UNB

Universitat A utonoma
de Barcelona

Escola d’Enginyeria.
Departament d’Arquitectura de

Computadors i Sistemes Operatius

Efficient Communication
Management in Cloud
Environments

Thesis submitted by Laura Maria Espinola Britez
for the degree of Philosophize Doctor by the Universitat
Autonoma de Barcelona, under the supervision of the
Dr. Daniel Franco Puntes, done at the Computer
Architecture and Operating Systems Department, PhD.

in Computer Science.

Bellaterra, July, 2018

Efficient Communication
Management in Cloud
Environments

Thesis submitted by Laura Maria Espinola Britez
for the degree of Philosophiae Doctor by the Universitat
Autonoma de Barcelona, under the supervision of the
Dr. Daniel Franco Puntes, done at the Computer
Architecture and Operating Systems Department, PhD.

in Computer Science.

Barcelona, July, 2018

Dr. Daniel Franco Puntes Laura Maria Espinola Britez
Thesis Advisor Thesis Author

I would like to dedicate this thesis to

my loving husband Jorge Villamayor, who has

always helped me and believed that I could do it.

To my mom and dad, examples of perseverance,

and to my family from Paraguay that support

me from the distance.

Thanks God for giving me the strength to keep going!! =

Acknowledgements

I sincerely would like to thank my supervisor Dr. Daniel Franco Puntes, not only for
his guidance, advice and confidence in me, but also for his genuine support. I cannot
adequately express my thanks for his help and interest in seeing me succeed in all my
endeavors. Thanks Dani!, for your accurate words when I needed.

I also want to thanks Nokia Bell Labs - Ireland for giving me the opportunity to
participate in an industrial research lab. Specially to Diego Lugones and his research
team, who adopt me as one more in his team. This experience show me how science and
industry are linked to create revolutionary ideas. Ireland is an unforgettable country, I
will never forget the kindness and cordiality of its people.

To the people at the Department of Computer Architecture and Operating Systems
(CAOS), for always being helpful. Also to the people of my house of studies, Universidad
Nacional de Asuncion, for giving me a strong knowledge cements.

To my husband for the love and support of always, for joining me in this trip, which
seemed something very crazy at the beginning. Thanks for sharing the same dreams
and being part of this great adventure. Because when we are together, the impossible
becomes possible.

Thanks to my family for the support received since I started this long journey.
Thanks to my parents Juan Alberto and Maria Dolores, for simply being there always,
even when it seemed impossible. Thanks to my brothers Claudia and Albert for making
me laugh at times when everything seemed so difficult. Thanks to my grandparents
Brigida and Anastasio for support me with their prayers, and also to those who
accompany me from heaven grandma Blanca and grandpa Ercilio.

To my colleges and closer friends, for their actions and words of support throughout
this years. It is impossible to name everyone, because it was a long journey, and no
one crosses your path by chance and you do not enter anyone’s life without any reason.

The merit of successfully finishing a career is a privilege that only those who struggle
with faith and love understand.

Thanks!

Abstract

Scientific applications with High Performance Computing (HPC) requirements are
migrating to cloud environments due to the facilities that it offers. Cloud computing
plays a major role considering the compute power that it provides, avoiding the cost of
a physical cluster maintenance. With features like elasticity and pay-per-use, it helps
to reduce the researchers procurement risk.

Most of HPC applications are implemented using Message Passing Interface (MPI),
which is a key component in common and distributed computing tasks. However, for
this kind of applications on cloud environments, the major drawback is the lost of
execution performance, due to the virtualized network that affects the communications
latency and bandwidth.

To use a cloud environment with scientific applications of this kind, low latency
communication mechanisms are required. The network topology detail is not available
for users in virtualized environments, making difficult to use the existing optimizations
based on network topology information done in bare-metal cluster environments. In
some cases, cloud providers can migrate virtual machines, which impacts the efficiency
of routing optimizations and placement algorithms. Moreover, if resource isolation is not
guaranteed, resource sharing can lead to variable bandwidth and unstable performance.

In this thesis a Dynamic MPI Communication Balance and Management (DMCBM)
is presented, to overcome the communication challenge of HPC applications in cloud.
DMCBM is implemented as a middle-ware between the users application and the
execution environment. It improves message communication latency times in cloud-
based systems, and helps users to detect mapping and parallel implementation issues.
Our solution dynamically rebalances communication flows at higher levels of the
virtualized HPC stack, e.g. over MPI communications layer, to dynamically remove
communication hot-spots and congestion in the underlying layers.

DMCBM abstracts the communications state between application processes based on
latency measurements. This middleware characterizes the underlying network topology
and analyzes parallel applications behavior in the cloud. This allows for detecting

network congestion and optimizing communications by either selecting alternative

communication paths between processes, or leveraging live migration of virtual machines
in cloud environments. These options are analyzed in real-time and selected according
to the type of congestion (link or destination). DMCBM achieves lower application
execution time in case of congestion, obtaining better performance in clouds.

Finally, experiments that verify the functionality and improvements of DMCBM with
MPI Applications in public and private clouds are presented. The experiments where
done by measuring execution and communication times. NAS Parallel Benchmarks
and a real application of dynamic particles simulation NBody are used, obtaining an
improvement of up to 10% in the execution time and a communication time reduction

of about 40% in congestion scenarios.

Keywords: Cloud Computing, High Performance Computing, MPI Communications,

Virtual Networks, Communication Management.

Resumen

Las aplicaciones cientificas con requisitos de High Performance Computing (HPC)
estan migrando a entornos cloud debido a las ventajas que ofrece. El cloud computing
juega un papel importante teniendo en cuenta la potencia de computo que proporciona,
debido a que evita el costo de mantenimiento asociado a un cluster fisico. Con
caracteristicas como la elasticidad y el pago por uso, el cloud ayuda a los investigadores
a reducir el riesgo de adquisicion de recursos fisicos.

La mayoria de las aplicaciones de HPC se implementan mediante el standard
Message Passing Interface (MPI), siendo este un componente clave para tareas de
computo distribuido. Sin embargo, ejecutar aplicaciones MPI en entornos cloud tienen
como principal desventaja la pérdida de rendimiento durante la ejecucion, debido a
la virtualizacion de la red, que afecta la latencia de las comunicaciones y el ancho de
banda.

Para usar un entorno cloud con aplicaciones cientificas de este tipo, se requieren
mecanismos de comunicacién que permitan baja latencia. La topologia de red no
estd disponible para los usuarios en entornos virtualizados, lo que dificulta el uso de
las optimizaciones existentes para bare-metal clusters, basadas en la informaciéon de
topologia de red. En algunos casos, los proveedores de cloud pueden migrar maquinas
virtuales, lo que afecta la eficacia de las optimizaciones de enrutamiento y los algoritmos
de ubicacion. Ademads, si no se garantiza el aislamiento de los recursos, el intercambio
de recursos puede generar un ancho de banda variable y un rendimiento inestable.

En esta tesis se presenta Dynamic MPI Communication Balance and Management
(DMCBM), un middleware para resolver la pérdida de performance en comunicaciones
de aplicaciones HPC en cloud. DMCBM se implementa como un software intermedio
entre la aplicacion de los usuarios y el entorno de ejecucion. Mejora los tiempos de
latencia de comunicaciones en sistemas cloud y ayuda a los usuarios a detectar problemas
de mapping y ejecucion paralela. Nuestra solucion re-equilibra dindmicamente los flujos
de comunicacion a niveles superiores de la pila de HPC virtualizada, sobre la capa de
comunicaciones MPI, para eliminar dindAmicamente los hot-spots de comunicacion y la
congestion en las capas subyacentes.

DMCBM abstrae el estado de las comunicaciones entre los procesos de la aplicacion
en funcion de las mediciones de latencia. Este middleware caracteriza la topologia de
red subyacente y analiza el comportamiento de las aplicaciones paralelas en cloud. Esto
permite detectar la congestion de la red y optimizar las comunicaciones seleccionando
rutas de comunicacién alternativas entre procesos o aprovechando la migracién de

maquinas virtuales en entornos cloud. Estas opciones se analizan en tiempo real

X1

y se seleccionan segtn el tipo de congestién (enlace o destino). DMCBM logra un
menor tiempo de ejecucion de la aplicacion en caso de congestion, obteniendo un mejor
rendimiento en el cloud.

Finalmente, se presentan experimentos que verifican la funcionalidad y las mejoras
de DMCBM con aplicaciones MPI en cloud ptublicos y privados. Los experimentos se
realizaron midiendo los tiempos de ejecucion y comunicacion. Para los experimentos se
utilizan dos aplicaciones: NAS Parallel Benchmarks y una aplicacion real de simulacion
dindmica de particulas NBody, obteniendo una mejora de hasta 10% en el tiempo de
ejecucion y una reduccion del tiempo de comunicacién de aproximadamente 40% en

escenarios de congestion.

Keywords: Cloud Computing, High Performance Computing, Comunicaciones MPI,

Virtual Networks, Gestion de Comunicaciones.

Xii

Resum

Les aplicacions cientifiques amb requisits d’Informatica d’alt rendiment (HPC) estan
migrant als entorns clouds a causa de les instal - lacions que ofereix. El cloud computing
juga un paper important tenint en compte el poder de computar que proporciona, evitant
el cost d’'un manteniment de clusters fisics. Amb caracteristiques com 1’elasticitat i el
pagament per s, ajuda a reduir el risc d’adquisicié dels investigadors.

La majoria d’aplicacions HPC s’implementen utilitzant Message Passing Interface
(MPI), que és un component clau en tasques informatiques comunes i distribuides.
No obstant aixo, per a aquest tipus d’aplicacions en entorns en el ntvol, el principal
inconvenient és el rendiment perdut de I'execucio, a causa de la xarxa virtualitzada
que afecta la latencia de les comunicacions i 'ample de banda.

Per utilitzar un entorn en el nivol amb aplicacions cientifiques d’aquest tipus,
es requereixen mecanismes de comunicacio de baixa laténcia. El detall de topologia
de la xarxa no esta disponible per als usuaris en entorns virtualitzats, dificultant
I'as de les optimitzacions existents en funcié de la informacié de topologia de xarxa
realitzada en entorns de cltuster de metall sense format. En alguns casos, els proveidors
de cloud poden migrar maquines virtuals que afecten 'eficiencia de les optimitzacions
d’encaminament i els algorismes d’ubicacié. A més, si 'aillament de recursos no esta
garantit, 1'is compartit de recursos pot provocar un ample de banda variable i un
rendiment inestable.

En aquesta tesi es presenta un Dynamic MPI Communication Balance and Manage-
ment (DMCBM), per superar el desafiament comunicatiu de les aplicacions HPC en el
nivol. DMCBM s’implementa com un mitja entre la aplicacié dels usuaris i I’entorn
d’execuci6. Millora el temps de latencia de la comunicacié de missatges en sistemes
basats en nuvol i ajuda als usuaris a detectar problemes de mapeig i implementacié
paral - lels. La nostra solucié reequilibra dinamicament els fluxos de comunicaci6 a
nivells superiors de la pila HPC virtualitzada, p. Ex. sobre la capa de comunicacions
MPI, per eliminar dinamicament les puntes de comunicacié i la congestio a les capes
subjacents.

DMCBM resumeix 'estat de comunicacions entre processos d’aplicacié basats en
mesuraments de laténcia. Aquest middleware caracteritza la topologia de la xarxa
subjacent i analitza el comportament d’aplicacions paral - leles al cloud. Aixo permet
detectar la congestié de la xarxa i optimitzar les comunicacions, ja sigui seleccionant
camins de comunicacié alternatius entre processos o aprofitant la migracié directa de
maquines virtuals en entorns de cloud. Aquestes opcions s’analitzen en temps real i es

seleccionen segons el tipus de congesti6 (enllag o destinacié). DMCBM aconsegueix

xiii

un menor temps d’execucié de ’aplicacié en cas de congestio, aconseguint un millor
rendiment en nuivols.

Finalment, es presenten experiments que verifiquen la funcionalitat i millores de
DMCBM amb aplicacions MPI en clouds publics i privats. Els experiments que
realitzem mesurant els temps d’execucio i comunicacié. NAS Parallel Benchmarks i una
aplicacio real de la simulacié de particules dinamiques NBody s’utilitzen , obtenint una
millora de fins a 10% en el temps d’execucié i una reduccié de temps de comunicacid

d’aproximadament 40% en escenaris de congestio.

Xiv

Table of contents

List of figures
List of tables
Nomenclature

1 Introduction

1.1 HPC in Cloud Computing
1.2 The Challenge of HPC in Cloud
1.3 Objetives

1.3.1 General Objetive oo

1.3.2 Specific Objectives
1.4 Methodology
1.5 Contributions
1.6 Thesis Outline

2 Thesis Background

2.1 A Global Vision of Cloud Computing
2.1.1 Characteristics and Services
2.1.2 Implementation Models

2.2 Cloud Infrastructures L.
2.2.1 An overview of Amazon EC2 cloud infrastructure
2.2.2 OpenStack cloud infrastructure

2.3 HPC applications in cloud
2.3.1 HPC with MPI communications in cloud
2.3.2 MPI Applications Communication Pattern

2.3.3 Current research improving MPI communications in cloud

2.4 DMCBM: a new method to improve MPI Communications in cloud . .

xXix

xx1i

xxiii

3 Dynamic Communication Balance and Management in Cloud

3.1 Introduction
3.2 Dynamic MPI Communication Balance and Management
3.3 System Characterization
3.3.1 Application Communication Pattern Recognition
3.3.2 Network Topology Characterization
3.3.3 Alternative Paths Table Creation
3.4 Application Runtime Module
3.4.1 Monitoring, Detection and Notification tasks
3.4.2 Alternative Path Selection Controller using MCM
3.4.3 Virtual Machine Live Migration Controller
3.4.4 User Mitigation Controller
3.5 DMCBM Software Architecture

3.6 Summary

Evaluation
4.1 Experimental Design
4.2 Evaluation Metrics oo
4.3 Evaluation Methods o
4.4 Applications and workloads L
4.5 Experimental Environment00
4.5.1 Public cloud Configuration
4.5.2 Private cloud Configuration
4.6 General Software Configuration
4.7 Analysis of functionalitieso oL
4.7.1 System Characterization Validation
4.7.2 MCM Simulation Evaluation Using NAS-CG Benchmark
4.7.3 MCM Evaluation
4.8 DMCBM Evaluation in a public cloud
4.8.1 Performance Analysis
4.8.2 Communications Analysis
4.8.3 Scalability Analysis oL
4.9 DMCBM Evaluation in a private cloud
4.9.1 Performance Analysis
4.9.2 Scalability Analysis
4.9.3 Communications Analysis

4.10 Comparative with others techniques

XVi

23
23
25
27
27
27
29
30
31
34
38
40
41
42

4.11 Summary . .

5 Conclusions and Future Works

5.1 Final Conclusions

5.1.1 Dynamic MPI Communications Balance and Management

5.2 Future Works

References

xXvii

75
75
1)
76

77

List of figures

1.1
1.2
1.3

2.1
2.2
2.3

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4

MPI Ping Pong without congestion 3
MPI Ping Pong with congestion 4
MPI Ping Pong with congestion 5)
HPC migration tocloud 0o 16
MPI message transmissiono 17
NAS-CG Communication Pattern 18

DMCBM: Dynamic MPI Communications Balance and Management in

Cloud e 25
DMCBM: MCM and the Live Migration Controller 26
Sensibility Matrix Construction 29
Alternative Paths Table Creation 30
MCM tasks without congestion 31
Thresholds verification 00 32
Avoiding ACK notification 33
ACK notification 34
MCM tasks with congestion 35
Selection of alternative path example 36
MCM Daemon operation modes 37
Message order process e e 38
Live Migration Controller 39
DMCBM Mitigation processes 41
DMCBM Software Architecture 42
Cluster Diagram in Amazon EC2 51
Latency of Communication Message Size = IMBinday 1. 54
Latency of Communication Message Size = IMB day 2 54
Latency of Communication Message Size = 64KB 55

Xix

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Alternatives Path Selection. 55

Sensibility Matrix with path selections 56
Alternative Paths for NAS-CG Communications 57
NAS-CG communication time 58
MCM functionality and overhead added 60
MCM and NAS-CG Execution Times 61
DA-MCM analysis 62
Communications between processes 63
DA-MCM scalability 64
Applications Execution Time 66
Live-migration operation analysis for NAS-CG and NBody applications. 67
Applications with different quantity of processes 68
NAS CG CLASS D Benchmark with 16 processes 69
NBody, simulation of a dynamical system of particles with 16 processes 70
NAS CG CLASS D Benchmark with 32 processes 71

NBody, simulation of a dynamical system of particles with 32 processes 71

List of tables

4.1 Experimental scenarios .

4.2 Experimental setup for publiccloud

4.3 Real Hosts configuration

Xx1

Nomenclature

Acronyms / Abbreviations
HPC High-Performance Computing
IT Information Technologies

MPI Message Passing Interface

xxiil

Chapter 1

Introduction

“I started my life with a single absolute: that the world was mine to shape in
the image of my highest values and never to be given up to a lesser standard,

no matter how long or hard the struggle.”

— Ayn Rand, Atlas Shrugged, 1957

High Performance Computing (HPC) is used to obtain much higher performance
than traditional computers. Most of the HPC systems are used to resolve computational
intensive application problems in many topics, such as: science, engineering or business,
among others. This kind of applications needs an efficient and maintainable execution
environment to obtain good results.

Nowadays Cloud environments present many attractive characteristics for HPC
applications, but also have many challenges relative to the performance obtained in
this kind of environments. This thesis addresses one of the issues of HPC applications
in cloud. We are assuming as hypothesis that one of the main problems is the loss
of performance due to the communications carried out through virtual networks and
causing an increase of communications latency.

This work analyzes how HPC communications are carried out in cloud and proposes
a method to improve the communications latency time. The solution allows the users

to achieve better performance for HPC applications in cloud environments.

1.1 HPC in Cloud Computing

HPC needs a lot of compute power and this comes with the demand of many resources.
It is used in many scientific, academic and commercial applications. Although, HPC

users are limited by the cost, access to supercomputers is highly expensive due to

the startup and maintenance cost. In addition, Cloud provides many features that
avoid risks caused by under-provisioning of resources or wastage of resources (including
energy) resulting from under-utilization of computing power [19].

Cloud computing is a paradigm currently used by many distributed and parallel
applications, especially in High Performance Computing (HPC) field [30, 42]. There
are many reason why users of HPC are migrating their applications to this environment.

Some of them are:

o Pay-as-you-go accounting: HPC users only need to pay for the resources that

they use, and without need of maintenance them.

e The inherent elasticity and flexibility: Dynamically acquire new resources accord-
ing to the applications demand. In cloud it is possible to use virtualization and
high availability of resources to fulfill the requirements of the application. For
consumers, computing resources become immediate, they can use them to scale

up whenever they want, and release them once they finish to scale down.

o Energy efficient: Resources are pooled and shared by multiple consumers avoiding

the waste of compute power.

Cloud environment is the synergistic combination of distributed computing and
communication to provide computing capacity as a service on demand. It has potential
to transform a large part of IT industry, changing the way I'T hardware is designed
and purchased [3]. In order to leverage economy of scale, as well as reducing in-house
infrastructure and accelerating time to market.

Currently, cloud is growing beyond cost benefits as providers are offering high-
performance resource types including compute or memory-optimized instances, as
well as GPU or FPGA options [1] and even bare-metal environments [35, 38]. All
these factors, make cloud computing an attractive paradigm for High Performance
Computing [18].

Scientific parallel applications usually require a lot of compute resources to resolve
complex problems. To the users of these applications, cloud offers convenient access
to a large amount of resources by renting the computing power, instead of acquiring
and maintaining physical clusters [29]. Currently, there are several cloud providers
that offer characteristics to fulfill different user’s customization needs for their parallel
application execution in cloud.

Virtualization techniques are needed in cloud providers infrastructures, in order

to offer IT services. Consequently, bare-metal configurations are not visible from the

users layer. In this context, optimizations to improve parallel application executions
are quiet difficult to design.

In shared environment environments like clouds, users can acquire resources with
certain QoS. Although, the bare-metal resources are probably been shared among
other user clients. It is expected to have different behaviors in the execution of users
applications when running on local bare-metal clusters compared to cloud environment.
For instance, even two systems (bare-metal cluster and cloud) with similar configurations
in processors, memory and cluster node sizes, can perform differently [23].

The migration of HPC parallel applications to cloud environments comes with
several advantages, but despite considerable research efforts to improve application
execution in this kind of environment [4, 27, 40|, virtualization introduced in cloud
still affects its performance. A key challenge of HPC in cloud is to consider the lack of

efficient communication support in virtualized networks [11].

1.2 The Challenge of HPC in Cloud

HPC applications require an acceptable execution performance, and one of the main
factor that can affect its execution is how communications are carried out [33, 36].
Many HPC applications are highly sensitive to message communication, due to the

repetitiveness of their communication pattern during the execution. This repetitive

15000

10000

Latency (uSecs)

5000

Fig. 1.1 MPI Ping Pong without congestion

15000

10000

Latency (uSecs)

5000

o

Fig. 1.2 MPI Ping Pong with congestion

behavior on the entire application can lead to situations in which the scalability depends
on the efficient support of network communications [18].

In cloud computing, HPC applications are executed in a entire virtualized envi-
ronment. The virtual networks are one of the main characteristics of this kind of
environments. For this reason a key challenge of HPC in Cloud is to consider the
lack of efficiency in communication support on virtualized networks. This problem
inhibit parallel applications to take advantage from high performance networks causing
a degradation of their messages communication [11, 23].

Currently many distributed and parallel applications in HPC use the standard
protocol Message Passing Interface (MPI) to perform its communications [15]. MPI
applications typically require low latency and high bandwidth inter-processor com-
munication to achieve better performance. In case of Cloud, the effect of network
virtualization results on a bottleneck for HPC applications implemented with MPI [19].
This trouble with MPI communications can even cause some processes become idle. If
this issue is not efficiently controlled, message latency time on HPC applications is
increased and system performance is severely degraded [5, 23].

There are many studies in this area that verify the degradation of performance in
MPI applications communications caused by network virtualization in cloud. In Q. He
et al. [23] for example, they compare the end-to-end delay of MPI communications on
clouds with a NCSA cluster: the message latency is below to 50 microseconds for the

cluster and above 100 microseconds in cloud systems.

16.000 M Latency without Hotspot M Latency with Hotspot

14.000
12.000

10.000

8.000

Latency (uSecs

6.000

4.000

2.000

13->2 13->3 13->4 13->8
Communications Between Nodes

Fig. 1.3 MPI Ping Pong with congestion

To exhibit the problem, we run a MPI parallel application called Ping Pong, which
exchange messages between all processes of the application. The base latency of
application’s messages, running in cloud environment (Amazon EC2) without any
disturbance from another application is shown in Fig. 1.1. Then, we measure process
communication message latency of the same application, although this time we add a
constant traffic between two nodes of the cloud: node 1 and 17. The generated traffic
creates congestions in other processes communications that are in other nodes of the
virtual cluster, causing an effect in terms of message latency time. Fig. 1.2 shows the
disturbance caused on processes communications in nodes: 2, 3, 4, 8 and 13, when the
constant traffic is created. We illustrate latency variation on affected nodes in Fig. 1.3.

The increase of message latency time in virtualized networks can not be afforded
with traditional optimization methods like topology aware algorithms because this
information is in underlying layers, and hidden from users. Furthermore, as cloud
system virtualization uses a dynamic network flow scheduling, even static topology
information is not sufficient to represent the network [16].

The loss of communications performance for HPC in cloud environments may not
produce the results as planned, for example the expected execution time, causing even

more cost to the users. These concerns justify the research of solutions in this area.

1.3 Objetives

1.3.1 General Objetive

In this thesis the main objective is to reduce the communication latency of MPI

applications in cloud environments, providing a method to manage communications.

1.3.2 Specific Objectives

Several specific objectives are elaborated to cover the main goal of this thesis. The
objectives are selected in order to understand the basic nature of HPC communications

in cloud and how they can be improved. These specific objectives are the following:

o Analyze the factors that affect the execution of parallel applications in virtualized

networks on cloud environments.
e Designing a mechanism that improve MPI communications in cloud.

« Evaluate the designed mechanism in terms of functionality and scalability.

1.4 Methodology

The research methodology followed in this thesis is oriented to design, implement and
analyses experimental scenarios in order to improve MPI communications in cloud. The
experimental methodology is integrated by a set of methodical and technical activities
that are carried out to collect information and necessary data on the subject to be
investigated and the problem to be solved. The research in this thesis is framed in the
academic program of the Universitat Autonoma de Barcelona.

This methodology will be divided into stages described below:

» Bibliographical analysis of the state of the art: At this stage, current approaches
on the subject to be investigated are searched, it is sought to delve into the
challenges and obstacles in the field. The topics on which the research would be
carried out are: cloud environments, virtualized networks, SDN and techniques

that improve the performance in the management of MPI messages in the network.

« Data collection and analysis: This point refers to a comparative study of existing
techniques. Data analysis consists of organizing and processing information so
that it can be described, analyzed and interpreted. With the knowledge obtained

from this phase we have a guide to create our solution.

6

e Design and propose a method that improves the management of HPC communi-

cations in Cloud environments.

o Evaluation and verification of the proposed solution compared to the existing
proposals: An evaluation will be carried out through benchmarks of the results

obtained.

1.5 Contributions

The work developed for the thesis has been published in the following papers:

« MPI Communications Management in Cloud - Laura Espinola, Daniel
Franco, and Emilio Luque in Jornadas de Paralelismo Sarteco, Cordoba-
Spain, 2015. [6]

This paper presents an study of the feasibility of how to improve latency and
network traffic for parallel MPI applications running on cloud. In addition an
study of the behavior of MPI communications in Amazon EC2 public cloud is

also presented.

« MPI Communications Management in Cloud - Laura Espinola, Daniel
Franco, and Emilio Luque in The International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA),
Las Vegas-USA, 2015. [7]

The paper presents a methodology that provide dynamic management of MPI
communications in cloud environments. It proposes an alternative path distri-
bution considering the latency and possible congestion but keeping in mind the

characteristics of the cloud.

e Improving MPI Communications in Cloud - Laura Espinola, Daniel Franco,
and Emilio Luque in ACM-W Europe WomENcourage 2016 Celebration
of Women in Computing, Linz-Austria, 2016. [§]

In this article we present the architecture structure of a communications man-
agement method for MPI applications, based in the study of communication

latencies between processes.

e« MCM: A new MPI Communication Management for Cloud Environ-

ments - Laura Espinola, Daniel Franco, and Emilio Luque in International

Conference on Computational Science (ICCS), Zurich-Switzerland,
2017. 9]

In this paper a method named MPI Communication Management (MCM) is
presented. This method characterizes the underlying network topology and
analyzes parallel applications behavior in the cloud, improving the application’s

messages latency time.

DA-MCM: A Dynamic Application-Aware Mechanism for MPI Com-
munications in Cloud Environments - Laura Espinola, Daniel Franco, and
Emilio Luque in The International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA), Las Vegas-
USA, 2018. [10]

This paper presents a Dynamic Application-Aware mechanism for MPI Commu-
nications Management (DA-MCM) in cloud. DA-MCM improves the communi-
cations latency time avoiding congested paths through the dynamic selection of
alternative paths. It introduces a user mitigation process that helps users detect

issues regarding the application mapping and parallel implementation.

1.6 Thesis Outline

As mentioned previously, the main aim of this thesis is to analyze one of major issues

of HPC applications in cloud, the loss of communication performance in MPI, and

proposed a solution to obtain better latency communication time in cloud environments.

This thesis is organized as follows:

Chapter 2: Thesis Background

It presents the main Cloud computing characteristics and concepts, as well as
tools and technologies to build clouds. Also introduces MPI applications,

how they are implemented, and how they are actually carried out in cloud.

Chapter 3: Dynamic Communication Balance and Management in Cloud

(DMCBM)

In this chapter the proposed solution is described. The details of the presented
method DMCBM are expose, with it modules and main processes. Also,

DMCBM implementation details and its software architecture are explained.

Chapter 4: Evaluation

The experimental scenarios are described with the applications selected and the
softwares that were used. The main area of this chapter is the analysis of

results, that verify the functionality of the proposed solution.
Chapter 5: Conclusions and Future Works

Present the thesis conclusions and summarizes selected research challenges that

could be addressed as future work.

Chapter 2
Thesis Background

“Forms disappear, words remain, to signify the impossible.”

— Augusto Roa Bastos, I, the Supreme

In this chapter, we give a global vision of cloud computing and HPC applications
in order to frame the thesis.

First the main characteristics of cloud are explained, then cloud implementations
models are summarized. Following by some examples of cloud infrastructures, in order
to put in context the infrastructures in which our solution is applied. Finally the HPC
applications and how they are migrating to cloud is explained, and also the state of

the are of improving the execution of this type of applications in cloud are described.

2.1 A Global Vision of Cloud Computing

Cloud computing is a model for enabling convenient, on demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction [32].

2.1.1 Characteristics and Services

Cloud environments have some essential characteristics like:

e On-demand self-service: Services of the cloud are ready for the user whenever

the user demands, without having to have human interference.

11

» Broad network access: Users of the cloud services are able to have access to the
services over a broad network and by using their workstations, mobile or tablets,

laptops, etc).

e Resource Pooling: Cloud services are pooled to serve several users in a multi-
tenant environment. Resources are dynamically assigned and reassigned and

there is only a high level of abstraction for the location of the resources.

« Rapid Elasticity: Resources on the cloud appears to be unlimited for the user.
According to the user demand or even automatically the resources can scale up

or down.

o Measured Service: There is a metering system in the cloud that monitors, controls

and reports service usages for both users and providers.

2.1.2 Implementation Models

Some of the implementations models for cloud computing defined in National Institute
of Standards and Technology (NIST) definition of cloud computing [32] and use in

general are the cited here:

Public implementation model: This implementation model is often treated as
the real definition of cloud computing, but this assumption is not true, because all the
implementations models are considered valid by the NIST definition of cloud computing.
The resources always belong to a provider and they are shared within its various users.
The provider defines its policies and prices and the users need to agree with them to
have access to the resources [37]. The user of this model can be an entire organization
or just a single person, because it is possible to allocate just one small, and cheap,
machine.

This model is adherent with all the essential characteristics. Mainly the pay-per-use
is totally fulfilled, because there are no upfront costs to the user. The elasticity is
granted by the provider infrastructure and, for the user, it seems to be unlimited.
The access to the cloud is made through an Internet connection. The user control is
defined by the provider, and the user needs to use his credentials to have access to the
resources. Usually each user has unique credentials, even when they are users of an

organization with a corporate account.

12

Private implementation model: A private cloud is a model where the physical
resources are controlled by the user, a single user or an organization. The most common
scenarios of using this model is an organization that decides to virtualize its data
center (on-site configuration), or if an organization wants to rent all the resources from
a provider (outsourced scenario). In both scenarios, the user has exclusivity over the
physical resources.

In terms of cost, this model is the most expensive of all. This occurs because the
user needs to buy and maintain the resources by itself or rent exclusive resources from
a provider. The resources are dedicated to the organization, then there are no other
users accessing it. This model achieves the same level of isolation and security than
the user of traditional computational resources. Those characteristics make this model

the most secure of all.

Hybrid Cloud: Having critical information and applications in the private cloud
within the corporate and having shared applications and non-critical data on a public
cloud helps businesses to take advantage of a secure private cloud as well as cost

benefits of a public cloud. This approach is called a Hybrid Cloud.

Community Cloud: This model can be considered as a private cloud shared between
several organizations with the same policy. Data will still be private and secure within
the community but the organizations can benefit from sharing the cost between each

other.

2.2 Cloud Infrastructures

In this section some examples of cloud infrastructures are detailed. These infrastructures
represents examples of cloud environments in which our solution is applicable. They

can be classified as infrastructures for public and private clouds.

2.2.1 An overview of Amazon EC2 cloud infrastructure

One of the main target platform for numerous academic and commercial applications is
Amazon Web Service (AWS). It introduces Elastic Compute Cloud (EC2) that offers a
public cloud platform with powerful compute and storage resources on demand through
hardware level virtualization [22, 23].

There are several kinds of virtual machine instances to lease in Amazon EC2. The

instances provides to users a highly customizable operating system environment. The

13

users have complete control of their leased instances. These characteristics allows users
run distributed data analysis applications, scientific simulations and HPC applications.
Some large physics experiments such as STAR [46], or weather research and Forecasting
(WRF) model [13] simulations, have experimented with building virtual-machine-based
clusters using Amazon EC2.

Amazon provides to users the choice of multiple instance types, operating systems,
and software packages. Amazon EC2 allows to select a specific configuration in relation
to memory, CPU, instance storage, and the boot partition size optimal for their choice
of operating system and applications. These characteristics allows users run distributed
data analysis applications, scientific simulations and HPC applications [1] .

The relative processing performance is given in Elastic Compute Units (ECU) in
Amazon EC2. One ECU corresponds roughly to the equivalent CPU capacity of a
1.0 - 1.2 GHz 2007 Opteron or 2007 Xeon processor. The smallest machine can be
instantiated with 1.7 GB RAM and Gbit Ethernet. It has a single virtual core with a
compute power of 1 ECU. The largest machine offers 60 GB RAM, 10 Gbit Ethernet
and 88 ECUs, based on the actual dual eight-core Intel Xeon CPU systems [31].

These features allows to select Amazon EC2 as case of study to understand net-
work performance in the public cloud environment. In this work, the instance for
general purpose, t2.micro and t2.medium are used, along with the c3.2xlarge instances,
dedicated to HPC exclusive. The general and HPC purpose instances are used to
probe that our proposed solution is capable to improve the applications performance
in both kind of instances. The selected instances offer balance of compute, memory,

and network resources to test the proposed solution cost and benefits.

2.2.2 OpenStack cloud infrastructure

In private clouds a platform to offer infrastructure as a service (IaaS) is also presented.
A representative project that build this kind of architecture is OpenStack, although
there are also others like OpenNebula. OpenStack is powering many of the world’s most
notable science and research organizations [27]. It is notable that many research and
science disciplines are the main use cases in OpenStack cloud architecture, it provides
compelling solutions for many of the challenges of delivering flexible infrastructure for
research computing.

HPC requires high compute power and cluster networking; storage, networking
access to large volumes of data and infrastructure manageability. OpenStack supports
these needs and it is constantly updated to expand services in order to fill gaps. Many

researchers are able to use this architecture which fulfill their requirements. The

14

dynamic, automated nature of software-defined infrastructure cuts away time wasted
on the distractions of setup and enables researchers to maximize the time they spend
on research itself [45].

OpenStack allows the segregation between cloud users and projects that requires
isolation due to its multi-tenancy support, which is integrated in the architecture.
Despite the isolation that the architecture offers, the hardware is shared among the
virtualized resources that are available to the users. HPC requires high compute
power and cluster networking; storage, networking access to large volumes of data and
infrastructure manageability. OpenStack supports these needs and it is constantly
updated to expand services in order to fill gaps. Many researchers are able to use
this architecture which fulfill their requirements. The dynamic, automated nature of
software-defined infrastructure cuts away time wasted on the setup distractions and
enables researchers to maximize the time they spend on research itself [45]. OpenStack
allows the segregation between cloud users and projects that requires isolation due to
its multi-tenancy support, which is integrated in the architecture. Despite the isolation
that this architecture offers, hardware is shared among the virtualized resources that

are available to users.

2.3 HPC applications in cloud

Cloud-technology are rapidly advancing, it presents significant opportunities for HPC.
The cloud models can leverage benefits to the system managers for they HPC environ-
ments [29]. Cloud enables workload demand, increase system utilization, and makes

high performance computing system accessible to a wider community [40], including;:

e Scale to better support application and job needs with automated workload-

optimized OS provisioning.

» Provide simplified self-service access for broader set of users that also reduces

management and training costs.

o Accelerate collaboration or funding by extending HPC resources to community

partners without their own HPC systems

« FEnable pay-for-use with show-back and chargeback reporting for actual resource

usage by user, group, project, or account.

Figure 2.1 represent a basic idea of how HPC is migrating to cloud from bare-metal

clusters environments. One example is that HPC users can deploy or destroy instances

15

Cluster HPC Users

; .”)
Cloud bursty Deploy Destroy
node looks [v —
like local
nodes

==
sEee

b, .
Physical Switches
& Connections

Fig. 2.1 HPC migration to cloud

of virtual machines with their corresponding OS and applications like in the figure.
This dynamic characteristic gives to HPC users the ability to “burst” workloads onto
the cloud when in-house computing resources run tight, enabling them to leverage the
resources in public and private clouds to continue running their applications without

having to invest in more infrastructure to meet peak demand [39].

2.3.1 HPC with MPI communications in cloud

HPC applications use MPI standard to communicate their messages. It have been used
for around two decades. Point to point and collective communications are provided to
processes by this interface. Although, the network communications are abstracted from
the processes, hence applications have not control or information about the underlying
network.

When the MPI processes of an application are launched, they communicate through
a Communicator, which is part of the MPI implementation. The standard MPI message
transmission model is illustrated in Fig. 2.2.

Generally these processes communicate in a not uniform way, allowing unbalance of
link usage. This problem decreases available bandwidth between nodes and generate
performance degradation of MPI applications [44].

Most of the optimized algorithms for MPI operations implemented for a cloud

environment are specialized either for latency or throughput, considering groups of

16

Meszage Mez=age
Send L Reci
\ Application Layer / BEvE

Communicator
Supporting
Communication Layer

Retransmit Acrrival Buffer
Buffer

v"

Fig. 2.2 MPI message transmission

virtual machines and the distance between them, but do not work for the manage of

the message [16].

2.3.2 MPI Applications Communication Pattern

Recent studies about scientific parallel applications observe a repetitive behavior in
HPC applications. This repetitive behavior is based on computing and communications
phases found during application execution [47]. When the MPI processes of an
application are launched, they perform compute and communications following a
strong periodic pattern. Generally, the processes communicate in a non-uniform way;,
causing an imbalance of link usage. This problem decreases available bandwidth
between nodes and generates performance degradation of MPI applications [44].

The MPI communication locality behavior is represented by fundamental phases
of communication during the application execution (e.g. a set of source / destination
pairs of communications). An example of this assumption occurs with the NAS
CG benchmark. It has relevant phases that contains communication between nodes,
which conform a pattern, as depicted in Fig. 2.3. The repetitive behavior of these
phases represents a significant time of the application execution. Any congestion that
affects the communications within the application phases can importantly disturb the

application execution time.

17

m
104 E:E [- 1954.116432
n
n
| |
| |
[
m
2 = n
01 []
n
| |

1953.9

Transfered (MB)

Source
| |
| |
| |
|
B
|
|

|

40 4 | -
| i : E
u
|
|
|
= |
501 | - .
| r0.0
|
|
|
|
])) E:E
|
|
T T T T T T E—

Fig. 2.3 NAS-CG Communication Pattern

The repetitive communication pattern of parallel applications presents an unbal-
anced use of the network links. Most of the optimized algorithms for MPI operations
implemented for a cloud environment consider groups of virtual machines, the distance
between them and the process mapping into nodes to solve the problem [16]. However,
none of them perform MPI message management to obtain a balanced distribution of

the traffic or a better application process synchronization.

2.3.3 Current research improving MPI communications in

cloud

This section introduces the main topics in which the proposed method is based. First
the performance of HPC applications running in cloud is studied. Then available
solutions to gain more performance in cloud are described, with their main advantages
and disadvantages.

HPC applications had been successfully executed in cloud environments, though with
performance drawback, mainly due to the lack of network communication performance,
limiting applications scalability [11, 24]. Research effort is being made to overcome
this issue, by proposing techniques to group, balance and map parallel tasks among

virtual clusters.

18

In order to determine which kind of HPC applications are well suitable to run in
cloud platforms, Gupta et al. [19] and Jackson et al. [25] have performed evaluations.
Results, shown the performance-cost trade-offs of scaling taking in to account the
virtualized architecture on Amazon EC2 cloud. Furthermore, there are studies of
HPC applications on Microsoft Azure cloud under different configurations and cluster
sizes. One of this studies is presented by Hassan et al. [21], where they measure the
performance in terms of MOPS, speedup, latency and bandwidth. The performance
loss due to the poor latency of communications in virtualized networks on the cloud is
a common issue reported in all the studies.

There are many topology-aware algorithms to improve HPC communications in
bare-metal cluster environments [26, 43, 48, 49]. For example in Nunez et al. [34],
an effective method to control network efficiency is presented. The method controls
network congestion based on paths expansion, traffic distribution, application patterns
and speculative adaptive routing. However, inefficiency in virtualized networks on cloud
can not afford with traditional optimization methods, like topology aware algorithms
because this information is in the underlying layers, ratter hidden from the users.

Regarding the improvement of HPC communications in cloud environments, Gupta
et al. [20], propose the load balancing of parallel tasks distributed among virtual
machines. In this research, they develop a methodology to dynamically perform a
distribution of parallel tasks implemented in Charm++, by measuring CPU loads, task
loads, and idle times from the execution environment. The proposed solution focuses
on parallel applications that are implemented using MPI library and depends on a
message-driven object-oriented parallel programming system (Charm++).

Another approach to improve MPI communications in cloud are based in network
performance-aware algorithms, for a series of collective communication operations
including broadcast, reduce, gather and scatter [16]. In this research, they model the
network performance among different VMs pairs in the cloud environment, creating an
hierarchy of grouped VMs. According to this hierarchy, network performance-aware
collective communications were developed, modifying the MPI library implementation.
There is also, other research that aims to improve the performance of HPC in cloud, in
which, the MPT library is modified: Hassani et al. [22] creates a new MPI version using
parallel Radix sort. However, any of them perform the management of MPI messages
to obtain better latency times, in a transparent way to the users, without modifying
the MPI library.

In Zhang et al. work [50], a High Performance implementation of MPI library is
designed to work with SR-IOV enabled InfiniBand virtual clusters. It dynamically

19

detects VM locality and coordinates data movements between SR-IOV and Inter-
VM shared memory (IVShmem) channels, to meet the demand of high performance
communication on virtualization environments. Our work aims to a transparent solution
to the users, not requiring specific virtualization components, nor the installation of a
particular MPI library.

Nowadays, there are also solutions that overcome the MPI communication degra-
dation in cloud using virtual machine live migration [14, 51]. From Gomez-Folgar
et al. [14], the main idea that we got from this works is that the communication
pattern of the application plays an important role regarding communication balance
between VMs. They perform a live reallocation of the application processes before its
execution, by first study the MPI application via an MPI profiling tool. Although,
their solution do not offer a dynamic reallocation during the application execution,
in order to maintain the same performance due to the cloud interconnection network
sharing characteristic. On the other hand, Zhang et al. [51], presents an innovative
solution that performs VMs live migration during the application execution but still
requires modifications in the MPI library and also adds to the application a delay,
suspending the communication messages channel.

All the works presented in this section gives us a base line to overcome the main goal
of this thesis. First, the study of MPI applications execution performance degradation in
cloud denotes that its major drawback is related to communications in virtual networks.
Also, it allows to understand why and where this becomes an issue. Finally, each of
the possible solutions that exist for the improvement of MPI communications, with its

pros and cons, allow us to create a new solution to solve the problem successfully.

2.4 DMCBM: a new method to improve MPI Com-

munications in cloud

In this work, a transparent middleware for MPI application running in cloud is proposed.
It is transparent for the application and the MPI library. The solution captures MPI
communications and forwards them in congestion scenarios, or use the virtual machine
live migration technique trying to balance communications between VMs. It looks for
a better performance of MPI applications in cloud environments.

The proposed solution, Dynamic MPI Communication Balance and Management
(DMCBM), tries to improve latency communication time for MPI applications running
in public and private clouds. The analysis of the underlying network characterization

and the repetitive MPI parallel application communication pattern allows the method

20

to create a mechanism, which is capable of manage MPI communications of parallel
applications in cloud, detecting and avoiding congestion situations.

The middleware provides a dynamic distribution of the messages and a better
processes synchronization following the application communication pattern. The mech-
anism captures MPI communications and forwards them through alternative paths if
congestion scenarios appear, taking into account the network topology characterization
performed. It tries to balance the application communications taking in to account
process allocated on each VM. The mechanism proposed achieves better performance
of MPI parallel applications in cloud without adding significant overhead. The middle-
ware runs at user level and therefore can be applied at any cloud environment, and is

explained with more details in the Chapter 3

21

Chapter 3

Dynamic Communication Balance

and Management in Cloud

“Imagination is the Discovering Faculty, pre-eminently. It is that which pene-

trates into the unseen worlds around us, the worlds of Science.”
— Ada Lovelace, 18/1

3.1 Introduction

HPC applications communications performance represents a challenge on cloud en-
vironments. In this kind of environments, network virtualization tend to increment
the HPC communications latency. A middleware is presented to overcome HPC ap-
plications communications performance degradation on cloud, specifically for MPI
applications. The proposed solution is called Dynamic MPI Communication Balance
and Management (DMCBM). The middleware balances, distributes communications
and migrates tasks of MPI applications running on cloud. In order to avoid congestion
situations, reducing the communications latency.

HPC application’s communications are mostly dynamic and usually relies on un-
derlying routing mechanisms to balance and optimize the use of network resources in
bare-metal HPC systems. In cloud, however, the underlying topology is either obfus-
cated by the cloud providers nor able to change, given the shared nature of resources
which can generate inefficiencies to some other applications or services. Therefore,
typical HPC routing solutions [34] are not straightforward, or even recommended, to
use. At the same time, cloud operators can for example consolidate different workloads

in the physical hosts dynamically, or arbitrarily migrate Virtual Machines (VM) for

23

maintenance [17], and other tenants can interfere with HPC application by executing
different services in the shared resources. This further increase communication ineffi-
ciencies and makes difficult reduce the extent to which application owners can control
performance.

DMCBM tackles the issues of the HPC communications in cloud by proposing an
abstraction of the network topology and balancing communications at a higher level of
the HPC execution stack. With the abstraction is possible to detect alternative paths
for HPC application communications which can be used to reduce the communication’s
latency, when congestion situations are detected.

The middleware is implemented in the session layer and does not require changes
in the user’s application. Distributed components monitor the communication paths
between application processes and store local information about latency, running
hosts and potential alternative paths that can be used. DMCBM also leverage this
information to detect congestion according to the latency levels that are acceptable
by the user. DMCBM balances communication flows and avoids network hotspots by
either; 1) selecting alternative paths whenever a congestion is detected at link process
communication level, or 2) live-migrating virtual machines in case of congestion at
destination host level.

This chapter describes the DMCBM architecture modules that fulfills the objective
of this thesis. A detailed functionality description of each modules on DMCBM
middleware, along with their interaction are included. There are 2 modules, the
System Characterization Module executed prior the application execution; and the
Application Runtime Module, that is executed along user’s application. The System
Characterization Module consists on the application communication pattern recognition,
the network topology characterization and the alternative path table creation. The
Application Runtime Module consists in the following tasks: monitoring, detection
of congestion, alternative path selection, virtual machine live migration and user
mitigation. The modules working together, helps HPC applications improve their
performance on cloud environments by reducing MPI communication latencies time.

The rest of chapter is organized as follows: The proposal description is detailed in
section 3.2. The modules that are part of DMCBM are explained in section 3.3 and

3.4. Finally, in section 3.5 the software architecture of the proposal is described.

24

3.2 Dynamic MPI Communication Balance and Man-

agement

DMCBM middleware gets a balance of HPC communication flows and avoids network
congestion by choosing alternative paths whenever a congestion is detected at link
process communication level, or live-migrating virtual machines in case of congestion
at destination host level. Also, helps user to detect application mapping and parallel
implementation issues. The middleware has two modules in order to improve HPC
communications in cloud. Figure 3.1 depicts each part of the DMCBM modules.

The System Characterization module is executed prior the application execution
(Offline). Tt detects communication patterns between application processes, and use
the pattern to characterize the network topology based on latency measurements. This
information allows the middleware to find alternative paths for the application process
communications.

The Application Runtime module is executed along with the application. It
monitors application communications in order to detect congestions scenarios, whenever
communication latency out range the boundaries accepted by the user. Furthermore,
the module implements two complementary controllers to deal with congestion: i)
the Alternative Path Selection Controller handles congestion scenarios related to link
process communications in different VMs, ii) the Virtual Machine Live Migration
Controller takes care of live-migrating VMs when a destination host is overflowed by
communications. The feature of virtual machine live migration is currently activated
for private clouds. This module also introduces a User Mitigation Controller which
helps users detect issues related to application parallelization of task or mapping by

logging this kind of event.

DMCBM

System Characterization Application Runtime

Application Pattern
Communication ., |

Network Topology
Characterization

Communications . .
Monitoring *>{Congesuon Detection

i l

VM Live Migration ‘ User Mitigation ’

Alternative Path Table

Alternative Path
Selection Controller

Controller Controller

Fig. 3.1 DMCBM: Dynamic MPI Communications Balance and Management in Cloud

25

HOST, HOST,, HOST, HOST,
VM A Wi VM; A VM g VM A VM c VM; B
Po) (P Py (P Py) (Ps Po) (P Py (Ps (Py) (Py) P,) (Ps

AR

L twmc,]
T A T h

Virtual Machine Live
Migration

,} Cloud Manager %—

Congestion Detection

Q Application Processes T
‘ MCM Daemons

\ ED Live Migration Controller /

Fig. 3.2 DMCBM: MCM and the Live Migration Controller

DMCBM implements the Application Runtime module task and controllers by soft-
ware components. The MPI Communication Management (MCM) daemon implements
the tasks of monitoring and detection of congestion, along with the Alternative Path
Selection Controller and the User Mitigation Controller functionalities. Besides a Live
Migration Controller (LMC) daemon implements the functionality of the VM Live
Migration Controller.

There is one MCM per virtual machine and one LMC per host. The MCM daemon
captures sent and received messages between processes in order monitor message path
and compute alternative paths avoiding congested routes. After selecting a better
path, the message is forwarded through that path. The LMC is constantly updated
by each MCM daemon running on the VMs within the host, with the information
about the host congestion status. This procedure enables DMCBM to detect and avoid
congestion at destination host, using virtual machines live migration techniques. A
scheme of the DMCBM software components distribution is shown in Fig. 3.2. It
depicts several virtual clusters in different hosts (HOST,), where y is the host id. The
VMs hosted in the hosts are defined as: V' M, , where p is the VM id, and ¢ is the virtual
cluster id. The VMs run different application processes (P,). The Cloud Manager
is also depicted, it enables work with virtual appliances and workloads focusing on
the end-user’s perspective, rather than the I'T or systems administrator’s perspective.
It offers capabilities that simplify the process of executing many common public or

private cloud operations such as: provisioning and de-provisioning virtual machines.

26

The cloud manager helps the middleware to identify the status of each bare-metal host,
when a VM live migration is needed.

The next sections describe all MCBM modules and controllers in detail.

3.3 System Characterization

As mentioned above, this module executes three functions. The functions are the
Application Communication Pattern Recognition, the Network Topology
Characterization and the Alternative Paths Table Creation. They are executed
prior application execution, such as profiling operations. DMCBM uses two matrices
to create the alternative path table; the Latency Distance and the Sensibility Matrices.
The matrices are obtained based on the message sizes of the application’s communication
pattern with more repetitiveness during its execution, improving the viability of the

alternative paths.

3.3.1 Application Communication Pattern Recognition

The application communication pattern is obtained building a histogram with the sizes
of messages sent between application’s processes. The representative phases of the
parallel applications are used to build the histogram, by executing the applications with
the performance prediction tool PAS2P [47], in order to avoid a complete application
execution. With application communication pattern recognition, only relevant phases
are analyzed. A large number of messages over time, or frequent communication
operations, may also indicate that the application execution will be affected by network
contention in cloud environments.

Once the application communication pattern has been obtained, DMCBM uses
the message size from communications phases with more repetitiveness in order to
characterize the underlying network topology. This characterization is performed
taking into account that network performance of MPI application processes are related

to the network performance of their corresponding virtual machines location.

3.3.2 Network Topology Characterization

DMCBM characterize the underlying topology using communication patterns, as well
as information of the virtual machines location and the performance obtained between
virtual machines pairs. Thereby, an analysis of MPI communications between all pairs

of virtual machines in cloud is performed. For this analysis the message size of the

27

application communication pattern with more repetitiveness is used. The network is

characterized building two matrixes:

e Latency Distances Matrixz: With this matrix a basic detail of distances

between VMs is obtained. The main idea is to build the matrix using Ping Pong
communications, taking in to account the application communication pattern
and its message sizes. The Ping Pong is performed between processes placed
in different virtual machines of the virtual cluster. The Ping Pong application
runs alone in the VMs of the virtual cluster, without disturbance of any other
application. A process is located on each virtual machine, so for N virtual
machine, N iterations of ping pong latency evaluation are needed in order to
obtain all pair-to-pair latencies. Hence, each intersection of rows and columns in
the matrix represents a path between one pair of source and destination VMs,
obtaining a basic detail of distances between virtual machines in terms of latency

time.

Sensibility Matrix: Determines how robust to congestion are the forwarding
paths. Intersection of rows and columns represents a path between two VMs. The
number of times in which a path is affected by congestion between any other pair
of VMs is stored as a robustness weight. The main idea is to find relationships of
affected VMs when a congestion is injected on other peer of VMs. Algorithm 1
is used to build the Sensibility Matrix.

The algorithm uses 3 helper functions to build the matrix. The InjectTraffic
function injects a constant traffic given a pair of VMs. With the traffic injection,

it is possible to evaluate how it affects the communications between other the

Algorithm 1 Sensibility Matrix (SM) Construction

Require: VMs = Set of VMs of a virtual cluster

function INJECTTRAFFIC(V M;, V M;)

Inject a constant traffic between V M;, VM,

end function
function MEASURELATENCY(V Ms)

Measure latency between VM of V Ms using Ping Pong application

end function
function CALCULATESENSIBILITYMATRIX(V M s4)

Increment weight in the Sensibility Matrix for the intersection of V Msg

end function

Require: Initialized SM for all communication intersections of VMs
10: for each peer VM;, VM, of VMs do

11: INJECTTRAFFIC(V M;, V M)

12: MEASURELATENCY(V M's — (V M;, V Mj))

13: V Msq = Get peers of affected VMs

14: SM = CALCULATESENSIBILITYMATRIX(V M s,)
15: end for

28

Affected nodes Affected nodes

5ol

Ping pong between
nodes

Traffic generated
between pair of nodes

Ping pong between
nodes

Traffic generated
between pair of nodes

(a) Steps with congestion in link (1) Steps with congestion in link
7 and 8 to determine related VMs 4 and 3 to determine related VMs

(c) Sensibility Matrix

Fig. 3.3 Sensibility Matrix Construction

VMs of the virtual cluster, extracting the pair of VMs used in the InjectTraffic
function. The traffic affects the communication of others VMs when the latency
measured, by using the MeasureLatency function, beats the base latency measured
in the Latency Distances Matrixz. When the measurement beats the base
latency, the CalculateSensibilityMatriz function, update the sensibility matrix
in the interception which represents the path between VMs, by adding 1 to the

current stored weight in the matrix.

Figure 3.3 shows an example of how the sensibility matrix is populated.. The
congestion between VMs 7 and 8 affects the path between VMs 1 and 2, so a weight of
1 is added in the interception of rows which represents that path. Then, congestion
between VMs 4 and 3 affects the path between VMs 1 and 2, and the path between
VMs 5 and 6. A weight of 1 is added in the interception of rows of VMs 1 and 2,
and VMs 5 and 6. The path between VMs 5 and 6 is less affected by congestions,
meaning a lower weight in the Sensibility Matrix; this represents more robustness.
The process is repeated for each combination of a congested VM pairs to obtain the

robustness of every path.

3.3.3 Alternative Paths Table Creation

The alternative path table is created using the Latency Distances Matrix and
the Sensibility Matriz, in order to select at least two alternative paths for a given
source-destination pair, employing an intermediate node if required. Then, instead of
storing the two matrixes of N x N at each node, only one vector (called alternative
paths table from now) of N elements is stored at each node, in order to avoid storage

overhead due to the size of matrixes. Each position of the alternative path table

29

{ Network Topology Characterization }
R S —
Application)
Communication | I | I |
Pattern CIC 1C 1 1 P Selecta path { Alternative path table creation }
System Ping Pon I I | N |
Characterization . 9 Fong C_JC_JC_IC_] T
ommunications =~] |
Latency Distance Matrix — Path Selected
S [y |
A 4 N
| | | _— Verify the path i
J CC I > rob):JstneZs Alternative Paths Table
L L L L] J
I | -
. Sensibility Matrix Y,

Fig. 3.4 Alternative Paths Table Creation

represents a destination to reach from the VM that contains the table, and the value
stored in each position is the base latency of the path.

The alternative paths in the table are selected considering the highest robustness
and lowest latency distance from source to destination nodes, including the intermediate
node. The path with lowest latency distance is obtained from the Latency Distances
Matriz, then its robustness is verified using the Sensibility Matriz. In order
to obtain the robustness of a path, we sum up all the weights from source to the
intermediate node, and then to the final destination. The whole process is shown in
Fig. 3.4.

3.4 Application Runtime Module

This module monitors the communications of the application processes to detect and
avoid congestions, besides it identifies issues regarding application mapping and parallel
implementation. Upon detection of congestion, two complementary controllers operate
to remove it: the Alternative path selection controller and the VM live migration
controller. The Alternative Path Selection Controller is in charge of avoiding link
congestions between the application processes that are in different VMs; and the Virtual
Machine Live Migration Controller manages congestion at destination due to overflow
of incoming messages in the host. However, to handled issues regarding the application
mapping and parallel implementation, another controller is needed, the User Mitigation
Controller helps users to handle this kind of problems, leveraging the methodology of
MPI Communication Management (MCM) [9].

30

3.4.1 DMonitoring, Detection and Notification tasks

The Monitoring and Detection tasks are launched with the application’s processes, in
order to monitor the virtual network status and detect congestion situations. There is
a MCM daemon at each virtual machine in the execution environment for intercepting
application messages before they reach the MPI library, and for selecting a congestion-
free path to forward them. MCM also provides Notification task which is activated if a
congestion is detected. This task maintains the alternative path table update with the
correspond path latency time, and also initiates the selection of alternatives path if a
link congestion occurs or a virtual machine live migration if congestion at destination

hosts occurs.

Monitoring: The process checks all messages sent by the application processes, but
only acts when source and destination processes are located in different virtual machines,
without disturbing application. It measures message latency time and maintains the
virtual network link status between each virtual machine updated. The Monitoring task
includes latency values accumulation and contending flows identification of in-transit
messages. These actions are performed by each MCM daemon, the monitoring of
latency is performed starting from the message source until it reach to its destination
(Figure 3.5).

4 N
VMi,A VMj,A

Latency P P
Po) (P 2 &
A

| ACK
+—
T | VMica

Detecting
Congestion

P,) (Ps

Application Processes

‘ MCM Daemons

Fig. 3.5 MCM tasks without congestion

31

0.25

‘ High Latency Area
020 v 4
0,15 ‘ ’ 1A
I Medium Latency Area
0.10 ‘
i |
0

Latency Values (us)

0,05 Low Latency Area

|

| I !
1. it Y 1 OO R) LTI
100 200 300 400 500 600 7DO 8OO 900 1000 1100 1200 1300 1400 1500
Logical Time

-0,00

Fig. 3.6 Thresholds verification

Congestion Detection: This process identifies the moment when an action must
be done to avoid congestion. It is performed when messages arrives to its destination
(Figure 3.5). Three areas are selected, one with low latency, another with medium
latency (where congestion is raising but network can handle it), and finally one with
high latency (extreme congestion). In low and medium latency areas, we do not search
for alternatives paths, but when a transition to medium and high latency occurs, our
approach looks for an alternative path. Figure 3.6 shows an example of the defined
areas and each transition.

Repetitive communication behavior allow us to compute better routes. When a
repetitive pattern appears, we verify if the link latency is in the accepted range defined
by a threshold. This threshold is defined as a factor of the base latency. When latency
is acceptable, we send messages using the original path. If latency in the current path

is not acceptable, an alternative path is chosen.

ACK Notification: It is initiated at destination VMs. An Acknowledge (ACK)
message with the path latency is created and sent back to the source when the current
message latency out range the acceptance threshold. The path latency is used to
update the alternative path table. Hence, maintaining latency path updated, MCM
is able to take into account cloud variability that affect to each path (Figure 3.5).
This procedure also initiates the alternatives path selection in to the source if a link
congestion is detected early or a virtual machine live migration if a congestion at

destination occurs.

32

== Magir-----mo Magof==-==------"

MCMp
MCMg
. T | et
trgt+1r tr—+yq
tr=tq tr <tpq

Fig. 3.7 Avoiding ACK notification

The dynamic communication management mechanism sends an ACK notification
only when it is really necessary. A strategy is introduced to determine the effective
situation when an ACK has to be sent or not, in order to avoid causing an imbalance
to the application execution. The strategy consist of considering two different cases,
the time when a intercepted message sent arrives to its destination daemon, and the
time when the application destination process actually requests the message.

If the intercepted message arrives before the application destination process requests
the message, the message arrives in time. In this case, the ACK notification process
is not needed, due to the fact that the path is actually without congestion or the
application destination process does not have to wait for the message. In the Fig. 3.7,
it is possible to observe this case where ¢, ~ t,,, in which ¢, is the message reception
time in the destination daemon and ¢,, is the application destination process request
time. Another scenario in which the ACK notification is avoided happens when ¢, < t,,,
in this case the message arrives before the application process destination requests it.

Assuming the previous scenario, an ACK notification is only needed when ¢, > ¢,,,
hence an ACK is sent to the source daemon, with the latency path information to
maintain the path status. In this case, the message arrives after the application
process destination requests it, denoting a scenario that causes the application process
destination having to wait for the message, involving a possible congestion scenario
that has to be analyzed in case another message uses the same path. This scenario is
shown in Fig. 3.8.

The technique can also calculate each message transmission time ¢;, using the time

measured when a message is sent ¢, and the time when an ACK notification arrives t,

33

| Update Alternative Path Table |

----- IVIA,B,S T T T T T T T T IVIA,B,4 --------
t i3 t t

ts, ¥ .to
MCMp
1
. |ACKa B3 .:
MCMg
B‘ """ Rapal"[~""""" Rapaf-7-"1-----
tp3 tp4

Fig. 3.8 ACK notification

in the source MCM daemon. The time t;, includes the sending and waiting time for the
ACK notification from the destination MCM daemon. The period of time that it takes
for the destination MCM daemon to deliver the message to the application destination

process is also measured using ¢, and t¢,,, and it denotes the processing time ¢,.

3.4.2 Alternative Path Selection Controller using MCM

The Alternative Path Selection Controller leverages recurrent patterns in HPC work-
loads to select alternative paths using MCM daemons. The proposal identifies commu-
nication patterns to improve message forwarding and early avoid link congestion using
intermediate VMs. The MCM daemon is executed at each VM to select alternative
paths based on the latency values in the alternative path table, Fig. 3.9 illustrates the
process. MCM does not add overhead to the MPI send and receive primitives since it
operates in a non-blocking way, concurrently to the message forwarding.

Figure 3.10 provides an example of path selection, messages M g1 and My po
are sent from process P4 to Pg. P4 and Pp are located in the virtual machines V M4
and V Mg, respectively. Both messages are intercepted by the M CM, daemon, which
selects a congestion-free path to perform the send operation. The monitoring process
(see section 3.4.1) measures and updates the latency of the path.

In this example, My g2 message go through congestion in the path from V My to
V Mg, so the configuration of a new path takes place. Hence, later messages between
the same source and destination pair (e.g. M4 p3) are sent through this new path

which contains an intermediate virtual node V M. In MCM daemons, the message

34

Latency
VMi,A Monitoring
Detecting
Congestion

O Application Processes
Alternative Path
Selected

‘ MCM Daemons

Fig. 3.9 MCM tasks with congestion

reception time is denoted as ¢,, and the time when the process request a message is ¢,,.
We describe 3 key scenarios: 1) When t, is smaller or equals to ¢,,, we avoid the ACK
notification message from MCMpg to MCM 4, because there is no delay on message
reception for the destination process; 2) if the reception time (¢,) is bigger than the
process request time (¢,,), MCM daemon creates and sends a ACK notification message
from MCMpg to MCM 4, which notifies a delay in the message reception, and it has
to be evaluated in case a congestion is detected; 3) for scenarios where ¢, > t,,, and
a congestion is detected, MCM selects an alternative path, that will be used to send
future messages using an intermediate VM (V M¢) with a MCM daemon (M CMc).

35

VMa VMg VMg

' R (@)

RA By
) t ~ t
; trq -r rq

At

Sending M
message through | A?B'1 |
regular path

MAiB,Z

vvvvvv : Delay in

: reception

tr

Congestion 4
detection

U ‘ e
Select altdrnatiye path|

F i
Alternative Paths Table MA,B,S

Sending
message through
alternative path

trq

tr

- =)

Fig. 3.10 Selection of alternative path example

MCM Functional Model

MCM treats messages differently depending on whether these are either in a source,
in-transit or destination VM. At source VMs, forwarding paths are selected, whereas
when the message is in-transit only forwarding is performed. At destination VMs,
monitoring and detection tasks are performed as well as delivering the message to the
proper application process.

In order to be more explicit, each daemon can behave in 3 different modes: source,
in-transit or destination mode, depending on the message that is currently being
processed. When a process in the application sends a message, its associated daemon
proceeds to send the message (source mode). In this mode the daemon selects the path
and then performs the forward through the In-Transit daemon. When the destination
process requests the message to its associated daemon, the daemon (in destination
mode) delivers the corresponding message. The MCM Daemon operation modes are
depicted in Fig. 3.11.

Messages routing decision takes place when a message is sent or received in a MPI

application process. MCM captures the message, encapsulate it to add information

36

Source In-Transit Destination

® o ®
v v v

Capture Message Last Request Message Message Delivery
¢ No Yes
Encapsulate l l N
Message

Forward Add Message Extract Message
Message to Last to Queue From Queue
Destination yes
A ¢

Path Selection ¥ Message Forward
ACK Notification
i Create ACK
Notification
. ¢ -
T] ACK Reception &
T] Update Path Table
I . ACK Send to
Alternative Paths Table Source
‘ Monitoring Path ‘

Fig. 3.11 MCM Daemon operation modes

about the message, like its source and destination in order to alter the normal course
of its communication without losing relevant message information.

When a send primitive is caught, a path selection is done, using the alternative
paths table. After the best route is found, messages are forwarded through this
path. The message latency is measured including all the hops in path carrying out a
Monitorization. If an alternative path is used to send messages, an In-Transit mode
of the MCM daemon is activated. For each arriving message, MCM checks whether
the destination process of in-transit messages is in the current VM. If so, the daemon
delivers the message to the receiver queue; otherwise, it forwards the message to the
destination VM. Last, when the MCM daemon in destination mode caught a MPI
recetve primitives in the destination VM, it delivers the corresponding message to the
application process from the receiver queue.

In the destination mode the reception time in the MCM daemon (¢,) is verified. If
t, is greater than the process request time (¢,,), an ACK notification message is sent
back to the source process, as explained before. Another operation performed during
the execution is the update of the Alternative Path table in the source. The update
is performed using the ACK information received from the destination, maintaining
the latency time of each path with its current state.

To avoid causing interference with the order in which the messages are delivered,

we have designed a sorting algorithm (Figure 3.12) that provides the messages of the

37

Sources

"

l Possibles

H

MCM verifies the destination

processes of the message

Possibles
Destinations

MCM verifies the source of the MCM insert the message in

message the queue in order

Fig. 3.12 Message order process

application in their original order from the source to their corresponding destination.
So that the application ends correctly, avoiding the loss of messages and fulfilling the

pre-established order.

3.4.3 Virtual Machine Live Migration Controller

The Virtual Machine Live Migration Controller is in charge of VMs migration from
a host to another, when a congestion at destination host is detected. This operation
is done by the Live Migration Controller (LMC) daemon. LMC takes over MCM to
mitigate congestion at destination hosts, which is a type of congestion that cannot be
addressed by selecting alternative paths. Congestion at destination means that a VM
is overloaded and cannot receive messages. Usually, in traditional networks this type
of congestion is solved with overload control techniques that discard messages. In HPC
systems, messages are not discarded, but overload is controlled using traffic throttling
techniques at source nodes. Cloud, however, offers the possibility to migrate instances
to alleviate the congestion. Live migration is transparent to users, meaning that the

application processes continue executing during the migration.

38

LMC is composed of three process to avoid congestion at destination host: Virtual
Clusters Manager, Monitor VMs and VMs Live Migration. The Virtual Cluster
Manager identifies and registers the location of the VMs of each virtual cluster. The
Monitor VMs process, maintains the hosts status information to detect congestion at
destination. This information is obtained from each MCM daemon allocated in VMs
of each host, and it is constantly updated with the communication latency of incoming
messages. When a VMs live migration is required, the VMs Live Migration process is
triggered. There is one LMC for each host of the cloud environment, in the Fig 3.13
the processes of the LMC are depicted.

During the Monitor VMs process, each MCM Daemon has to inform the status of
incoming messages latency on its respective VM. Once, all VMs information from a
host is obtained, the status of the host is updated in LMC. When a high latency time is
detected among all the virtual machines of a specific host, a congestion at destination
situation is detected in LMC, and a VM live migration process is triggered.

The VMs Live Migration process verifies the status of each host to select the best
candidate for migrating VMs. Then, it requests the cloud manager (e.g. Openstack)

Ve LMC ~N
Virtual Clusters Manager = Monitor VMs) g

Update Host Status
with VM information

e\ Register Virtual
dentify Virtual Cluster and their
Clusters and Hosts
= Hosts

o

1

Cloud Manager

Verify Host Status

Y
Compute
Network
VMs Live Migration
\ 4 Storage
Request VM N Find Host for
Migration g Migration
\ 4
Update VM » o
information in Host [VM Migration

\- J
Fig. 3.13 Live Migration Controller

39

to migrate the VM to the selected suitable host. The cloud manager verifies that the
selected host has enough resources to support the migration in terms of CPUs, memory
and disk space. Usually, the cloud manager provides and API (e.g. Openstack nova)
that responds the LMC request for migration either accepting it, or rejecting it if there
are not enough resources available. In the latter case, LMC finds another target host.

Once the VM live migration process is successfully performed to the destination
host, the VM location information has to be updated in LMC. The MCM Daemon of
the migrated VM also has to update its location information in the LMC database,
in order to continue verifying the status of the VM and with it maintaining the host
status in LMC.

3.4.4 User Mitigation Controller

DMCBM includes an user mitigation process that helps users detect issues in the
application implementation and in the mapping applied to the application processes in
cloud. When application processes take more time for communications between them
compared to the computation they perform, there is a high probability of finding a
better parallel design to implement the application or improve the application processes
mapping configuration. Using DMCBM, it is possible to obtain values for message
transmission and processing time of every process in the application, which can be
used to notify users about possible issues.

In this proccedure the technique uses each message transmission time t;, using ¢
and t,. Also uses the period of time that it takes for the destination MCM daemon
to deliver the message to the application destination process measured using ¢,andt,,,
the processing time ¢,. Both measures are shown in the Fig. 3.14.

It is possible to observe that when t; ~ t,, the application behavior is correct. The
same happens when t; < t,, the message transmission process takes less time than
the message processing time. In both cases, no problem of process desynchronization
in the application execution exists, hence a congestion is detected for the DMCBM
middleware.

The User mitigation process is only activated when ¢, > t,,. Figure 3.14 shows
an example of MCM performing the mitigation. If the transmission time is greater
than the processing time of the message (¢, > t,), a possible desynchronization
between application processes exists, and it may be caused by issues in the application
implementation or mapping mapping configuration. In this case, DMCBM writes a log

to inform the user’s application the finding issues.

40

""""" MA,B,S """"""""""
Is, tis

trg "t [Write a log
for users

Fig. 3.14 DMCBM Mitigation processes

3.5 DMCBM Software Architecture

DMCBM architecture is composed by two main software elements: the MCM daemons
and Live Migration Controllers (LMC). These elements are executed together with
user processes. MCM daemons work between user processes and the MPI library.
This daemon is in charge of the path selection for messages from user applications. It
also implements functionalities to capture messages using a dynamic library, which
intercepts messages before they reach to the MPI library. Meanwhile, LMC detects the
congestion at destination host and triggers the virtual machine live migration when is
needed. DMCBM software architecture for one host and its virtual machines is shown
in Fig. 3.15.

For each VM in which the application processes are executed, there is a MCM
daemon. This daemon is launched by the MPI library as a process like the application
processes. A MCM daemon running on a VM, manages all MPI communications from
processes that runs on the VM. The MPI communication management is transparent
for the user application and the MPI library.

The architecture uses two different communicators to send and receive messages.
Every communication made in the user application is done using an Application
Communicator, which is created in a transparent way to the application. All MCM
daemon’s communications are performed using an specific communicator, Daemon
Communicator. In this way communications conflicts between MCM daemon and

application’s processes are avoided. The user only needs to launch its application

41

 \

Application
Procesess

[Message Interception] MCM
Daemons
[MCM Functions]

MPI Library
[OpenStack Suite]
[Hypervisor]

[Hardware]

Fig. 3.15 DMCBM Software Architecture

together with MCM. A script is provided for that. User application re-compilation is
not needed.

One Live Migration Controller (LMC) is launched on each real host of the cloud
environment. The LMC manages the real host status by receiving the latency updates
from MCM daemons, which run on each virtual node. It also manages the interactions
with the cloud manager (e.g.: OpenStack Suite) to perform virtual machines live

migration.

3.6 Summary

DMCBM method characterizes the underlying network topology, and looks for alterna-
tive paths to avoid congestion situations by distributing the messages communications
between links with less usage. It detects links and host destination congestions, and
provides mechanisms to avoid them, using alternative paths and virtual machine live
migration. The method allows to obtain better execution time in case of congestion
for the applications in cloud, optimizing the resources usage.

The method is based on the network topology information recognition. It uses this
information, which is stored as two matrices, to obtain the alternative path table. The
information of the network topology is obtained during the system characterization,
which is done prior the application execution. This characterization comes with a cost,

which is n(n — 1), where n is the number of virtual nodes that the virtual cluster use.

42

This process could be avoided, by creating and updating this information during the
application execution, however, then application communications and characterization
information would be mutually affected.

Applications may show lasting and adverse communication patterns, which are
monitored and tackled by the DMCBM, due to its effects in the communications of the
application, e.g.: increasing the latency in communications. Meanwhile, applications
can present communication patterns that are not lasting. This kind of pattern are no
treated by the technique because they not affect the application communication and
execution in a several way.

Public cloud providers that offers Infrastructure as a Service (IaaS), enables DM-
CBM to take advantage of the VM live migration facility. This facility allows the
technique to avoid congestion at destination. Although, other cloud provider offers,
such as Platform as a Service (PaaS) may not provide the live migration facility. For

private clouds, live migration facility is always possible.

43

Chapter 4

Evaluation

“Science, my lad, is made up of mistakes, but they are mistakes which it is
useful to make, because they lead little by little to the truth.”
— Jules Verne, A Journey to the Center of the Farth

In this chapter, we present the evaluation of the Dynamic MPI Communication
Balance and Management middleware. The evaluation aims to verify the functionality
of the proposed solution, through the validation of each module that is provided for
the middleware. The validations are performed using several scenarios executed in
public and private cloud environments.

The evaluation objective is to validate the benefits of applying DMCBM to HPC
applications executed in cloud environments during congestion situations. The mid-
dleware has two main modules: System Characterization and Application Runtime,
both were described in Chapter 3. During the evaluation, the modules validation are
covered. First, the technique that build the network topology abstraction is validated,
demonstrating the existence of possible alternative paths for communications of scien-
tific parallel applications processes executed in cloud. Then a validation of the MPI
Communication Management method is also presented, during the application runtime.

The experimental scenarios design is done for the DMCBM evaluation. The
applications used and their corresponding workload are also defined. The metrics to
assess the benefits of our proposal are further explained.

The evaluation metrics cover functional, performance and scalability analysis of
our proposal. The metrics have been chosen aiming to measure several aspects related
to HPC applications execution in cloud. The main metrics are: the latency time
between processes communications, the application total communication time, and;

the application execution time.

45

4.1 Experimental Design

In this section, the experimental design to validate the Dynamic MPI Communication
Balance and Management middleware is described. Several scenarios are defined to
perform an extensive evaluation of the presented technique. The analysis of each
functionality for the System Characterization and Runtime module is done in section
4.7.

The System Characterization module validation experimental results are shown
in section 4.7.1. Then, the experiments of Runtime module validation are presented
in the following sections: 4.7.2, 4.7.3, 4.8 and 4.9. The components that are part of
the runtime module, are incrementally evaluated. Hence, a controlled environment is
obtained for each stage of the module and with this, we are able to identify the effects
of each added component for the application execution. Each evaluation of DMCBM
is done by stages, activating components that are referenced in Table 4.1.

DMCBM with the aggregated components, are evaluated in terms of performance,
scalability and communication latencies on a public and private cloud in sections: 4.8
and 4.9, respectively. The DMCBM middleware implementation for public cloud is
called DA-MCM. Meanwhile, the middleware implementation for the private one is
named MCBM. Furthermore, a comparison of our solutions with currently available
state of the art similar solutions is performed using a quantitative and qualitative

approach in section 4.10.

Table 4.1 Experimental scenarios

DMCBM Stages

Components
MCM DA-MCM MCBM
Monitoring yes yes yes
Detection yes yes yes
Alternative Path Selection Controller yes yes yes
VM Live Migration Controller no no yes
User Mitigation Controller no yes yes
Section Section 4.7.3 Section 4.8 Section 4.9

46

For the runtime module evaluation, the applications are tested in scenarios with
and without congestion. This is done, to evaluate the effects of applying our solution
to the application execution, showing the benefits of the proposed technique. Namely,

the scenarios are described as follow:

 Application without congestion (NC): The application is executed in the cloud
environment without any congestion created and without the solution approach

applied. This is the base case.

« Application with no congestion and with the proposed method included (NC-
DMCBM stage): The application is executed with the proposed method included,
and no congestion is created in the VMs of the cloud. This scenario mesure the

method overhead when no congestion is present.

o Application including congestion and without the proposed method included
(IC): In this scenario the application is executed without applying the method
proposed in this thesis. In this case a congestion is generated by a synthetic
parallel application with communication intensive behavior between VMs of the

cloud. This shows application degradation due to an adverse traffic.

« Application including congestion and applying the proposed methos (IC-DMCBM
stage): The application is executed in virtual nodes of the cloud, applying the
technique presented. At the same time a congestion is generated between VMs
of the cloud, by a synthetic parallel application with a random communication
intensive behavior. This shows the improvements made by the solution proposed

in relation to the situation with congestion.

4.2 Evaluation Metrics

The metrics evaluated on each experiment of this thesis are described in this section.
This catalogue of metrics can be used as a dictionary entry of each performed test. We
select the metrics from a catalogue of metrics for evaluating commercial cloud services

[28]. The selected metrics are the followings:

o Performance Evaluation Metrics: In this kind of evaluation we observe the total
execution time of the application execution with and without the proposed

solution applied.

47

o Communication Evaluation Metrics: Communication refers to the message latency

time of each message transfer during the MPI application execution.

o Correlation between Total Runtime and Communication Time: this evaluation
observe a set of applications about their runtime and the amount of time they
spend communicating in the Cloud. This metric is to observe a set of applications
about their runtime and the amount of time they spend communicating in the
Cloud.

 Scalability Evaluation Metric: the proposed solution strong-scalability is evaluated
in some experiments during the analysis phase. It requires the variation of

workload and cloud resources.

4.3 Evaluation Methods

In this thesis an statistical evaluation is done on each analysis performed, by executing
multiple times the different scenarios. The evaluations are done with different kind of
applications and workloads. We run each evaluation between 2 to 10 times, in order to
have statistical results.

The experiments are executed several times due to the cloud variability, in order
to find an statistical behavior of the maximum, minimum and average of the each
execution time. Following this methodology to perform the experiments, it is possible
to avoid inconsistent results, acquiring a degree of confidence.

In this chapter, the evaluations were developed according to the statistic aspects
described in this section. All the evaluations results are further explained in the

following sections.

4.4 Applications and workloads

The evaluation of solution proposed is performed using benchmark and real HPC ap-
plications with a repetitive communication pattern. Each scientific parallel application

used was implemented using the MPI library. The applications used are the followings:

NAS Parallel Benchmark (NPB): It is probably the benchmarking suite most
used in the evaluation of languages, libraries and middleware for HPC. One of the

most communication intensive codes of the suite have been evaluated, CG (Conjugate

48

Gradient). This kernel tests irregular long-distance communication and employs sparse

matrix-vector multiplication. The kernel is evaluated with different workloads:

o The NAS-CG Class B: The application was tested with 75000 rows, 1000 iterations,

60 Eigenvalue shift and 13 non-zeros.

o The NAS-CG Class C: It was tested with 150000 rows, 1000 iterations, 110

Eigenvalue shift and 15 non-zeros.

o The NAS-CG Class D: The implementation of the kernel in Fortran have been
compiled with 1500000 rows, 100 iterations, 500 Eigenvalue shift and 21 non-zeros
using the GNU compiler.

The NAS-CG is selected due to its repetitive pattern of communications between pro-
cesses. The different classes tested are useful because they have many communications

between nodes.

N-Body Simulation: This is a real-world HPC application that performs simulation
of a dynamical system of particles, usually under the influence of physical forces. The
application was implemented in C as a circular pipeline with a communication pattern.
It was compiled with the GNU compiler and tested with 100000 particles and 50

iterations.

4.5 Experimental Environment

To analyze the functionality of the approach, a series of experiments evaluating latency
of MPI communications and the total execution time of applications running on cloud
are conducted. The experiments where performed in a public and private cloud.
Amazon EC2 instances for the public cloud and the instances mounted with OpenStack
in the private one.

The DMCBM middleware main objective is to improve communication latency time
for scientific parallel applications that are moving to cloud environments, and indeed
this improving their execution time, making the solution cost effective. It tries to cover
its functionality using general purpose instances and also HPC instances. The HPC
instances are for user applications that requires high network performance, fast storage,

large amounts of memory, very high compute capabilities, or all of these included.

49

4.5.1 Public cloud Configuration

The main components and configurations of the system used for the public cloud
to perform the experiments are described in the Table 4.2. The experiments where
performed in instances provided by Amazon EC2 [2]. The solution presented was
tested in different kind of instances, instances for general and HPC base purpose, in
order to demonstrate that it is useful in both types. Two of the selected instances are
the t2.micro and t2.medium. They represent the set of low cost instances for general

purpose. The c3.2xlarge represents instances for HPC purpose.

Table 4.2 Experimental setup for public cloud

Component Cluster Amazon EC2

Instance t2.micro t2.medium c3.2xlarge
Memory 1 GiB 4 GiB 15 GiB
Storage(GB) EBS EBS EBS

Network Low to Moderate Low to Moderate Low to Moderate

Physical Processor Intel Xeon 2.5GHz Intel Xeon 2.5GHz Intel Xeon 2.5GHz
Clock Speed (GHz) 2.5 GHz 2.5 GHz 2.5 GHz

vCPU 1 vCPU 4 vCPU 8 vCPU

Figure 4.1 shows an example of how MPI applications interacts with MCM daemons

of DMCBM in a cluster environment in Amazon EC2.

20

MCM

MFPI App

MPI App

1,
Mode2-Worker Mode2-Worker
MCHM
Volume Volume -
micro

| t2micro_ | Node3-Waorker
=
MNode1-Worker
[NFS
| T | Wolume
MCIM

Volume MPI App .

Mode0-Master .

Volume

Fig. 4.1 Cluster Diagram in Amazon EC2

Private cloud Configuration

The private cloud used to perform the experiments is mounted using OpenStack, on
a real cluster composed by 7 hosts with the characteristics shown in Table 4.3. The
experimental setup is composed by one host that acts as a controller and compute
node, and the others 6 remaining hosts are for computing. The controller node is
managed by a cloud controller. The Kernel-based Virtual Machine (KVM) based cloud

cluster is installed with Quemu-kvm-2.6.0 as the hypervisor.

Table 4.3 Real Hosts configuration.

Component Details

CPU Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
Cores 48 (w/ HyperThreading)

HD 1080 GB

RAM 125 GB

Network Interface Up to 1000 Mbps (full duplex)

o1

The experiments are done on 16 and 32 ml.medium instances launched using
OpenStack software suite. Each m1.medium instance has 4 GiB of memory, 40 GB of
disk space, a Intel Xeon physical processor of 2.5GHz, 2 vCPU and a network of 10
Gbps.

4.6 General Software Configuration

Experiments are performed with different sets of software, from the lowest layer to the
top. In Amazon EC2 public cloud, instances are launched using StarCluster 0.95.6 [41].
This is an open source cluster-computing toolkit for Amazon EC2.

In public cloud each instance is a Hardware-assisted virtual machine (HVM). This
virtualization type provides the ability to run an operating system directly on top
of a virtual machine without any modification, as it was running on the bare-metal
hardware. All instances are acquired from US East (N. Virginia) data center of Amazon
and their operative system is Ubuntu 10.11.

For private cloud the virtual cluster is built with OpenStack Newton. The corre-
sponding version of the OpenStack projects used to build the cloud environment are
Nova 14.0.6, Neutron 6.0.0, Glance 2.5.0 and Heat 1.5.1. The instances use Debian 8
as its operating system.

The measurement of point to point MPI communications latencies and bandwidth
are obtained using OpenMPI, which is a High Performance Message Passing Library
[12]. We measure latency and bandwidth as two key network performances.

Actually the runtime environment of the proposed solution does not need other
language dependencies in order to provide a high throughput computing. DMCBM
is implemented in C/C++ and the communications are done based on calls of the
standard MPI routines. MPI applications are executed using the Open MPI 1.10
library. All the procedures implemented in DMCBM are hidden for the end-user and

are transparent for their MPI applications.

4.7 Analysis of functionalities

In this section we provide experimental results to perform a concepts validation for
System Characterization, including Network Topology Characterization and Alternative
Path Configuration; and also validation for the Application Runtime module, in which
the main elements are the MCM daemons. Both modules are part of DMCBM method.

We verify the existence of alternatives path for communications between processes

52

of the NAS-CG parallel benchmark, using simulation. Finally we evaluate the real
execution time of NAS-CG and NBody applications, without and with congestion

scenarios, applying or not our MCM method.

4.7.1 System Characterization Validation

A primary procedure for DMCBM is to characterize network topology with the Matrix
of Latency Distances and the Sensibility Matrix. The Matrixz of Latency
Distances is built obtaining the base communication latency time between every pair
of VMs in the cloud, without any other application running. The Sensibility Matrix
is built to obtain the robustness of all the paths.

The DMCBM middleware needs to find alternative paths, in order to use them if a
congestion is detected. In this experiment, we run a Ping Pong parallel application
to measure latency between nodes, and create the Matrix of Latency Distances
filling it with the base latency without any running application. This process is
performed before running the users application in the cloud due to the variability of
this environment.

The procedure to create the Matrix of Latency Distances is described as
follows: For N virtual machines, we need NN iterations of Ping Pong latency evaluation
in order to get all pair-to-pair performance. In each iteration, % pairs are measured
with MPI Send in both directions. When the number of instances is 20, the total
evaluation overhead is usually smaller than 30 seconds.

In order to catch system variability, we run several experiments on different days
and message sizes. Initially, we evaluate the latency with a message of 1 MegaByte
(MB). The result of the latency between nodes is showed in Fig. 4.2, in this graphic we
can see that sending a message of 1 MB from node 3 to node 8 has a latency of more
than 2500 microseconds, but this is not the only way to perform this communication
because in this type of cluster we find that all nodes are interconnected. MCM proposes
the selection of path with low latency, i.e.: instead of sending directly to the node 8, we
can select the node 5 to send the message through it to node 8, and the sum of latency
from node 3 to node 10 and then to node 8 will be approximate 50% lowest than
through the first path. Due to space limitations, not all the communication between
nodes are exposed.

Second we run the same experiment every 10 minutes for 1 hour and the results of
one of it are in Fig 4.3. In this figure we can detect communications that can have
lowest latency like the previous experiment, but also the variability of the network in

cloud. We can observe with this two figures that according to an specific period of

23

Latency in microseconds
2 N

Fig. 4.2 Latency of Communication Message Size = 1MB in day 1

L noded1] nogeldz L] node03 [] nogeld4 L} nodetds L} node0s [] nogelaT L} node00s nogelds nodegic
3000 177,208
Original Path= Node005 to Node008 =
24547 s New Path = Node005 to Node0010 to
Node008 = 800,872 s
o 2250 224547
H
g
4 B0 1 [OT¢
3
E 1500
£
5 A 745 M5
% 223 2351 I
3 7 o 3,399
"
523,51 95
23,582 .u: 36
Gepaa7 .!- 1951 214 55 g8 127 ='a - 177 288
: !) g f

224,008

nOCEODT

node0n2 noaR0od nodenad ngoenns nade0ns nadedn? nodeq0s nodenos nagan1o
Orreagllodes
623,584

Fig. 4.3 Latency of Communication Message Size = 1MB day 2

time, the latency time of messages can be balanced or unbalanced, depending on the
link usage, but it is still possible to find alternative paths for messages.

Also we measure the latency with messages of 64KB to prove the behavior with
smaller messages. The results are showed in the Fig. 4.4. In this scenario, latency is
maintained between 125 and 225 microseconds. For this reason, our technique have to

avoid the selection of new paths, because it would add more latency time.

Network characterization and alternative path creation

An evaluation of the latency using Ping Pong with 1 MegaByte (MB) messages and
20 instances t2.micro of Amazon EC2 is also done. This experiment is to validate the
whole process of the alternative path creation.

The results of latency between nodes are shown in Figure 4.5. It is possible to
notice that sending a message of 1 MB from node 5 to node 8 has a latency of 2.245
microseconds. As MCM proposes the selection of two paths with lower latencies, and

in this type of cluster all nodes are interconnected, we select the node 7 and the node

o4

Latency in microseconds

Latency in microseconds

300

ra
I
o

150

75

2250

1500

L nedeoor M nodeng2 nogeons B nodeops M nedenos M nodenos nogeosy M nodR008 nogenos nogacin

New Path = Node004 to Node010 to

Node005 = 244,85 ps

105,37

Original Path= Node004 to Node005 =
144,1 s
144,1
l . oo
o8] -CaERN o4l 1078 I

noge006 nocenn7 nosecos nodecos nbagn1n

Sources Modes

139,48

Fig. 4.4 Latency of Communication Message Size = 64KB

node0o1 - nede002 - node003 u node004 u node005 - nede006 L] node007 n node008 node009 | node010

177
Original Path from node 5

to node 8.
Latency = 2245us 0

Alternative Path from node 5
to node 8. For node 10.
Latency = 800pus

node001
Sources Nodes

Alternative Path from node 5
to node 8. For node 7.
Latency = 400ps

Fig. 4.5 Alternatives Path Selection

10 to send the message through them to node 8. The sum of latency from node 5 to
node 7 and then to node 8 will be approximate 5,63 times faster than through the
original path and the sum of latency from node 5 to node 10 and then to node 8 will

be approximate 2,8 times faster than through the original path.

To verify the robustness of the alternative paths with lowest latency we create the

Sensibility Matrixz. It allows us to find out an approximation about how the nodes

are related to each other. This information is useful for the selection of alternative
paths. In MCM, if we find a path with congestion by which we should send a message,
we try to select a new path with the least possible relationship to the congested path,

and to find it we use the Sensibility Matrix.

55

Fig. 4.6 Sensibility Matrix with path selections

To create the Sensibility Matrixz with weigths of relationship between nodes,
we execute the Ping Pong message application between processes using N — 2 nodes,
where N is the total number of nodes, also we add a constant traffic in the remaining
two nodes. If this congestion affects messages communication between nodes of the
Ping Pong, this effect denotes a relationship with the congested nodes, and it is stored
at the intersection of affected nodes in the Sensibility Matrix.

In Figure 4.6, it is possible to observe the Sensibility Matrixz obtained. For
example if a congestion occurs in path from node 5 to 8, we use the Matrixz of
Latency Distances to verify which nodes can be used as intermediate node for the
alternative path. In the last example the selected nodes were node 7 and node 10. We
verify with this Sensibility Matriz if those alternative paths are robust.

We corroborate the robustness of a path starting from node 5 to 7 and then node
8 (marked in blue on the matrix), and the path starting from node 5 to 10 and then
node 8 (marked in green on the matrix). Its possible to observee the robustness of
those paths, checking the sum of weights from source to destination, is less than the
other possible paths.

The main idea is to avoid the congestion and its related links, so we try to improve
the usage of non-congested links. Furthermore, in congestion scenarios we make use of
the found alternative paths.

26

5000 MO0 W1 L2 W3 N4 E5 W6 E7 W8 N9 NH10 EH11 MA12 13 W14 ®W15 W16

179 Alternative Path from
node 7 to node 5.
For node 16.
Latency = 634us

3750

2500

125Q 993

y 1 s,

0~ 1 2 3 4

Latency in microseconds

12 13 14

8
834
Sources Alternative Path from
node 13 to node 15.
For node 16.

Alternative Path fro
node 0 to node 1. For
node 7. Latency = 866ps

Latency = 1006us

Fig. 4.7 Alternative Paths for NAS-CG Communications

4.7.2 MCM Simulation Evaluation Using NAS-CG Bench-

mark

An experiment to simulate MCM daemons functionality is performed, executing NAS-
CG parallel benchmark Class B with t2.micro instances (Amazon EC2) in 16 nodes,
and the Ping Pong message calibration between every pair of virtual machine, assuming
that there are not problems on the network, using sixteen process. The results are
shown in Fig. 4.7 and Fig. 4.8.

e For Message Communication in the NAS-CG Class B, between node 0 to node 1,
a total latency of 179,782 microseconds for the message size predefined for the

application is measured (Fig. 4.8a).

Also is executed the Ping Pong calibration of communications between all the
virtual machines, sending message of 1 MB. In this scheme from node 0 to node
1 a latency of 993 microseconds with the Ping Pong calibration is measured. If
the path is changed, for example node 0 to node 7 to node 1 the latency will be
866 microseconds (green path in Fig. 4.7).

This means that if the same technique is used with the message sent by the NAS
between the same nodes the total latency of its message will be decreased around
12.7%.

o For Message Communication in the NAS-CG Class B, between node 7 to node 5
a latency of 119,819 is measured (Fig. 4.8a). Like the first one we also have the

57

Ho o1 2 H3 - 4 Hs5 H6 m7

200000 128,310 @
179,780 177,200

»
8 150000
0
o R 119,819
(2]
2 100000 baoro 02070
p g 88,420
- 7,330
)
c 53’ 0 54,19 59,280
2 50000
©
- W
6,950 6
0 | |
0 1 2 3 4 5 6 7
Sources
(a) NAS-CG communication time between nodes 0 and 7
mg W9 w10 MW m12 ®m13 _ m14 mi5
100000 96,890 97,690
g 76,270 78910
& 75000 67,040 67,754
e
2
E 50000 (47,600 48,080 46,480 47,03
>
g 26,910 27,510
2 25000 | 19,210 20,11
L]
J I
1,260 52
O ﬂ
8 9 10 1 12 13 14 15
Sources

(b) NAS-CG communication time between nodes 8 and 15

Fig. 4.8 NAS-CG communication time

Ping Pong calibrations measures, sending message of 1 MB between all pairs of

processes.

From node 7 to node 5 a latency of 897 microseconds is measured. If the route
is changed, for example node 7 to node 16 to node 5 the latency will be 634
microseconds (purple path in Fig. 4.7). In this case MCM also will be working
with the NAS message between those nodes, and the latency will be decreased
around 29.26%.

There are more communications that can reduce their latencies times, for instance,

for message communication in the NAS-CG Class B, between node 13 to node

o8

15 (Fig. 4.8b) the alternative path for it is marked in blue on Fig. 4.7. For
illustration proposal not all paths and their respective alternative paths are

marked.

o For Message Communication in the NAS-CG Class B, between node 2 to node 0
a total latency of 192,729 microseconds is measured (Fig. 4.8a). And then finally
send message of 1 MB from node 2 to node 0 have a latency of 200 microseconds
with the Ping Pong calibration. In this case the path of the message sent does
not have to change, because there are not betters routes analyzing the behavior

of the network with message of 1 MB.

With all the experiments it is verified that the proposed method can work, due to
the existence of alternative paths. We find intermediate nodes that can be used to
send the message and in which the sum of total latencies is less than the original path.

Allowing to decrease the traffic congestion and the message latencies.

4.7.3 MCM Evaluation

Experiments are done in order to evaluate the MCM daemon software component like a
first stage to test the method, with the monitoring, detection and the alternative path
selection functionality. The experiments are performed with the NAS-CG application
running the Class B and C in 16 nodes. The evalutions are done using t2.medium
instances in Amazon EC2 cloud. Both applications with 1000 iteration to converge.
We run this experiment with 16 processes. The experiment tries to expose the benefits
of our method for the application execution time if a congestion occurs. Also tries to
analyze the overhead added by the technique and evaluates the scalability of MCM
daemons, testing it with different problem sizes of NAS-CG.

To test the functionality of MCM daemon and the overhead added by the middleware,
a congestion is generated by another application between two nodes, causing a delay
of 0.005 seconds in the link that connect those nodes, and NAS-CG running at the
same time. The NAS-CG Class B without this congestion have an execution time of
247.64 seconds. The same application with MCM and without congestion have 260.61
seconds. This represents a 5% of overhead. On the other hand, with the congestion it
have an execution time of 513.36 seconds. Instead with MCM and 2 alternative paths
available to avoid congestion, the application have an execution time of 375.56 seconds.
MCM reduce the execution time, in approximately 30% compared with the congested

one. These results are shown in Figure 4.9.

29

B App © App-MCM H App-Congestion [l App-Congestion-MCM

B0 [

480

360

Seconds

240

120

NAS CG -CLASS B

Fig. 4.9 MCM functionality and overhead added

The scalability of the method is evaluated testing MCM with 1 alternative path (the
worst scenario), and different problem sizes of NAS-CG, also applied the congestion
between two nodes by a delay of 0.005 seconds in the link that connect those nodes. The
NAS-CG Class B without congestion have an execution time of 252.74 seconds, with
congestion have an execution time of 782.33 seconds, with MCM avoiding congestion
have an execution time of 655.15 seconds. These results are shown in Figure 4.10.
In NAS-CG Class C, the results obtained have similar behaviors. NAS-CG Class C
without the congestion have an execution time of 633.03 seconds, with the congestion
have a execution time of 1320.82 seconds and with MCM avoiding congestion have a
execution time of 1152.33 seconds.

The MCM method reduces the NAS-CG Class B execution time 16.2% compared
to execution time of the same application with congestion, and with NAS-CG Class C
reduce the execution time 12.7%.

The usage of the MCM daemon improves the application execution time if conges-
tions occurs in links used for the application processes communications. The main
idea is to avoid the congestion and its related links, trying to improve the usage of

non-congested links.

60

B Application-No-Congest B Application-Congest B Application-Congest-MCM
1400

1120

840

Seconds

560

280

CG-CLASS B CG-CLASS C
Fig. 4.10 MCM and NAS-CG Execution Times

4.8 DMCBM Evaluation in a public cloud

In this section an analysis of DMCBM improving the MCM daemon with an optimal
ACK notification and the user mitigation process is done, and it is called DA-MCM.
The functionality of this dynamic approach, that takes into account the application
communication pattern is tested. A series of experiments evaluating latency of MPI
communications and the total execution time of applications running on cloud are

conducted.

4.8.1 Performance Analysis

The NAS-CG is executed in a virtual cluster of 16 VMs on Amazon EC2 public cloud.
The t2.medium and c3.2xlarge instances are used in Amazon EC2. The experiments
expose the benefits of the DA-MCM method for the application execution time, by
improving the processes messages latency time when congestions are detected. The
results also show the added overhead and evaluate the scalability of DA-MCM, by
testing it with different workloads of NAS-CG.

Evaluations are carried out to test the functionality of DA-MCM and to measure the
added overhead, in scenarios without congestion (NC), without congestion and applying
DA-MCM (NC-DA-MCM), with congestion (IC) and with congestion applying DA-
MCM (IC-DA-MCM). The congestion is created with the bursty traffic generated by

the application itself and by delays in links that connect the virtual nodes. Finally, an

61

improvement is presented with the DA-MCM mechanism compared to MCM (IC-MCM)
[9].

For the NAS-CG Class D execution, a study of the improvement in terms of execution
time and communication time is carried out using virtual nodes with c¢3.2xlarge as
instance type. In Fig. 4.11a, it is possible to observe there is no significant added
overhead in the application execution time, comparing no congestion scenario (NC)
with the scenario applying DA-MCM without congestion (NC-DA-MCM). On the
other hand, when congestion occurs, a reduction of 16% of the delay in the application
execution time is observed, comparing scenario with congestion (IC) and the scenario
with congestion and applying DA-MCM (IC-DA-MCM). The results show the advantage
of avoiding congestion during the application execution taking into account the total
execution time.

At the same time, we test and compare the presented DA-MCM with MCM, in a
controlled execution environment, using a virtual cluster built with OpenStack. This
experiment is done in order to notice the effects of the DA-MCM improvements over
the MCM in the application execution. The NBody application is executed using
ml.medium instances. In Fig. 4.11b, NBody simulation executed with DA-MCM

reveals approximately 2% of overhead compared to execution without DA-MCM.

NAS_CG_D NBody
790~
1000-
= Type - Type
° =] o NC
£ £
= 780- B3 NC-DA-MCM = [nc-pa-mem
S i 5 [IS
= 5
2 B8 1c-mem - B c-vcm
& B C-DA-MCM (3 B ic-pa-mcm
- =
== 0-
760~ .
NAS_CG_D

32 Processes

(a) Amazon EC2 (b) OpenStack

Fig. 4.11 DA-MCM analysis

62

Hence, in a scenario in which congestion appears, a reduction of approximately 9%
is obtained applying DA-MCM. The introduced DA-MCM mechanism improves the
MCM approach, as observed in the presented results.

4.8.2 Communications Analysis

In this section, the latency of the parallel application communication is measured and
analyzed. This analysis is done to illustrate how the technique deals with congestion
situations. The application used in this analysis is the NAS-CG Class D with 16
processes. Each process is executed in one VM of the virtual cluster.

In order to measure the communications of the application processes, they are
captured using DA-MCM, which intercepts all messages sent between processes. After
the interception, the message latency information is stored into a file. There is one file
for each application process.

Figure 4.12 shows the communication time of the NAS-CG application processes.
It is possible to observe how the technique improves communications in the case of
congestion scenario compared to the execution without applying DA-MCM. The figure

depicts that high latency hot-spots are turned into lower latency ones, denoting the

N NC-DA-MCM

©
15- |]
14~
13- | |

1 J l- | 4 J | . Communications Time (s)
| —L I 100

Source
o
IB
o
:Ib
=
(@}
£

C=NWAUON®O
|
|
|
|

012345678 9101112131415 012345678 9101112131415
Destination

Fig. 4.12 Communications between processes

63

reduction of communication time between processes, when the proposed technique is

applied.

4.8.3 Scalability Analysis

Mechanism scalability is evaluated, testing it with different problem sizes of the NAS-
CG benchmark with different instance types. For Class B execution, using t2.medium
instances without congestion gives an execution time of 252.74 seconds. Meanwhile,
the same application executed with congestion has an execution time of 782.33 seconds.
When the DA-MCM is applied to avoid a congestion situation, an execution time of
655.15 seconds is obtained (Fig. 4.13). Class C execution obtains results with similar
behavior. The DA-MCM method reduces the NAS-CG Class B execution time by
16.2%, compared to execution with congestion. For Class C execution, the mechanism
reduces the execution time by 12.7%. A similar pattern of the mechanism is observed
in the execution of the same application with a larger problem size (Class D) and
using instances with more resources(c3.2xlarge), denoting the benefits of DA-MCM in

multiple scenarios.

CG-CLASS-B CG-CLASS-C CG-CLASS-D
1000 -
©
) Type
£ Yp
|_
S .IC
=)
3 s00- I ic-DA-mom
11|
Processes

Fig. 4.13 DA-MCM scalability

64

DA-MCM leverages MCM improving even more the application execution time
when congestion occurs in the virtual links of a cloud environment. It provides to users
an efficient usage of virtual network resources. Lower message latency time allows the

method to obtain improved application execution time in congestion scenarios.

4.9 DMCBM Evaluation in a private cloud

In this section, an evaluation of the Dynamic MPI Communication Balance and
Management Evaluation (DMCBM) middleware applied to HPC applications executed
in a private cloud is presented. For this execution environment, the implementation of
our middleware is called MCBM. The evaluation is performed using MPI applications
with repetitive communication patterns, by analyzing their performance, scalability

and communications time in scenarios with and without congestion.

4.9.1 Performance Analysis

The performance of the different applications is analyzed, in order to verify the overhead
introduced by the technique and to show how the application performance is improved
when congestion scenarios appear and MCBM is applied, during the application
execution. The experiments are repeated several time for the cloud variability, in order
to achieve an statistical significance in the results. Maximum, minimum and average
values of relevant metrics for each application are shown next.

In this analysis experiments are done using NAS-CG Class D and NBody appli-
cations, each of them with 32 processes distributed in 32 virtual nodes (or virtual
machines). The virtual nodes are m1.medium instances type. For scenarios in which
the technique is applied, there is one MCM daemon per virtual node. Therefore, there
are 32 MCM daemons in total, 1 in each virtual node.

Figure 4.14 shows the execution time of the four scenarios under test, note that
the overhead introduced by MCBM is less than 5% in congestion absence. The MCM
daemons make traffic rebalancing decisions only during congestion, and have almost
no impact with normal traffic. In the case of NAS-CG, the overhead is only slightly
larger than for NBody even when both communication patterns are very different in
topology and intensity. This indicates that MCMB overhead is decoupled from the
communication traffic to some extent.

The experiment also shows the behavior of the applications in congestion situations,
when MCBM is applied or not. The evaluation of the execution time for NAS CG

65

NAS_CG_D Nbody

1200 -

@ 1150~ 700~ Type

[0}

E E3ne

o E3 NC-MCBM
o

5 1100- J Bl

S L]

L%J ES ic-McBM

* 650 - *

- - -

1000 - $

600 -

NAS_CG_D Nbody
Applications using 32 processes

Fig. 4.14 Applications Execution Time

Class D and NBody applications in congestion situations shows an overhead in the
range of 18% to 22% respect to the execution without any congestion. Applying
MCBM technique in congestion situations, obtains a reduction of the execution time
of approximately 10% compared to the execution without it, for the NAS CG Class D
application.

A similar behavior is depicted for the NBody application with a different com-
munication pattern, applying the technique, a reduction of at least 9% is obtained,
showing the benefits of avoiding congestion applying MCBM. Furthermore, it is also
possible to observe that for both applications MCBM provides more stable execution
times, opposite to IC scenarios that show larger variations due to the lack of congestion
management.

The live-migration operations are analyzed during the evaluations. We measured
each migration operation during the application execution, when MCBM is activated.
Figure 4.15 shows the experiment results for the NAS CG benchmark and the NBody
application. In the results is observed that when the migration is performed during
the execution of the NAS-CG application, the operation takes significantly longer
time compared to the NBody application. Hence, it is possible to state, that the live
migration operation time is related to the application communication pattern, which
affects the execution time of the application. The amount of times that the migration

is done, depends on several factors, such as the network status, more accurately, the

66

Time (s)
2.4 2.6 2.8 3.0
| | |

22

2.0
o

Application

Fig. 4.15 Live-migration operation analysis for NAS-CG and NBody applications.

detection of destination congestion by the MCBM. It is important to remark, that
although the migration operation has an associated cost, it is worth to pay compared to
the unpredictable over-cost that a congestion scenario may incur over the application

execution.

4.9.2 Scalability Analysis

The scalability analysis of MCBM is done, in order to verify how the technique works
when user’s applications is scaled in quantity of processes and application workload
size, taking into account the performance in terms of the application execution time.
The applications are executed with 16 and 32 processes in 16 VMs using m1.medium
instance type.

Figure 4.16 shows how the technique successfully scales with the application. The
overhead added when applying the technique despite the amount of processes used
remains similar in the range of 5%. Similarly, MCBM maintains the reduction of
10% in execution time for both applications compared the congestion scenario without
MCMB support.

MCBM improves the application execution time when destination and link conges-
tion occurs, choosing an alternative path if the congestion is present in the link and
performing a virtual machine live migration if a destination congestion occurs. During
the experiments, a destination congestion occurs and a virtual machine live migration

is done to avoid this congestion.

67

NAS_CG_D Nbody

2000 -

1500 -

1000~ :
) I.
O -
16 32 16 32

Processes

Execution Time (s)

Fig. 4.16 Applications with different quantity of processes

4.9.3 Communications Analysis

The communications time analysis is performed to illustrate how MCBM tackles
congestion scenarios reducing the latency of the MPI application communications in
cloud.

For the analysis of the communications, the experiments were performed using
both applications: NAS CG Class D and NBody with 16 and 32 processes. During
the experiments, the communication pattern for both applications remained the same
when scaling them.

The communications were captured using the MCM daemon. We leverage the
monitoring component of MCM to store latency values in a file for collecting the
results shown in this section. There is one file per application process, and contains all
communications performed by the process throughout the execution. For the scenarios
with congestion situations, the congestion is created using a synthetic application,
which communicates between its processes, in parallel to the user application execution.

Figure 4.17a shows the communications pattern of the NAS-CG benchmark. It also
depicts the total communication time for each source-destination pair communicating

processes. There are 16 processes running in 16 virtual machines. Note that in scenarios

68

NC NC-MCBM

| | -

1 & = .

] t‘ - t‘ - Communications Time (s)
. 500

] 250

400

fu
fu

C—LNWANNNROD =N

7000~ Type

o)
(0]
£
IS
8 c
o 350 3 (=]
3 ic IC-MCBM 300 3
» 250 £ S NC-McBM
}i 180 2 6500~ o
13 | | £ o
b L] L 50 8 B8 1c-McBM
10 T 6000-
g o L L 3
;- m + [+ - =
6 ¥ 4 E$E
g: - [| - [| NAS_CG_16
1- Application
0-
01234567809101112131415 0123458678 9101112131415 . .
Destination (b) Application total com-

o . munication
(a) Communication time between processes

Fig. 4.17 NAS CG CLASS D Benchmark with 16 processes

with congestion (IC), the latency for both applications is significantly increased, whereas
with MCBM support (IC-MCBM) congestion can be reduced to values similar to the
congestion free case (within ~ 3%). The application total communication time of the
Fig. 4.17Db, is obtained by accumulating the latency results of each communication pair.
Note that when congestion scenarios appear, the application communication time is
drastically affected, implying a high-penalty for the users in terms of execution time for
their application. MCBM comes with an overhead for the users application execution,
although when congestion scenarios are detected, the technique avoid uncontrolled
impact on the application communication time.

In Figure 4.18a, similar results are obtained for the NBody application. The
communication pattern in this case is represented as a pipeline between process.
Results indicate how the technique improves communications in the case of congestion
scenario compared to the execution without applying MCBM (which add an overhead
of approximately 3% in congestion free scenarios). The figures illustrate the pairs with
congestions, and how the congestions are avoided with the MCBM, acquiring better
communications distribution by using MCBM. It depicts that high latency hot-spots
are turned into lower latency ones, denoting the reduction of communication time
between processes, when MCBM is applied. For this application, with a different
communication pattern, MCBM also reduce the application total communication time

in congestion scenarios as shown in Fig. 4.18b. This result is obtained comparing the

69

scenario with congestion (IC) and the scenario with congestion but applying MCBM
(IC-MCBM)

NC NC-MCBM
15- u
14-
13-
12-
11-
101 NBody_16
8-
EN
6-
5-
4- —
3- Communications Time (s) @
2] 300 e
° 0- 250 = 2000~ Type
.
e 200 § (=]
3 Ic IC-MCBM Z
3 150 5 . B8 NC-MCBM
] =
G- - 100 g o e
13-
131 50 § 1500~ B8 1c-mcBM
11- °
10- T
9-
81 " *
N
6-
5] 1000-
g: NBody_16
1= Application
0-
01234567809101112131415 0123456 7 8 9101112131415 . .
Destination (b) Application total com-

L . munication
(a) Communication time between processes

Fig. 4.18 NBody, simulation of a dynamical system of particles with 16 processes

For both applications with 16 processes in 16 virtual nodes. In scenarios where
a congestion situation is created (IC), the communication time for both applications
is significantly affected. For the application execution in congestion scenarios with
MCBM applied, the application communication time is reduced between different pair
of processes (IC-MCBM), achieving a reduction of the application total communication
time.

The MCBM technique reduces the application total communication time for conges-
tion scenarios of the NAS CG Class D on about 16% compared to the execution without
MCBM. Similar results are obtained for the NBody application with an improvement
of the application total communication time, which is in range of 30%.

We have scaled out the applications to 32 virtual machines and repeated the
experiments above. Figures 4.19a and 4.19b show the communication pattern between
each pair of processes for the NAS-CG, as well as the application total communication
time. Figure 4.19a shows the re-balance of the communications between processes
performed by MCBM in congestion scenarios (IC-MCBM), compared with congested
scenario (IC). With the re-balance performed by MCBM, a reduction of approximately
15%, in terms of application total communication time, is obtained compared to the

execution without the technique.

70

NC NC-MCBM

%= NAS_CG_32
28~

2 EEREmE --'E'.;_; S ..-'E'.;,;

22-

11000 -

Type

=]\

B3 NC-MCBM

10000 - ° ‘ Ic

3 * ES 1c-MoBM
2: - -

] - - ==

& 9000-

Source
o
S
=
(e}
@
=

"
LY
"
Rl
= @
Total Communication Time (s

024 6 8101214161820222426283032 0 2 4 6 8101214161820222426283032
Destination

NAS_CG_32

(a) Communication time between processes -
Application

(b) Application total communication

Fig. 4.19 NAS CG CLASS D Benchmark with 32 processes

Last, Figures 4.20a and 4.20b show same results for the NBody application with
32 virtual machines. The figures also highlight the overhead added by MCBM and
the total communication time reduction, which is the effect of the communication
distribution performed by the MCBM technique. With the distribution done by MCBM,
a reduction of around 40% is obtained compared to the execution without the technique.
Summarizing, the figures illustrate pairs of communication processes with congestion,
and how they are avoided taking into account the application communication pattern

with the MCBM, acquiring better communications distribution.

NC-MCBM

. NBody_32
28-

26-

24-

22-

20~

18-

i 3000~

- QD

2 Commumcallons Time (s)

-

5 Type

°
£

° =
% IC-MCBM _5 2500- E NC
o 32- =]

%0-* 8 B3 NC-MCBM

26- g

gg 2 . [¢

2000-

1 £ B3 1c-McBM

14- o

12- —-—

10- S *

: g -
S 1500~
D 2 4 6 E101214161820222425283032 D 2 4 6 B1012141618202224252&3032
Destination
. . . NB H 2
(a) Communication time between processes s
pplication

(b) Application total communication

Fig. 4.20 NBody, simulation of a dynamical system of particles with 32 processes

71

4.10 Comparative with others techniques

In this section, a comparative study with the state of the art techniques is done.
Some of them use processes reallocation to improve the HPC communications in cloud
environments, for e.g.: Gomez-Folgar et al. [14] obtain latency improvement of 23%
for benchmarks applications, in comparison with our technique, in which using virtual
machine live migration we obtain a latency improvements of about 40%. For real
applications, they obtain an improvement of around 4%, and for special cases 26%,
both improvements are in terms of execution time and depends on the application.
With similar kind of applications, we managed to improve the execution time in at
least 7%. For example for a NAS CG benchmark application applying MCBM we
obtain a reduction of 16% in congestion scenarios using a the Class D. Hence, with a
real application of a dynamical system of particles NBody we obtain a reduction of
10% in congestion scenarios with 10000 particles and 50 iterations.

Another kind of solution is presented by Gong et al. [16], they develop network
performance aware algorithms for MPI collective operations, though not resolving
the issues of point to point communications. This approach requires MPI library
modification. Our technique deals with point to point communications, and dynamically
avoids congestion during the application execution without modifications in the MPI
library. Furthermore, we obtain similar benefits in terms of application execution time
and communications.

We have to remark that in all the analysis, the experimental environments, and
in some case the applications are no the same. The comparison only gives an idea of
how the existing techniques are related to our proposed solution in a quantitative and
qualitative analysis. It demonstrates that the improvements of our technique related to
communications latency time and execution time reduction are in an aceptable range

or in some cases even better than others techniques.

4.11 Summary

In this chapter the evaluation of the Dynamic MPI Communication Balance and
Management (DMCBM) middleware is presented. First, an analysis of the system
characterization is performed. With this analysis is possible to notice that several
alternatives paths, can be found and used during application runtime applying our
technique. Then, the MCM daemon is also analyzed, in order to test the selection of

alternative paths and how this affect to the application execution.

72

The components that are part of DMCBM were tested using several applications
and execution environments including public and private clouds. For benchmark and
real applications executed the reduction of the execution time in congestion scenarios
applying the technique is approximately 10%. Furthermore, improvements in the
application execution time can be achieved thanks to the latency reduction in the
application communications that are up to 40%.

As shown in this evaluation, DMCBM helps users to improve their application’s
execution time, when congestion situation is presented. The presented technique
successfully avoid congestion, distributing the application processes communication
by selecting alternative path, or live-migrating virtual machines when destination
congestion is detected. With the presented results, it is also noticeable, that by
lowering application processes message latencies, we can achieve an improvement on
the application execution time. The fundamental concept behind the middleware is
to avoid congested links, improving the usage of non-congested ones in the execution

environment.

73

Chapter 5

Conclusions and Future Works

“The greatest victory is that which requires no battle.”
— Sun Tzu, The Art of War

5.1 Final Conclusions

This thesis studies the migration of HPC applications to cloud environments and
proposes a middleware to overcome the communications challenges that appears. It
presents several aspects like the state of the art study and design of new techniques,
along with the evaluation of the presented solution. However, the work also open new

lines of research and future works.

5.1.1 Dynamic MPI Communications Balance and Manage-

ment

In this work the main area of study is how to improve HPC applications communications
in cloud, due to the lost of performance that applications experiments in this kind of
environments. The proposal aims to HPC applications, which use the MPI standard.
In order to improve the performance of MPI applications in the cloud is needed a
better manage of MPI communications in a virtual network or the modification of MPI
sentences.

This thesis proposal, Dynamic MPI Communications Balance and Management
(DMCBM), improves the performance of MPI applications in cloud and provides the
user’s application with a mitigation process which enables the detection of issues

related to the application processes mapping; as well as parallelization implementation.

75

DMCBM provides the management of MPI communications in virtual network envi-
ronments. The technique operations are done in parallel with the application execution
and without modifying neither the application nor the MPI library implementation.

DMCBM middleware characterizes the underlying network topology, and looks
for alternative paths to avoid congestion situations by distributing the messages
communications between links with less usage, considering the variability of Cloud
networks and the dynamic traffic behavior. It detects links and host destination
congestions, and provides mechanisms to avoid them, using alternative paths and
virtual machine live migration.

The proposed solution allows to obtain better execution and communication time
in case of congestion for MPI applications running on clouds. DMCBM can provide an
efficient cost-benefit trade-off of resource usage to cloud users, taking in to account the
application communication pattern. Experiments done demonstrated the viability of
the proposed technique applied to real-world and benchmarks applications executed
in public and private clouds. We also present a comparative analysis of DMCBM
with other techniques of the literature, showing the benefits of our method in terms of
communication time of at least 30% and execution time of at least 7% in congestion

scenarios.

5.2 Future Works

This work tries to be the most complete research to fulfill the main goal of this thesis,
which is to improve communications in cloud. However, some parallel future works

appear during this years. Some of them are the following:

¢ Our middleware can be integrated in new architectures like Software Defined
Networking using cloud. In order to detect alternative paths for MPI applications

communications management in this kind of architectures.

e Look at improving the DMCBM mechanism using different technologies in
private clouds, such as containers and with this, reducing the costs without losing

application performance.

« Use the elasticity characteristics of cloud to dynamically provide new virtual

machines in case of destination congestion.

76

References

[1] Amazon (2018). AWS, High Performance Computing. https://aws.amazon.com/
hpe/. Accessed: 2018.09.11.

[2] AmazonEC2 (2018). Instances of amazon ec2. https://aws.amazon.com/es/ec2/
instance-types/. Accessed: 2018-09-11.

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., and Stoica, I. (2010). A view of cloud computing.
Magazine Commaunications of the ACM, 53(4).

[4] Balis, B., Figiela, K., Jopek, K., Malawski, M., and Pawlik, M. (2017). Porting
HPC applications to the cloud: A multi-frontal solver case study. Journal of
Computational Science, 18:106—116.

[5] Dashdavaa, K., Date, S., Yamanaka, H., and Kawai, E. (2014). Architecture of
a High-Speed MPI Bcast Leveraging Software-Defined Network. FEuro-Par 2013:
Parallel Processing Workshops: BigDataCloud, DIHC, FedlCI, HeteroPar, HiBB,
LSDVE, MHPC, OMHI, PADABS, PROPER, Resilience, ROME, and UCHPC
2013., pages 885-894.

[6] Espinola, L., Franco, D., and Luque, E. (2015). MPI Communications Management
in Cloud. In JORNADAS DE PARALELISMO, JP 2015, pages 331-336.

[7] Espinola, L., Franco, D., and Luque, E. (2015). MPI Communications Management
in Cloud. In Int’l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA’15 |, pages
673-679.

[8] Espinola, L., Franco, D., and Luque, E. (2016). Improving mpi communications in
cloud. In ACM-W Europe WomENcourage 2016 Celebration of Women in Computing.

[9] Espinola, L., Franco, D., and Luque, E. (2017). ScienceDirect MCM: A new MPI
Communication Management for Cloud Environments. Procedia Computer Science,
108:2303-2307.

[10] Espinola, L., Franco, D., and Luque, E. (2018). DA-MCM: A Dynamic Application-
Aware Mechanism for MPI Communications in Cloud Environments. In Int’l Conf.
Par. and Dist. Proc. Tech. and Appl. | PDPTA’18 |, pages 211-217.

[11] Expésito, R. R., Taboada, G. L., Ramos, S., Tourifio, J., and Doallo, R. (2013).
Performance analysis of hpc applications in the cloud. Future Generation Computer
Systems, 29(1):218-229.

7

https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
https://aws.amazon.com/es/ec2/instance-types/
https://aws.amazon.com/es/ec2/instance-types/

[12] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J.,
Graham, R. L., and Woodall, T. S. (2004). Open mpi: Goals, concept, and design
of a next generation mpi implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97-104.

[13] Goga, K., Pilosu, L., Parodi, A., Lagasio, M., and Terzo, O. (2019). Performance
of WRF Cloud Resolving Simulations with Data Assimilation on Public Cloud and
HPC Environments. pages 161-171. Springer, Cham.

[14] Gomez-Folgar, F., Indalecio, - . G., Seoane, -.N., Pena, -.T.F., Garcia-Loureiro,
. A. J., and Gomez-Folgar, B. F. (2018). MPI-Performance-Aware-Reallocation:
method to optimize the mapping of processes applied to a cloud infrastructure.
Computing, 100:211-226.

[15] Gomez-folgar, F., Indalecio, G., Seoane, N., Garcia-Loureiro, A. J., and F. Pena, T.
(2016). Study of Point-to-Point Communication Latency for MPI Implementations
in Cloud. The 22nd International Conference on Parallel and Distributed Processing
Techniques and Applications, page 60132.

[16] Gong, Y., He, B., and Zhong, J. (2015). Network Performance Aware MPI
Collective Communication Operations in the Cloud. IEEE Transactions on Parallel
and Distributed Systems, 26(11):3079-3089.

[17] GoogleCloud (2018). Setting instance availability policies. https://cloud.google.
com/compute/docs/instances/setting-instance-scheduling-options. Accessed: 2018-
09-11.

[18] Gupta, A., Faraboschi, P., Gioachin, F., Kale, L. V., Kaufmann, R., Lee, B.-S.,
March, V., Milojicic, D., and Suen, C. H. (2016). Evaluating and Improving the
Performance and Scheduling of HPC Applications in Cloud. IEEE Transactions on
Cloud Computing, 4(3):307-321.

[19] Gupta, A. and Milojicic, D. (2011). Evaluation of HPC applications on cloud.
Proceedings - 2011 Fifth Open Cirrus Summit, OCS, pages 22-26.

[20] Gupta, A., Sarood, O., Kale, L. V., and Milojicic, D. (2013). Improving HPC
application performance in cloud through dynamic load balancing. Proceedings -
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 20183, pages 402—409.

[21] Hassan, H. A., Mohamed, S. A., and Sheta, W. M. (2016). Scalability and
communication performance of HPC on Azure Cloud. Egyptian Informatics Journal,
17(2):175-182.

[22] Hassani, R., Aiatullah, M., and Luksch, P. (2014). Improving HPC Application
Performance in Public Cloud. IERI Procedia, 10:169-176.

[23] He, Q., Zhou, S., Kobler, B., Duffy, D., and McGlynn, T. (2010a). Case study for
running hpc applications in public clouds. HPDC.

78

https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options
https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options

[24] He, Q., Zhou, S., Kobler, B., Duffy, D., and Mcglynn, T. (2010b). Case Study
for Running HPC Applications in Public Clouds. Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing - HPDC"10,
pages 395-401.

[25] Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf,
J., Wasserman, H. J., and Wright, N. J. (2010). Performance Analysis of High
Performance Computing Applications on the Amazon Web Services Cloud. Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International
Conference, pages 159-168.

[26] Koibuchi, M., Matsutani, H., Amano, H., Hsu, D. F., and Casanova, H. (2012). A
case for random shortcut topologies for HPC interconnects. In 2012 39th Annual
International Symposium on Computer Architecture (ISCA), pages 177-188. IEEE.

[27] Ledyayev, R. and Richter, H. (2014). High Performance Computing in a Cloud
Using OpenStack. CLOUD COMPUTING 2014 : The Fifth International Conference
on Cloud Computing, GRIDs, and Virtualization, (c):108-113.

[28] Li, Z., He Zhang, C., and Cai, R. (2012). On a Catalogue of Metrics for Evaluating
Commercial Cloud Services. 2012 ACM/IEEE 13th International Conference on
Grid Computing, pages 164—173.

[29] Mariani, G., Anghel, A.; Jongerius, R., and Dittmann, G. (2017). Predicting
Cloud Performance for HPC Applications: A User-Oriented Approach. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 524-533. IEEE.

[30] Mauch, V., Kunze, M., and Hillenbrand, M. (2013a). High performance cloud
computing. Future Generation Computer Systems, 29(6):1408-1416.

[31] Mauch, V., Kunze, M., and Hillenbrand, M. (2013b). High performance cloud
computing. Future Generation Computer Systems, 29(6):1408-1416.

[32] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology. Nist
Special Publication, 145:7.

[33] Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F., and Buyya,
R. (2018). HPC Cloud for Scientific and Business Applications: Taxonomy, Vision,
and Research Challenges. ACM Computing Surveys, 51(1):1-29.

[34] Nuiiez, C., Lugones, D., Franco, D., Luque, E., and Collier, M. (2013). Predictive
and distributed routing balancing , an application-aware approach. International
Conference on Computational Science, ICCS, 00.

[35] Oracle (2018). Bare Metal Cloud Services. https://cloud.oracle.com/bare-metal.
Accessed: 2018.09.11.

[36] Panda, D. K. and Lu, X. (2018). HPC Meets Cloud: Building Efficient Clouds for
HPC, Big Data, and Deep Learning Middleware and Applications *. 17.

79

https://cloud.oracle.com/bare-metal

[37] Polash, F., Abuhussein, A., and Shiva, S. (2014). A survey of cloud computing
taxonomies: Rationale and overview. In The 9th International Conference for
Internet Technology and Secured Transactions (ICITST-2014), pages 459-465. IEEE.

[38] R Systems (2017). Dedicated Clusters. http://rsystemsinc.com/. Accessed:
2018.09.11.

[39] Righi, R. d. R., Rodrigues, V. F., da Costa, C. A., Galante, G., de Bona, L.
C. E., and Ferreto, T. (2016). AutoElastic: Automatic Resource Elasticity for High
Performance Applications in the Cloud. IEFE Transactions on Cloud Computing,
4(1):6-19.

[40] Roloff, E., Diener, M., Carissimi, A., and Navaux, P. O. A. (2012). High perfor-
mance computing in the cloud: Deployment, performance and cost efficiency. In
4th IEEE International Conference on Cloud Computing Technology and Science
Proceedings, pages 371-378.

[41] StarCluster (2011). Starcluster documentation (v.0.95.6). http://star.mit.edu/
cluster /index.html. Accessed: 2018-09-11.

[42] Stockton, D. B. and Santamaria, F. (2017). Automating NEURON Simulation
Deployment in Cloud Resources. Neuroinformatics, 15(1):51-70.

[43] Subramoni, H., Kandalla, K., Vienne, J., Sur, S., Barth, B., Tomko, K., Mclay,
R., Schulz, K., and Panda, D. (2011). Design and Evaluation of Network Topology-
/Speed- Aware Broadcast Algorithms for InfiniBand Clusters. In 2011 IEEE Inter-
national Conference on Cluster Computing, pages 317-325. IEEE.

[44] Takahashi, K., Khureltulga, D., Watashiba, Y., Kido, Y., Date, S., and Shimojo,
S. (2014). Performance evaluation of sdn-enhanced mpi allreduce on a cluster system

with fat-tree interconnect. 2014 International Conference on High Performance
Computing € Simulation (HPCS), pages 784-792.

[45] Telfer, S. (2016). The Crossroads of Cloud and HPC: OpenStack for Scientific
Research Exploring OpenStack cloud computing for scientific workloads.

[46] Walker, E. (2008). benchmarking amazon ec2 for high-performance scientific
computing. Program, pages 18-23.

[47] Wong, A., Rexachs, D., and Luque, E. (2015). Parallel Application Signature for
Performance Analysis and Prediction. IEEE Transactions on Parallel and Distributed
Systems, 26(7):2009-2019.

[48] Zahavi, E. (2012). Fat-tree routing and node ordering providing contention free
traffic for mpi global collectives. Journal of Parallel and Distributed Computing,
72(11):1423-1432.

[49] Zahid, F., Gran, E. G., Bogdanski, B., Johnsen, B. D., and Skeie, T. (2015). A
Weighted Fat-Tree Routing Algorithm for Efficient Load-Balancing in Infini Band
Enterprise Clusters. In 2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 35-42. IEEE.

80

http://rsystemsinc.com/
http://star.mit.edu/cluster/index.html
http://star.mit.edu/cluster/index.html

[50] Zhang, J., Lu, X., Jose, J., Li, M., Shi, R., and Panda, D. K. D. K. (2014).
High performance MPI library over SR-IOV enabled infiniband clusters. In 201/
21st International Conference on High Performance Computing (HiPC), pages 1-10.

IEEE.

[51] Zhang, J., Lu, X., and Panda, D. K. (2017). High-Performance Virtual Machine
Migration Framework for MPI Applications on SR-IOV Enabled InfiniBand Clusters.
In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 143-152. IEEE.

81

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 HPC in Cloud Computing
	1.2 The Challenge of HPC in Cloud
	1.3 Objetives
	1.3.1 General Objetive
	1.3.2 Specific Objectives

	1.4 Methodology
	1.5 Contributions
	1.6 Thesis Outline

	2 Thesis Background
	2.1 A Global Vision of Cloud Computing
	2.1.1 Characteristics and Services
	2.1.2 Implementation Models

	2.2 Cloud Infrastructures
	2.2.1 An overview of Amazon EC2 cloud infrastructure
	2.2.2 OpenStack cloud infrastructure

	2.3 HPC applications in cloud
	2.3.1 HPC with MPI communications in cloud
	2.3.2 MPI Applications Communication Pattern
	2.3.3 Current research improving MPI communications in cloud

	2.4 DMCBM: a new method to improve MPI Communications in cloud

	3 Dynamic Communication Balance and Management in Cloud
	3.1 Introduction
	3.2 Dynamic MPI Communication Balance and Management
	3.3 System Characterization
	3.3.1 Application Communication Pattern Recognition
	3.3.2 Network Topology Characterization
	3.3.3 Alternative Paths Table Creation

	3.4 Application Runtime Module
	3.4.1 Monitoring, Detection and Notification tasks
	3.4.2 Alternative Path Selection Controller using MCM
	3.4.3 Virtual Machine Live Migration Controller
	3.4.4 User Mitigation Controller

	3.5 DMCBM Software Architecture
	3.6 Summary

	4 Evaluation
	4.1 Experimental Design
	4.2 Evaluation Metrics
	4.3 Evaluation Methods
	4.4 Applications and workloads
	4.5 Experimental Environment
	4.5.1 Public cloud Configuration
	4.5.2 Private cloud Configuration

	4.6 General Software Configuration
	4.7 Analysis of functionalities
	4.7.1 System Characterization Validation
	4.7.2 MCM Simulation Evaluation Using NAS-CG Benchmark
	4.7.3 MCM Evaluation

	4.8 DMCBM Evaluation in a public cloud
	4.8.1 Performance Analysis
	4.8.2 Communications Analysis
	4.8.3 Scalability Analysis

	4.9 DMCBM Evaluation in a private cloud
	4.9.1 Performance Analysis
	4.9.2 Scalability Analysis
	4.9.3 Communications Analysis

	4.10 Comparative with others techniques
	4.11 Summary

	5 Conclusions and Future Works
	5.1 Final Conclusions
	5.1.1 Dynamic MPI Communications Balance and Management

	5.2 Future Works

	References

