Ayuda
Ir al contenido

Dialnet


Novel Advances in Bioprinting Based on the Mechanical Design and Optimization of Open-source Systems

  • Autores: Enrique Sodupe Ortega
  • Directores de la Tesis: Alpha Verónica Pernía Espinoza (dir. tes.), Andrés Sanz García (dir. tes.)
  • Lectura: En la Universidad de La Rioja ( España ) en 2019
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Julio Blanco Fernández (presid.), Manuel Martínez Torán (secret.), David Cuartielles (voc.)
  • Programa de doctorado: Programa de Doctorado en Innovación en Ingeniería de Producto y Procesos Industriales por la Universidad de La Rioja
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Dialnet
  • Resumen
    • español

      La bioimpresión tridimensional (3D) promete ser una solución práctica para resolver la creciente demanda de órganos y tejidos. Ya podemos encontrar varias impresoras 3D comerciales con diferentes especificaciones, sin embargo, su impacto en el campo de la ingeniería de tejidos todavía es limitado, debido principalmente a los altos costes y la falta de familiaridad de los investigadores sobre esta tecnología. Al igual que ocurre con las bioimpresoras actuales, durante muchos años el acceso a las impresoras 3D era muy costoso y su uso estaba limitado a unas pocas empresas y centros de investigación. Sin embargo, la aparición de proyectos open-source de impresión 3D como Fab@Home o RepRap, así como las impresoras domésticas comerciales, permitieron democratizar el acceso a esta tecnología. Estas plataformas de impresión pueden servir de trampolín para expandir el potencial de la tecnología de bioimpresión a toda la comunidad científica. En este sentido, esta tesis presenta un conjunto de herramientas de bioimpresión que incluyen la creación de una plataforma de bioimpresión plenamente open-source y varios cabezales de extrusión para la impresión de biotintas y materiales de soporte. Además, mediante el uso de esta plataforma de impresión open-source, ha sido posible abordar problemas específicos para la generación de impresiones multimaterial complejas y cargadas de células con altos porcentajes de viabilidad celular.

      Abordar la complejidad de los órganos y tejidos vivos precisa de combinar varios biomateriales de construcción y sacrificiales, así como diferentes tipos celulares en una sola sesión de biofabricación. Todo esto supone un desafío considerable, y para poder solucionarlo debemos centrarnos en las complejas relaciones existentes entre los parámetros de impresión y la resolución de impresión. Nosotros proponemos una metodología estándar para cuantificar la resolución de impresión de una bioimpresora y establecer un marco de comparación común entre impresoras. Los modelos de calibración empleados también permiten identificar cuáles son los factores más importantes que afectan a la precisión en la impresión. En este sentido, también proponemos un sistema de calibración automático y asequible, el cual puede ser empleado en bioimpresoras con múltiples cabezales. Este sistema permite obtener una alineado de los cabezales de impresión más rápido y preciso, ya que todo el proceso de calibración se produce de una sola vez y sin ajustes manuales. También hemos realizado un estudio exhaustivo de todos los parámetros de impresión involucrados en el proceso de impresión (presión, temperatura, velocidad, tamaño y morfología de las boquillas de impresión) e incluyendo diferentes tipos de biomateriales. Estos experimentos permitieron comprender la influencia de cada parámetro en el proceso de impresión y seleccionar la configuración óptima para cada aplicación.

      En líneas generales, las contribuciones presentadas en esta tesis tienen el potencial de expandir la tecnología de bioimpresión a todos los laboratorios de ingeniería de tejidos. Además, aumenta el conocimiento colectivo de la comunidad de bioimpresión con innovadoras propuestas.

    • English

      Three-dimensional (3D) bioprinting promises to be a practical solution for solving the increasing demand for organs and tissues. Several 3D bioprinters with different specifications are commercially available, but the impact on the field of tissue engineering (TE) is still limited, mainly due to the high costs and the unfamiliarity of researchers with this technology. As with the current bioprinters, for many years the access to 3D printers was very expensive and its use was restricted to a few companies and research centers. However, the appearance of open-source 3D printing projects such as Fab@Home or RepRap and commercial desktop 3D printers have permitted to democratize the access to this technology. These printing platforms can serve as a springboard to expand the potential of bioprinting technology to all the scientific community. In that sense, this thesis presents a set of bioprinting tools that include the generation of a fully open-source bioprinting platform and several extrusion-based printheads for the deposition of bioinks and scaffold materials. Moreover, using this open-source printing platform, it was possible to address specific problems for the generation of complex multi-material and cell-laden constructs with high cell-viability percentages.

      Addressing the complexity of organs and living tissues will require combining multiple building and sacrificial biomaterials and several cells types in a single biofabrication session. This is a significant challenge, and, to tackle that, we must focus on the complex relationships between the printing parameters and the print resolution. We proposed a standard methodology to quantify the print resolution of a bioprinter and establish a comparison framework between bioprinters. The calibration models utilized also permitted to identify which are the most important factors affecting printing accuracy. In this line, an automatic and non-expensive calibration system was also proposed, which can be utilized in bioprinters with multiple printheads. This system permits to obtain faster and more accurate alignment of the printheads, as the whole calibration process is done at once and without manual adjustments. We also performed a comprehensive study of all the parameters involved in the printing process (pressure, temperature, speed, nozzle size and morphology) and including different types of biomaterials. These experiments permitted to understand the influence of each parameter on the printing process and select the optimal configurations for each application.

      Overall, the contributions presented in this thesis posses the potential to expand bioprinting technology among the TE laboratories. Moreover, it enhances the collective knowledge of the bioprinting community with particular innovative proposals.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno