. Bad coverage

reports are sent when an A2 event occurs;

indicating that the received power of the

pilot signals is below a certain threshold.

Number of CPU Overload

Alarms

[0,∞) Number of alarms that indicate a high ac-

tivity in the CPU of the eNodeB. Two

thresholds are con�gured in the eNodeB

for the CPU load. When the lower thresh-

old is reached, the alarm is registered

and new connections are rejected in order

to prevent CPU overload. If the second

(higher) threshold is reached, already es-

tablished connections are dropped to re-

duce load.

Number of ERAB At-

tempts

[0,∞) Number of ERAB Connection Requests.

It re�ects the o�ered tra�c and deter-

mines the behaviour of the eNodeB and

other magnitudes such as RSSI.

Retainability [0,100]% Proportion of calls that end correctly (in-

verse of the dropped call rate). Retain-

ability is one of the most important PIs

(i.e. it is a KPI) because it is normally

checked �rst to detect if there is a problem

with the eNodeB. This KPI is used to sep-

arate problems from normal cases in this

dataset, but not for modelling. Therefore,

this KPI has not been modelled.

Tra�c Volume (DL) [0,∞) GB Quantity (GB) of transferred data in the

Downlink.

Tra�c Volume (UL) [0,∞) GB Quantity (GB) of transferred data in the

Uplink.
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Appendix B

Description of collected problems

This Appendix collects the descriptions of the problems collected during the data collection

stage between November 2013 and April 2014. The labels marked with an asterisk come from

the manually-coded rule based diagnosis system executed in June 2013 as described in Section

5.1.2.

• Congestion: the number of users is too high for the eNodeB. There are not enough resources

for guaranteeing the service to all users. The root cause of this problem depends on its

degree of recurrence. If it occurs only once, it may be due to a special event gathering

many users in one geographic area (such as a tra�c jam or a parade), or an unusual burst

of tra�c; and in this case it can be safely ignored. If the problem repeats regularly (on a

daily basis on peak tra�c hours, or on a venue in the coverage area such as a stadium or a

concert hall that regularly congregates a large audience), then there is a capacity problem,

and the network plani�cation should include additional carriers on that sector, or new

sectors (either normal cells or small cells) giving coverage to the problematic areas. Also,

special con�guration of the parameters can temporarily prepare a sector for a predicted

increase in tra�c, but it will not solve the problem completely.

• Coverage hole: some UEs located in a speci�c area inside the coverage of a sector are

su�ering a low signal level from all the near sectors. This happens normally when there

is a geographic obstacle between the UE and the eNodeB antennas. This is usually best

detected with drive tests or call traces, but since UEs report bad coverage to their host

eNodeBs and their numbers are registered as counters, there is a way for approximately

diagnosing this problem. Nevertheless, a high number of bad coverage reports can also

indicate that the a�ected sector is in the border of the network (e.g. near zones where

the LTE network is not deployed despite there being still potential users). To discriminate

these cases, it must be determined somehow if the cell is in the border or not, either by

calculating with its location information, or by inspecting the histogram of UE distance

distributions. This is a compound PI (i.e. it has one entry per bin) that counts the number

of distance measurements reported by the timing advance of each UE, and it is extracted
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from the call traces as a synthetic counter. Anyway, the diagnosis is only approximate, and

a de�nitive solution can only be given after measurements have been done on the speci�c

location.

• CPU Overload: the tra�c carried by the sector is too high for its capacity. Speci�cally,

this label is applied on cases where the tra�c is causing a high load on the CPU of

the eNodeB. An automatic admission control algorithm acts in these cases and rejects

new connections, causing a decrease in Accessibility. If the CPU load keeps growing (for

instance, because already established connections are demanding an increasing volume of

data), then a part of the established connections are dropped, with the consequence of a

degradation in Retainability. This label covers a subset of the Congestion class, therefore,

the root causes are similar.

• Handover to a high tra�c site: when users move from the coverage area of a sector to

the coverage area of a neighboring sector that is su�ering from high tra�c, the handover

process may be interrupted by the admission control of the second site, causing a failure

and a drop of the connection. Although the e�ects are seen in the �rst site, the root cause is

located in the neighbor, and most likely the neighboring site is also detected as problematic

(for instance, because of CPU congestion).

• Hardware problem: this label encompasses problems where the sector is giving a bad service

due to a broken or miscon�gured hardware element. Normally, the a�ected element is the

antenna, either because the tilt angle is bad, or because the controller (the interface between

the antenna and the eNodeB CPU) is faulty. Observation of engineer actions indicating

changes in the tilt and system logs indicating hardware malfunction will determine the

speci�c root cause.

• High MME drop call rate *: a large number of connections of the sector are dropped

because of a problem in the MME (for instance, bad con�guration or high number of

managed users).

• High number of drops: problems that were detected because there was a low Retainability

but not diagnosed (e.g. the �nal diagnosis was never reported, or the problem was solved

with a restart of the eNodeB) are classi�ed under this label. Since this label encompasses a

varied set of problems that may not have a common pattern for being diagnosed, it cannot

be used for the data mining process.

• High UL RSSI: problems classi�ed under this label show a high Received Signal Strength

Indicator (RSSI) in the uplink channel. The RSSI measures both signal and noise received

by the eNodeB antenna. Usually a high RSSI may cause interference problems, leading to

a reduced Retainability (since connections drop due to bad quality). If the high RSSI is

due to a high number of active users in the sector, the Accessibility may also be a�ected,

indicating that the root cause is not interference, but high tra�c.

• IFHO Handover failures *: under some circumstances (normally a con�guration problem),

handovers to neighboring cells su�er a large number of failures. Since users cannot return

to their origin sector (e. g. because they have moved out of the coverage area), their

call is dropped. This results in a decrease in Retainability and Handover Success Rate

(HOSR). The original cause is usually a con�guration problem, for instance, an error in

the Automatic Neighbor Relation (ANR) system.
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• Interference: there is a source of radio waves in the same frequency as the carrier of the

eNodeB. It may be either internal interference (caused by the LTE network where the

eNodeB is located) or external. External interference might be caused either by a di�erent

LTE network, or a radio source that is not an LTE transmitter. This label is closely related

to the High UL RSSI label, and in fact, it is often interchangeable when the interference is

internal. The interference label normally implies a radio problem, as opposed to High UL

RSSI that may indicate a con�guration problem.

• Lack of RET: the antennas of an eNodeB have a con�guration parameter called electrical

tilt, which modi�es the phase of the transmitted signals to achieve a similar e�ect to

physically changing the tilt of the antenna. When a sector is diagnosed and the chosen

solution is to change the tilt, it is usually done remotely by changing its electrical tilt to

avoid the need of on-site works. This label covers the cases where this action failed because

the eNodeB did not have this option or it was deactivated.

• Low coverage DL *: the signal of the sector in the Downlink is not properly reaching the

distant users. This may be due to a bad con�guration (i. e. a bad antenna tilt that causes

that the signal is weak in the far reaches of the planned coverage area), or to the fact

that the sector is in the border of the LTE network. When the cell is in the border of the

network, it is not considered a problem; users that are in the border area are served as best

as possible, but it is assumed that service with full quality cannot be given to them. But

the two situations are undistinguishable unless the location of the sector is known. This

has the consequence of a large number of cases with this problem; but since the number of

false positives is guaranteed to be high, a border cell detection algorithm must also be set

up to discard cells that are expected to show this behaviour because of their location.

• Low coverage DL *: the eNodeB cannot properly detect the signal of the distant UEs in

the uplink. This label has the same particularities than Low coverage DL. Most of the

cases covered in this label are also tagged as Low coverage DL, which is expected because

both these labels have a high degree of false positives (mainly due to the contribution of

border cells) and because in most cases the factors that cause low coverage in DL (such as

bad antenna tilt) will also a�ect the UL connection.

• Missing neighbor *: This problem is caused when ANR fails to correctly add neighbors.

This causes drops in the connections (decrease in Retainability) of users that are physically

moving into the coverage area of an adjacent cell that is not con�gured as neighbor, since

the handover protocol will fail (decrease in HOSR). This label encompasses cases that could

also be included as handover failures, though not all cases labeled as handover failures can

be labelled as missing neighbor. To correctly diagnose these kind of problems, it must be

identi�ed that two neighboring sectors have a low mutual HOSR, and then look up in the

neighboring sector list if the relation is missing.

• No tra�c: this is a problem where an eNodeB is ready for public service, but due to a prob-

lem in the con�guration of UE authentication, it is not accepting most of the connections

(causing a low Accessibility) and therefore it has a very low (or zero) tra�c.

• Outage: occasionally, an eNodeB goes o�ine, causing an outage in the service. Outages

may be done on purpose (e.g. for maintenance purposes, or to restart an eNodeB in order

to apply a new con�guration, etc...) and predicted, giving the opportunity of setting up a
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compensation using neighboring eNodeBs. These cases are usually done on low tra�c hours

and the disconnection is registered in a PM parameter. If the eNodeB is not fully turned

o� (i.e. only the radio subsystem is stopped), it may even continue reporting CM/PM/FM

data to the monitoring system. On the other hand, outages may also be unpredicted, for

instance due to a power outage. In this case, eNodeBs will stop reporting to the monitoring

system and no PM parameter collects the disconnection. In these cases, the outage can

be observed in an increase in the tra�c of neighboring cells, that will take the orphaned

users, although with a lower QoS. This will also cause an increase in the number of bad

coverage reports and a decrease in the Retainability of the neighbors, since the new users

have a worse quality of signal.

• Overshooting: this is a con�guration problem where the antenna covering a sector of an

eNodeB has a wrong tilt angle, causing it to have a larger coverage than it should. The

sector will then cover a larger area (and therefore a larger number of users and tra�c

volume) than expected. This will also cause an increase both in the received RSSI and

in the RSSI of neighboring sectors (internal interference). Again, this is a subclass of

Interference, but where the speci�c cause is the antenna tilt.

• RF Rejection due to S1 *: There is a large number of rejected connections due to a failure

in the establishment of the S1 bearer. This is due to a con�guration problem in the S1

interface between the eNodeB and the core network.

• RF Rejection due to UE *: There are a large number of rejected connections due to failure

from the UEs. This may be caused by a concentration of problematic UEs in one speci�c

cell, or more likely by a problem in the con�guration of the eNodeB.

• RRC storm: a type of software problem caused by a memory leak in the eNodeB software.

It causes the eNodeB to run out of memory and increase its CPU load. With a high CPU

load, the tra�c control algorithms automatically block the incoming connections, causing

reattempts by the UEs. This shows up as a burst of RRC Connection Reattempts, hence

the name given to the problem. The problem can be normally mitigated by restarting the

eNodeB, but a software patch is the de�nitive solution of this problem.

• Swapped sector: each eNodeB usually controls several sectors (normally three). Each sector

has an independent transmitter connected to an antenna facing on the corresponding angle

(normally, with a separation of 120◦). When the wrong connection is made (i.e. the

transmitter of a sector is connected to the wrong antenna), the sector will be giving service

to the wrong users. This will cause bad neighboring relations, since the physical area of a

sector does not correspond with its con�gured area.
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Extracted Model Parameters

C.1 Parametrized distributions

Average CQI

Cause Model Parameters D-Value P0 P1

Normal Log-normal [0.171, 0.0, 8.995] 0.022 - -

High Tra�c Log-normal [0.188, 0.0, 8.23] 0.167 - -

No Tra�c Gamma [2.79, 0.0, 2.908] 0.14 0.204 -

CPU Overload Log-normal [0.108, 0.0, 8.6] 0.085 - -

Low Coverage Log-normal [0.19, 0.0, 8.232] 0.191 - -

Average Number of Active UEs

Cause Model Parameters D-Value P0 P1

Normal Gamma [0.425, 0.0, 1.445] 0.088 0.001 -

High Tra�c Log-normal [0.976, 0.0, 3.402] 0.142 - -

No Tra�c Gamma [0.344, 0.0, 0.011] 0.078 0.355 -

CPU Overload Log-normal [1.085, 0.0, 0.219] 0.083 - -

Low Coverage Gamma [0.401, 0.0, 3.321] 0.182 - -

Average RSSI

Cause Model Parameters D-Value P0 P1

Normal Gumbel-R [-117.385, 2.336] 0.04 - -

High Tra�c Normal [-106.469, 3.551] 0.138 - -

No Tra�c Laplace [-119.486, 0.685] 0.19 - -

CPU Overload Gumbel-R [-115.894, 2.007] 0.126 - -

Low Coverage Gumbel-R [-113.885, 2.992] 0.143 - -
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CS Fallback Rate

Cause Model Parameters D-Value P0 P1

Normal Beta [1.386, 3872118.525, -0.0,

44337.295]

0.015 0.064 -

High Tra�c Johnson SB [11.444, 2.61, -0.001, 1.702] 0.131 - -

No Tra�c Johnson SB [9.455, 1.672, -0.007, 8.357] 0.059 0.656 -

CPU Overload Johnson SB [24.652, 4.203, -0.045,

27.147]

0.151 0.053 -

Low Coverage Johnson SB [28.463, 4.412, -0.029,

33.301]

0.254 0.136 -

Handover Success Rate

Cause Model Parameters D-Value P0 P1

Normal Beta [128319.146, 1.551, -

1383.757, 1384.757]

0.032 - 0.426

High Tra�c Johnson SB [-3.321, 0.742, -0.415,

1.415]

0.206 - -

No Tra�c Johnson SB [-0.602, 0.582, -0.012,

1.012]

0.126 0.437 0.197

CPU Overload Beta [201.792, 0.954, -13.495,

14.495]

0.129 - 0.105

Low Coverage Johnson SB [-10.016, 1.43, -12.785,

13.787]

0.136 - 0.136

Interfreq HO Preaparation Rate

Cause Model Parameters D-Value P0 P1

Normal Johnson SB [-1.099, 0.707, -0.113,

1.114]

0.106 0.628 0.316

High Tra�c Johnson SB [-31.869, 3.358, -1.588,

2.588]

0.507 0.923 0.026

No Tra�c Beta [1.072, 1.568, -0.0, 1.003] 0.079 0.731 0.147

CPU Overload Beta [0.576, 0.359, -0.108, 1.108] 0.31 0.526 0.316

Low Coverage Beta [0.319, 0.11, -0.103, 1.103] 0.321 0.455 0.318

Intrafreq HO Preaparation Rate

Cause Model Parameters D-Value P0 P1

Normal Johnson SB [-7.427, 1.095, -24.908,

25.91]

0.124 0.013 0.867

High Tra�c Johnson SB [-2.945, 0.43, -0.222, 1.222] 0.109 - 0.41

No Tra�c Johnson SB [0.455, 0.661, -0.001, 1.021] 0.152 0.52 0.319

CPU Overload Beta [103.896, 0.854, -6.735,

7.735]

0.158 - 0.421

Low Coverage Johnson SB [-6.494, 0.804, -0.467,

1.467]

0.249 - 0.682

118



C.1. PARAMETRIZED DISTRIBUTIONS

iRAT Rate

Cause Model Parameters D-Value P0 P1

Normal Johnson SB [4.397, 0.944, -0.0, 1.005] 0.031 0.052 -

High Tra�c Beta [1.88, 5121.589, -0.0,

26.434]

0.183 - -

No Tra�c Johnson SB [6.87, 1.168, -0.006, 31.756] 0.058 0.57 0.004

CPU Overload Beta [7.094, 331752302796579.2,

-0.005, 807660514448.1]

0.166 0.105 -

Low Coverage Johnson SB [8.797, 1.296, -0.001,

43.748]

0.195 0.182 -

Number of Bad Coverage Reports

Cause Model Parameters D-Value P0 P1

Normal Log-normal [1.558, 0.0, 50.46] 0.033 0.036 -

High Tra�c Log-normal [0.637, 0.0, 252.312] 0.119 - -

No Tra�c Gamma [0.648, 0.0, 13.881] 0.116 0.455 -

CPU Overload Log-normal [1.352, 0.0, 53.44] 0.125 - -

Low Coverage Log-normal [1.013, 0.0, 636.855] 0.183 - -

Number of CPU Overload Alarms

Cause Model Parameters D-Value P0 P1

Normal Gamma [0.297, 0.0, 21.035] 0.105 0.971 -

High Tra�c Gamma [0.567, 0.0, 82.732] 0.146 0.718 -

No Tra�c Delta 1.0 -

CPU Overload Log-normal [1.288, 0.0, 92.303] 0.185 - -

Low Coverage Exponential [0.0, 3.036] 0.298 0.818 -

Number of ERAB Attempts

Cause Model Parameters D-Value P0 P1

Normal Exponential [0.0, 5383.581] 0.039 - -

High Tra�c Log-normal [0.441, 0.0, 18402.446] 0.118 - -

No Tra�c Gamma [0.485, 0.0, 161.999] 0.105 0.416 -

CPU Overload Log-normal [0.56, 0.0, 2252.13] 0.113 - -

Low Coverage Gamma [0.623, 0.0, 12800.772] 0.159 - -

Tra�c DL

Cause Model Parameters D-Value P0 P1

Normal Gamma [0.617, 0.0, 1.552] 0.062 - -

High Tra�c Log-normal [0.357, 0.0, 1.689] 0.23 - -

No Tra�c Gamma [0.17, 0.0, 0.084] 0.087 0.219 -

CPU Overload Gamma [2.012, 0.0, 0.324] 0.103 - -

Low Coverage Exponential [0.0, 0.514] 0.31 - -
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Tra�c UL

Cause Model Parameters D-Value P0 P1

Normal Gamma [0.581, 0.0, 0.19] 0.04 - -

High Tra�c Log-normal [0.533, 0.0, 0.318] 0.133 - -

No Tra�c Gamma [0.212, 0.0, 0.006] 0.082 0.215 -

CPU Overload Log-normal [0.925, 0.0, 0.044] 0.155 - -

Low Coverage Exponential [0.0, 0.069] 0.166 - -
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C.2. PDFS

C.2 PDFs

C.2.1 Average CQI

Histogram of Average CQI conditioned to Normal.

Histogram of Average CQI conditioned to High Tra�c.
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Histogram of Average CQI conditioned to No Tra�c.

Histogram of Average CQI conditioned to CPU Overload.
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C.2. PDFS

Histogram of Average CQI conditioned to Low Coverage.

C.2.2 Average Number of Active UEs

Histogram of Average Number of Active UEs conditioned to Normal.

123



APPENDIX C. EXTRACTED MODEL PARAMETERS

Histogram of Average Number of Active UEs conditioned to High Tra�c.

Histogram of Average Number of Active UEs conditioned to No Tra�c.
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C.2. PDFS

Histogram of Average Number of Active UEs conditioned to CPU Overload.

Histogram of Average Number of Active UEs conditioned to Low Coverage.
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C.2.3 Average RSSI

Histogram of Average RSSI conditioned to Normal.

Histogram of Average RSSI conditioned to High Tra�c.
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C.2. PDFS

Histogram of Average RSSI conditioned to No Tra�c.

Histogram of Average RSSI conditioned to CPU Overload.
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Histogram of Average RSSI conditioned to Low Coverage.

C.2.4 CS Fallback Rate

Histogram of CS Fallback Rate conditioned to Normal.
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C.2. PDFS

Histogram of CS Fallback Rate conditioned to High Tra�c.

Histogram of CS Fallback Rate conditioned to No Tra�c.
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Histogram of CS Fallback Rate conditioned to CPU Overload.

Histogram of CS Fallback Rate conditioned to Low Coverage.
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C.2. PDFS

C.2.5 Handover Success Rate

Histogram of Handover Success Rate conditioned to Normal.

Histogram of Handover Success Rate conditioned to High Tra�c.
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Histogram of Handover Success Rate conditioned to No Tra�c.

Histogram of Handover Success Rate conditioned to CPU Overload.
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C.2. PDFS

Histogram of Handover Success Rate conditioned to Low Coverage.

C.2.6 Interfreq HO Preaparation Rate

Histogram of Interfreq HO Preaparation Rate conditioned to Normal.
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Histogram of Interfreq HO Preaparation Rate conditioned to High Tra�c.

Histogram of Interfreq HO Preaparation Rate conditioned to No Tra�c.
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C.2. PDFS

Histogram of Interfreq HO Preaparation Rate conditioned to CPU Overload.

Histogram of Interfreq HO Preaparation Rate conditioned to Low Coverage.
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C.2.7 Intrafreq HO Preaparation Rate

Histogram of Intrafreq HO Preaparation Rate conditioned to Normal.

Histogram of Intrafreq HO Preaparation Rate conditioned to High Tra�c.
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C.2. PDFS

Histogram of Intrafreq HO Preaparation Rate conditioned to No Tra�c.

Histogram of Intrafreq HO Preaparation Rate conditioned to CPU Overload.
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Histogram of Intrafreq HO Preaparation Rate conditioned to Low Coverage.

C.2.8 iRAT rate

Histogram of iRAT rate conditioned to Normal.
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C.2. PDFS

Histogram of iRAT rate conditioned to High Tra�c.

Histogram of iRAT rate conditioned to No Tra�c.
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Histogram of iRAT rate conditioned to CPU Overload.

Histogram of iRAT rate conditioned to Low Coverage.

140



C.2. PDFS

C.2.9 Number of Bad Coverage Reports

Histogram of Number of Bad Coverage Reports conditioned to Normal.

Histogram of Number of Bad Coverage Reports conditioned to High Tra�c.
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Histogram of Number of Bad Coverage Reports conditioned to No Tra�c.

Histogram of Number of Bad Coverage Reports conditioned to CPU Overload.
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C.2. PDFS

Histogram of Number of Bad Coverage Reports conditioned to Low Coverage.

C.2.10 Number of CPU Overload Alarms

Histogram of Number of CPU Overload Alarms conditioned to Normal.
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Histogram of Number of CPU Overload Alarms conditioned to High Tra�c.

Histogram of Number of CPU Overload Alarms conditioned to No Tra�c.
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C.2. PDFS

Histogram of Number of CPU Overload Alarms conditioned to CPU Overload.

Histogram of Number of CPU Overload Alarms conditioned to Low Coverage.
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C.2.11 Number of ERAB Attempts

Histogram of Number of ERAB Attempts conditioned to Normal.

Histogram of Number of ERAB Attempts conditioned to High Tra�c.
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C.2. PDFS

Histogram of Number of ERAB Attempts conditioned to No Tra�c.

Histogram of Number of ERAB Attempts conditioned to CPU Overload.
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Histogram of Number of ERAB Attempts conditioned to Low Coverage.

C.2.12 Tra�c DL

Histogram of DL Tra�c Volume conditioned to Normal.
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C.2. PDFS

Histogram of DL Tra�c Volume conditioned to High Tra�c.

Histogram of DL Tra�c Volume conditioned to No Tra�c.
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Histogram of DL Tra�c Volume conditioned to CPU Overload.

Histogram of DL Tra�c Volume conditioned to Low Coverage.
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C.2. PDFS

C.2.13 Tra�c UL

Histogram of UL Tra�c Volume conditioned to Normal.

Histogram of UL Tra�c Volume conditioned to High Tra�c.
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Histogram of UL Tra�c Volume conditioned to No Tra�c.

Histogram of UL Tra�c Volume conditioned to CPU Overload.
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C.2. PDFS

Histogram of UL Tra�c Volume conditioned to Low Coverage.
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Appendix D

Resumen en español

D.1 Motivación

En las últimas décadas se ha dado un cambio de paradigma hacia la movilidad en las teleco-

municaciones. Tradicionalmente las telecomunicaciones han implicado equipos vinculados a un

lugar, pero tras este cambio el foco pasa a situarse a la comunicación entre usuarios que pueden

moverse a grandes velocidades. Este nuevo enfoque involucra un amplio abanico de servicios

orientados a una creciente base de usuarios. Como consecuencia las comunicaciones móviles aca-

paran una proporción creciente de la industria de las telecomunicaciones, y cobran cada vez más

importancia en la sociedad moderna.

Las comunicaciones móviles para las masas comenzaron con la telefonía, y gradualmente se

desplazaron hacia los servicios de datos. Los antecedentes de la telefonía móvil se remontan a la

II Guerra Mundial. Sin embargo, la primera llamada por teléfono móvil utilizando un prototipo

de una red celular moderna se realizó o�cialmente el 3 de Abril de 1973 en Manhattan. El autor

de dicha llamada fue Martin Cooper, un empleado de Motorola, que telefoneó a la sede de Bell

Labs en Nueva Jersey. A principios de los años 90, una funcionalidad secundaria de GSM (Global

System for Mobile Communications) comenzó a ser ampliamente utilizada por los usuarios: el

primer mensaje SMS (Short Message System) fue generado por una máquina y enviado en el

Reino Unido el 3 de Diciembre de 1992. En 1993 el primer mensaje SMS entre usuarios se envió

en Finlandia. El SMS tuvo una gran acogida entre los usuarios dado su bajo coste, marcando

una tendencia no esperada en el mundo de las telecomunicaciones. El servicio de voz ya no era la

única opción. A �nales de los 90 los operadores de redes móviles comenzaron a ofrecer servicios

de datos. En la actualidad las redes móviles han evolucionado hasta un punto en el que la voz

no es el servicio más utilizado. En la actualidad, las redes están principalmente orientadas a la

transmisión de datos y los terminales han evolucionado hasta dar lugar a los smartphones, que

son más cercanos a los ordenadores que a los teléfonos móviles de los años 90.

Para hacer frente a estos cambios, a lo largo del tiempo, varias generaciones de redes celulares

han sido desarrolladas, desplegadas y operadas para dar servicio. La Primera Generación (1G)
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comenzó en Japón en 1979 y en los países nórdicos en 1981. A lo largo de los años 80, las redes 1G

se desplegaron en otras regiones. Todas estas redes eran analógicas e incompatibles entre sí. La

Segunda Generación (2G) de redes celulares apareció en los años 90. Dos estándares compitieron

para ocupar el mercado: GSM en Europa y CDMA (Code Division Multiple Access) en los

Estados Unidos. Estas redes superaron a 1G al añadir transmisión digital en lugar de analógica,

seguridad mejorada, SMS y movilidad entre países que usasen el mismo estándar. Con la 2G, las

comunicaciones móviles tuvieron una amplia difusión entre los usuarios, y la demanda de ancho

de banda comenzó a crecer y a crear la necesidad de tecnologías mejoradas. Como respuesta a

este crecimiento, la Tercera Generación (3G) se introdujo en la primera década del nuevo milenio.

3G se diseñó con la transmisión de datos como principal caso de uso (es decir, conmutación de

paquetes en lugar de circuitos, comúnmente utilizada en la telefonía, aunque 3G soporta ambas).

La red 3G utilizaba tan sólo un único protocolo, UMTS (Universal Mobile Telecommunications

System), permitiendo por �n la movilidad global. Con la continuamente creciente demanda

de ancho de banda, la Cuarta Generación (4G) pronto se hizo necesaria. LTE (Long Term

Evolution) se adoptó como el protocolo para 4G, y ha sido recientemente desplegado en redes a

nivel global. Además de ofrecer un mayor ancho de banda, LTE utiliza una arquitectura de red

totalmente rediseñada y simpli�cada e introduce nuevos mecanismos para mejorar la calidad de

servicio. En la actualidad se está investigando y estandarizando la Quinta Generación (5G) de

redes móviles. Se espera que esta nueva generación traiga mayores anchos de banda así como

mejoras en la Operación y Mantenimiento (O&M) que reduzca costes y tiempos de espera.

En este escenario de demanda creciente en ancho de banda, cobertura y calidad, la inversión

en infraestructura (Capital Expenditure, CAPEX) debe ser alta. Las tareas de O&M cobran una

gran importancia, ya que las redes deben estar siempre optimizadas para ofrecer el mejor servicio

posible, y las tareas de resolución de problemas hacerse con el menor impacto en la percepción

del usuario. Esto fuerza a que la inversión en OPEX (Operational Expenditure) también crezca

signi�cativamente. En un mercado con una fuerte competencia, minimizar la inversión en OPEX

se convierte en una ventaja competitiva clave.

Para reducir OPEX, la automatización de O&M se usa cuando es posible, liberando a

los expertos humanos de tareas repetitivas. Las redes con un alto grado de automatización

reciben el nombre de Redes Autoorganizadas (Self Organizing Networks, SON [1]). Las funciones

SON pertenecen a tres categorías: autocon�guración (Self-con�guration, los elementos nuevos

se con�guran de forma automática), autooptimización (Self-optimization, los parámetros de la

red se actualizan de forma automática para dar el mejor servicio posible) y autocuración (Self-

healing, la red se recupera automáticamente de problemas). El interés de los operadores de red

y de los grupos de investigación ha dado lugar a varios proyectos de investigación y consorcios de

industria: CELTIC Gandalf [2], FP7 E3 [3], FP7 SOCRATES [4], SELF-NET [5], UniverSelf [6],

SEMAFOUR [7] y COMMUNE [8]. Estos proyectos no cubren de forma igualitaria las diferentes

funciones SON; Self-healing es el problema menos estudiado dadas las limitaciones y los desafíos

presentes en esta línea de trabajo.

Self-healing tiene cuatro procesos principales: detección (identi�car que los usuarios tienen

problemas en una celda), compensación (redirigir los recursos de la red para cubrir a los usuar-

ios afectados), diagnosis (encontrar la causa de dichos problemas) y recuperación (realizar las

acciones necesarias para devolver los elementos afectados a su operación normal). Entre estos
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Figure D.1: Desafíos y objetivos principales

procesos, hay una cantidad signi�cativa de estudios acerca de la detección [9][10][11][12], mientras

que la diagnosis no ha recibido tanta atención a pesar de ser un componente clave de Self-healing.

Esta tesis estudia el problema de la diagnosis automática, explorando la utilización de algoritmos

de Inteligencia Arti�cial (IA) para realizar esta operación. Si bien hay algunos estudios acerca de

este tema [13][14][15][16][17][18][19][20][21], en este momento la diagnosis automática no ha sido

adoptada por el mercado dada la falta de técnicas y plataformas que puedan entrenar los algorit-

mos de IA de forma fácil y apropiada. Estos algoritmos deben ser entrenados normalmente por

expertos en resolución de problemas, que no suelen tener disponibilidad para gastar el tiempo y

realizar el esfuerzo necesarios. Por tanto, el principal objetivo de esta tesis es crear métodos para

entrenar estos algoritmos para obtener resultados precisos con la mínima intervención necesaria

por parte de expertos humanos.

D.2 Desafíos y objetivos

El objetivo principal de esta tesis es establecer las bases de un sistema que supera las limitaciones

te impiden el desarrollo, prueba, despliegue y uso activo sistemas de diagnosis automática. La

Figura D.1 muestra los principales objetivos de esta tesis en el escenario actual de la diagnosis

automática.

Aunque la automatización de la resolución de problemas en LTE (especí�camente diagnosis)

es una necesidad para los operadores dadas las ganancias en tiempo, calidad de servicio y costes,

aún no ha sido ampliamente adoptada. A pesar de que se han propuesto diversas aproximaciones

basadas en algoritmos de IA [13][14][15][16][17][18][19][20][21], no han sido implementadas en

herramientas comerciales. La causa de estas bajas tasas de adopción es la falta de algoritmos
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de diagnosis que funcionen bien y se adapten a las necesidades de los operadores en escenarios

reales (Desafío 1). Por tanto, en la actualidad, la diagnosis de fallos es principalmente una tarea

manual, que mantiene ocupados expertos humanos durante horas o días incrementando los costes.

El valioso tiempo de los expertos se malgasta en la resolución de tareas repetitivas que podrían

ser automatizadas de forma de�ciente por sistemas de apoyo a la decisión (Decision Support

Systems, DSS) basados en conocidas técnicas de IA. En esta tesis se utilizan controladores de

lógica borrosa (Fuzzy Logic Controllers, FLC [22]) como el núcleo de un sistema DSS (Objetivo

4), por la facilidad de comprensión de su estructura y la relativa portabilidad de su base del

conocimiento que facilita las tareas de importación, exportación e integración de conocimiento

experto.

Generalmente, los DSS se crean siguiendo varios pasos: desarrollo (o selección entre las

numerosas opciones disponibles [23][24][22][25][26][27]) de un núcleo basado en un algoritmo de

IA que realiza el análisis de los datos disponibles (donde la falta de información acerca de las

propiedades de datos procedentes de casos de resolución de problemas en escenarios reales limita

el alcance y el realismo de las pruebas que se han hecho en estudios anteriores acerca de la

diagnosis), entrenamiento de la solución sobre el sistema objetivo (que requiere datos reales para

entrenar los algoritmos de IA o bien expertos que estén dispuestos a gastar el tiempo y realizar el

esfuerzo para con�gurarlos de forma manual) y explotación a lo largo de la vida útil de la solución

(incluyendo revisiones periódicas y actualizaciones del sistema que, una vez más, requieren datos

reales o bien una con�guración manual). A pesar de que hay muchas soluciones de IA disponibles

y bien estudiadas, en el caso de la diagnosis, la selección del algoritmo especí�co está limitada

por la falta de un análisis acerca de la naturaleza de los datos (Desafío 2). Por tanto, esta tesis

estudia las propiedades de los datos que los expertos en resolución de problemas utilizan para

hacer la diagnosis de forma manual (Objetivo 2) y de este modo poder hacer una selección bien

fundada.

Los DSS necesitan disponer de una versión codi�cada del conocimiento experto que guíe sus

capacidades de decisión. El formato con el que se codi�ca el conocimiento varía ampliamente de

acuerdo al algoritmo IA utilizado. La integración de este conocimiento requiere de un proceso

de adquisición del conocimiento (Knowledge Acquisition, KA), en el que la experiencia de los

ingenieros de resolución de problemas es obtenida y guardada en un formato adaptado a los

algoritmos de IA. Esto se puede hacer de dos maneras diferentes: bien mediante la intervención

humana (mediante una entrevista [28][29][30][31] o instruyendo a los expertos acerca de cómo

con�gurar el método de IA escogido, que suele ser un proceso tedioso que conduce a la falta

de colaboración -Desafío 4- y desarrollo en el campo de la diagnosis automática -Desafío 1),

o bien mediante KDD [32][33] (Knowledge Discovery and Datamining), que realiza un análisis

estadístico de las entradas y salidas del trabajo de los expertos en busca de patrones repetitivos

y los traduce al formato apropiado. KDD reduce signi�cativamente el esfuerzo necesario en la

fase de entrenamiento de los DSS, reduciendo las molestias en el �ujo de trabajo de los ingenieros

de resolución de problemas. No obstante, a pesar de la disponibilidad de los métodos KDD para

el entrenamiento de sistemas de diagnosis automática [34][35][36][37], éstos aún no han visto un

alto grado de adopción por parte de los operadores de red.

Un aspecto común de todos los pasos necesarios en la creación de una solución de diagnosis

automática basada en DSS es la necesidad de datos representativos. Como se ha señalado
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anteriormente, el diseño (o selección) del algoritmo de IA que realiza las funciones de diagnosis

necesita un conocimiento previo acerca del tipo de datos que será procesado. Esta información

no se puede obtener a menos que haya datos de casos reales de resolución de problemas. La falta

de dichos datos (Desafío 3) conduce a menudo al entrenamiento de los algoritmos con datos

simulados, lo cual no produce resultados óptimos ni convincentes para los operadores de red.

Otra solución típica es utilizar algoritmos de aprendizaje no supervisado, que en el caso de la

diagnosis consisten en la búsqueda de patrones sin conocer el problema asociado. Esto conduce

a sistemas de KA que requieren la intervención de los expertos para identi�car y etiquetar los

patrones reconocidos, haciendo que el sistema de nuevo dependa de la disponibilidad de dichos

expertos. Hay una necesidad clara para casos reales de resolución de problemas, por lo que

uno de los objetivos de esta tesis es crear una base de datos con estos casos (Objetivo 1). El

volumen de datos disponibles en una red moderna para la resolución de problemas, así como la

variedad de formatos en los que vienen puede suponer una carga de procesado excesiva para los

métodos de computación tradicionales (Desafío 5), por lo que los métodos Big Data pueden ser

necesarios.

Con un conjunto de datos de casos reales de resolución de problemas, la mayor parte de estas

limitaciones se puede resolver. La falta de información acerca de la naturaleza de los datos puede

resolverse mediante el análisis de este conjunto de datos, la búsqueda de las mejores técnicas para

procesarlo (Objetivo 2, Objetivo 6) y la creación de un modelo (Objetivo 3) que identi�que

claramente el comportamiento de cada variable bajo diferentes situaciones. Un modelo de los

datos también puede ayudar con el problema de la falta de datos, dado que puede utilizarse

para mejorar y validar los resultados de los escenarios simulados, así como para generar nuevos

conjuntos de datos que imiten fallos de red. Los objetivos concretos de esta tesis (Resumidos en

la Figura D.1) son los siguientes:

Objetivo 1: Recolección de una base de datos de fallos: Si bien los datos acerca del

rendimiento las redes son fácilmente accesibles en las bases de datos de los oper-

adores, las causas de los fallos no suelen ser almacenadas o documentadas (Desafío

3) junto a los datos afectados dado que es una tarea que se sale del �ujo de trabajo

rutinario de los expertos (Desafío 4). El principal motivo de esto es que el pro-

ceso de recoger los datos manualmente, adjuntar un informe y guardarlos en una

base de datos común es un proceso tedioso que aporta poco valor a corto plazo

para los expertos en resolución de problemas. Por tanto, es necesario un sistema

que pueda realizar esta tarea de forma rápida y con la mínima intervención por

parte de los expertos. Si esta información se recoge de una herramienta que los

expertos ya utilizan para inspeccionar los valores de los datos de rendimiento de

la red que utilizan en el proceso diagnosis, el esfuerzo requerido es mínimo. En ese

caso, el proceso de recolección de datos estaría integrado con las observaciones de

los expertos, necesitando tan sólo que estos etiquetasen los datos con la diagnosis

y dejando que el sistema haga el resto de las tareas de recolección, procesado y

almacenamiento. En esta tesis, se desarrolla una plataforma software que requiere

tan sólo tres variables (nombre del sector afectado, fecha en la que se diagnostica

el problema y diagnosis) para realizar el proceso. Cuando este sistema se inte-

gra dentro de una herramienta de visualización de datos que los expertos utilizan
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de forma frecuente, dos de estas variables (nombre del sector afectado y fecha)

pueden ser extraídas del contexto de utilización (es decir de los datos que se mues-

tran en pantalla). Por tanto, los expertos tan sólo necesitan dar una diagnosis

(respondiendo al Desafío 4). A continuación este sistema se utiliza para recoger

un conjunto de casos reales de resolución de problemas. Esta base de datos con-

tiene datos de rendimiento de una celda concreta afectada por un problema en una

ventana de tiempo junto con una etiqueta que identi�ca el problema diagnosticado

por los expertos. La existencia de esta base de datos resuelve el problema de la

falta de datos reales (Desafío 3) qué impide el desarrollo de sistemas de diagnosis

automática.

Objetivo 2: Análisis de los datos recogidos: Una vez resuelto el problema de la falta de

datos, se puede atajar el problema de la falta de conocimiento acerca de la natu-

raleza de los datos (Desafío 2). Esta etapa del estudio incluye la caracterización de

diferentes tipos de datos que han sido recogidos para diseñar mejor los algoritmos

de IA que realizarán la diagnosis. Además, dado que los datos recogidos tendrán

unas propiedades que no son compatibles con los requisitos de los algoritmos de

minería de datos (Data Mining, DM) que entrenarán a los algoritmos de IA, una

de las tareas principales de esta etapa será determinar el procesado requerido y

el diseño de los métodos para realizarlo. De hecho, estos pasos de preprocesado

son parte del proceso KDD. Esta etapa resuelve la falta de conocimiento y allana

el camino para el diseño de algoritmos de IA mejores y el entrenamiento de los

mismos con datos reales de la red LTE.

Objetivo 3: Creación de modelos para los fallos más comunes en LTE: con el doble

propósito de generar nuevos datos de casos de fallo realistas y para tener un mejor

conocimiento de los problemas bajo estudio, se generará un modelo de la base de

datos recogida. Las variables de medida de rendimiento se caracterizarán indi-

vidualmente usando modelos estadísticos condicionados a la ocurrencia de cada

uno de los fallos más comunes. Este modelo podrá utilizarse además para validar

simulaciones, dado que proporciona una fuente de datos realistas que puede servir

de patrón de validación. El producto �nal de esta etapa ayuda a entender mejor el

comportamiento de los datos (respondiendo al Desafío 2) y resuelve el problema

de la falta de casos para las pruebas de algoritmos de IA al permitir la generación

de datos realistas (Desafío 3).

Objetivo 4: Estudio de métodos de IA para la diagnosis: con el conocimiento disponible

acerca de los datos de rendimiento de la red, los problemas más comunes y el

proceso manual de resolución de problemas, el siguiente paso lógico será diseñar

un algoritmo de IA que realice la diagnosis automática. En esta tesis, se utilizan

los FLC [23][24] como mejor opción, dado que son fácilmente entendibles tanto

por expertos humanos (dado que usan un lenguaje cercano al hablado) como por

máquinas. Los FLC facilitan la generación auntomática de reglas de diagnosis y

su integración con reglas preexistentes. Esta solución es también atractiva para

los operadores de red, ya que su claridad hace que sea menos confusa que otras

alternativas, como las redes bayesianas [25] o las redes neuronales [27].
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Objetivo 5: Diseño y pruebas de una plataforma de KA: para obtener unos buenos

resultados de diagnosis, los métodos de IA escogidos deben ser entrenados con

datos de casos reales, de modo que tengan el conocimiento de problemas que se

puedan encontrar una vez desplegados en una red real. Con este objetivo, esta tesis

diseña un proceso KDD para entrenar un FLC, basado en la información extraída

y los procesos desarrollados en la fase de análisis de la base de datos recogida. El

producto de esta fase será un sistema software que, una vez proporcionada una base

de datos de diagnosis de casos resueltos, devuelve un conjunto de reglas de diagnosis

que pueden ser utilizados en un FLC. Estas reglas se adaptan a los escenarios reales

donde serán utilizadas (respondiendo al Desafío 1). Además, este software podrá

coordinarse con la plataforma de recolección de datos, de modo que cuando se

introducen nuevos casos en la base de datos, se mejora el modelo de conocimiento

del FLC asociado.

Objetivo 6: Análisis de los aspectos Big Data y consideraciones de diseño: en las redes

modernas, especialmente en LTE, la cantidad de datos de rendimiento y con�gu-

ración es enorme. Estos datos se generan en un amplio abanico de fuentes de datos

(tales como los terminales de usuario, los nodos de acceso, etc.) y formatos (difer-

entes tipos de �chero, resoluciones temporales, etc.), lo que incrementa el número

de pasos de procesado necesarios. Además, dado el elevado número de eventos

que suceden en la red por unidad de tiempo, la información se genera de forma

continua a una alta velocidad. Todos estos aspectos (Desafío 5) son parte del

paradigma Big Data [40]. En los problemas Big Data, las técnicas tradicionales de

procesado no son lo su�cientemente potentes (es decir, no son capaces de procesar

la cantidad de trabajo requerida en el tiempo disponible), por lo que se utilizan

técnicas y plataformas nuevas. Esta tesis estudiará los aspectos Big Data de los

datos extraídos de la red, y los tendrá en cuenta en todo momento en el diseño de

los algoritmos utilizados para tratar dichos datos.

La combinación de estas partes constituye la visión general del sistema propuesto en esta

tesis: una plataforma en la que cada vez que un experto diagnostica un problema en la red, éste

puede reportarlo con un esfuerzo mínimo y almacenarlo en el sistema. La parte central de este

sistema es un algoritmo de diagnosis que evoluciona y mejora aprendiendo de cada nuevo ejemplo,

hasta llegar al punto en el que los expertos pueden con�ar en su precisión para los problemas

más comunes. Cada vez que surja un nuevo problema, se añadirá a la base de datos del sistema,

incrementando así aún más su potencia. El �n es liberar a los expertos de tareas repetitivas, de

modo que puedan dedicar su tiempo a desafíos cuya resolución sea más grati�cante. Además,

los resultados intermedios del sistema (modelos de los problemas más comunes, resultados del

preprocesado de datos, etc.) pueden ser utilizados como información de apoyo al proceso manual

de diagnosis.

A continuación se hará un breve resumen de los capítulos 2 a 6 de la tesis.
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D.3 Resolución automática de problemas en LTE

En el capítulo 2 se describen las tecnologías de red que forman la base de la tesis. Concretamente,

se hace una introducción de la red LTE, comentando cómo el mercado demandaba anchos de

banda cada vez mayores y cómo esto condujo a las especi�caciones de 4G, que se vieron plas-

madas en el protocolo LTE. A continuación se describe el proceso de estandarización de LTE.

En la segunda parte del capítulo se describen las redes SON, y las funcionalidades de autocon-

�guración, autooptimización y autocuración. Se describen aspectos de la implementación de

dichas funcionalidades, estableciendo la relación con los algoritmos de IA. Finalmente, se realiza

una descripción más detallada de la función de autocuración, describiendo en primer lugar el

proceso manual de resolución de problemas, y a continuación el estado del arte en tecnologías

que automaticen dicha funcionalidad.

D.4 Inteligencia Arti�cial

El capítulo 3 introduce los conceptos de IA utilizados en la tesis para implementar la solución

de KA. Este capítulo se divide en cuatro partes. En la primera parte de describen los sistemas

DSS. Se introduce el concepto de conocimiento experto de manera formal, y su papel en los

sistemas basados en el conocimiento (Knowledge-Based System, KBS). Se exploran asimismo

las soluciones basadas en KBS desarrolladas con anterioridad para la diagnosis de fallos, y se

describe en detalle la utilización de los controladores de lógica borrosa (FLC). A continuación,

se introduce con mayor detalle el problema de la adquisición del conocimiento, revisando las

metodologías manuales utilizadas tradicionalmente y los problemas que causan en el escenario

de la diagnosis en redes móviles. En la tercera parte, se introducen las técnicas KDD, describiendo

este campo de estudio y las condiciones de contorno para su aplicación en el escenario de esta

tesis. Finalmente, se explora el campo de las tecnologías Big Data, estableciendo las condiciones

que separan un problema tradicional de analítica de datos de un problema en el que es necesario

utilizar estas técnicas.

D.5 Adquisición del conocimiento para sistemas de diagnosis en

redes LTE

En el capítulo 4 se explora el proceso de recogida de datos de casos reales de resolución de prob-

lemas en la red LTE. En primer lugar, se describen las propiedades de los datos disponibles para

la diagnosis, especi�cando las diferentes fuentes de datos y formatos. Se exploran los problemas

de dimensionalidad, que hacen que se la adquisición del conocimiento en este escenario sea un

problema Big Data. Para ejempli�car la utilización de técnicas Big Data en redes LTE, se expo-

nen varios casos de uso en los que se modi�can técnicas de autocuración para que sean utilizadas

en plataformas de computación en la nube. En la segunda parte del capítulo 4 se describe el

problema de la adquisición del conocimiento, estableciendo su separación en dos partes: cap-

tura y modelado. La parte de captura del conocimiento comprende los procesos necesarios para

obtener los datos que contienen el conocimiento experto, mientras que el modelado se encarga
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de extraer ese conocimiento y convertirlo a un formato que pueda ser utilizado por un KBS.

Esta parte del capítulo revisa los requisitos necesarios para la creación de un sistema de captura

del conocimiento, tanto desde el punto de vista técnico (de cara a las propiedades de los datos)

como desde el punto de vista humano (de cara a las necesidades y motivaciones de los expertos

en diagnosis). Finalmente, se describe la interfaz software desarrollada para realizar la captura

del conocimiento.

D.6 Modelado de bases de datos de problemas en LTE

El capítulo 5 se centra en el análisis de la base de datos de casos problemáticos recogida durante

la realización del estudio. Este capítulo se divide en tres partes. En la primera se describe la base

de datos en crudo, describiendo los distintos problemas recogidos y sus proporciones, así como

otra información acerca del proceso de captura del conocimiento. A continuación se describen

los procesos necesarios para el preprocesado de los datos recogidos y su conversión a un formato

apropiado para los procesos de modelado descritos más adelante y de minería de datos descritos

en el capítulo 6. Finalmente, se describe un proceso de modelado de datos y se aplica sobre

los datos descritos, mostrando las relaciones entre los problemas y los principales indicadores de

rendimiento recogidos.

D.7 Minería de datos en LTE

En el capítulo 6 se describe el proceso que extrae las reglas de diagnosis a partir de los datos

de casos de fallo apropiadamente formateados. En primer lugar, se introducen las nociones de

minería de datos necesarias, así como un repaso de la taxonomía de los algoritmos disponibles.

A continuación se describen en detalle dos algoritmos de minería de datos diseñados para la

extracción de las reglas de diagnosis (un algoritmo genético y uno basado en el algoritmo WM

[96]) y se realizan pruebas con datos simulados para caracterizar su comportamiento. A la luz

de los resultados obtenidos, se concluye que el algoritmo basado en WM es más apropiado dada

su posibilidad de ser ejecutado en la nube. Finalmente, se aplica el algoritmo elegido sobre los

datos reales de la red descritos en el capítulo 5.

D.8 Conclusiones

En esta sección se revisarán los resultados de la tesis, las contribuciones y las líneas de trabajo

futuro.

D.8.1 Resultados

Como resultado del estudio de la tesis se obtienen varios resultados asociados a la red bajo estudio.

Estos resultados pueden obtenerse con facilidad en otras redes aplicando los pasos descritos en

la metodología. Por tanto, aunque estos resultados no representen siempre el comportamiento

163



APPENDIX D. RESUMEN EN ESPAÑOL

general de las redes LTE, su comprensión en el contexto de un escenario conocido arroja luz para

los desarrollos futuros. Concretamente, los resultados obtenidos son los siguientes:

• Base de datos de casos de diagnosis resueltos: La base de datos recogida en el

capítulo 5 es el primer paso en el proceso KDD. Es la salida del proceso de selección

(descrito en el capítulo 4), por lo que es el primer subproducto que contiene conocimiento

experto. La base de datos de casos resueltos debe cumplir una serie de requisitos, tales

como tener el su�ciente número de ejemplares de cada caso, un buen número de casos

distintos, etc. El cumplimiento de estos requisitos depende en gran medida de la calidad

del trabajo de los expertos (es decir, que cometan pocos fallos en el proceso de diagnosis).

La base de datos extraída cubre un período de 10 meses (desde Junio de 2013 hasta Abril

de 2014). En este intervalo, se han recogido un total de 475 casos clasi�cados en 21 tipos

de problemas distintos. No obstante, de estos casos, sólo un subconjunto con los datos de

mayor calidad fue seleccionado para el proceso de KDD, con lo el tamaño �nal de la base

de datos procesada fue de 47 casos divididos en 4 problemas.

• Preprocesado de los datos de fallos: La preparación de los datos para el proceso de

minería de datos es un paso indispensable. Sin este paso, los patrones buscados por el

algoritmo de minería de datos estarían escondidos entre el ruido. En el caso de los datos

de fallos de red LTE, la preparación consiste en limpiar (rellenar los valores perdidos en las

series temporales) y reducción de la dimensionalidad (eliminando la componente temporal

de los datos). El resultado de la fase de preprocesado es un conjunto de datos que contiene

vectores con valores de indicadores de rendimiento degradados. Dichos vectores representan

un intervalo temporal en el que la red no presta servicio con una calidad aceptable y

vienen etiquetados con una diagnosis dada por los expertos en resolución de problemas.

El resultado de la aplicación de los algoritmos de preprocesado sobre la base de datos

seleccionada fue un conjunto de 359 vectores.

• Modelado de fallos de LTE: El siguiente paso en el estudio de la base de datos de casos

resueltos fue el modelado de la misma. El modelo extraído representa las relaciones entre

lso problemas seleccionados y un subconjunto de indicadores de rendimiento. Este proceso

constituye en sí mismo un proceso de minería de datos, aunque no forma parte del sistema

de KA, dado que no está orientado a la extracción de un sistema de diagnosis. En esta

tesis, se ha utilizado el modelo para mejorar los resultados al lograr el balanceo de datos

(es decir, que cada problema tenga un número similar de vectores que lo representen en

el proceso de minería de datos). El resultado del proceso de modelado es un conjunto de

funciones distribución de probabilidad para cada indicador de rendimiento condicionadas

a la ocurrencia de un problema. El modelo resultante se muestra en el apéndice C.

• Reglas de diagnosis: El paso principal del proceso de adquisición del conocimiento es la

minería de datos. Con los datos limpios y reducidos, la fase de minería de datos extrae los

parámetros de un FLC que se utiliza para la diagnosis. Dado que los parámetros de los

FLC se dividen en dos partes (funciones de pertenencia y reglas), se utilizan dos algoritmos

de minería de datos en este paso. El FLC resultante contiene información de las funciones

de pertenencia adaptadas a la red en la que se despliega y reglas de diagnosis basadas en el

conocimiento experto. Los resultados de esta etapa se probaron sobre los datos originales

mostrando un alto índice de aciertos.
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D.8.2 Contribuciones

La contribución general de esta tesis es el desarrollo de una metodología para la adquisición del

conocimiento en el proceso de resolución de problemas en redes LTE (Objetivo 5). El producto

de esta metodología es un sistema de diagnosis automática basado en un FLC. Esto reducirá

el trabajo repetitivo de los expertos, que tendrán de este modo más tiempo para emplearlo en

problemas más complejos y menos susceptibles de ser automatizados. Además, el sistema de

diagnosis automática reducirá el tiempo requerido para resolver problemas, reduciendo así los

cortes de servicio y mejorando la experiencia de usuario. De forma más pormenorizada, las

contribuciones de esta tesis son las siguientes:

• Base de datos de casos de diagnosis resueltos: La base de datos constituye en

sí misma una importante contribución (Objetivo 1) que puede ser utilizada como her-

ramienta para un elevado número de aplicaciones relacionadas con la resolución de proble-

mas: formación de expertos en diagnosis, plani�cación para mejoras y optimización de la

red, análisis de la evolución de la red, etc. En el desarrollo de funciones SON, la existencia

de esta base de datos responde a una necesidad que no está satisfecha; los expertos en di-

agnosis no suelen tener tiempo para crear bases de datos de este tipo, y los desarrolladores

no suelen tener los conocimientos necesarios. Como consecuancia, tradicionalmente, los

sistemas SON se desarrollan sin datos reales, dando lugar a pruebas poco realistas.

• Algoritmos de preprocesado: Esta tesis propone varios algoritmos de preprocesado

para el tratamiento de los datos recogidos. Para ello, previamente se ha hecho un análisis

de las propiedades de los mismos (Objective 2). Se ha propuesto un algoritmo de limpieza

de datos que utiliza valores históricos y las propiedades de periodicidad para rellenar los

huecos, y un algoritmo de reducción de datos que extrae los valores de los indicadores de

rendimiento en condiciones de degradación.

• Modelo de fallos de LTE: El modelo de los fallos de red obtenido en esta tesis (Objetivo

3) constituye una valiosa aportación que ayuda a la comprensión de las relaciones entre

las medidas de rendimiento y los fallos modelados. La información aportada por el modelo

puede conducir a mejoras en la red y en el diseño de algoritmos SON. Además, el modelo

puede ser utilizado para generar datos emulados con un alto realismo. El procedimiento

utilizado para extraer el modelo también puede ser utilizado para modelar nuevos problemas

y en redes distintas.

• Algoritmos de minería de datos: Otra contribución de esta tesis es el estudio de la

aplicación de FLCs a la diagnosis (Objetivo 4) y el diseño e implementación de dos

algoritmos de minería de datos que ajustan un FLC basándose en una base de datos de

casos de diagnosis. El FLC extraído consigue una alta tasa de aciertos en la diagnosis de

la red en pruebas; y el método utilizado para ajustarlo puede ser utilizado en otras redes.

Además de la utilidad para la diagnosis, las reglas son una buena fuente de información

acerca de la naturaleza de los problemas observados, ya que vienen dadas en un lenguaje

próximo al humano.

• Adquisición del conocimiento para la autocuración en LTE: Esta tesis ha estudi-

ado el problema de la adquisición del conocimiento, estableciendo las ventajas de utilizar

KDD para este �n. Se ha enumerado los requisitos de una plataforma de adquisición del
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conocimiento, tanto desde el punto de vista técnico como el humano. Además, se ha dis-

eñado y desplegado una plataforma basada en estos requisitos (Objetivo 5) que es capaz

de recoger y procesar los datos con tan sólo la fecha, el sector afectado y la diagnosis como

entrada.

• Estudio de los aspectos Big Data de la autocuración: El uso de KDD en la autocu-

ración está sujeto a las características de los datos de rendimiento de la red. Esta tesis ha

estudiado las características de estos datos (Objetivo 2), determinando que dado su vol-

umen, variabilidad y velocidad de generación, pueden considerarse como un problema Big

Data. Por tanto, la naturaleza Big Data del problema ha sido estudiada con profundidad

(Objetivo 6). Los aspectos Big Data de los datos se han tenido en cuenta a lo largo del

estudio en el diseño de los algoritmos, asegurando que puedan ejecutarse de modo paralelo

y ejecutarse en una nube de computación. De forma adicional, se ha propuesto el rediseño

de varios algoritmos publicados, adaptándolos a la posibilidad de la ejecución en modo

paralelo.

Además, se identi�can varias líneas de trabajo futuro que podrán ampliar estos resultados

y aportaciones:

• Mejoras en la interfaz diseñada para la captura del conocimiento, simpli�cando la interac-

ción con los expertos y además dándoles resultados parciales que puedan servir de ayuda

en el proceso de diagnosis e incentiven el uso de la plataforma.

• Integración de la plataforma en un paquete software cerrado que realice todos los pasos

de forma consecutiva. Dicha solución iuntegrada deberá ser además fácil de desplegar y

comenzar a utilizar.

• Recolección de un mayor número de casos problemáticos, con nuevas causas y en distintas

redes.

• Selección automática de los indicadores de rendimiento relevantes.

• Desarrollo de aprendizaje online que mejore la calidad del sistema de diagnosis de forma

automática cada vez que se introduzca un caso nuevo.

• Mejoras y optimizaciones sobre los algoritmos desarrollados.
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