
New Computational Techniques for
Detecting, Learning and Managing

Criteria in Design Problems

TESIS DOCTORAL

Manuela Ruiz Montiel

Universidad de Málaga

Julio de 2016



AUTOR: Manuela Ruiz Montiel

        http://orcid.org/0000-0002-1824-7808

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización 
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer 
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de 
Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0002-1824-7808
http://orcid.org/0000-0002-1824-7808
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Documento maquetado con TEXiS v.1.0.



New Computational Techniques for
Detecting, Learning and Managing

Criteria in Design Problems

Memoria que presenta el doctorando

Manuela Ruiz Montiel

para optar al grado académico de Doctora

Dirigida por el Doctor

José Luis Pérez de la Cruz Molina

Programa de Doctorado en Ingeniería del Software e
Inteligencia Artificial

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

Julio de 2016



Copyright © Manuela Ruiz Montiel

E-mail: mruiz@lcc.uma.es
Web: http://www.lcc.uma.es/~mruiz

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs License: http://creativecommons.org/licenses/by-nc-nd/3.0/



El Dr. D. José Luis Pérez de la Cruz Molina, Catedrático de Universidad, del Área
de Ciencias de la Computación e Inteligencia Artificial de la Escuela Técnica Superior
de Ingeniería Informática de la Universidad de Málaga,

Certifica que,

Dña. Manuela Ruiz Montiel, Ingeniera en Informática, ha realizado en el Departa-
mento de Lenguajes y Ciencias de la Computación de la Universidad de Málaga, bajo
su dirección, el trabajo de investigación correspondiente a su Tesis Doctoral titulada:

New Computational Techniques for Detecting, Learning and Managing Criteria in
Design Problems

Revisado el presente trabajo, estima que puede ser presentado al tribunal que ha
de juzgarlo, y autoriza la presentación de esta Tesis Doctoral en la Universidad de
Málaga.

Fdo.: Dr. José Luis Pérez de la Cruz Molina

Málaga, Julio de 2016





A Francis, Juanma y mamá





Agradecimientos

Recuerdo como si fuera ayer la mañana en que me reuní con Pepe Luis para hablar
acerca de la posibilidad de hacer el doctorado bajo su tutela. Cuando me explicó
que podía desarrollar mi tesis en el ámbito donde la inteligencia artificial se une con
el diseño, supe que estaba en el lugar adecuado. Le doy las gracias de corazón por
ofrecerme esta posibilidad y sobre todo por la dedicación, disponibilidad y paciencia
que ha demostrado desde aquella mañana. Sus sabios consejos han conseguido llevar
el desarrollo de esta tesis a buen puerto.

Gracias también a Lawrence, por su inestimable colaboración a lo largo del proceso;
su minuciosidad e inteligencia sin duda han enriquecido los resultados de esta tesis.
A Eva, por la gran ilusión que siempre ha depositado en mí, y por la pasión que en
numerosas ocasiones me ha contagiado. A Mavi, por su gran dedicación y preocupación
en que todo salga siempre perfecto.

También quiero dar las gracias a Juan y Javier por su imprescindible aportación
a este trabajo. Gracias a vosotros no sólo he podido desarrollar los aspectos de esta
tesis relacionados con la arquitectura, sino también aprender mucho acerca de lo que
siempre ha sido una de mis vocaciones frustradas (ahora ya un poquito menos).

Thanks to everyone in the Computational Modelling Group of the Vrije Universiteit
Brussels for making my stay so comfortable. Gracias a Luis, Adrián y Marjon, por los
almuerzos españoles y las cervezas que compartimos. Gracias también a Isabel, por
todas las veces que me hizo sentir en Bruselas como si estuviera en casa.

Gracias de corazón a mis compañeros de laboratorio, por estar ahí para apoyarnos
mutuamente en los momentos duros y alegrarnos en los felices; y a los compañeros del
grupo y del departamento con los que he tenido la suerte de compartir clases y cafés.

Durante todo este tiempo han sido muchas las personas ajenas a la universidad que
han vivido en primera persona todo el proceso. Sin ellas, sin la alegría que me produce
que existan y sin la ilusión de verlas, nada de esto habría tenido mucho sentido.

Gracias a Lucía, Rocío, Irene (traumatóloga), Irene (ingeniera) y Alicia, por vue-

ix



x Agradecimientos

stro humor absurdísimo, por el sushi, por los multicumples, por el pádel, por Muse.
Gracias a Mar, Marina (medicina) y Marina (derecho). Aunque ahora estamos un
poco repartidas por la geografía española, cada vez que nos vemos parece que sólo
han pasado cinco minutos desde la última vez. Gracias por estar ahí siempre para
poder contároslo todo. Gracias también a todo el grupo de ISP. Nos vemos poco, pero
cuando nos juntamos nos lo pasamos pipa.

Gracias a mi encantadora familia, en la cual también incluyo a la familia de Francis,
por apoyarme siempre y creer en mí. A Juanma, hermanito, por tu alegría, humor y
nobleza. A mamá, por tu pasión, ayuda y dedicación infinitas. Y gracias a Francis,
por tu comprensión, apoyo y amor. Tú mejor que nadie entiendes todo lo que implica
convivir con un tesinando. Son muchos los proyectos que tenemos en común, y estoy
deseando llevarlos a cabo.

¡Gracias!



Contents

Agradecimientos ix

1 Introduction 1
1.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Antecedents 7
2.1 The Problem of Computational Design . . . . . . . . . . . . . . . . . . . 7

2.1.1 What is Design? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Design and Artificial Intelligence . . . . . . . . . . . . . . . . . . 8

2.1.2.1 The Automatic Generation of Designs . . . . . . . . . . 9
2.1.2.2 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Shape Grammars as a Tool for Computational Design . . . . . . . . . . 13
2.2.1 Formal Aspects of Shape Grammars . . . . . . . . . . . . . . . . 13
2.2.2 Suitability of Shape Grammars to Computational Design . . . . 15
2.2.3 Types of Human-SG-Design Interaction . . . . . . . . . . . . . . 16

2.2.3.1 Expert Shape Grammars . . . . . . . . . . . . . . . . . 17
2.2.3.2 Naive Shape Grammars . . . . . . . . . . . . . . . . . . 19

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Elegibility Traces and Q(λ) . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Multi-Objective Reinforcement Learning . . . . . . . . . . . . . . 28

2.3.4.1 Solving MOMDPs by Means of Scalarization Functions 29

xi



xii Table of Contents

2.3.4.2 Solving MOMDPs by Discovering Pareto Fronts . . . . 31

3 Control, Synthesis and Criteria 33
3.1 Expert SGs and Sophisticated Control . . . . . . . . . . . . . . . . . . . 36
3.2 Naive SGs and Sophisticated Control . . . . . . . . . . . . . . . . . . . . 37
3.3 Naive SGs Without Control . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 An Experiment on Naive SG Without Control . . . . . . . . . . 39

4 A Computational Design System for Managing Criteria in Design
Problems 45
4.1 Constraints and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Layered Subshape Detection Algorithm . . . . . . . . . . . . . . 51

4.3 The ShaDe Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Layered Shape Grammar Interpreter Module . . . . . . . . . . . 54
4.3.2 Design Generation Module . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 ShaDe Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Predicate Generation Module . . . . . . . . . . . . . . . . . . . . 56

4.4 Example 1: Designing with the Hele Module . . . . . . . . . . . . . . . 58
4.4.1 The Hele Module and Predefined Rooms . . . . . . . . . . . . . . 58
4.4.2 The Leoz Design Script . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Example 2: Virtual Restaurants . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Strategy/simulation Video Games . . . . . . . . . . . . . . . . . 65
4.5.2 The Restaurant Design Script . . . . . . . . . . . . . . . . . . . . 66
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Evaluation of Time Performance . . . . . . . . . . . . . . . . . . . . . . 68
4.6.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Computational Techniques for Learning and Detecting Criteria in
Design Problems 73
5.1 Naive Shape Grammars and Heuristics . . . . . . . . . . . . . . . . . . . 74

5.1.1 Reinforcement Learning and Naive Shape Grammars . . . . . . . 77
5.1.1.1 Shape, Rules and Design Criteria as States, Actions

and Rewards . . . . . . . . . . . . . . . . . . . . . . . . 77



Table of Contents xiii

5.2 Scalarized MORL for Design . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.1 The Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1.1 Definition of Rewards . . . . . . . . . . . . . . . . . . . 79
5.2.1.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Application Case 1: Generation of Habitable Housing Unit Designs 85
5.2.2.1 Housing Unit Design . . . . . . . . . . . . . . . . . . . . 87
5.2.2.2 Naive Grammars and Phases of Generation . . . . . . . 89
5.2.2.3 Learning Processes for Naive Shape Rules . . . . . . . . 91
5.2.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Application Case 2: Generation of Energy-Efficient Housing Unit
Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3.1 Energy Efficient Housing Unit Design . . . . . . . . . . 112
5.2.3.2 Naive Grammars and Phases of Generation . . . . . . . 113
5.2.3.3 Learning Processes for Naive Shape Rules . . . . . . . . 115
5.2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Pareto MORL for Design . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 PQ-learning: a New Multi-Policy MORL Approach . . . . . . . . 122

5.3.1.1 Characterization of Optimal Policies . . . . . . . . . . . 122
5.3.1.2 Updating Expression . . . . . . . . . . . . . . . . . . . 122
5.3.1.3 Action Selection Mechanism . . . . . . . . . . . . . . . 126
5.3.1.4 Using the Learned Policies . . . . . . . . . . . . . . . . 126
5.3.1.5 PQ-learning in Action . . . . . . . . . . . . . . . . . . . 128
5.3.1.6 Benchmark Results . . . . . . . . . . . . . . . . . . . . 132
5.3.1.7 Comparison to Scalarized Q-learning . . . . . . . . . . 136

5.3.2 Example: Compactness-Perimeter Problem . . . . . . . . . . . . 140
5.3.2.1 Definition of Rewards . . . . . . . . . . . . . . . . . . . 140
5.3.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Conclusions and Future Work 145
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Resumen 151



xiv Table of Contents

A.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Resumen de los capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2.1 Antecedentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2.2 Control, síntesis y criterios . . . . . . . . . . . . . . . . . . . . . 154
A.2.3 Un Sistema de Diseño Computacional para Manejar Criterios en

Problemas de Diseño . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.4 Técnicas Computacionales para Aprender y Detectar Criterios

en Problemas de Diseño . . . . . . . . . . . . . . . . . . . . . . . 157
A.3 Conclusiones y Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 163



List of Figures

2.1 A rule (a) and one derivation starting from an initial squared shape (b) 14
2.2 Seven rules of the Palladian grammar (reproduced from Stiny & Mitchell

(1978)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The Villa Malcontenta as drawn by Palladio (reproduced from Stiny &

Mitchell (1978)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Q(0) algorithm (reproduced from Sutton & Barto (1998)) . . . . . . . . 25
2.5 Watkins’s Q(λ) algorithm (reproduced from Sutton & Barto (1998)) . . 27
2.6 A linear version of Watkins’s Q(λ) with binary features (reproduced

from Sutton & Barto (1998)) . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 MOMDP problem taxonomy (reproduced from Roijers et al. (2013)) . . 30

3.1 Axes for classifying different approaches combining shape grammars and
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Location of a design system based on a pure expert shape grammar . . 35
3.3 Location of our system based on shape grammars, constraints, goals and

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 A simple additive rule working with squared tiles . . . . . . . . . . . . . 37
3.5 Location of our system based on shape grammars and reinforcement

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Location of our system based on naive shape grammars and random/-

manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Graphical interface of MG-Shade . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 A controlled mega-structure generated by a student . . . . . . . . . . . 41
3.9 A random mega-structure generated by a student . . . . . . . . . . . . . 42

4.1 Fragment of the derivation tree for the application of the rule in Figure
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xv



xvi List of Figures

4.2 Depth-first search of the tree of rule in Figure 2.1, with the specified
predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 A layered shape (n = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 A layered shape grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 A shape α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 A shape γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 ShaDe architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Screenshot of ShaDe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.9 GUI for predicate configuration: applied transformation . . . . . . . . . 58
4.10 GUI for predicate configuration: current shape labels . . . . . . . . . . . 58
4.11 Hele Module (reproduced from (Leoz, 1978)) . . . . . . . . . . . . . . . 59
4.12 Some Hele Module combinations (adapted from (Leoz, 1978)) . . . . . . 59
4.13 Set of predefined rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.14 The axiom for the Leoz script . . . . . . . . . . . . . . . . . . . . . . . . 60
4.15 The layers of Leoz script for ShaDe . . . . . . . . . . . . . . . . . . . . . 61
4.16 Rule for Project 1 (Leoz example) . . . . . . . . . . . . . . . . . . . . . 62
4.17 Rule for Project 2 (Leoz example) . . . . . . . . . . . . . . . . . . . . . 63
4.18 Rules for Project 3 (Leoz example) . . . . . . . . . . . . . . . . . . . . . 63
4.19 Four designs produced by the Leoz design script . . . . . . . . . . . . . 64
4.20 A housing unit with height information and textures . . . . . . . . . . . 65
4.21 Screenshots of the games Restaurant Empire (a) and Restaurant Story

(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.22 The axiom for the restaurant script . . . . . . . . . . . . . . . . . . . . . 67
4.23 Rules for Project 1 (restaurant example) . . . . . . . . . . . . . . . . . . 67
4.24 Rules for Project 2 (restaurant example) . . . . . . . . . . . . . . . . . . 67
4.25 Rules for Project 3 (restaurant example) . . . . . . . . . . . . . . . . . . 67
4.26 Rule for Project 4 (restaurant example) . . . . . . . . . . . . . . . . . . 67
4.27 Rule for Project 5 (restaurant example) . . . . . . . . . . . . . . . . . . 68
4.28 Rule for Project 6 (restaurant example) . . . . . . . . . . . . . . . . . . 68
4.29 Four designs produced by the restaurant design script . . . . . . . . . . 69
4.30 A restaurant in three dimensions . . . . . . . . . . . . . . . . . . . . . . 70
4.31 A restaurant with textures (a) and with roof (b) . . . . . . . . . . . . . 70
4.32 Rule 4 of the third Leoz Project (flattened) . . . . . . . . . . . . . . . . 71
4.33 Performance measures: (a) number of triplets detected and (b) genera-

tion time in layered and unlayered approaches . . . . . . . . . . . . . . . 72

5.1 Possible solutions for the problem of generating 8-tile, compact shapes . 75



List of Figures xvii

5.2 Possible intermediate 2-tile shapes . . . . . . . . . . . . . . . . . . . . . 75
5.3 Possible intermediate 3-tile shapes . . . . . . . . . . . . . . . . . . . . . 76
5.4 Possible intermediate 5-tile shapes . . . . . . . . . . . . . . . . . . . . . 76
5.5 Train/test performance for the compactness problem . . . . . . . . . . . 83
5.6 Train/test performance for the compactness problem, for different dis-

count rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.7 Shape with 8 tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.8 Pattern that represents two shapes obtained from the shape of Figure

5.7 sharing the same features . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9 Shape represented by the best pattern obtained from the shape of Figure

5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 Proximity relationships in a single-family house (adapted from Mon-

taner Muxí arquitectes (2008)) . . . . . . . . . . . . . . . . . . . . . . . 88
5.11 Naive grammars for phases 1-6 . . . . . . . . . . . . . . . . . . . . . . . 90
5.12 Effect of the application of rule 2 . . . . . . . . . . . . . . . . . . . . . . 91
5.13 Two schemes obtained with naive grammars . . . . . . . . . . . . . . . . 96
5.14 Some generated designs (results a-f) . . . . . . . . . . . . . . . . . . . . 98
5.15 Some generated designs (results g-l) . . . . . . . . . . . . . . . . . . . . 99
5.16 Architecture of BH-ShaDe . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.17 Screenshot of BH-ShaDe interface . . . . . . . . . . . . . . . . . . . . . . 104
5.18 Shape grammar for the generation of a simple housing unit . . . . . . . 105
5.19 Housing units schemes generated with the shape grammar in Figure 5.18 106
5.20 Distribution of the total percentage of schemes of each type (A to E) . . 110
5.21 Examples of student’s project: (a) Octagonal tower and (b) Gallery . . 111
5.22 Some rules of the involved shape grammars . . . . . . . . . . . . . . . . 114
5.23 Two schemes generated without extra control mechanisms, along with

their energetic evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.24 Four schemes generated using the learned policies, along with their en-

ergetic evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.25 Sample state transition diagram. . . . . . . . . . . . . . . . . . . . . . . 130
5.26 Deep Sea Treasure problem: Environment (a) and Frontier (b) (repro-

duced from Vamplew et al. (2008)) . . . . . . . . . . . . . . . . . . . . . 133
5.27 Resource Gathering problem: Environment (a) (reproduced from Bar-

rett & Narayanan (2008)) and Frontier (b) . . . . . . . . . . . . . . . . 134
5.28 Train/test performance for DST (a) and RG (b) . . . . . . . . . . . . . 135
5.29 Memory requirements (total number of stored vectors) of PQ-learning

for the DST (a) and RG (b) problems . . . . . . . . . . . . . . . . . . . 135



xviii List of Figures

5.30 Deep Sea Treasure problem variants: environments for DST-2 (a), DST-
3 (b) and DST-4 (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.31 Pareto frontier of the compacity-perimeter problem . . . . . . . . . . . . 141
5.32 Kinds of shape solutions for the compactness-perimeter problem . . . . 141
5.33 Train/test performance of PQ-learning applied to the compactness-perimeter

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.34 Shapes produced by the five policies learned in a single run of PQ-

learning, applied to the compactness-perimeter problem . . . . . . . . . 143

A.1 Esquema de clasificación para sistemas de diseño computacional basados
en gramáticas de formas . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



List of Tables

2.1 SWOT analysis of the use of shape grammars for design . . . . . . . . . 16

4.1 Algorithm for depth-first search . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Algorithm for layered subshape detection . . . . . . . . . . . . . . . . . 53
4.3 Predefined constraints and goals provided with ShaDe . . . . . . . . . . 57
4.4 Leoz script summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Restaurant script summary . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Performance measures: maximum, minimum and average generation

times of Leoz design script for layered and unlayered approaches . . . . 72

5.1 Patterns yielded by one application of rule 1 to the shape in Figure 5.7 . 86
5.2 Requirement set for a single-family basic house (adapted from Montaner

Muxí arquitectes (2008)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Final state tests for every rule . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Requirements for rules 1-9 . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Rewards for every learning process . . . . . . . . . . . . . . . . . . . . . 95
5.6 Policies learnt for every rule . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Reward improvements gained thanks to the learned policies for every rule100
5.8 Results of Likert items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Categories, themes and supporting quotes for positive aspects . . . . . . 107
5.10 Categories, themes and supporting quotes for aspects to be improved . . 108
5.11 Requirement set for a energy efficient single-family basic house . . . . . 113
5.12 Requirement set for a single-family basic house, regarding habitability

conditions and energetic efficiency . . . . . . . . . . . . . . . . . . . . . 116
5.13 Rewards for every learning process . . . . . . . . . . . . . . . . . . . . . 116
5.14 Rewards and features for the learning processes . . . . . . . . . . . . . . 117

xix



xx List of Tables

5.15 Reward improvements gained thanks to the learned policies for every
grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.16 Evolution of estimated values over time with PQ-learning. Thicker hor-
izontal lines indicate division between training episodes. . . . . . . . . . 131

5.17 Frontier features for the considered variants of the Deep Sea Treasure
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.18 Scalarized algorithm vs. PQ-learning: training steps until convergence
of V (0, 0), over 100 agents . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Chapter 1

Introduction

What is your definition of “design”?
A plan for arranging elements in such a way as

to best accomplish a particular purpose

Question: Madame L’Amic. Answer: Charles
Eames

Design is a complex task that implies the consideration of requirements of different
nature in order to attain a purpose. It involves the integration of technical, economical,
social, and environmental needs, among others.

Nowadays, the importance of computers along the design process is unquestionable.
Computer-aided design (CAD) tools have expanded the human capabilities, providing
designers with accurate mechanisms for representing, describing, visualizing, organiz-
ing and simulating design projects.

In this thesis we start from the premise that computers can also play a role in the
synthesis of design solutions. The term computational design has been coined for this
area of research (Cagan et al., 2005), which has been accelerated thanks to advances in
the understanding of what is design from a computational perspective. From a certain
point of view, some aspects of the design process can be understood as a search or
exploration over a space of design alternatives (Simon, 1973). The unifying thread of
this thesis consists in the idea of employing artificial intelligence techniques for dealing
with this design space in different manners. These techniques will have to consider
design requirements of different nature, relevant to the purpose that a particular design
problem seeks to achieve.

In the following we describe in detail the research scope of this thesis. We also list
the different contributions and explain how the thesis is organized.

1
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1.1 Research Scope

This section introduces the research scope of this thesis, which moves along different
areas related to computational design. As we explained before, computational design
is concerned about the role of computers in non trivial aspects of the design process.
Our research focuses on synthesizing new design solutions that fulfil a set of design
criteria.

This implies the need for techniques that can explicitly represent and generate a
design space, which leads us to the area of so-called generative systems. This thesis
focuses in the particular generative framework of shape grammars (Stiny & Gips, 1972),
that has been widely used in the area of computational design due to its versatility.

Design criteria can be directly hard-coded into the rules of a generative system,
yielding an expert set of rules that always synthesizes feasible solutions. However,
expert systems are usually hard to create, modify and maintain. Another alternative
is the partial or total externalization of the design criteria, giving room to a more naive
generative system that cannot produce feasible solutions by itself. Hence, it needs to be
combined with a control method that ensures the production of good designs. In this
thesis we will follow this latter approach, and will rely on different computational and
artificial intelligence techniques such as search processes and reinforcement learning
methods (Sutton & Barto, 1998), always from a multi-criteria perspective, as design
usually implies the consideration of multiple requirements of different nature.

In this thesis we delve into two different settings for combining a generative system
(particularly shape grammars) with an external control method, depending on how we
formalize and employ the design criteria. The first one consists in reducing the number
of criteria hard-coded inside the rules, leaving some of the former to be managed in
an explicit manner: we directly use them for evaluating shapes at each step of the
generative process and guide it towards feasible solutions. The second setting goes
one step further, and tries to use the whole set of requirements in a machine learning
process that learns a heuristic. Such heuristic will determine how to apply the rules
of the generative system. Hence, in the generative process we just rely on this newly
discovered actuation information, so the design requirements are used in an implicit
manner.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

1. A classification scheme for possible approaches to computational design based on
shape grammars. The different classes will depend on the nature of the involved
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rules, the formalization of design criteria and the external control methods

2. The development of a methodology based on the idea of encoding some of the
design requirements into rules, while explicitly using others for evaluating the
shapes produced along the generative process and guiding it towards good designs

3. The development of a methodology based on the idea of minimizing the design
requirements encoded into the rules, and using them inside a machine learning
process in order to learn a heuristic that determines how to apply the rules of
the generative system

4. The application of the developed methodologies in different scenarios related to
the architectural domain

The contributions of this thesis have been presented in various journals, confer-
ences, workshops and seminars. In the following we provide a list of the contributions
organized by the type of publication:

Journal Articles

• M. Ruiz-Montiel, J. Boned, J. Gavilanes, E. Jiménez, L. Mandow, J.L. Pérez-de-
la-Cruz. Design with shape grammars and reinforcement learning. In Advanced
Engineering Informatics, vol. 27, issue 2, April 2013, pp 230–245

• M. Ruiz-Montiel, M.V. Belmonte, J. Boned, L. Mandow, E. Millán, A.R. Badillo,
J.L. Pérez-de-la-Cruz. Layered shape grammars. In Computer-Aided Design, vol.
56, November 2014, pp 104–119

International Workshops and Seminars

• M. Ruiz-Montiel, L. Mandow, J.L. Pérez-de-la-Cruz, J. Gavilanes. Shapes, gram-
mars, constraints and policies. In SHAPES 1.0 - The Shape Of Things 2011, J.
Hastings, O. Kutz, M. Bhatt, S. Borgo Eds., September 2011, CEUR Workshop
Proceedings, Vol. 812

• M. Ruiz-Montiel. Multi-objective Reinforcement Learning. In European Work-
shop on Reinforcement Learning (EWRL 11), P. Auer, M. Hutter, L. Orseau
Eds., September 2013, Dagstuhl Research Online Publication Server: Reinforce-
ment Learning (Dagstuhl Seminar 13321)
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National Conferences

• M. Ruiz-Montiel, J. Boned, J. Gavilanes, E. Jiménez, L. Mandow, J.L. Pérez-
de-la-Cruz. Proyecto arquitectónico mediante gramáticas de formas sencillas
y aprendizaje. In Conferencia de la Asociación Española para la Inteligencia
Artificial, November 2011

• M. Ruiz-Montiel, L. Mandow, J.L. Pérez-de-la-Cruz. PQ-learning: Aprendizaje
por Refuerzo Multi-Objetivo. In Conferencia de la Asociación Española para la
Inteligencia Artificial, September 2013

• M. Ruiz-Montiel, J. Boned, J. Gavilanes, P. Hidalgo, D. Belmonte, L. Mandow,
J.L. Pérez-de-la-Cruz. Proyecto arquitectónico energéticamente eficiente medi-
ante gramáticas de formas y aprendizaje por refuerzo. In Conferencia de la
Asociación Española para la Inteligencia Artificial, November 2015

1.3 Thesis Outline

This thesis is structured in six chapters, one appendix and a list of references. Apart
from this first introductory chapter and a final one containing the conclusions and
possible future work, the structure of the thesis is described in the following.

Chapter 2 presents some required antecedents on computational design, shape
grammars and reinforcement learning techniques.

The following 3 chapters include the main contributions of this thesis. Chapter 3
classifies the different settings that can be adopted in order to combine shape gram-
mars, control methods and design criteria.

Chapter 4 presents a methodology for explicitly managing design criteria outside
a non-expert shape grammar, using them for the evaluation of the produced shapes
at each step of the generative process. In this setting, design criteria are divided into
design constraints and goals, which are used to guide a search algorithm. We illustrate
two examples in which the proposed methodology is put into practice.

Chapter 5 describes a methodology that employs design criteria in order to learn
application heuristics for shape grammars inside which the encoded design require-
ments have been minimized. Two alternatives are presented, depending on how we
deal with the multi-objective nature of design problems. Namely, the first alternative
starts from the premise that the problem can be scalarized according to a set of design
preferences that are known a priori, thus yielding an unique heuristic for the generative
system. Two application cases are presented for this alternative. The second alter-
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native does not consider the scalarization premise, and thus learns multiple heuristics
that can be used to produce a set of optimal solutions.

1.4 Funding

This dissertation has been possible thanks to the support and funding of the Spanish
Ministry of Education through the National Programme for Training Human Resources
under the FPU (Formación de Profesorado Universitario) fellowship. Some parts of
this work have been supported by and applied to the following National projects:
TIN2009-14179 (Spanish Government, Plan Nacional de I+D+i) and FC14-TIN-40
(University of Málaga, Programa de fortalecimiento de las capacidades de I+D+I en las
universidades 2014-2015, de la Consejería de Economía, Innovación, Ciencia y Empleo,
cofinanciado por el fondo europeo de desarrollo regional (FEDER)).





Chapter 2

Antecedents

What are the boundaries of design?
What are the boundaries of problems?

Question: Madame L’Amic. Answer: Charles
Eames

In this Chapter we set up some foundations to build the rest of this thesis. Firstly,
it is necessary to define the problem of computational design and gain insight on the
different approaches that have been explored in the literature to tackle it. This is ad-
dressed in Section 2.1. As the proposed systems in this thesis are based on one of these
approaches, namely shape grammars, in Section 2.2 we will focus on this technique
and the different systems that have relied on this method to deal with the problem of
computational design. A significant fraction of the work in this thesis is based on a
combination of shape grammars and a machine learning technique called reinforcement
learning, thus in Section 2.3 we will describe this area of artificial intelligence.

2.1 The Problem of Computational Design

2.1.1 What is Design?

The word design can be both a noun and a verb, that is, an object and a process.
The Cambridge dictionary gives the following noun definition: a design is a drawing
or set of drawings showing how a product is to be made and how it will work and
look. Papalambros & Wilde (2000) also provide a definition as a noun: a design is
an artefact defined by its geometric configuration, the materials used, and the task it
performs. As a verb, the Cambridge dictionary defines designing as making or drawing
plans for something, or as a synonym for intend. Eggert (2004) provides the following

7
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definition: design refers to the actual decision-making processes involved in creating
an artefact. It is clear that the notion of intention or purpose is embedded into the
concept of design. In his book The Sciences of the Artificial, Simon (1968) proposed
the following: “Everyone designs who devises courses of action aimed at changing
existing situations into preferred ones”.

According to Simon, traditionally, the science disciplines are concerned about na-
tural things. By contrast, engineering is interested in the construction of artefacts
and, definitely, how to design. However, he goes further and advocates for the sciences
of the artificial, which are aimed at understanding and predicting the behaviour of
artefacts and the processes for creating them. In this context, the science of design
is related to the general theory of search in state spaces (Simon, 1973). This idea
of exploration of design spaces has been further refined in the literature (Goel, 1994;
Goel & Pirolli, 1992; Stouffs, 2006) , and will be described in more detail through the
following sections.

2.1.2 Design and Artificial Intelligence

Computer-aided design systems traditionally help designers in many tasks, such as
description, documentation and visualization of their projects. However, these tools
can also play a more active role in the design process, by means of artificial intelligence
techniques.

Such techniques can be used in a number of design-related tasks, such as evaluating
designs generated by humans, improving existing solutions, predicting the behaviour
of a given design and even proposing new design solutions. Here we are interested
in the last task, which is often referred in the literature as computational design or
computational design synthesis (Cagan et al., 2005; Stanković et al., 2013; Campbell
& Shea, 2014) . In the words of Campbell & Shea (2014), “Computational design
synthesis (CDS) is a research area focused on approaches to automating synthesis ac-
tivities in design. Resulting methods may be fully automated or interactive with the
goals of automatically generating a range of alternatives, sparking creativity and inno-
vation, automating tedious or time-consuming engineering tasks, and simply exploring
the creative abilities of computational systems”. Certainly, computers can be consid-
ered as a colleague in the design process, as far as they can be programmed to propose
solutions or trigger ideas that comply with a given set of design requirements.

The problem of computational design has been approached by artificial intelligence
researchers since the 1960s (Simon, 1968; Eastman, 1969). Design problem solving is
considered a particularly complex task, since these kind of problems are ill-structured
(Simon, 1973), that is, they are characterized by the absence of a unique, well-defined
solution. Human experts deal with these problems not only by means of knowledge
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about the requirements that solutions need to meet, but also with the help of creative
thinking, that will lead to many valid designs substantially different between them.
The diverse variants of this problem are of interest in many fields like architecture and
engineering, where geometric design plays a crucial role.

As stated by (Simon, 1973), in spite of the ill-defined nature of design problems,
designers are able to structure design problems correctly and then use a search pro-
cess over a state space. According to Woodbury & Burrow (2006), “design space
exploration is the idea that computers can usefully depict design as the act of explor-
ing alternatives. This involves representing many designs, arraying these represented
designs in a network structure termed the design space, and exploring this space by
traversing paths in the network to visit both previously represented designs and to
find sites for new insertions into the network”. Hence, decision techniques based on
artificial intelligence can be useful for discovering design solutions, by means of the
execution of search methods over the design space.

The definition of design as a process of search or exploration over a design space
implies the need for methods that can explicitly represent or generate such space,
which are described in the following section.

2.1.2.1 The Automatic Generation of Designs

A generative design technique is any algorithmic method with the ability to synthesize
shapes. For a particular generative design system, there is an associated design space
that can be produced by executing the algorithm or applying the rules that define the
system. The application of these rules can also be viewed as a means for moving from
one state in the design space to another one.

Several kinds of generative systems taken from disciplines as mathematics and
biology are employed as tools for generating forms in design fields like architecture.
Some examples are cellular automata, L-systems, shape grammars and graph grammars.

A cellular automaton is a discrete model proposed by von Neumann in the late
1950s. It consists of a grid of cells of a finite number of dimensions. Each cell can
have one of a finite possible different states, and they change its state according to
a rule based on its current state and the ones of the neighbour cells. Probably the
most popular application of cellular automata is the Game of Life (Conway, 1970),
in which complex patterns can arise from very simple rules. Due to the ability of
cellular automata for generating such complex patterns, they have been proposed as a
generative method to support architectural design processes (Herr & Kvan, 2007) .

L-systems (Lindenmayer, 1968) are methods that simulate the growth of plants.
They modify strings of symbols according to a set of rules and constraints. These
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symbols are further translated into graphics, by considering them as drawing operators
that are used to generate a shape. As cellular automata, their ability to produce
complex forms from a simple set of rules makes them an interesting tool for designers.

Shape grammars (Stiny & Gips, 1972) consist of geometric production rules that
modify shapes by erasing the shape in left hand side of the rule and inserting the right
hand side in a certain shape, both conveniently transformed (see Figure 2.1). A set
of rules can be used to synthesize shapes by means of successive applications of shape
rules to an initial shape or axiom. Shape grammars have been broadly used in design
(McCormack et al., 2004) and architectural research (Cagdas, 1996) . The formalism
of shape grammars will be further explained in Section 2.2.

Graph grammars (Gips & Stiny, 1980) consist on a set of rules that implement
graph transformations. They perform in a similar way than shape grammars, but
manipulating graph structures rather than shapes. They replace vertex and edges,
and thus an additional process is needed in order to insert the structure of the right
hand side of a rule into a given graph. Many computational design approaches that
offer support in the early stage of design use graph grammars as generative process
(Stanković et al., 2013) .

These methods are thus used to generate design spaces. In order to perform an
exploration or search over this state space, we need to identify and formalize a set of
design requirements or criteria. In the following section we characterize these criteria
and classify the different ways of considering them along with generative systems.

2.1.2.2 Design Criteria

In traditional optimization systems, the word criteria refers to a set of numeric vari-
ables that need to be maximized or minimized. Here we employ the general concept
of criterion, which according to the Cambridge dictionary is defined as a standard by
which you judge, decide about, or deal with something.

Mandow & De La Cruz (2000) establish a relation between these definitions. Ac-
cording to them, in the beginning of a design process, design standards (that is, gen-
eral criteria) are expressed in an informal way, becoming more formal as the design
advances. The term criteria, in its traditional optimization sense, refers to these design
requirements when they are fully formalized.

Design standards can be used to guide exploration through design spaces. In the
following we describe the different ways in which we can combine design criteria with
generative design systems.

2.1.2.2.1 Criteria Inside the Rules. One of the alternatives is to embed the
criteria into the rules of a generative system. If we device these rules with the fore-
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knowledge of the design criteria that the solutions need to meet, then the whole design
space produced by such a system will be made up of valid design solutions. This im-
plies hard-coding the design criteria into the rules of the generative system, leading
probably to a great number of complex rules that are difficult to create and modify.
In addition, we may be sacrificing the diversity of solutions that the system can yield,
as the rules have been crafted from the preconceived idea of how the solutions must
be.

In the literature we can find examples of application of the aforementioned gen-
erative systems by themselves, that is, with the design criteria embedded inside their
rules. For example, cellular automata have been used to generate neighbourhoods in an
urban scale (Wolfram, 2002). L-systems have been used for image synthesis and mod-
eling (Palubicki et al., 2009; Parish & Müller, 2001). Many researchers have developed
shape grammars for particular design problems. Some recent examples are the works
of Garcia & Romão (2015) (for designing chairs), Palacz et al. (2015) (for generating
grid structures) and Kielarova et al. (2015) (for jewelry design). Graph grammars
have also been employed embedding the design criteria inside their rules. For exam-
ple, Siddique & Rosen (1999) proposed an approach to develop formal representations
of product families and apply graph grammars to transform function structures into
product structures, and applied it to a coffee-maker product family. Schmidt et al.
(2000) propose a general graph grammar for structure synthesis of mechanisms, and
apply it to the particular structural synthesis of epicyclic gear trains. Helms & Shea
(2012) also employ a graph grammar in order to synthesize mechatronic systems.

2.1.2.2.2 Explicit Criteria. Another alternative is to deal with explicit criteria,
that is, by means of a routine that takes a potential design solution as input and returns
a quantitative evaluation as output. The generative system could thus be more relaxed
and yield a design space with valid and non-valid solutions, and the routine would be
used to perform a systematic search in which designs with a poor evaluation would be
discarded.

Such an explicit evaluation routine can be used even if the generative system is not
automatized, that is, if is a human designer who generates the design space. This is the
case of evaluative design systems, rather than generative ones. For example, Kraft &
Nagl (2007) developed a prototype software providing a visual knowledge specification
language for design. Graph-based domain ontologies define concepts and relations
between them, as well as design rules. The designer can use the concepts and relations
of this ontology in order to manually instantiate sketches of conceptual buildings,
and the created sketch can then be checked against the rule base specified inside the
ontology. Pauwels et al. (2011) use Semantic Web technologies in order to formalize
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rules about building performance. The process of defining and evaluating a design
concept would be similar to the one in the work of Kraft & Nagl (2007), using semantic
web technologies instead of graph-based techniques. Grabska et al. (2012) developed a
prototype software to support architectural design that extracts symbolic information
from graphical sketches drawn by the designer. Using this symbolic information, a set
of logic rules will check the validity of the sketches drawn by the designer.

Some works follow this approach along with generative design systems. For ex-
ample, in the work of Agarwal et al. (1999), the intermediate shapes produced by
the rules of a shape grammar are measured by means of cost expressions. Bolognini
et al. (2007) use rule-based spatial graph transformations in order to synthesize struc-
tural, mechanical and mechatronic systems according to a set of design constraints
and termination criteria. An algorithm performs a search over a design archive that is
constructed by applying the graph transformations. Wyatt et al. (2012) use elemen-
tary operations that modify schema configuration graphs, and apply a constraint-based
depth-first search in order to find solutions in the context of product architecture de-
sign. Grzesiak-Kopec & Ogorzalek (2014b) use a 3D shape grammar, along with design
constraints and goals, in order to solve 3D layout design problems.

2.1.2.2.3 Heuristic that Determines How to Apply Rules. Finally, another
alternative is to use an heuristic that tells how to apply the rules of a relaxed gener-
ative system. Without such heuristic, the system would not yield valid solutions; by
contrast, thanks to the heuristic it can generate a space of valid designs. For example,
Müller et al. (2006) use shape grammars to create building mass models, and control
the application of rules by means of a manually assigned priority. Other works aim at
automatically learning a heuristic. For example, Cagan & Mitchell (1993) developed
the shape annealing method, that guides the rule derivation of a shape grammar ac-
cording to an energy function. This method can be found in several approaches like
the ones of Shea & Cagan (1997), Shea & Cagan (1999b) and Shea & Cagan (1999a),
and also combined with graph grammars (Schmidt & Cagan, 1997; Starling & Shea,
2005; Lin et al., 2009). Other examples can be found in the context of evolutionary
programming, in which sequences of rules leading to feasible solutions are found via a
fitness function (Gero et al., 1994; Jin & Li, 2007; Caldas, 2008; Wu et al., 2008). As
in the previous alternative, that uses explicit routines for performing a search over the
design space, shape annealing and evolutionary programming techniques also imply
the definition of an evaluation routine (in the form of energy and fitness functions,
respectively), but they are employed to learn an heuristic that guides the application
of rules.
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2.2 Shape Grammars as a Tool for Computational Design

As we mentioned in the previous section, shape grammars have been widely employed
in generative computational design systems. They are a computational formalism for
the generation of geometric shapes introduced by Stiny and Gips (Stiny & Gips, 1972;
Stiny, 1980, 2006). Informally, shape grammars are a set of rules that govern the
composition of simple geometric and symbolic elements to generate complex shapes.

Shape grammars have been used in the literature for many tasks related to archi-
tectural or industrial design. In architecture, the works of Stiny & Mitchell (1978)
and Cagdas (1996) have managed to devise shape grammars that capture and ex-
plain the architectural style of certain buildings, and thus create designs similar to
the original ones. The work of Duarte (2005) provides shape grammars that generate
designs according to a given housing program. In the context of industrial design,
shape grammars have been used to design artefacts taking into account sets of design
requirements. Some examples include the grammars proposed by Lee & Tang (2009a)
to generate compact digital cameras, considering different combinations of form cri-
teria; the one proposed by Agarwal et al. (1999) for the generation of coffee-makers,
taking into account different cost-related aspects; and the one devised by McCormack
et al. (2004) to capture a car’s brand identity. Shape grammars have also been used
in the context of process planning. Brown et al. presented a method for formalising
manufacturing information trough shape grammars, providing semantics such that a
given derivation of the grammar can be interpreted as a process plan (Brown et al.,
1996). More recently, Shea et al. (2010) developed a framework for an autonomous
design-to-fabrication system that automatically fabricates customized parts ; in this
framework, the shape rules encode primitive movements of the machine tool.

In the following we address the formal aspects needed to understand how shape
grammars work. Then, we will discuss the reasons that make shape grammars such
a suitable framework for computational design, and we will describe the main kinds
of shape grammars, and some existing systems that rely on them in order to produce
design solutions.

2.2.1 Formal Aspects of Shape Grammars

A segment or line l = {p1, p2} is defined by any pair of distinct points p1 and p2, the
so-called end points of the line. A shape is defined by a finite set of distinct maximal
lines, i.e. lines that are not part of longer lines inside the shape. The representation
of a shape is thus unique.

A labelled shape σ is an ordered pair σ = 〈s, P 〉 where s is a shape and P is a finite
set of labelled points. A labelled point (p,A) is a point p with a symbol A. A labelled
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shape s1 is a sub-shape of another labelled shape s2 (s1 ≤ s2) if and only if every line
and every labelled point of s1 is in s2.

Formally, a shape grammar is a tuple 〈S,L,R, I〉 where:

• S is a finite set of shapes

• L is a finite set of symbols

• R is a finite set of rules α→ β, where α is a non-empty labelled shape and β is
a labelled shape

• I is a non-empty labelled shape, called initial shape or axiom.

A rule α→ β applies to a shape γ when there is a transformation τ such that τ(α)
is a sub-shape of γ. Usually, τ is a general geometric transformation. In this work,
transformations involve translations, rotations and reflections.

The result produced by the application of a rule α→ β to a labelled shape γ under
transformation τ is given by the expression γ − τ(α) + τ(β). This new labelled shape
is obtained substituting some occurrence of τ(α) inside γ with τ(β).

Figure 2.1 displays a rule and one sample derivation, i.e., a possible sequence of
shapes generated by successive applications of the rule to an axiom γ (which in this
case is a square). The first rule application detects the left part of the rule (α) inside
the axiom, but under a rotation transformation τ . Hence, the right part of the rule (β)
is rotated under the same transformation τ(β) and, when the expression γ−τ(α)+τ(β)
is performed, the resulting shape is the second one in the derivation shown in Figure
2.1(b). When the rule is applied again, one possibility is that the small square that
has appeared due to the first application is now detected, as it is exactly the left part
of the rule, but scaled and rotated as well. The third time the rule is applied, the
smaller square that has appeared in the third shape is detected under another scaling
and rotating transformation, producing the fourth and last shape in our derivation.

(a) 

(b) 

Figure 2.1: A rule (a) and one derivation starting from an initial squared shape (b)

Although this derivation of rules can be performed manually, the advantage of
using a computer shape grammar interpreter is obvious: the process is much faster
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and less error-prone, allowing a quick exploration of the space of designs that a shape
grammar can yield.

Chau et al. (2004) compared 21 implementations of shape grammars interpreters
up to 2004. More recently, McKay et al. (2012) gathered some of the most relevant
interpreters up to 2011. In this last review, the systems are evaluated according to
a set of requirements for shape grammar implementations derived from the works of
Gips (1999) and Chau et al. (2004). Most of the evaluated tools are generic in the
sense that they are not aimed at a particular field of design, and provide graphic means
to deal with shape rules. To the best of our knowledge, the most recent contributions
in this area are the works of kang Li et al. (2009), Hoisl & Shea (2011), Trescak et al.
(2012), Correia et al. (2012) and Grasl & Economou (2013).

2.2.2 Suitability of Shape Grammars to Computational Design

In words of Knight (2015), “shape computations are based on perception and action.
They are about seeing and drawing with basic spatial elements, using one’s eyes and
hands, to make shapes. From this point of view, shape grammars ally well with contem-
porary theories of making in the social sciences and humanities”. In this line, shape
grammars are a natural ground for computational design, in which the computer as-
sumes the role of the eyes and hands of the designer.

Also, the wide appeal of shape grammars comes from their versatility. It is well
known that they are capable of producing any possible shape (Stiny, 1975). Addition-
ally, this formalism presents specific advantages. They provide an intuitive method for
shape definition. They are also compact, in the sense that they can generate sophisti-
cated and unexpected designs with just a few rules (Rowe, 1987). As Chase pointed
out, design systems based on grammars have a great potential to automate and explore
many design alternatives without tedious work (Chase, 2002). These systems can help
designers to focus on unexpected designs that otherwise could be easily overlooked.
This potential is subject to the presence of a computer in charge of automatically,
quickly execute shape grammars, as pencil-and-paper execution might be tedious and
therefore useless for the sake of discovering many new solutions.

Early shape grammars succeeded in capturing the essence of different architectural
styles and helped to validate the formalism. However, the development of adequate
methodologies to create and control the application of shape grammars when trying
to achieve design goals remains an open research topic. In particular, the use of shape
grammars for architectural or engineering design implies taking into consideration
constraints and goals for the designed artefact.

The aforementioned issues of shape grammars can be summarized by means of a
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Helpful Harmful

Internal origin

Strengths
-Versatility
-Intuitive method
-Compacity
-Able to produce unexpected
shapes
-They can be automated in
order to produce many design
alternatives

Weaknesses
-Creation and control of SG
might be difficult when trying
to achieve design goals
-SG execution needs consid-
erable computational expenses

External origin

Opportunities
-General improvement in
computers’ capabilities
-Increasing presence of com-
puters in design processes

Threats
-Reluctance of design prac-
titioners to use SG for their
work

Table 2.1: SWOT analysis of the use of shape grammars for design

SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis, used to evaluate
the venture of choosing the technology of shape grammars for design tasks. A SWOT
analysis involves identifying the internal and external factors that are favourable and
unfavourable to achieve the objective, that is, the use of shape grammars for design
(see Table 2.1).

2.2.3 Types of Human-SG-Design Interaction

In this section we describe two different approaches on how to design shape grammars.
According to Knight, “Different approaches to connecting grammars and goals have
been suggested. One approach is direct. It involves writing rules with the foreknowl-
edge that the generated designs will meet, or start to meet, given goals. In order to do
this, the behaviours and outcomes of rules must be predictable in some way” (Knight,
1999, pag. 7). This approach leads to expert shape grammars, designed by a design
expert such an architect or industrial designer.

The other approach that Knight points out is an indirect one, in which “grammars
are developed without a clear idea of their outcomes. An automated search ant test
strategy is then used to explore the space of designs generated, sampling designs and
testing them to see if they meet given goals”. That is, the solution space yielded by
these naive shape grammars contains both feasible and infeasible designs, therefore we
need an extra control mechanism in order to generate good solutions.
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In Section 2.1.2.2 we described the different ways in which design criteria can be
combined with generative design systems. The first approach consists on embedding
the expert knowledge inside the rules of the generative system. In this context, this
is equivalent to expert shape grammars. The second and thirds approaches deal with
design criteria in a different manner, leaving them outside the rules and managing
them through search processes or by learning how to apply the rules in order to fulfil
them. As anticipated by several examples that we provided in Section 2.1.2.2, these
alternatives are amenable to be combined with naive shape grammars.

In the following sections we describe the corpus of work developed in both the
expert and naive approaches.

2.2.3.1 Expert Shape Grammars

The execution of an expert shape grammar would lead to feasible designs, where feasi-
bility is guaranteed by the structure of the shape grammar itself. We could call these
expert shape grammars, since they include much expert design knowledge hard-coded
inside their rules. There exist many references to expert grammars in the literature.
Many works aim to design architectural or engineering objects in accordance with a
particular style or brand identity (Stiny & Mitchell, 1978; Cagdas, 1996; Flemming,
1987; Pugliese & Cagan, 2002; McCormack et al., 2004). Figure 2.2 displays a fragment
of the Palladian grammar used by Stiny & Mitchell (1978) to generate 2-dimensional
plans of villas similar to those of the famous XVI century architect Andrea Palladio
(see Figure 2.3).

Figure 2.2: Seven rules of the Palladian grammar (reproduced from Stiny & Mitchell
(1978))

Some of the methods actually used to include expert knowledge inside shape gram-
mars comprise the following:
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Figure 2.3: The Villa Malcontenta as drawn by Palladio (reproduced from Stiny &
Mitchell (1978))

1. Shapes in rules. This is the most direct mechanism, where desired final shapes
arise from the accumulation of shapes present in the rules.

2. Control marks. Special labels added to the “real” shapes are typically used to
control several aspects of rule execution, such as the order in which rules are
applied, the set of rules that can be applied at a certain moment, or the way
rules can be applied (i.e., transformations that can be applied to their left-hand
side).

A different approach is taken by Duarte in his discursive grammars (Duarte, 2005):
each conventional shape grammar rule is accompanied by a description rule that uses
extra symbolic information to give semantic to the involved shapes, thus allowing more
control possibilities. More recently, the works of Duarte et al. have been formalized by
a methodology in which several models are present: (1) a model for the formulation of
a design program, (2) a model for generating designs according to the program (which
is usually represented by a shape grammar), and (3) a model for evaluating solutions
that is used to analyse, compare and rank alternative designs produced by the model
used in (2). This methodology is applied, for example, to the generation of urban
designs (Duarte et al., 2012).

However, the knowledge engineering effort involved in the creation and modification
of expert systems is important. Expert shape grammars, as well as rule-based expert
systems in general, can become very difficult to create, modify and maintain. It is
generally acknowledged that a “[. . . ]mixture of knowledge types, together with the
lack of adequate justifications of the different rules, makes the maintenance of such
knowledge bases very difficult and time consuming” (Studer et al., 1998). Some authors
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have given insight in the creation process of shape grammars. For example, Beirão et al.
(2011) show how specific shape grammars can be created from generic ones in the field
of urban design. Another approach consists on automating the creation of shape rules
by means of statistical analysis (Orsborn et al., 2008) .

Another issue related to the common mechanisms to introduce expert knowledge
inside rules is that they promotes the use of deterministic shape grammars that tend to
produce certain kind of shapes that are known a priori. A trade-off arises between the
ability of a shape grammar to innovate and the feasibility of the produced solutions. In
a correctly formulated expert shape grammar, any arbitrary execution of its rules will
ideally produce feasible designs, since the shape grammar designer will have predicted
in some way the nature of these outcomes. If we sacrifice the divergence capacity of
shape grammars in the pursuit of predictability, we are at risk of missing one of the
main reasons for using this formalism as a design framework, that is, the possibility of
obtaining many unforeseen, innovative solutions.

2.2.3.2 Naive Shape Grammars

A different approach calls for the combination of simpler shape grammars with specific
methods to search the design space or guide the generation process. By simpler or
naive shape grammar we understand that the design requirements are not completely
hard-coded inside the rules, and thus an arbitrary execution of these rules, without any
additional guiding mechanism, would not guarantee feasible designs. Naive grammars
could lead to a high diversity in results, while the guidance methods would guarantee
the fulfilment of design requirements. This approach avoids the usual difficulties in
creating, modifying and maintaining traditional, expert shape grammars, leaving the
guarantees of feasibility mainly in hands of the control mechanism.

A possible alternative is to deal design criteria in an explicit manner, that is, by
means of a routine that evaluates design solutions. The shape grammar could thus
be more relaxed and yield a design space with valid and non-valid solutions, as the
evaluative routine is used to guide the generative process towards good designs. The
works of Grzesiak-Kopec & Ogorzalek (2014b); Grzesiak-Kopeć & Ogorzałek (2014);
Grzesiak-Kopec & Ogorzalek (2014a) explicitly manage design constraints and goals
in order to perform a search along a design space created by a 3D shape grammar.
Designs that violate some constraints are discarded, and the ones that comply with
them are tested according to the design goals, accepting a given design as a solution
if it fulfils every goal. They apply this system to solve design layout problems.

Other works seek to obtain a rule-application heuristic by means of artificial intel-
ligence techniques such as simulated annealing or evolutionary computation.
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Simulated annealing (Kirkpatrick et al., 1983) is a stochastic optimization tech-
nique that emulates the physical process of metal annealing, i.e. intense heating and
then gradual cooling until a low-energy equilibrium state is reached. Shape anneal-
ing (Cagan & Mitchell, 1993; Shea & Cagan, 1999b) applies simulated annealing to a
shape grammar derivation process. In this context, a shape that minimizes the value
of a given objective function, interpreted as the energy of the shape, is sought. A set
of constraints additionally determines valid transitions in the application of the shape
grammar rules.

At every step of rule derivation, a rule leading to a feasible new shape is randomly
selected. If the new shape obtained applying this rule has lower energy than the
current one, then the transition is automatically accepted. However, if the new shape
has higher energy, the transition is only accepted with a probability that depends on the
energy difference and the temperature of the process. Initially, when the temperature
is high, the process can easily escape local optima this way. As the process goes on
and the temperature is reduced, the chances of escaping deeper (low-energy) optima
are reduced. In an infinite process where the temperature asymptotically approaches
zero, the probability of being trapped in a global minimum approaches one. In shape
annealing, the stochastic sequence of rule applications goes on until the current shape
cannot be further improved after a number or trials, or a limit on the number of
rule derivations is reached. The algorithm reverses rules if at a certain moment every
applicable rule violates any of the constraints. The temperature profile that determines
how quickly the process cools down is a critical parameter in simulated annealing.

Shape annealing has been applied mainly to structural design problems such as
roof truss (Shea & Cagan, 1999b,a) or dome design (Shea & Cagan, 1997). The use of
shape annealing can lead to a feasible near-optimal design if the algorithm parameters
are correctly configured. Apart from parameter tuning, the underlying knowledge
engineering is to a great extent very easy: we just need to compute the objective
function and test whether the constraints are violated. One important drawback is
that each run of the algorithm leads only to a single solution. If we aim to obtain
many distinct designs we have to run the optimization algorithm again and again.
This approach does not learn how to generate designs, it just finds a solution each
time it is executed.

Genetic algorithms are an optimization technique that emulates the process of
natural selection. An initial population of individuals (phenotypes) is represented as
strings (chromosomes or genotype). Individuals are then selected and their strings
combined to produce new individuals in a stochastic process that takes into account
their fitness to a given objective function (survival of the fittest). Ideally, this iterative
process produces populations with good or near-optimal individuals. Gero et al. (1994)
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describe two different applications of genetic algorithms to shape grammars. In the first
approach (routine design), they seek the execution order (or derivation) of the grammar
rules that optimizes a given set of constraints. This can be done using rule sequences
as genotypes, and evaluating the fitness of the resulting designs. In the second, more
ambitious one, grammar rules themselves are encoded for manipulation by the genetic
algorithm. This way, new grammars are produced that could possibly lead to better or
innovative designs. Gero & Kazakov (1996) used the technique of genetic engineering
in order to evolve shape rules by identifying rule sub-sequences that appear in the good
individuals of the populations and not in the bad ones. These sub-sequences were used
to make up new, complex rules that were combined with a standard genetic algorithm
in order to allocate sets of tiles according to given requirements. Ang et al. (2006)
also combined a shape grammar and a genetic algorithm in order to design Coca-Cola
bottles, by means of parametric rules and by codifying the parameters of the rule
sequences inside the genotype. A similar but more complex system is described by Lee
& Tang (2009b). It uses genetic programming in order to determine rule parameters
for the problem of designing the body of a camera. Chouchoulas (2003) also uses a
genetic algorithm to evolve rule sequences in order to produce apartment buildings
required to meet certain criteria and O’Neill et al. (2010) employ a genetic algorithm
to design shelters.

An advantage offered by all evolution-based approaches is simpler knowledge engi-
neering. Feasibility of resulting designs is enforced by a fitness function that evaluates
them according to a set of criteria. Among the downsides we must mention the usual,
inherent difficulty of parameter setting.

The set of generated solutions is often restricted in the sense that it has a relatively
small size compared to the diversity potential of shape grammars. Some works Lee
& Tang (2009b); Ang et al. (2006) offer just a single solution to a given problem (an
optimal or near-optimal one), while others Gero et al. (1994); Gero & Kazakov (1996);
Chouchoulas (2003) provide few distinct, feasible solutions (less than 10), which are
picked from the last generation.

2.3 Reinforcement Learning

As explained in Section 2.2.3, one of the approaches to connecting shape grammars
and design goals is to develop naive shape grammars (that is, that do not encode every
design requirement inside their rules) and combine them with an extra mechanism in
order to search for good designs inside the solution space.

In this thesis, a significant part of the work is devoted to the development of a
system that combines these naive shape grammars with a guiding mechanism that
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learns how to apply the rules. More than exploring and searching the solution space,
we propose to discover which rule derivations can produce feasible solutions.

Reinforcement learning (Bertsekas & Tsitsiklis, 1996; Kaelbling et al., 1996; Sutton
& Barto, 1998; Wiering & van Otterlo, 2012) is an area of machine learning that deals
with how to learn which actions to take in a given environment, in order to maximize
a given long-term reward. Learning occurs through interaction with the environment,
in particular, receiving positive or negative rewards after certain actions. Consider
for example a baby learning to build a toy brick tower. S/he will perceive positive
or negative rewards when the tower stands or falls respectively. Another example
are the successful game playing programs that have acquired master levels in games
like Backgammon from self-play. In this case, the only reward received from the
environment is the win/draw/lose state after the game is over.

Reinforcement learning has certain advantages over supervised learning. Unlike
supervised techniques, reinforcement learning does not need externally provided ex-
amples; it just requires interaction with the environment. Such feature can be very
useful when it is impractical to obtain representative examples of all the situations in
which the agent is involved. Additionally, reinforcement learning allows dealing with
uncertainty, making possible to consider more realistic, non-isolated environments.
Due to these benefits, reinforcement learning has been successfully applied to many
fields like robotics (Piggott & Sattar, 1994; Mataric, 1997; Gaskett et al., 2000; Smart
& Pack Kaelbling, 2002; Tedrake et al., 2004; Abbeel et al., 2007; Endo et al., 2008;
Erden & Leblebicioglu, 2008; Nemec et al., 2010; Peters et al., 2011; Buchli et al.,
2011), games (Tesauro, 1995; Thrun, 1995; Bertsekas & Tsitsiklis, 1996; Baxter et al.,
2000; Schraudolph et al., 2001; Levinson & Weber, 2001; Schaeffer et al., 2001; Hu &
Wellman, 2003; Droste & Furnkranz, 2008; Gelly & Silver, 2008; Thiery & Scherrer,
2009; Veness et al., 2009; Szita et al., 2010; Mnih et al., 2015), scheduling systems
(Zhang & Dietterich, 1995; Aydin & Oztemel, 2000; Wang & Usher, 2005), computer
vision (Asada et al., 1996; Peng & Bhanu, 1998; Paletta & Pinz, 2000; Michels et al.,
2005), dynamic channel allocation in cellular networks (Singh & Bertsekas, 1997; Lilith
& Dogancay, 2004; Senouci & Pujoile, 2003) or medicine (Zhao et al., 2009; Istepanian
et al., 2009).

Formally, reinforcement learning techniques solveMarkov Decision Processes (MDP).
A MDP is defined by a set S of states, a set A of actions, a transition function
P : S × A× S → [0, 1], where P (s, a, s′) is the probability of going from s to s′ when
executing a, and a reward function R : S × A × S → R, where r = R(s, a, s′) is the
expected immediate reward obtained in such case. Sutton & Barto (1998) classify
MDPs as continuing, if there is not a special final state and thus the actions continue
to be applied ad infinitum, or as episodic, if such special final state exists and hence,
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once it is reached, no more actions are applied and the task is terminated. Episodic
tasks can be reformulated as continuing by changing the nature of the final states,
converting them into absorbing ones. In absorbing states, only one action (that leads
to the absorbing state itself) can be applied, yielding a reward of zero. This episodic
vs. continuing approach contrasts with the traditional mathematical perspective, in
which MDPs are classified as infinite-horizon, indefinite-horizon or finite-horizon tasks.
Infinite-horizon tasks are equivalent to continuing MDPs, and indefinite-horizon tasks,
in which an indefinite number of actions is taken until a special state is reached, cor-
respond to episodic MDPs. Finite-horizon tasks are MDPs in which the number of
taken actions is fixed a priori.

The solution to a reinforcement learning problem is a policy, which is basically a
rule that indicates which action must be taken at every step. The execution of a policy
from a given state s0 leads probabilistically to a sequence of states s0, s1, . . . , si, . . . For
each state st in the sequence the discounted accumulated return is given by an additive,
expected return Rt = Σ∞k=0γ

krt+k+1. Hence, independently of its immediate reward
(which depends solely on the environment), each state has an associated value, given by
the expected return, that reflects the potential of the state for future rewards, assuming
that we will follow the current policy in the future. At the same time, the rational
action to take at a given state is the one that leads to a new state with maximum
value. Therefore, the policy determines the value of states and vice-versa. An optimal
policy is one that maximizes the expected value of all states and, in consequence, the
expected long-term reward.

A deterministic policy is one that, at every step, determines an action to take
with probability 1, so for a given state we have only one choice. In addition, if the
policy is stationary, its outcome only depends on the current state. A deterministic
and stationary policy can be seen as a mapping from states to actions, formalized
as π : S → A. For infinite-horizon MDPs with additive rewards there is always an
optimal policy that is stationary and deterministic (Howard, 1960).

A non-deterministic or stochastic policy is a function π : S × A → [0, 1] that for
each state s and action a specifies the probability of taking a in s. Obviously, for every
s ∈ S,

∑
a∈A π(s, a) = 1. A priori there is no reason for excluding non-deterministic

policies, but in some cases they can be considered as unethical (it can be the case,
for example, of a policy that determines the way of treating a patient in a clinical
context).

If the outcome of a policy also depends on the history of past visited states, then
it is non-stationary.

There exist three elementary classes of methods for solving a MDP (Sutton &
Barto, 1998):
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1. Dynamic programming. This term gathers a collection of algorithms that can be
used when a perfect model of the environment is given. By model we understand
the transition probabilities between states (that is, the probability of reaching a
state s′ from a state s following the action a) and the expected rewards of each
possible transition. These methods usually bootstrap, that is, they update values
from other previous value estimations.

2. Monte Carlo methods. Unlike the previous approach, they do not assume a
perfect model of the environment, so they can learn through experience. They
do not bootstrap, so it is necessary to wait until a final outcome (the accumulated
reward) is available to update values.

3. Temporal-Difference learning. TD learning combines ideas from both dynamic
programming and Monte Carlo methods: as the former, they learn by bootstrap-
ping, but as the latter, they can also learn from raw experience, without a model
of the environment. The simplest TD method is called TD(0) and estimates
the value function of a given policy. TD algorithms can also learn the optimal
policy. For example, Sarsa (Sutton & Barto, 1998) is a method that learns the
same policy that is used to explore the state space, by improving it along the
episodes (it is an on-policy method). Another example is Q-learning (Watkins,
1989) (see Figure 2.4), which is an off-policy method since it learns a policy in-
dependent from the one employed to explore the state space. For this reason,
Q-learning has minimal convergence requirements, so it has been intensively re-
searched and successfully used in many works (Piggott & Sattar, 1994; Asada
et al., 1996; Paletta & Pinz, 2000; Gaskett et al., 2000; Abounadi et al., 2000;
Smart & Pack Kaelbling, 2002; Senouci & Pujoile, 2003; Hu & Wellman, 2003;
Wang & Usher, 2005; Zhao et al., 2009; Istepanian et al., 2009).

Dynamic programming techniques are of limited utility because the great compu-
tational expense introduced by full sweeps over the state space. A sensible option is
to implement a model-free learning technique (that is, Monte Carlo or TD), that only
sweeps along the states inside the experienced paths. By means of elegibility traces we
can unify Monte Carlo methods and TD learning, as they allow to control the level
of bootstrapping by means of a parameter λ ∈ [0, 1]. If λ = 0, then the method is
equivalent to raw TD. If higher values of λ are used, then we reduce the bootstrapping
level, bringing the method closer to a Monte Carlo technique.

In this thesis we use a Q(λ) technique. In the following will describe the pure TD
approach (Q-learning), and then we will explain the general Q(λ) method.
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2.3.1 Q-learning

In Q-learning, each pair (state, action) is associated with a long-term value Q(s, a),
and the policy is determined by the following rule: “in state s take the action a that
yields a pair (s, a) of maximum value”, as given by the following expression,

argmaxaQ(s, a)

The direct approach is to store Q-values in a table. In Q(0), when moving from
state s to state s′ through action a, the value Q(s, a) is updated according to the
following expression,

Q(s, a)← Q(s, a) + α× δ

where α ∈ [0, 1] is the so-called learning rate that determines speed of convergence,
and δ is the temporal difference. This is defined as follows,

δ = r + γ ×maxa′Q(s′, a′)−Q(s, a)

where r is the immediate reward at state s′ (if any), maxa′Q(s′, a′) is the maximum
value currently achievable at state s′, and γ ∈ [0, 1] is the so-called discount rate that
measures how much the agent disregards future rewards in favour of immediate ones.
A value of γ = 1 is usual when long-term future rewards are sought.

As we can see in Figure 2.4, during the learning process it is usual to follow an
exploitation-exploration strategy. Most of the time, the algorithm exploits the policy
learned so far, that is, at the majority of steps it chooses the best valued action
according to the table. However, from time to time, the algorithm chooses a random
action in order to explore states that would otherwise never be visited by the current
policy. This kind of strategy is called ε-greedy, since at each step a random action is

Figure 2.4: Q(0) algorithm (reproduced from Sutton & Barto (1998))
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chosen with a small probability ε.

2.3.2 Elegibility Traces and Q(λ)

In Q(λ), λ refers to the use of elegibility traces. As explained in the book of Sutton &
Barto (1998), one of the possible ways to view elegibility traces is to consider them as
a bridge between Monte Carlo methods and TD techniques (the forward view). When
we estimate the values associated to a policy π by means of a Monte Carlo method,
backups are based on the full sequence of rewards obtained from the initial state to
the final one. On the other hand, if we use TD methods, the backup is based on
the obtained reward, and uses the value of the next reached state for estimating the
remaining rewards. An intermediate method would backup the value of a state based
on an intermediate number of observed rewards.

Another way to view elegibility traces is mechanistically (the backward view), which
is useful for implementation purposes. The described theoretical view is not directly
implementable because at each step we would need to use knowledge of what will
happen many steps later, because we use an intermediate number of future rewards
to perform the backups, not only the one that has been just obtained. By this back-
ward view we can implement the intermediate methods by means of an incremental
mechanism.

This mechanism involves an additional variable associated with each state-action
pair: its elegibility trace. On each step t, where the visited state-action pair is (st, at)
the elegibility traces of every pair are updated according to an expression similar to
the following one:

Et(s, a) =
{
γλEt−1(s, a) + 1 if s = st ∧ a = at

γλEt−1(s, a) otherwise
(2.1)

Traces measure how recently each state-action pair has been visited, so they de-
termine the extent to which a pair is eligible for undergoing updating changes. The
equivalence between the theoretical and mechanistic views is proved In Chapter 7.4
of Sutton & Barto (1998). One method for combining elegibility traces and tabular
Q-learning is Watkins’s Q(λ) (Sutton & Barto, 1998) (Figure 2.5).

2.3.3 Function Approximation

In many practical cases, the number of state-action pairs is so large that cannot be
stored in a table. The solution is to use a function approximator to learn the Q(s, a)
values. This is done selecting a number of relevant features fi to describe each pair
(s, a), and then postulating the Q(s, a) values as a function of those features.
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Figure 2.5: Watkins’s Q(λ) algorithm (reproduced from Sutton & Barto (1998))

For example, we can postulate a linear function,

Q(s, a) = θ1 × f1(s, a) + θ2 × f2(s, a) + · · ·+ θn × fn(s, a)

where fi(s, a) is the i-th feature of the state produced by applying action a to state s,
and θi is the i-th coefficient of the function Q. The coefficients θi of this function are
learned at each reinforcement learning step according to the following gradient-descent
rule, that takes into account the temporal difference δ,

θi ← θi + α× δ × fi(s, a)

The use of function approximators introduces certain complexity but, at the same
time, the use of features to represent states has certain advantages. Many different
states can share the same set of features, so when we update the value for a given set
of features, we are learning (generalizing) over all similar pairs (state, action). Thus, if
an adequate set of features is selected, proper Q-values can be learned even for states
that were never visited during the learning stage.

Function approximation leads to some convergence issues when it is used with a
bootstrapping method (Thrun & Schwartz, 1993), especially when it is an off-policy
one (Sutton & Barto, 1998). Certainly, this combination can lead to divergence and
an infinite mean square error, since it tends to overestimate values. As suggested by
Thrun & Schwartz (1993), the use of TD(λ) techniques rather than pure TD ones
can reduce the effects of overestimation, since by means of the parameter λ we can
control the level of bootstrapping. In addition, according to Thrun & Schwartz (1993),
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Figure 2.6: A linear version of Watkins’s Q(λ) with binary features (reproduced from
Sutton & Barto (1998))

imposing bounds on the discount rate can also be useful. In Figure 2.6 we can see a
linear version of Watkins’s Q(λ) with binary features.

2.3.4 Multi-Objective Reinforcement Learning

Most work in the area of reinforcement learning is aimed to solve MDPs with scalar
rewards. However, many problems are best formulated as multicriteria MDPs where
rewards are vectors, and components stands for different, possibly conflicting scalar
objectives. These are usually referred to as Multiobjective Markov Decision Processes
(MOMDPs).

A MOMDP is defined by a set S of states, a set A of actions, a transition function
P : S × A× S → [0, 1], where P (s, a, s′) is the probability of going from s to s′ when
executing a, and a reward function R : S×A×S → Rn, where vector ~r = R(s, a, s′) is
the expected immediate reward obtained is such case. A policy is a function π : S → A

that selects an action π(s) ∈ A for each state s ∈ S. The execution of a policy from a
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given state s0 leads probabilistically to a sequence of states s0, s1, . . . , si, . . . For each
state st in the sequence the discounted accumulated return is given by an expected
vector return ~Rt ∈ Rn, ~Rt = Σ∞k=0γ

k−→r t+k+1.
Different multicriteria decision paradigms can be applied to reinforcement learning.

We can either start from the assumption that there exists a scalarization function than
can be used to collapse the returns to a scalar value, or either from the premise that
the solution is configured by a Pareto set of optimal policies.

2.3.4.1 Solving MOMDPs by Means of Scalarization Functions

Roijers et al. (2013) propose a MOMDP problem taxonomy based on the first of
the aforementioned assumptions, that is, that we can use a scalarization function
to aggregate the vector returns into scalar values, either explicit or implicitly. This
perspective is what they call the utility-based approach, as opposed to the axiomatic
approach, that consists on directly discovering the Pareto front of optimal policies.

The taxonomy of Roijers et al. (2013) is configured according to three aspects.
Firstly, they classify the problems either as single-policy or as multiple policy. The
former approach can be useful when the preferences (or relative weights) for each
objective are known a priori. However, there are situations in which such preferences
are not known a priori. The solution is then to find a set of so-called nondominated
policies, i.e. policies that cannot improve one objective without worsening at least
another one. Even in this case, scalarization functions can be used to approximate
the set of optimal policies, by discovering an optimal solution for each possible weight
setting. Secondly, they make a distinction according to whether the obtained policies
are allowed to be stochastic or not. Thirdly, they also pay attention to the nature
of the employed scalarization function, namely linear or monotonically increasing if
linearity cannot be assumed.

With these three criteria (single vs. multiple policies, deterministic vs. stochastic
policies and linear vs. non-linear scalarization function), they propose a MOMDP
problem taxonomy in which the nature of the optimal solutions for each kind of problem
is characterized (see Figure 2.7).

In Figure 2.7 we can see that the solutions for single-policy approaches always
consist on a unique policy. If we use linear scalarization, then the resulting optimal
policy is stationary. In addition, the policy is also deterministic, because, as we men-
tioned, for additive, infinite-horizon single-policy MDPs we can stick to deterministic,
stationary policies (Boutilier et al., 1999), so we do not even need stochastic ones.

However, as noticed by Roijers et al. (2013), in the multi-objective setting this
does not always hold, and we need non-stationary and stochastic policies. In the
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Figure 2.7: MOMDP problem taxonomy (reproduced from Roijers et al. (2013))

single-policy approach, when monotonically increasing functions are used and only
deterministic policies are allowed, then the optimal solution is a deterministic non-
stationary policy, as it can be better than a stationary one (White, 1982). If stochastic
policies are allowed, then the resulting policy is in fact a stochastic one, made up from
mixing two or more stationary policies.

As stated by Roijers et al. (2013), in the multiple-policy approach, if preferences
over objectives can be expressed by means of linear scalarization, we can also stick
to deterministic stationary policies (we do not need stochastic ones, even if they are
allowed), but now the optimal solution is a set rather than a unique policy. A direct
approach is to use a linear scalarization function and repeatedly solve the problem
with different sets of weights. The work of Castelletti et al. (2002) is one of the first
approaches in this sense, tackling the problem by running a TD algorithm several times
with different weights. Natarajan & Tadepalli (2005) deal with the problem in a similar
manner, but reusing policies for similar configuration of weights. Other approaches aim
to learn the set of policies in a parallel manner, so the weights (and thus the linear
scalarization function) are implicit (Barrett & Narayanan, 2008; Hiraoka et al., 2008;
Mukai et al., 2012). The set of solutions that can be calculated this way is usually
called the set of supported solutions (or convex set) in multicriteria decision theory.
However, in problems where the Pareto front is non-convex, it is well known that in
general not all Pareto optimal solutions are supported (Vamplew et al. (2008))

If we use a nonlinear scalarization function then we can capture solutions that are
missed in the linear setting. According to the taxonomy of Roijers et al. (2013), if only
deterministic policies are allowed, then the solution is the whole set of non-dominated
policies (that is, the Pareto coverage set), and the policies in the set need to be non-
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stationary, as they can dominate stationary ones. If stochastic policies are allowed,
then is enough to compute a convex coverage set of deterministic and stationary poli-
cies, since we can obtain the rest of non-dominated policies by mixing policies of this
set of supported solutions. A direct approach is to explicitly use a non-linear scalariza-
tion function and, as in the linear case, repeatedly solve the problem with different sets
of weights. For example, any Pareto-optimal solution can be optimal with respect to
the Chebyshev norm given the adequate parameters. Some approaches using nonlinear
scalarization functions in reinforcement learning can be found in the works of Shelton
(2001), Vamplew et al. (2011) and Van Moffaert et al. (2013b). Nonetheless, an explicit
nonlinear scalarization function might be hard to obtain. Moreover, in the particular
case of the Chebyshev norm, not all optimal solutions with respect to this scalarization
funtion are necessarily Pareto-optimal. Another alternative is trying to estimate sets
of Pareto-optimal policies simultaneously, and thus the scalarization function would
be implicit. One example is the work of Handa (2009), that combines ideas of con-
ditional random fields, clustering, and evolutionary multi-objective optimization in a
new algorithm (EDA-RL). The new method was shown to simultaneously acquire two
different policies when applied to a sample MORL problem.

2.3.4.2 Solving MOMDPs by Discovering Pareto Fronts

In contrast, if we start from the premise that the solution to a multi-objective MDP is
the Pareto front of policies, then techniques that directly aim to find this set must be
sought. In fact, we can see the aforementioned work of Handa (2009) as an approach
fitting in this axiomatic perspective.

Another example fitting in this approach is the work of Van Moffaert & Nowé
(2014). They developed an algorithm that discovers the whole set of Pareto-optimal
policies in a parallel manner, by separating the expected immediate reward from the
set of expected future rewards vectors, allowing them to converge separately. The sets
of policies for every (state, action) pair can be produced at execution time, performing
a vector-sum of the learned expected immediate reward and the set of expected future
rewards vectors. Their method can be seen as a TD extension of the multi-objective
dynamic programming technique developed by White (1982), which discovered the
Pareto front of non-stationary policies for an infinite-horizon MOMDP.





Chapter 3

Control, Synthesis and Criteria

Can the computer substitute for the designer?
Probably, in some special cases, but usually

the computer is an aid to the designer

Question: Madame L’Amic. Answer: Charles
Eames

In this chapter we propose a classification scheme for possible approaches to compu-
tational design based on a particular generative system, and we use it as a framework
to organize and introduce the different contributions of this thesis.

In Section 2.1.2.2 we described different alternatives to combine design criteria
with generative design systems. Design criteria can be (1) hard-coded inside the rules,
(2) explicitly used to evaluate potential solutions and perform a systematic search of
the design space or (3) used to discover a heuristic that determines how to apply the
generative rules of the system. In the context of shape grammars, each alternative
leads to a particular kind of shape rules, as we explained in Section 2.2.3: hard-coding
design requirements inside shape rules yields the so-called expert shape grammars,
while control techniques that leave the design criteria outside the rules are naturally
combined with naive shape grammars. However, this separation between expert and
naive grammars is not sharp, as we can establish different shades of naiveness: the more
design requirements are not considered in the process of designing a shape grammar,
the more the generated shapes (by the grammar itself) will divert from the ideal
solutions, and thus the more naive the shape grammar can be considered. Regarding
the external control processes that can be combined with generative systems, the
wide spectrum of techniques described along the previous chapter (from direct search
techniques to more complex methods like simulated annealing or genetic algorithms)
also suggests a classification of these systems based on their sophistication. Although
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Naive SG Expert SG 

No Control 

Sophisticated Control 

Figure 3.1: Axes for classifying different approaches combining shape grammars and
control

the complexity of a control method is an elusive measure, it is useful for comparing
the different approaches to computational design that will be described here.

In this thesis we explore different approaches that combine shape grammars and
control methods used to generate good design solutions. We propose to use the two
dimensions outlined in the previous paragraph in order to classify the different ap-
proaches, that is: the naiveness of the involved grammars and the sophistication of the
chosen control method. We can represent this classification scheme in a graphic man-
ner, with the help of two perpendicular axes that yield four sections, as seen in Figure
3.1. In this figure, the horizontal axis stands for the naiveness or expertness of the
shape grammar(s) involved in a given system. The left end represents a totally naive
shape grammar, that is, a grammar designed without considering design requirements
at all. The more expert a shape grammar is, the more is located to the right, being the
right end the location for pure expert shape grammars. The vertical axis stands for
the complexity of the control method used in combination with the shape grammar,
being the bottom end representative of non-existent guidance methods, and the top
end for sophisticated control mechanisms.

Design systems based on pure expert shape grammars do not need an additional
control method, as the results produced by this kind of grammars are always valid.
Hence, in our classification scheme, pure expert grammars would be allocated in the
bottom-right corner, as seen in Figure 3.2.
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Naive SG Expert SG 

No Control 

Sophisticated Control 

Expert Shape Grammars 

Figure 3.2: Location of a design system based on a pure expert shape grammar

As we explained in Section 2.2.3, one of the main concerns about pure expert
shape grammars is that they are very difficult to create and modify. Another one is
their tendency to produce the same type of shapes, as the grammar designer has to
foresee the outcome of the possible derivations, leading to a predictability that, while
assuring the correctness of the obtained shapes, hinders diversity and the possibility
of unexpected solutions.

Other design systems based on more naive shape grammars can cope with these
matters, at the expense of the validity of the produced shapes. To deal with this issue
they need some kind of guidance method for controlling the rule application, so these
systems would fall in some point located at the left of and above the point representing
a pure expert shape grammar. In this thesis we propose two different computational
design systems that use not purely expert shape grammars. They are introduced in
the next two sections, and will be described in detail trough the rest of the thesis. In
addition, in Section 3.3 we briefly describe an approach in which naive shape rules are
not combined with an additional control method. Such system was developed in order
to study some aspects related to randomness in design processes.
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3.1 Expert SGs and Sophisticated Control

Shape grammars can be designed with certain level of expertness, in the sense that
they can encode some, but not all, of the design requirements that solutions need to
fulfil. Reducing the amount of design requirements that have to be considered inside
the shape grammars can help to deal with the aforementioned issues related with the
use of totally expert shape grammars.

A possible approach is to divide the design requirements into two categories, one
for design criteria that are easier to specify geometrically (for example, the necessity
of certain shapes to be present in the solutions) and another one for design require-
ments that are suitable to be expressed in an explicit, symbolic manner (for example,
requirements about the distance between two particular elements in the design). On
one hand, the design demands falling in the first category can be naturally declared
inside the shape rules. On the other hand, the needs belonging to the second group are
managed in an external search process, performing an automated test over the derived
shapes in order to guide the generation towards feasible solutions.

In order to perform this test, we propose to use logic predicates that represent
design requirements. This predicates will be divided into constraints and goals, de-
pending on how they are managed during the search process. Every time a rule is
applied, and thus a new shape is yielded, each constraint and goal is evaluated over it,
obtaining true if it is fulfilled and false if it is not. The system discards those shapes
that violate any of the constraints and returns a solution when, in addition to not
violating the constraints, the generated shape complies every design goal. The details
of the particular search algorithm used in the system will be described in Chapter 4.

We also propose to enhance the shape grammars with layers, which are a very
common structuring instrument in CAD tools. In our context, they can help gram-
mar designers in the creation process, as they allow for a better visualization and a
cleaner legibility of the rules. Certainly, a shape grammar designer can group different
geometric elements in distinct layers, according to what they represent (for example,
if the shape grammar is intended to produce house floor plans, a layer can be used for
the walls, another for the doors, etcetera). The definition of constraints and goals can
also benefit from this structuring device, as we can describe predicates that only refer
to the geometric elements in one particular layer (for example, if we want to impose
some constraints on door measures, then the associated predicate only has to check
the elements inside the door layer).

This system based on layered shape grammars, constraints and goals would be
located in the top-right quadrant of our classification scheme (Figure 3.3), and will be
described in detail in Chapter 4.
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Naive SG Expert SG 

No Control 

Sophisticated Control 

Expert Shape Grammars 

SG with constraints, goals 
and layers 

Figure 3.3: Location of our system based on shape grammars, constraints, goals and
layers

Figure 3.4: A simple additive rule working with squared tiles

3.2 Naive SGs and Sophisticated Control

The level of expertness hard-coded inside the shape grammars can also be minimized.
One way of achieving this is by drawing inside them just atomic elements that will be
aggregated to make up the solutions. For example, we can work with an additive rule
that puts an squared tile next to an existing one (Figure 3.4). The benefits of this
approach are the utter ease for designing the shape grammars, and the great diversity
and non-expected solutions that can be obtained.

As opposed to the previous approach, in which the shape rules encoded some
design requirements, now it is not enough to just manage criteria. The state space
is now much bigger, as the rules just deal with atomic elements that can yield a lot
of different shapes, being the majority of them infeasible from the point of view of
the considered design problem. If, as in the previous section, we just implement a
direct search process that discards non-valid solutions and keeps on searching until a
feasible solution is reached, the time requirements would be huge, not only due to the
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size of the state space, but also because the test for determining if a shape is valid
would be now much more complex, as it would have to consider every existent design
requirement, and not a subset as in the approach of Section 3.1.

Here we propose an approach in which an algorithm learns how to apply the shape
grammar, determining the more suitable rule to be applied at each derivation step.
This is managed through a reinforcement learning process in which the design require-
ments are codified as rewards. The system learns by experience, reinforcing those rule
applications that lead to a high reward, and punishing those that yield a low one. If
scalar techniques are used, a generalization mechanism can also integrated with the
learning algorithm, so it is not necessary to explore the whole state-action space. As
we explained in Section 2.3, this is accomplished by means of features that represent
relevant characteristics of a shape. Hence, two different shapes can share the same set
of features, meaning that they are similar and can thus be treated equally (of course,
starting from the premise that the features are well chosen).

In this system we have to clearly distinguish the learning process from the derivation
process. During the first one, a learning algorithm determines which features must be
pursued (or, equivalently, which rule has to be applied) at each derivation step, in
order to obtain high rewards. As we mentioned before, for computing the rewards
we need to explicitly use the design requirements. However, during the derivation
process we do not use the rewards, but the learned priority of rules. Hence, the design
requirements themselves are only needed in the learning process, in order to discover
the criteria (that is, the priority of rules) that will be used during the derivation
of the shape grammar. (Of course, this does not prevent us from still using design
requirements in the definition of features for the shapes, but it is not necessary, as we
could have naive features that only refer to basic geometric properties of the shape).
This method contrasts with the one introduced in the previous section, in which the
design requirements are directly managed during the derivation process.

This approach based on naive shape grammars and reinforcement learning would
be located in the top-left quadrant of our classification scheme (Figure 3.5), and will
be described in detail in Chapter 5.

3.3 Naive SGs Without Control

In the context of computational design systems based on shape grammars, if the rules
are naive then we need an extra control method in order to generate feasible solutions.
However, using naive rules in a random setting can still be of certain theoretical inter-
est. Certainly, the use of randomness in design has been considered and analyzed by
some researchers, usually by means of case studies (Goldschmidt, 1994) or computer
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Figure 3.5: Location of our system based on shape grammars and reinforcement learn-
ing

based simulations (Petre et al., 2006). Randomness can help designers in the initial
stages of the process or even can be present in the final result for the sake of visual
pleasure (Verbeeck, 2006, p. 73).

Along these lines, it could be interesting to carry out a study of what happens when
naive shape grammars are used without an additional control mechanism, letting the
users apply the rules randomly and also providing means for manually derivating rules
(Belmonte et al., 2014). This system would be located in the bottom-left quadrant of
our classification scheme, as it lacks a control method (see Figure 3.6). The results of
such research could be of interest when implementing new computational design tools.

3.3.1 An Experiment on Naive SG Without Control

In this experiment we tried to answer the following research questions:

1. To what extent novice designers are willing to perform random explorations in a
design space?

2. To what extent do they prefer random to controlled results?

3. Can “good” designs be obtained by means of partially random processes?
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Figure 3.6: Location of our system based on naive shape grammars and random/man-
ual control

To this end, an interactive computer tool was implemented and offered to a group of
60 fourth-year students of Architecture. Students had to use the tool to design mega-
structures, and their outcomes were analysed in terms of randomness and quality.

The tool, named MG-Shade, was developed specifically for this study in order to
interactively generate mega-structures by aggregating 3-dimensional cells. A complete
user’s guide for MG-Shade is available on the web1. In Figure 3.7 we can see a screen
shot of the graphical interface of MG-Shade.

Each student had to sketch six projects and had to write a report documenting the
creation process. In figures 3.8 and 3.9 we can see examples of two megastructures,
one created by manually controlling the rule applications, and another one randomly
generated, respectively.

From his/her six sketches, each student had to select the “best” one, giving the
reasons for their choice. Then the instructor selected the ten best students, according
to feasibility and degree of detail of their projects, among other criteria. Independently
of this assessment, each of the projects was inspected and graded according to its degree
of randomness. Grading was performed by a team of two judges that should agree on
a common score. Judges took into account both the design process, as described by
students in their reports, and the final look of generated sketches. The scale was as

1http://www.lcc.uma.es/˜perez/ntidapa/
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Figure 3.7: Graphical interface of MG-Shade

Figure 3.8: A controlled mega-structure generated by a student

follows:

1 (Almost) total control
2 More controlled that random
3 More random than controlled
4 (Almost) total randomness

Hereafter, the consensus score of each project will be referred as the randomness
value (r). Figure 3.8 displays a project that has been totally controlled (r = 1), as
shown both by the written report and the visual inspection. In contrast, Figure 3.9
displays a totally random project (r = 4).

The global average value for r was 2.53. The mode is r = 3, since 32.49% of
the designs were produced for this value.That means that 32.49% of the designs were
generated following a more random rather than controlled process. Moreover, the vast
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Figure 3.9: A random mega-structure generated by a student

majority of the designs (80.67% = 28.85% + 32.49% + 19.33%) were produced using
randomness to a certain extent (r = 2, 3 or 4). This shows that most participants
in this experiment were willing to explore the design space by applying randomness,
confirming some previous results reported in the literature.

We also came to the conclusion that if the student generates a totally controlled
design, then it will be preferred one in three times. On the contrary, if s/he generates
a totally random or more random than controlled design, then it will be preferred
approximately one in ten times.

With respect to the analysis of randomness in “good” designs, we considered that
“good” designs were those generated by students selected by the instructor, and specif-
ically the preferred ones. Average value for “good” designs is r = 2.07 and the mode is
r = 1 with a frequency of 40.00%. On the other hand, the sum of the rest of frequen-
cies, standing for designs in which randomness has been present to a certain extent, is
higher (60% = 28.33% + 16.67% + 15%); so the majority of “good” designs present a
certain degree of randomness. Hence, another conclusion was that a certain degree of
randomness was present in many of the “good” designs, but the weight of randomness
in this subset is somehow reduced with respect to the whole set of designs.

To conclude, we can state that, while exploring randomness, students must take
into account functional and constructive considerations, and surely that is the reason
why they have chosen to develop designs that are not the most random ones. Users
seem to be open to explore randomness, so the tool should provide a certain amount
of that; however, the tool should also allow to control and tame such randomness.

This experiment, located in the bottom-left quadrant of our classification scheme,
suggests that users are willing to consider suggestions provided by the computer, and
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also that in order to lead to good designs, these suggestions should not be totally
aleatory, but controlled in some manner. In the following sections we will focus on the
approaches falling on the top-right and top-left quadrants, where more or less sophis-
ticated forms of controlling the chosen generative system (namely shape grammars)
are used.





Chapter 4

A Computational Design System
for Managing Criteria in Design

Problems

Does the creation of design admit constraint?
Design depends largely on constraints

Question: Madame L’Amic. Answer: Charles
Eames

In this chapter we describe in detail the system advanced in Section 3.1, based on
the idea of encoding some of the design requirements into rules while leaving others
to be managed in an external search process employing logic predicates (Ruiz-Montiel
et al., 2011b, 2014). As far as we know, this approach was the first one guiding the
application of generative rules with logic predicates. The posterior works of Grzesiak-
Kopec & Ogorzalek (2014b); Grzesiak-Kopeć & Ogorzałek (2014); Grzesiak-Kopec &
Ogorzalek (2014a) also employ rules combined with predicates, in the context of layout
design.

A predicate is either a constraint or a goal. The search process will discard shapes
that violate some constraint, and will return a solution when a shape fulfils every goal.
Two are the reasons that justify the separation between design criteria that are codified
inside the rules and those that are expressed as predicates. Firstly, when dealing with
design problems, we can find design requirements of different nature, and it becomes
clear that some of these criteria are easier to specify by means of their codification into
visual rules, while others adapt better to symbolic mechanisms. The designer should
be allowed to express design criteria both visually, in the form of shape rules, and
also explicitly, in the form of design constraints and goals. Secondly, as the amount of
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design requirements to be considered inside the rules is reduced, the shape grammars
are easier to create and maintain, and they can produce more varied solutions than a
pure expert shape grammar.

In addition, the system allows the use of layers in order to design and visualize
rules. This structuring device can help shape grammar designers in the rule creation
process, as they can take advantage of the layer facilities provided by CAD tools.
An additional advantage is that layers decrease the time requirements of the subshape
recognition algorithm, as we can have several simple shapes separated in distinct layers
instead of a complex one inside a single layer.

In Section 4.1 we explain in detail the search process used to explore the design
space, based on design constraints and goals, and in Section 4.2 we introduce the
concept of layered shape grammars. In Section 4.3 we describe a software tool that
integrates layered shape grammars with the search process. We will illustrate how the
system works by means of two examples (sections 4.4 and 4.5). Finally, in Section 4.6
we discuss the performance of the system from the the point of view of time.

4.1 Constraints and Goals

Our system considers logic predicates during the execution of the shape grammar.
Logic predicates are boolean-valued functions that return true or false depending
on whether the statement they represent is satisfied or not. We consider two kinds of
logic predicates:

1. Constraints: predicates that must be satisfied at every step of any rule derivation.

2. Goals: predicates that must be satisfied at the end of any rule derivation. They
control termination. The design is considered satisfactory as soon as goals are
attained. In such case, the derivation sequence can terminate.

The space of shapes that can be generated through the repeated application of a
shape grammar to an initial shape is a directed, possibly cyclic graph with shapes at its
nodes. A link connecting a shape s1 to a shape s2 indicates that s2 can be obtained by
applying some rule, with a concrete transformation, to s1. There are many links from
each node as possible pairs (rule, transformation) are applicable to the corresponding
shape. There are two special kinds of nodes:

• Goal nodes: nodes representing a shape that fulfils all the goals, without violating
any constraint.

• Terminal nodes: nodes representing a shape that either does not allow more rule
applications (due to its geometry), or violates some of the current constraints.
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Algorithm: Depth-first search (depthFirstSearch)
Input: an initial shape s
Output: A shape γ (if exists) that fulfils all the goals and does not violate any
constraint
begin

if isGoalNode(s)
result = s

else if isTerminalNode(s)
result = failure

else
children = getChildren(s)
found = false
while (notEmpty(children) and not found)

child = takeChild(children)
solution = depthFirstSearch(child)
if isShape(solution)

result = solution
found = true

end
end
if not found

result = failure
end

end
return result

end

Table 4.1: Algorithm for depth-first search

The process of generating a shape that complies with a given set of predicates
can thus be formulated as a search over this graph. In order to perform such search
we could use any search algorithm. Here we use a depth-first search due to its low
memory requirements and the possibility of imposing a limit on the reached depth
along the search process. Table 4.1 shows the pseudo code for a recursive algorithm
that performs depth-first search. The process starts at the root node of the derivation
tree (see Figure 4.1), checking if it is already a goal node (with the method isGoalNode)
or a terminal one (with the method isTerminalNode). Otherwise it will explore the
derivation tree, descending as deep as possible along each branch before backtracking,
until it finds a goal node. In case that no goal nodes are found, the algorithm will
return failure. The method getChildren computes all the possible shapes that can be
obtained from a given shape s, applying the rules of the shape grammar. The method
takeChild takes a node of a given list and removes it from the collection. If the result
of the recursive call is a shape, then the algorithm has found a solution. Otherwise,
the result is failure and there does not exist any solution in that branch.

Note that constraints prune the search tree, effectively reducing the space that
needs to be explored.
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Figure 4.1: Fragment of the derivation tree for the application of the rule in Figure 2.1

Let us illustrate the use of logic predicates with a simple example over the tree
sketched in Figure 4.1. Suppose that we need to produce shapes with the rule in
Figure 2.1, satisfying two design requirements:

1. The shape must not contain segments larger than one meter.

2. The shape must contain at least ten squares.

The user/designer has to formalize each requirement as a constraint or goal. Let
us formalize the first one as a constraint and the second one as a goal. With these
premises, a possible path the algorithm may follow through the tree is depicted in
Figure 4.2. At the first level, the axiom (which is a one meter side square) does not
violate the constraints but does not meet the goal, so the algorithm goes deeper. The
same happens in the second level. In the third level, the algorithm now finds two nodes
with shapes that violate the constraint, and are marked as terminal. The third shape
in this level does not violate the constraints but still does not attain the goal, so the
algorithm explores this node, finding a solution in the fourth level.

As we have seen in this example, some requirements are specified in terms of exact
metric (it is the case of the constraint, stating that the shape must not contain segments
larger than one meter). Although shape grammars involve dimensionless rules in the
sense that the size of the pattern to be found (that is, the left part of the rule) does
not matter, these rules apply to real shapes that can in fact have dimensions, as is
the case of the axiom in the previous example. Since the requirements always refer
to measurable shapes, there is no conflict in establishing predicates involving exact
metric.
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X

X

Figure 4.2: Depth-first search of the tree of rule in Figure 2.1, with the specified
predicates.

Constraints need to be defined with care. When a constraint is violated, the depth-
first search algorithm prunes all the paths that could be followed from the offending
node. If there were a valid solution inside some of those paths, the algorithm would
never reach it. This could happen, for example, in the example depicted in Figure 4.2,
if the grammar had an additional rule that removed squares. As a general guideline, a
predicate can be formulated as a constraint when we are sure that once it is violated,
there is no possible derivation that will satisfy it again. Otherwise, it is better to
define the predicate as a goal. If the grammar contained rules that remove shapes, this
property would not be present.

4.2 Layers

Layers are a common structuring device in practical CAD tools. From a theoretical
point of view, experts acknowledge the need of using partial descriptions of a design.
Partial descriptions of designs have to be superimposed in order to make up the whole
picture. A design is composed of several partial descriptions that have no meaning
in themselves, that is, they are fragments of the design. They have to interact and
overlap in order to form the whole meaning. Kotsopoulos, starting from the theo-
retical background of product shape algebras (Stiny, 1992), introduced this notion as
a thinking-graphic device when working with shape grammars (Kotsopoulos, 2005).
Stiny also introduced the concept of multiple tuples (or channels, as Yue and Krish-
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namurti explain in a recent work (Yue & Krishnamurti, 2013)) in shape grammars
as a technique to deal with the difficulty of distinguishing segments embedded in the
maximal lines (Stiny, 1975). Here we provide an implementation for these ideas and
define a new subshape detection algorithm for layered shape grammars.

As we explained in the introduction of this chapter, layers allow shape grammar
designers to take advantage of the layer facilities provided by CAD tools. Firstly,
layers provide a cleaner visualization mode in which certain layers can be displayed
or hidden in the canvas, focusing the designer’s attention on the particular segments
and points that need to be dealt with at any given time. Secondly, legibility of the
shape grammar can also be improved thanks to the aggregation of related segments
and points into a single layer with a meaningful name. An unlayered shape grammar,
in contrast, would hinder the interpretation of each segment or point. For example, a
door-related segment might be mistaken for a wall, hampering further modifications
of the shape grammar.

4.2.1 Formalization

Formally, we define a layered shape grammar as a 5-tuple 〈S,L,R, I, La〉 where:

• S is a finite set of shapes

• L is a finite set of symbols

• R is a finite set of rules α → β, where α is a non-empty layered shape and β is
a layered shape

• I is a non-empty layered shape, called initial shape or axiom.

• La is a finite set of n layer names, (La0, La1, · · · , La(n−1))

A layered shape is a set of n labelled shapes (σLa0 , σLa1 , · · · , σLa(n−1)). That is,
there is a labelled shape defined for each layer. In Figure 4.3 we can see an example
of a layered shape (the bottom-left cross represents the origin of coordinates).

A rule applies to a layered shape γ when there is a transformation τ such that
τ(αLai) is a sub-shape of γLai , that is, τ(αLai) ≤ γLai , for every layer Lai. Note
that the applied transformation τ must be the same in every layer. The rest of the
arithmetic for labelled shapes is naturally extended to layered labelled shapes in a
similar way, applying the operators in parallel to the shapes of every layer.

In Figure 4.4 we can see a layered shape grammar with the content of each layer
shown separately. The grammar is composed of three rules that are divided into three
layers.
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βLayer0 βLayer1 βLayer2

Figure 4.3: A layered shape (n = 3)

αLayer0 αLayer1 αLayer2 βLayer0 βLayer1 βLayer2

Rule 1 →

Rule 2 →

Rule 3 →

Figure 4.4: A layered shape grammar

While defining and understanding a layered shape rule is apparently more compli-
cated than in the case of a standard shape rule, this shortcoming can be circumvented
by integrating the layered shape grammar interpreter into a CAD tool with layer fa-
cilities. These kind of tools usually allow viewing different layers separately, as well
as any combination of them at once. As explained in Section 4.3, we have built our
interpreter on a commercial tool that offers such layer capabilities.

4.2.2 Layered Subshape Detection Algorithm

Shape grammar interpreters spend most of their time solving the so-called subshape
detection problem: given two shapes α and γ, find all transformations t such t(α) ≤ γ.
A reference algorithm for this problem was proposed by Krishnamurti (1981). We have
extended this algorithm to the layered case.

Let us start describing the original algorithm. It works with a fixed set of three
points in α. This set, called DPα, is mapped to every plausible combination of three
points (a so-called triplet) inside γ, and if both sets form similar triangles, then the
six points are used to calculate a transformation t. If t(α) ≤ γ, then t is added to the
solution set. The set DPα must be carefully chosen, because the number of triplets
inside γ depends on the type of points involved in DPα. For example, consider the
shapes α and γ in Figures 4.5 and 4.6, respectively (in this work, labels are represented
by means of circles). In 4.6 we can find 22 intersection points and 4 white labels. If the
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Figure 4.5: A shape α

Figure 4.6: A shape γ

set DPα is composed of three intersection points (namely, three corners of the square
in Figure 4.5), then the number of triplets in γ is 22 × 21 × 20. On the other hand,
if DPα is composed of two intersection points (two corners) and the white label, then
the number reduces to 22× 21× 4, so the most efficient DPα is this second one.

If we have a shape γ with n layers (La0, La1, · · · , La(n−1)), our algorithm computes
all the DPs for αLai , 0 ≤ i ≤ (n−1). We can compute the number of triplets for every
three-point set, and run the original algorithm only in the layer that requires less
combinations; as the subshape relation must hold in every layer simultaneously, we
can stick to one layer in order to compute all the possible transformations. Table 4.2
shows the pseudo code for this algorithm. The method getTransformations(α, β,
DP ) in our algorithm performs the original Krishnamurti’s algorithm (Krishnamurti,
1981) for subshape detection. The inputs for this original algorithm are shapes with
presumably less points and segments than the complete shape resulting from the union
of every layer, making the computation faster. In the Section 4.6 we provide a detailed
analysis of time performance.

4.3 The ShaDe Tool

ShaDe 1 is a generative design tool that relies on layered constrained shape grammars
in order to propose design solutions: it handles layered shapes that are intended to
represent a design that meets a set of logic constraints and goals.

In this section we focus in the architecture of ShaDe and some relevant aspects of
its interface. A more detailed description can be found in the user’s guide and technical
reference (Ruiz-Montiel, 2012b,a).

1ShaDe can be downloaded from http://www.lcc.uma.es/~perez/ntidapa/.
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Algorithm: Layered Subshape Detection (layeredSubshapeDetection)
Input: α, γ
Output: A collection of transformations t such that t(α) ≤ γ
begin

n = numberOfLayers(γ)
for i in [0..n− 1] do

DP = computeMostEfficientDP(αLai , γLai)
if (size(DP ) == 3)

combinationsNumber = computeCombinationsNumber(DP ,γLai)
if isMinimumNumberFound(combinationsNumber)

bestLayer = Lai

bestDP = DP
end

end
end
if bestLayer

result = getTransformations(αbestLayer, γbestLayer, bestDP)
end
return result

end

Table 4.2: Algorithm for layered subshape detection

ShaDe is built on Trimble SketchUp, a popular, freely-available 3D modelling soft-
ware that can be extended with Ruby (Ruby Language, 2015) plugins. ShaDe has been
implemented as one of these plugins.2 This approach presents several adavantages:

1. Providing a generative tool integrated with a commercial CAD tool can help to
overcome the alleged confinement of design generative software to the academic
world (Hanna & Barber, 2001)

2. It is generally acknowledged that design practitioners tend to think visually (Hoisl
& Shea, 2011). ShaDe incorporates the sophisticated tool set of Sketchup in the
graphic interface of its grammar interpreter, so designers can program shape
rules by directly manipulating graphics with the help of visual tools, instead of
using a programming language

3. Dynamically supported Ruby scripts provide support for the logic predicates
used to control shape grammar application

In Figure 4.7 we can see the architecture of ShaDe. There are four ShaDe-specific
modules: (1) Layered Shape Grammar Interpreter module, (2) Design Generation
Module, (3) ShaDe Interface and (4) Predicate Generation Module. These are covered
in the next sections.

2 For efficiency reasons, the shape grammar algorithms are not executed within the Ruby interpreter
that comes along with SketchUp, but by an external Ruby command.
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Figure 4.7: ShaDe architecture

4.3.1 Layered Shape Grammar Interpreter Module

The Layered Shape Grammar Interpreter (LSGI) module relies on our layered subshape
detection algorithm, as well as in the arithmetic algorithms developed by Krishnamurti
(Krishnamurti, 1980), in order to implement the application of shape grammars. As
the SketchUp representation of shapes is not maximal in general, ShaDe implements
a translation method that receives the SketchUp entities that constitute a shape and
returns the maximal representation for the same shape. This method is invoked every
time a new shape is created or edited inside the graphical interface. When a layered
shape needs to be painted, the LSGI module communicates with the Ruby API in
order to create the corresponding SketchUp geometric entities.

Layered shape grammars are implemented by means of the entities that SketchUp
provides for dealing with layers. We use the so-called Layer entity of SketchUp in
order to organize the maximal representation of the shapes; for each layer we keep the
structures that store the maximal representation of the corresponding shapes.

4.3.2 Design Generation Module

The Design Generation (DG) module takes into account the design requirements (spec-
ified as logic predicates) in order to propose solutions. The solution space to explore,
configured as a tree-like structure (see Section 4.1) is generated thanks to the LSGI
module.
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The logic predicates that control the depth-first search described in Section 4.1 are
implemented as Ruby scripts that are invoked every time a node is checked. Users can
(de)activate both constraints and/or goals at any moment.

ShaDe allows the association of a shape grammar with a set of logic predicates.
This is done by means of the project entity. Projects can be executed in two different
modes: (1) applying a number of rules and (2) applying rules until the design goals
are fulfilled. When (1) is chosen as execution mode, the goals of the project are not
taken into account, applying a maximum depth search limit.

Design scripts can be used to establish sequences of projects. Each project in a
script is executed from the shape produced by the previous project. The first project
starts from an axiom, i.e., a shape provided by the user. Scripts allow to specify
different phases in the generation of a design, as we will illustrate in sections 4.4 and
4.5.

The DG module can also use functions of the SketchUp Ruby API in order to
implement the behaviour of constraints and goals.

4.3.3 ShaDe Interface

The Interface of ShaDe relies partly on the already provided canvas and basic draw-
ing/layer tools of SkethUp. It adds several specific toolbars that gather different com-
mands that deal with ShaDe entities.

In Figure 4.8 we can see a screenshot of the graphical interface of ShaDe. In the
following, we describe the user interaction with ShaDe.

1. Rule Canvas. Rules appear at the left side of the canvas. All drawing tools can
be used to create and edit all rule shapes with a pointing device.

2. Design Canvas. The current shape (or the axiom, when no rules have been
applied) appears at the right side of the canvas.

3. Basic SketchUp Toolbar. This toolbar gathers some basic SketchUp commands
that can be used to edit shapes and also to change the canvas view (zoom in/out,
rotate, etc.).

4. Edition Toolbar. Provides specific commands in order to perform shape grammar
editing tasks like adding or removing rules, managing shapes and labels, and also
visualizing the design in three dimensions.

5. File Toolbar. This toolbar provides commands that save/load several ShaDe
entities (shapes, grammars, projects or scripts).
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Figure 4.8: Screenshot of ShaDe

6. Execution Toolbar. These commands allow the user to execute the shape gram-
mar with some of the following protocols: (a) applying certain rule once, (b)
applying random rules a number of times, (c) applying random rules until goals
are met, (d) executing a design script.

7. Predicates Toolbar. Provides commands for managing constraints and goals
(mainly activate/deactivate them, defining new predicates and checking if goals
are met).

8. Layers Window. Allows layer management (choosing the current layer, which
layers are displayed, etc.).

4.3.4 Predicate Generation Module

The Ruby scripts for some logic predicates that we consider of common use are pre-
defined in ShaDe. They are gathered in Table 4.3. The user can activate these at any
time, so that they are taken into account in rule application.

However, in many cases the user will probably need additional logic predicates. For
this reason, ShaDe offers the possibility of defining personalized constraints and goals.
This can be done in two ways:

1. Graphically, thanks to a predicate generation module that asks for information
about the logic predicate
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Predicate Name Type Description
Produce distinct shape Constraint satisfied? = true iff the new shape is

distinct from the previous one
No scales Constraint satisfied? = true iff the transforma-

tions used to apply the rule do not involve
scales

Inside contour Constraint satisfied? = true iff the current shape is
inside certain contour

No labels Goal satisfied? = true iff the current shape
has no labels

All rules applied Goal satisfied? = true iff all the rules of the
grammar have been applied at least once

No more rules can be applied Goal satisfied? = true iff no more rules of the
grammar can be applied, either because
of negative subshape detection or because
some constraint is violated

Table 4.3: Predefined constraints and goals provided with ShaDe

2. Directly coding the logic predicate in Ruby, inside a built-in code editor

When the graphic option is chosen, the Predicate Generation (PG) module gathers
information about the predicate by means of a set of graphic dialogues, and then
automatically generates the corresponding Ruby code. We have tried to develop a
general and user-friendly graphic interface, covering a wide range of possibilities by
means of dialogues and forms that the designer has to fill in. Basically, the predicates
can refer to five different entities:

1. Rule IDs. Example: the applied rule is the one with ID 3 ; or the first applied
rule is the one with ID 1.

2. Applied transformations. Example: the applied scale factor is bigger than 2.

3. Segments of the generated shape. Example: the shape must not contain segments
larger than one meter.

4. Points of the generated shape. Example: there are more blue labels than yellow
ones inside the shape, or there are at least two yellow labels at a distance of 3.6
meters of a blue label.

5. The whole generated shape. Example: the shape is inside a contour, or the shape
is a sub-shape of another given one.

In figures 4.9 and 4.10 we can see some graphic dialogues for configuring predi-
cates related to the applied transformations and the labels of the generated shape,
respectively.
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Figure 4.9: GUI for predicate configuration: applied transformation

Figure 4.10: GUI for predicate configuration: current shape labels

4.4 Example 1: Designing with the Hele Module

In this section we describe a design script used to generate housing unit schemes. This
design script is based on some ideas of Rafael Leoz, a Spanish architect whose most
productive period fell between 1950 and 1970.

The goal of this example is to focus on the conceptual design facet of ShaDe. More
precisely, we show that our system can be used to generate many varied solutions that,
although low-detailed, meet an essential set of design requirements and thus can be
used as starting points for complete design projects. In addition, we describe in detail
all the shape grammars, constraints and goals used in the example. A video displaying
the most relevant steps of this example is available on the Web3.

4.4.1 The Hele Module and Predefined Rooms

One of the main motivations behind Leoz’s work was the improvement of social hous-
ing. Leoz studied how to build affordable houses by means of mass production. The
basic idea is to start from a small number of simple shapes that can be easily mass-
produced, and aggregate them in order to obtain a vast number of more complex
shapes. The most important contribution in this sense is the so-called Hele Module
or just Leoz Module (Leoz, 1969). Leoz chose this shape because it offers many har-
monic combination possibilities, since it does not have symmetries and its perimeter
is configured according to the Fibonacci numbers (see Figure 4.11).

We have used pairs of Hele modules in order to produce samples of single-family
housing units. Each Hele module is made up of four cells of 3.60 × 3.60 meters. Two
modules can be combined in many different ways. We can see some examples of such
combinations in Figure 4.12.

3http://youtu.be/1SwkKOinJ8A
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Figure 4.11: Hele Module (reproduced from (Leoz, 1978))

Figure 4.12: Some Hele Module combinations (adapted from (Leoz, 1978))

Leoz usually employed a set of predefined rooms in order to easily configure the
interior space of the houses (Leoz, 1978). Since we are using two Hele modules for
each housing unit, we have eight cells available to be filled with a set of rooms. The
chosen set of rooms, inspired by those used by Leoz in several projects (Leoz, 1978),
is depicted in Figure 4.13, with six single-cell rooms and a double one.

4.4.2 The Leoz Design Script

We developed a design script in Shade to produce several distinct 2D housing units
schemes, using pairs of Hele modules and the set of predefined rooms depicted in Figure
4.13.

Leoz usually worked with grids that divided the plane in a regular manner. From
these grids, he extracted simple shapes that were further aggregated in order to produce
more complex shapes (Leoz, 1978). The Hele module comes from a rectangular grid.
This grid can be used as axiom for our first production step. The subshape recognition
algorithm used by the shape grammar interpreter will recognize the Hele modules inside
this grid. We can now establish the layers that will reduce the computational cost of
grammar execution. They will also help us to represent designs in three dimensions
and to visualize different aspects of the design separately:

1. The underlying grid
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SC LC1 LC2

DC BC1 BC2 BC3

CAPTION:

SC – Service Cell (Bathrooms, kitchen and diary dining room)

LC1 – Living Room Cell 1        

LC2 – Living Room Cell 2

DC – Dining Room Cell

BC1 – Bedroom Cell 1

BC2 – Bedroom Cell 2

BC3 – Bedroom Cell 3

Figure 4.13: Set of predefined rooms

Layer0

(network)
Rest of the layers

Figure 4.14: The axiom for the Leoz script

2. The Hele modules yielded by the grid

3. The walls of the rooms

4. Elements with table-height

5. Elements with seat-height

6. Elements with wardrobe-height

Figure 4.15 depicts the layers with the help of an example. All the shapes and
rules of the grammars need to be defined for the six layers.

The Leoz design script comprises three design projects, each one with its own shape
grammar, constraints and goals (see Table 4.4). In the following we describe the aim
of each project:

• Project 1: First Hele Module. The first production step is to add the first Hele
module from the axiom (see Figure 4.14). Figure 4.16 displays the single rule for
this project. Labels are black in the grid layer, blue in the modules layer and
white in the rooms layer. No constraints nor goals are needed.



4.4. Example 1: Designing with the Hele Module 61

Layer 5 (heigth3) 

Layer 4 (heigth2) 

Layer 3 (heigth1) 

Layer 1 (modules) 

Layer 2 (rooms) 

Layer 0 (grid) 

Figure 4.15: The layers of Leoz script for ShaDe

• Project 2: Second Hele Module. Starting from the shape produced by Project
1, Project 2 adds the second Hele module. In Figure 4.17 we can see the single
rule for this project. Labels are black in the grid layer, yellow in the modules
layer and white in the rooms layer. A constraint is needed to ensure that both
modules are in contact. We have established that two labels of the second Hele
module (coloured in yellow) must be at a distance of 3.6 meters of a label from
the first Hele module (coloured in blue). In Figure 4.12 we can see a small
set of Hele module combinations. Thanks to the emergence properties of shape
grammars, ShaDe is able to automatically generate all the combinations of two
Hele modules.

• Project 3: Rooms. This project adds different predefined rooms that are depicted
in Figure 4.13 (the pieces of furniture are schematic), starting from the shape
produced by Project 2. It has seven rules, one for each kind of room (Figure
4.18). Before the application of these rules, labels are white in the rooms layer.
When rules are applied, their colors change depending on the room that is added.
We need four constraints and one goal for the execution of this project:

– Constraint 1: The transformations involved in subshape recognition must
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Project Constraints Goals Execution
mode

1. First Hele
module

- - 1 rule

2. Second
Hele module

(1) Hele modules in contact - 1 rule

3. Rooms (1) No scaling (2) First rule
applied: service room (3)
Rules are applied in order
(4) Distance(service, dining)
< 5m

(1) All rules have been ap-
plied

Goals

Table 4.4: Leoz script summary

network modules rooms 

Rest of 

layers network modules rooms 

Rest of 

layers 

 
 

 

Figure 4.16: Rule for Project 1 (Leoz example)

not involve scaling, that is, the rooms are to be added in their original size.
This constraint comes predefined with ShaDe (see Table 4.3).

– Constraint 2: The first rule applied must be the one of the service cell, since
it is the one that needs more space.

– Constraint 3: The rules are applied in order, to make sure that every room
is present.

– Constraint 4: The dining room must be placed near the service room; these
two rooms cannot be separated by more than 5 meters. This constraint
can be configured using the coloured labels that the rules add to the rooms
layer.

– Goal: All the rules of the grammar have been applied. This goal comes
predefined in ShaDe (see Table 4.3).

This architectural example here clearly shows that some design criteria are easier
to specify by means of shape rules, and other adapt better to predicates. For instance,
the use of L-shaped modules is easier to elicit by means of geometric rules rather than
by some kind of explicit programming. However, the fact that the two Hele modules
have to be in contact is better expressed as a logic predicate: if we tried to express it
by means of shape rules, we would need to configure one distinct rule for every possible
combination of two modules.
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Figure 4.17: Rule for Project 2 (Leoz example)
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Figure 4.18: Rules for Project 3 (Leoz example)
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(a) (b)

(c) (d)

Figure 4.19: Four designs produced by the Leoz design script

4.4.3 Results

We asked the tool to generate ten designs using our design script (although there is
no limit to the number of designs we can ask ShaDe to generate). We show four of
them in Figure 4.19. The designs satisfy the constraints and goals gathered in Table
4.4, and also present considerable variability. By specifying heights for each layer, the
results can also be visualized in three dimensions. We show the housing unit of Figure
4.19(a), once the height information for every layer has been determined, in Figure
4.20. Some tools of SketchUp have been used in order to add textures and visualize it
in a friendly way.

4.5 Example 2: Virtual Restaurants

In this section we describe a second example that generates virtual restaurants to
be used in the context of restaurant simulation video games4. This example aims to

4The script containing the shape grammars, layers, constraints and goals of this example can be
downloaded from http://www.lcc.uma.es/~perez/ntidapa/restaurant-script.zip
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Figure 4.20: A housing unit with height information and textures

produce more detailed solutions from the computer graphics point of view, and it also
takes into account a set of requirements that are implicitly present in typical restaurant
simulation video games, therefore it is oriented to provide gamers with complete (not
conceptual) building solutions. Nevertheless, the produced designs can also be used as
starting points in the construction process typical of this kind of video games.

4.5.1 Strategy/simulation Video Games

In many strategy/simulation video games the player has to build her own world (for
example The Sims, Restaurant Empire, Hotel Giant, etc.). For some users, part of the
appeal comes from this construction process, whereas for others the main source of
entertainment is the simulation, where they just take a predefined virtual world and
start specifying the behaviour of the elements in the game. In this context, a system
that automatically generates virtual worlds provides a twofold advantage: on one hand
it can be used by construction-oriented gamers to obtain different starting points for
their creations, and, on the other hand, it provides simulation-oriented gamers with
an unlimited number of different starting points.

We have developed an example related to restaurant simulation video games. Some
examples of this genre are the PC saga Restaurant Empire or the Android application
Restaurant Story (see Figure 4.21).
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(a) (b) 

Figure 4.21: Screenshots of the games Restaurant Empire (a) and Restaurant Story
(b)

4.5.2 The Restaurant Design Script

In our example we consider the following elements of a restaurant building: contour,
entrance door, windows, kitchen, tables, chairs and bathroom. Each element is decom-
posed in several layers, summing up a total of 27 layers. These will significantly reduce
the computation time of the involved shape grammars, as well as allow a simple three-
dimensional representation with high level of detail, and a comfortable visualization of
the different elements. More concretely, the following details have been included:

• Walls have thickness

• The buildings have main doors and windows

• The furniture pieces are not box-shaped anymore. For example, the chairs have
legs, seats and backs

• Further additional details have been provided: columns and stairs for the main
door, frames for the windows, burners for the kitchen, etc.

These details are added by six shape grammars whose rules are decomposed in 27
layers. The rules are depicted in Figures 4.23 to 4.28. The design process is divided into
six projects with 9 constraints and 5 goals, establishing a strong interaction between
the elements so as to produce restaurants according to the implicit design rules that
we can find inside a typical restaurant video game. The first project starts applying
rules from the axiom depicted in Figure 4.22, and the rest of projects start from the
shape produced by the previous project. Note that, for space reasons, the empty layers
do not appear in the figures for the axiom and projects of the restaurant script.

Descriptions, constraints and goals for the six projects are gathered in table 4.5.
The script generates restaurants of 50m2 with five tables and at least ten chairs,
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Figure 4.22: The axiom for the restaurant script
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Figure 4.23: Rules for Project 1 (restaurant example)
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Figure 4.24: Rules for Project 2 (restaurant example)

Wall labels Wall labels Kitchen Countertop Burners Larder 

 
Rule 1 

 
 

 
Rule 2 

 

Figure 4.25: Rules for Project 3 (restaurant example)

Wall labels Wall labels Table legs Tables 

 
Rule 1 

 

Figure 4.26: Rule for Project 4 (restaurant example)
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Wall labels Tables Tables Backs Seats Chair legs 

 
Rule 1 

 

Figure 4.27: Rule for Project 5 (restaurant example)

Wall labels Walls Wall labels Walls Base Bath window boxes Bath window frames 
Bath windows 

 

 
Rule 1 

 

Base Door box Doors 
Sink Toilet back 

Toilet seat 

Figure 4.28: Rule for Project 6 (restaurant example)

which are reasonable as starting points for this kind of games. Results can be further
developed or improved by the players according to their preferences or game objectives.

4.5.3 Results

As in the previous example, we asked the tool to generate ten designs using our design
script. We show four of them in Figure 4.29. The designs satisfy the constraints
and goals gathered in Table 4.5, and also present considerable variability. We show a
restaurant in three dimensions, once the height information for every layer has been
determined, in Figure 4.30. We can use the tools of SketchUp to add some textures
and visualize it in a friendly way (in Figure 4.31(a) we can see another restaurant with
textures). In Figure 4.31(b) we can see the same restaurant of Figure 4.31(a) with an
automatically generated roof, thanks to the Sketchup plugin Roof Maker (Roof Maker,
2015).

4.6 Evaluation of Time Performance

4.6.1 Theoretical Analysis

The original Krishnamurti’s algorithm for subshape detection (Krishnamurti, 1981)
(that is, for computing all the transformations t such t(α) ≤ γ) considers all the
triplets inside shape γ. When γ has n points and all of the points inside α and γ are of
the same type, the number of triplets to be considered in γ is P (n, 3) = (n)(n−1)(n−2)
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Project Constraints Goals Execution
mode

1. Contour (1) No scaling (1) Total Area ≥ 50m2 Goals
2. Entrance
Door and Win-
dows

(1) No scaling (2) Maximum
doors: 1 (3) Maximum win-
dows: 70% of the perimeter

(1) Minimum doors: 1 (2) Min-
imum windows: 20% of the
perimeter

Goals

3. Kitchen (1) No scaling (2) Dis-
tance(kitchen, door)≥ 3m
(3) Distance(larder,
windows)≥ 0, 6m

- 1 rule

4. Tables (1) No scaling (2) Dis-
tance(table, tables)≥ 1, 5m (3)
Distance(table, kitchen)≥ 3m

- 5 rules

5. Chairs (1) No scaling (1) Minimum chairs: 10 (2)
Minimum chairs per table: 1

Goals

6. Bathroom (1) No scaling (2) Dis-
tance(bathroom, windows)≥
1m (3) Distance(bathroom,
door)> 0m

- 1 rule

Table 4.5: Restaurant script summary

(a) (b) 

(c) (d) 

Figure 4.29: Four designs produced by the restaurant design script
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Figure 4.30: A restaurant in three dimensions

(a) (b) 

Figure 4.31: A restaurant with textures (a) and with roof (b)
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αLayer0 βLayer0

→

Figure 4.32: Rule 4 of the third Leoz Project (flattened)

(that is, the number of ordered 3-permutations of n elements). Since it tries to compute
the associated transformation for each triplet (if it exists), the original algorithm has a
complexity of Θ(n3). However, a latter implementation of the algorithm (Krishnamurti
& Giraud, 1986) reduces this bound to Θ(n2). This is achieved considering only two
distinguishable points with two possible candidates for the third point.

Now suppose we use k layers to reformulate the shape grammar. In the average
case, a shape γ has n

k points inside each layer, that is, there are n
k (nk −1)(nk −2) triplets

in each layer. Since our algorithm for layered subshape detection (Section 4.2.2) only
focuses in one layer to compute the transformations (the one with less triplets), now
the performance is Θ((nk )3) (or Θ((nk )2) for the two-point version). For example, if we
use 10 layers, then in the average case the performance is divided by 103 (102 for the
two-point version). In the worst case, all the points are inside a single layer and thus we
can only use that layer in order to determine the transformations, so the performance
is the same as with single-layered grammars. In the best case, there is a layer that
only has one triplet, so determining the unique associated transformation (if it exists)
would have a complexity of Θ(1).

4.6.2 Empirical Analysis

Here we present the differences between the execution of a standard shape grammar
and a layered one. All tests reported here have been run on an Intel Core i7 860 @2.80
GHz processor with 8GB RAM and Windows 7 (64 bits).

Tests were run over the shape grammar of the third Leoz Project, that is, the one
that adds the room cells inside the Hele modules. An example of one of the rules is
depicted in Figure 4.18. There are seven similar rules in total, one for each type of
room cell. Two versions of this shape grammar have been used: the layered and the
flattened one. The second one has all its shapes in one single layer. For example, the
flattened rule equivalent to rule 4 in Figure 4.18 is depicted in Figure 4.32.

Both shape grammars have been executed with the same protocol: the seven rules
are applied in order, step by step, using as axiom an outcome (layered or flattened as
appropriate) of the second Leoz project. Our aim here is not to produce valid housing
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Figure 4.33: Performance measures: (a) number of triplets detected and (b) generation
time in layered and unlayered approaches

Unlayered Layered
Maximum 130,73s 32,52s
Minimum 112,54s 16,45s
Average 119,215s 21,06s

Table 4.6: Performance measures: maximum, minimum and average generation times
of Leoz design script for layered and unlayered approaches

units, but to measure performance, so a priori we do not need design constraints nor
goals. Nevertheless, we have activated the constraint that prevents scaling, so both
shape grammars produce the same outcomes.

Figure 4.33(a) shows the number of triplets that the subshape detection algorithm
considers in both cases. Our proposal always considers less than 4000 triplets, while
the unlayered approach considers many more, reaching almost 95000 triplets in the
fifth iteration.

Figure 4.33(b) shows execution time for both shape grammars. Measures include
the time involved in the subshape detection algorithms, as well as the time needed for
shape arithmetic operations. We can see that in the layered case we need less than
one second for every rule application, while in the unlayered case we need more time,
reaching almost four seconds in the fifth iteration.

In conclusion we can say that, if we can define layers for a shape grammar without
sacrificing desired outcomes of its application, our layered approach can lead to a con-
siderable improvement in time performance. This improvement is even more evident in
the execution of the whole Leoz design script, where the design requirements are more
demanding and thus the depth-first search algorithm backtracks more times. Table
4.6 gathers the maximum, minimum and average generation times of ten executions
of the Leoz design script, for the layered and unlayered approaches.



Chapter 5

Computational Techniques for
Learning and Detecting Criteria

in Design Problems

What constraints?
The sum of all constraints. Here is one of the
few effective keys to the design problem–the
ability of the designer to recognize as many
constraints as possible–his willingness and

enthusiasm for working within these
constraints–the constraints of price, of size, of

strength, balance, of surface, of time, etc.:
each problem has its own peculiar list

Question: Madame L’Amic. Answer: Charles
Eames

In this chapter we describe in detail the approach advanced in Section 3.2, based
on learning a heuristic that determines how to apply naive generative rules. In this
approach, the amount of design requirements encoded inside the rules is minimized,
so the creation and modification of such rules is very easy. However, a blind execution
of these naive rules lead to infeasible solutions. We propose to combine naive shape
grammars with reinforcement learning processes that codify design criteria as rewards,
and learn heuristics that tell how to apply the rules so as to maximize those rewards
and hence produce feasible solutions (Ruiz-Montiel et al., 2011a,b, 2013a, 2015). Some
previous works in the literature combine naive rules with techniques that discover good
rule application sequences in order to generate feasible designs, like shape annealing
(Cagan & Mitchell, 1993; Shea & Cagan, 1997, 1999b,a) or genetic algorithms (Gero
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et al., 1994; Jin & Li, 2007; Caldas, 2008; Wu et al., 2008). As far as we are concerned,
the system presented here is the first one that combines reinforcement learning and
naive rules for design.

The rest of this chapter is structured as follows: in Section 5.1 we explain the
general mechanism in which naive rules can be combined with an heuristic, and how
reinforcement learning techniques can be used to learn such heuristics. According to
the approach used in order to deal with the multiple objectives usually present in design
problems, we propose two methodologies: the first one involves scalarized MORL and
the second one involves the so-called Pareto MORL. They will be described in sections
5.2 and 5.3, respectively.

5.1 Naive Shape Grammars and Heuristics

As we explained in Section 3.2, the level of design criteria hard-coded inside the rules
can be minimized, allowing for an easy creation and modification of the shape gram-
mars. One way of achieving this is by using just atomic geometric elements that will
be aggregated to make up the solutions.

At this point, it is useful to introduce a small geometric problem that can be
employed to illustrate the different elements of the proposed methodologies described
in this chapter. Concretely, now we will use it in order to describe a possible naive
shape grammar and explain why we need to learn an heuristic that determines how to
apply its rules.

Let us suppose that we want to generate bi-dimensional shapes of a certain area,
with a high compactness factor. This compactness can be formally defined as area/perimeter2.
The most compact bi-dimensional shape is a circle. However, imagine that we want
to generate rectilinear polygons, which are polygons whose edges meet at right angles.
This can be due because, for example, an architect plans to use that shapes as possible
layouts for a house, and s/he wants to avoid curved designs and non-right angles.

In Section 3.2 we provided an example of a naive grammar that adds atomic,
squared tiles in order to make up tessellated shapes (Figure 3.4). We can use this
rule in order to generate rectilinear polygons. For simplicity, we will not allow rule
transformations that involve scaling shapes, as we want all our tiles to be the same
size.

As we explained before, if we allow curved shapes, then the solution is unique
(namely a circle); but if we use squared tiles, then we can have several possible solutions
depending on the number of tiles of the desired outcomes. For example, if we seek
shapes with eight tiles, then we have two possible solutions (discarding symmetries),
depicted in Figure 5.1.
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Figure 5.1: Possible solutions for the problem of generating 8-tile, compact shapes

Figure 5.2: Possible intermediate 2-tile shapes

It is clear that if we just apply the rule randomly until we get shapes with the
desired number of tiles, then the obtained solutions are not guaranteed to be compact.
We need a heuristic that, at each step, determines which is/are the better rule/s to
be applied (if there is more than one good rule, then we would choose one of them
randomly). One may argue that we can just use the compactness factor as heuristic
to apply the rules, in the following manner: at each step, apply the rule that yields the
most compact intermediate shape. If there is a draw, then choose the rule randomly.
For example, if we are at the first step of the derivation process (so that we only have
one tile), then this heuristic could yield any of the intermediate shapes in Figure 5.2,
which are topologically equivalent and thus have the same compactness factor. Imagine
that we choose the first one of these shapes. To apply the second rule, we follow the
same heuristic, and thus any of the shapes in Figure 5.3 can be generated, as they are
also equally compact. Following this system, a shape with four tiles setted in a row
could be generated. When applying the following rule to this shape, then the outcome
is analogous to the previous ones: we can either yield a L or T-shaped configuration
of tiles, or a line of 5 tiles (Figure 5.4). It becomes clear that from a shape of 5 tiles in
a row we cannot reach any of the optimal solutions in Figure 5.1, so we need a more
informed heuristic that avoids these situations.

In fact, the approach of using the set of design criteria itself as a heuristic for
applying rules is somewhat equivalent to the approach described in Chapter 4, in which
design criteria are directly managed through a backtracking search process. Certainly,
if we undid the rule application that yielded a shape with 5 tiles in a row, we could
still get an optimal solution by following another path. However, the constraints for
this problem would be hard to define, as we would need to consider the particular
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Figure 5.3: Possible intermediate 3-tile shapes

Figure 5.4: Possible intermediate 5-tile shapes

configurations of tiles that cannot lead to good solutions. Defining the goal would
also be tricky, as we would need to know a priori the optimal compactness factor.
Moreover, a backtracking algorithm used for managing criteria in a problem with
many rule applications (imagine, for example, that we want to generate shapes with
forty tiles) would have huge time needs, so it would be desirable to learn a more
informed heuristic to be used in a non-backtracking process. These issues suggest that
the compactness factor of a shape is not a suitable design criteria to be managed in
the search process proposed in Chapter 4 (at least when the shape grammar used to
generate the design space is naive) and instead we should use it in a more indirect
manner in order to learn a heuristic for applying the rules.

One way of achieving this is by using the involved design criteria in order to define
long-term rewards and then employing a reinforcement learning algorithm that learns
how to take actions in order to maximize them. In the following section we explain
how reinforcement learning can be applied to the framework of shape grammars, as
well as the issues that arise if multiple criteria are present.
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5.1.1 Reinforcement Learning and Naive Shape Grammars

In this section we consider the issues related to the application of a reinforcement
learning technique to a shape grammar derivation process.

Given a shape grammar and an initial shape (axiom), we want to obtain a heuristic
that can determine which sequences of rules lead to a final shape that complies with
a certain set of design criteria. In the context of reinforcement learning, this heuristic
is called a policy, and is obtained by associating each possible rule application with a
long-term value, learned through repeated interaction with the environment, which in
this case consists of applying rules and observing the reward of the resulting shapes.

Hence, the mechanism used to apply the rules is different to the one considered
in Section 4, since in that particular case we did not associate rule applications to a
long-term value: we performed a traditional backtracking search algorithm based on
design constraints and goals.

By using reinforcement learning methods we would only need to run once the
learning algorithm and then use the obtained policy to apply the rules until we reach
a final state. A large state space would certainly increase the time needed for the
algorithm to obtain a good policy, but once it is learned, generating a solution by
means of this policy would be straightforward. Moreover, as we will see in Section
5.2.1.2, we can use generalization techniques to deal with such large state spaces and
thus decrease the learning time.

5.1.1.1 Shape, Rules and Design Criteria as States, Actions and Rewards

Design problems usually involve more than one criteria that the solutions need to fulfil.
This implies that the reward is no longer a scalar number but a vector with one com-
ponent per objective. As we explained in Section 2.3.4, there are two main approaches
for applying reinforcement learning techniques in such situations: the utility-based ap-
proach and the axiomatic approach. The first one relies on a scalarization function in
order to treat the problem as a scalar one. The second one aims at learning the Pareto
front of optimal policies.

If we rely on scalarized reinforcement learning techniques, then the obtained reward
is a scalar number and the design problem can be formalized as a single-objective MDP.
Given a shape grammar 〈Sh,L,Ru, I〉 and a set of design criteria, the considered MDP
is defined by:

• S: the set of labelled shapes that can be produced by any rule sequence of the
shape grammar

• A = Ru× T : the actions are the set of possible pairs (rule, τ) where τ ∈ T is a
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geometric transformation

• T : S × A → S: the deterministic transition function that determines which
labelled shape is obtained when applying an action to a given labelled shape

• R : S × A → R: the expected immediate reward when applying an action to a
given labelled shape, defined from the set of considered design criteria

A policy is a function that selects a pair (rule, τ) at each step of the derivation
of a shape grammar, and it is applied from the initial state s0, which in this case is
the axiom of the shape grammar. In this chapter we will use some variants of the
algorithm Q-learning, described in Section 2.3.

On the contrary, if we seek to discover the whole Pareto front of policies, then the
design problem must be formalized as a multi-objective MDP, which differs from the
previous one in the definition of the expected immediate reward: R : S × A → Rn,
where now the feedback provided by the environment is a vector instead of a scalar
number.

In the system proposed in Section 5.2 we follow the first approach, using a linear
scalarization function for the rewards. In Section 5.3 follow the second approach, for
what we describe a new algorithm, PQ-learning, which is a multi-objective extension
for the temporal-difference algorithm Q-learning. PQ-learning learns the whole Pareto
front of non-stationary policies for a multi-objective problem.

5.2 Scalarized MORL for Design

Here we propose a methodology that involves naive shape grammars as a generative
system for the design space, and scalarized multi-objective reinforcement learning as
a method for discovering a rule application heuristic.

This methodology follows the utility-based approach proposed by Roijers et al.
(2013), in which we rely on a scalarization function in order to tackle a multi-objective
problem. Concretely, we use linear scalarization, and we start from the premise that
the preferences over different objectives are known a priori. In the taxonomy proposed
by Roijers et al. (2013), this implies discovering a single policy (see (1) in Figure 2.7).

In the following we describe the proposed methodology (Section 5.2.1) and expose
two application cases (sections 5.2.2 and 5.2.3).

5.2.1 The Methodology

Once the naive grammars are defined (following, for example, an atomic approach
like the one used in 5.1), the proposed methodology consists mainly on two tasks:
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definition of rewards and definition of features. Here we illustrate them by means of
the compactness problem described earlier in this chapter (sections 5.2.1.1 and 5.2.1.2).
We also study some aspects related to the performance of the methodology applied to
the compactness problem in Section 5.2.1.3.

5.2.1.1 Definition of Rewards

In order to use a reinforcement learning process to discover a rule application policy,
we need to develop a software routine that provides a quantitative evaluation of a
potential design solution, according to the design criteria that define the problem.
These routines will be used as rewards in the reinforcement learning process.

In the small example introduced before we seek to obtain compact shapes. As we
explained, this design criterion can be formalized with the expression area/perimeter2,
which can be used to define the reward routine. Let us now suppose that we want
shapes with nine tiles. The reward would be determined by means of the following
expression:

r(s, a) =
{
area(s′)/perimeter(s′)2 if s′ has nine tiles
0 otherwise

(5.1)

Where s′ is the state that represents the shape generated by applying the action a
over the state s. For the intermediate shapes with less than eight tiles, the reward is
defined as zero, as the compactness factor of these states is not relevant. Nonetheless,
a good policy will avoid the generation of shapes many tiles in a row, not because they
are not compact enough, but because they cannot lead to good solutions.

If more than one criteria is sought, we need a different routine for every design
requirement. The reward in this case is thus a vector instead of a scalar number, so we
are facing a multi-objective reinforcement learning problem. As we mentioned before,
in this methodology we tackle the problem from an utility-based approach, and thus
assume that we can use a scalarization function in order to aggregate the outcomes of
the different routines and hence obtain a scalar reward. Here we propose the use of a
linear scalarization function in order to do this, so we need a weight for every design
requirement.

For example, let us suppose that we also want to maximize the perimeter of the
generated shapes, which leads to a situation with two utterly conflicting goals, since if
we want shapes with a high compactness factor we are actually searching to minimize
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their perimeter. The reward could be determined by the following expression:

r(s, a) =
{
w1 × (area(s′)/perimeter(s′)2) + w2 × perimeter if s′ has nine tiles
0 otherwise

(5.2)
Where w1 and w2 represent the preferences over the two objectives. If more impor-

tance is given to the first goal, then w1 > w2, and vice versa. Here we suppose that
we know these preferences a priori, so we can just run a single reinforcement learning
process with its reward defined with the help of the corresponding weights, and obtain
a single policy as solution.

5.2.1.2 Generalization

As we have already mentioned, working with shape grammars introduces the challenge
of dealing with a vast state-action space. In these cases, using a table to store the
values associated to (state, action) pairs can lead to some problems:

• The large memory space requirements that such a big table would need

• The large time requirements that the learning algorithm would need to learn
every position of the table

Generalization techniques can help to overcome these issues. First, the use of a
function instead of a table reduces the memory space requirements in a drastic manner.
For example, if we use a linear function, we just need to store the linear coefficients.
Second, as many different shapes can share the same set of features, when we update
the value for a given set of features, we are learning (generalizing) over all similar
shapes. Thus, if an adequate set of features is selected, proper Q-values can be learnt
even for shapes that were never visited during the learning process, representing them
by means of the following expression:

Q(s, a) = θ1 × f1(s, a) + θ2 × f2(s, a) + · · ·+ θn × fn(s, a)

Where the coefficients θi are learned through the reinforcement learning process.
There is another issue, specific to the problem of generating design solutions, that

generalization techniques can help with. This is related to the desirability of obtaining
diverse design solutions for a given set of criteria. If we use a table to store the Q-
values, the associated policy will produce solutions that are likely to be identical. This
is due to the fact that the values of different positions of the table are probably different
between them. This lack of diversity would only disappear if there were draws in some
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positions of the table, e.g., if Q(s, a1) = Q(s, a2), that could be resolved by a random
choice between the action a1 or the action a2. However, although the real optimal
Q-values were identical, it would probably take a long time for the learning algorithm
to learn the Q-values with the accuracy needed for this sake. We could establish
some threshold for comparing Q-values, but the use of generalization eliminates this
problem: as many different shapes share the same set of features, their associated
Q-values would also be identical, yielding the draws that we need in order to produce
a diversity of solutions.

In the system proposed here we will use the linear version of Watkins’s Q(λ) algo-
rithm illustrated in Figure 2.6. As we explained in Section 2.3.3, this TD(λ) technique
is more suitable to be used with function approximation than a pure TD one, given the
divergence issues that arise when combining generalization methods with bootstrap-
ping algorithms like Q-learning.

Although the features of the algorithm described in Figure 2.6 are binary, in some
cases our features will be real numbers ranging between 0 and 1. The expression
∀i ∈ Fa : e(i)← e(i)+1 will then be replaced with ∀i, 1 ≤ i ≤ n : e(i)← e(i)+fi(s, a),
where fi(s, a) is the i-th feature of the state-action pair (s,a), and the expression
Qa ←

∑
i∈Fa

θi is replaced with Qa ←
∑n
i=1 fi(s, a)θi.

Let us use our small example in order to illustrate the process. The design require-
ment in this case is a high compactness factor (or, equivalently, a high compactness
factor and a high perimeter with weights of 1 and 0, respectively). The general intu-
ition behind the definition of the features is that they have to be related via a linear
function in order to maximize the final reward. In this case, the use of a linear func-
tion of the number of modules with 1, 2, 3 and 4 neighbours makes sense, as compact
shapes will probably have a certain combination of the following features:

• f1(s, a) = number of modules of 1 m2 with 1 neighbour in s′

• f2(s, a), f3(s, a), f4(s, a) analogously to f1(s, a) with 2, 3 and 4 neighbours re-
spectively

As these features are continuous, they will be normalized between 0 and 1, by
dividing by the total number M of modules of 1 m2 that are going to exist at the end
of one learning episode. In the following section we illustrate the learning process and
the results obtained by applying scalar reinforcement learning to our small problem.

5.2.1.3 Performance

In this section we discuss the performance of the described methodology applied to
the compactness problem, regarding issues related to the learning process and the
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execution of a learned policy.
For our geometric problem of maximizing the compactness factor of shapes with 9

tiles, the algorithm learns how much the defined features relate to each other, by dis-
covering the θi coefficients associated with each feature fi. We have used the following
configuration of parameters: α = 0.1, ε = 0.3, λ = 0.5 and γ = 0.8. After a particular
execution of the algorithm with these parameters, the obtained coefficients are the
following: θ1,1 = 0.0123, θ1,2 = 0.0221, θ1,3 = 0.0606, θ1,4 = 0.1135. For shapes with
9 tiles, the optimal accumulated reward is the one associated with a squared shape
with a perimeter of 12, yielding a compactness factor of 9/122 = 0.0625. As we are
using a discount factor γ < 1, then the maximum reward is discounted in a factor of
γ(nsteps−1), where nsteps = 8, as we have to apply 8 rules in order to get shapes of 9 tiles
from the axiom. This gives us an optimal discounted accumulated reward of 0.0131.

In order to evaluate the learning process, we follow a train/test perspective (Kael-
bling et al., 1996), suitable when the obtained policy is to be used in an off-line setting
and thus the most important factor to measure is the final quality of the learned so-
lution, as in our case, as we do not care about the accumulated rewards obtained
during the learning process as far as, eventually, the learned policy is a good one.
This train/test performance is measured by executing the policies learned at certain
intermediate moments of the learning process, without exploration, and registering the
accumulated rewards of the obtained shapes. In our case, we take this measurement
every 100 episodes. As different applications of the same policy can potentially yield
different shapes due to draws between features, we execute each intermediate policy
10 times and average the obtained rewards. However, in this case the optimal policy
should always produce the same shape, that is, a square of 3× 3 tiles. This measuring
has been repeated over 10 runs of the learning process. In Figure 5.5 we illustrate the
learn-test performance of the learning process.

Our particular choice of parameters (α = 0.1, ε = 0.3, λ = 0.5 and γ = 0.8) is
supported by a sensitivity analysis that was performed in order to study the robustness
of the technique regarding variations of each parameter. The technique turned out to
be robust for different standard values of α and ε. Algorithm Q(λ) also proved to be
robust regarding parameter λ in this domain, returning good designs for all values.
A trade-off value of λ = 0.5 was chosen to take advantage of the speed provided by
bootstrapping methods and the safety of Monte-Carlo techniques (see Sutton & Barto
(1998), Section 8.6). The algorithm was only sensitive to variations in the discount
rate γ. Concretely, the algorithm did not perform well for γ = 1 (see 5.6(b)), maybe
because the interactions of this rate with the convergence of the learning process,
pointed out by Thrun & Schwartz (1993). The performance for γ = 0.9 (see 5.6(a))
was very similar to the one for γ = 0.8 (5.5). Notice that for γ = 0.9, the optimal
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Figure 5.5: Train/test performance for the compactness problem

accumulated discounted reward is 0.0299, and for γ = 1 is 0.0625.
In order to clarify how the learnt policy guides the rule derivation process, we will

go through one step of the guided application of the rule in Figure 3.4. Let us suppose
that the derivation has yielded the shape in Figure 5.7.

There are many possible transformation alternatives for the next application of the
rule. Each transformation would yield a different shape, but many of these shapes
share the same features. In order to represent all the shapes that share the same set
of features, we use patterns according to the following method: we mark with a cross
all the positions where one application of rule 1 could add the extra black label of its
right part (see Figure 5.11). For example, in Figure 5.8 we can see the pattern for two
shapes that share the following features:

• f1,1(s,A) = 1/M

• f1,2(s,A) = 5/M

• f1,3(s,A) = 1/M

• f1,4(s,A) = 2/M
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(a) (b) 

Figure 5.6: Train/test performance for the compactness problem, for different discount
rates

Figure 5.7: Shape with 8 tiles
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Figure 5.8: Pattern that represents two shapes obtained from the shape of Figure 5.7
sharing the same features

Figure 5.9: Shape represented by the best pattern obtained from the shape of Figure
5.7

Where s is the shape depicted in Figure 5.7 and A is the set of transformations of
the rule that yield some of the shapes included in the pattern of Figure 5.8 (in this case
|A| = 2). We can now compute the value for these features by means of the learned
coefficients:

Q1(s,A) = θ1f1(s,A) + · · ·+ θ4f4(s,A) = 0, 1843/M

The application of the rule to the shape in Figure 5.7 yields four different combi-
nations of features. In Table 5.1 we gather the four corresponding patterns along with
their features and the computed value.

In light of the computed values gathered in Table 5.1, the chosen transformation is
one of those that yields the pattern in the first row of Table 5.1 (that is, we randomly
pick one action of the set A1), because it produces the higher value. This pattern
represents the two shapes depicted in Figure 5.9.

5.2.2 Application Case 1: Generation of Habitable Housing Unit De-
signs

In this section we describe a real-world application for the design of single-family hous-
ing units (Ruiz-Montiel et al., 2011a, 2013a), using the previously described system.
In the first phases of this design process, where the architect faces the blank page
syndrome but also has to consider many design requirements, a system that proposes
many distinct, feasible and even unexpected starting points can be of great help, serv-
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Pattern Features Value

f1(s,A1) = 0
f2(s,A1) = 4/M
f3(s,A1) = 4/M
f4(s,A1) = 1/M

0, 2152/M

f1(s,A2) = 1/M
f2(s,A2) = 5/M
f3(s,A2) = 1/M
f4(s,A2) = 2/M

0, 1843/M

f1(s,A3) = 1/M
f2(s,A3) = 4/M
f3(s,A3) = 3/M
f4(s,A3) = 1/M

0, 1851/M

f1(s,A4) = 0/M
f2(s,A4) = 5/M
f3(s,A4) = 2/M
f4(s,A4) = 1/M

0, 152/M

Table 5.1: Patterns yielded by one application of rule 1 to the shape in Figure 5.7
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ing as inspiration sources. The expression “inspiration source" describes the conscious
use of different resources or even previous designs, as references for the solution to a
problem (Eckert et al., 2010). Our methodology can provide such set of starting points
or inspiration sources, that can be considered as triggers for new ideas and can speed
up and facilitate the design process.

5.2.2.1 Housing Unit Design

The design of housing units, either single or multi-family, is a strongly constrained pro-
cess. The nature of such constraints ranges from issues such as the area of each space,
to adjacency relationships between them and, of course, more detailed constraints par-
ticular to each different space. In this work we have started from the housing program
proposed by the studio Montaner & Muxí (Montaner Muxí arquitectes, 2008) for the
regional government of Andalusia (Spain). This program details the criteria that a
basic house must fulfil depending on the number of inhabitants. By a basic house we
understand a house that, besides satisfying some minimum habitability conditions, also
offers some adaptability, that is, its spatial composition may be modified if the num-
ber of inhabitants rises. The final outcome of our experiments will be two-dimensional
floor distribution schemes (in the following, schemes) of basic, two-person housing
units. The produced schemes are distributed in just one floor.

Albeit working with floor plans does not guarantee a global approach to architec-
tural design, it allows the establishment of relationships between spaces, the generation
of circulation spaces and the definition of static places. It also allows a dimensional
quantification regarding area and longitudinal measures, and therefore also concerning
the house scale, making it compatible with constructive and structural dimensions that
approach reality.

In the housing proposal of Montaner, several kinds of spaces that must be present in
a basic house are established. Among these we have considered three main categories:
1) specialized spaces (which need specific installations), 2) non-specialized spaces (do
not need specific installations, and their use is determined by the inhabitants: dining-
room, living-room, bedroom) and 3) complementary spaces (such as the distribution
hall, that allows circulation between spaces).

Table 5.2 summarizes the imposed explicit constraints. The nature of the house
contour is not constrained by our guidelines (Montaner Muxí arquitectes, 2008), but
in the context of a computational system we must set some additional criteria in order
to avoid the generation of unfeasible contours. In our experiments we have favoured
compact contours, (i.e. contours with a high area/perimeter ratio) over scattered ones,
because the latter might make the process of establishing the internal layout of the
scheme very difficult.



88
Chapter 5. Computational Techniques for Learning and Detecting Criteria in

Design Problems

Global requirements
R1: Total area must be of at least 46 m2

R2: The contour must be compact
Kitchen requirements
R3: Minimum linear space must be of at least of 6 modules 60×60 cm
R4: Minimum distance between modules and walls: 1,10 m
R5: Minimum distance between modules: 1,10 m
Bathroom requirements
R6: At least two modules of 90×180 cm must exist
Non-specialized spaces requirements
R7: The area of each non-specialized space must be bigger than 9 m2

R8: A 2,8 m-diameter circle must be inscribed inside each non-specialized space
Complementary spaces requirements
R9: A support space that allows the circulation between spaces must exist

Table 5.2: Requirement set for a single-family basic house (adapted from Montaner
Muxí arquitectes (2008))

Figure 5.10: Proximity relationships in a single-family house (adapted from Montaner
Muxí arquitectes (2008))

In Figure 5.10 proximity relationships between spaces are represented graphically.
The circle represents the external wall of the unit. Dotted lines establish possible
relations, that differ from the striped line (adjoining relation) in the level of importance
(possible relations are less necessary than adjoining ones). Our system also considers
an additional constraint that is not explicitly mentioned in the housing proposal, but
it is desirable to take it into account in the design of a housing unit: the entrance to
the house must be near both the kitchen and the distribution hall, and not very close
to the bathroom.

Working with schemes of housing units for two people gives rise to some consider-
ations about intimacy and privacy that have implications in the existence of internal
partition walls. Sharing a two-person housing unit involves a high level of intimacy
between the inhabitants, and thus less privacy is needed than in the case of a higher
number of people living in the house, so it is possible to relax the existence of internal
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partitions. The most necessary walls are those that isolate the bathroom from the rest
of the house. Even walls isolating the kitchen are not essential. The walls that delimit
non-specialized spaces such as living rooms or rooms are optional, and demarcation
can be achieved by means of proper pieces of furniture.

Here we have exposed the criteria that will guide the housing unit generation
process in our system. Knowledge in Table 5.2 and in Figure 5.10 will be formalized
in the form of naive rules and, much more intensively, rewards, that are numerical
expressions that represent the quantities to be maximized by the learning algorithm.

5.2.2.2 Naive Grammars and Phases of Generation

We have defined several design phases that establish an ordering in the placement of
the different architectural elements. Each phase can be described as follows:

• Phase 1: Generation of a contour.

• Phase 2: Labelling the distribution hall.

• Phase 3: Placing the kitchen modules.

• Phase 4: Placing the bathroom modules.

• Phase 5: Labelling non-specialized spaces.

• Phase 6: Labelling the entrance.

This division in phases allows us to simplify the problem, since each phase needs
to care only about the relevant set of requirements.

Figure 5.11 illustrates the grammars for phases 1-6 (there is a maximum of two
rules per phase). The input to the first phase is a simple axiom: a suitably labelled
module of one square meter (1 m2). The shape generated in the n-th phase is the
input for the (n+ 1)-th phase.

In the following we explain how each rule works. Rule 1 is in charge of creating
the contour. White labels are used to mark the added walls, and black labels mark
the interior of the housing unit. In Figure 2.1 we can see an example of how this
rule enlarges the small contour delimited by the axiom. Some residual walls can arise
from the application of rule 1, thus we use rule 2 in order to delete them. As we can
see in Figure 5.11, the left-hand side of rule 2 ensures that it will only erase inner
walls, keeping the walls delimiting the contour untouched. Rule 3 puts the label that
marks the location of the distribution hall somewhere in the interior of the housing
unit, which is marked with black labels. Rules 4 and 5 are in charge of placing the
kitchen modules (that is, the pieces of furniture that will delimit the kitchen space).
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Figure 5.11: Naive grammars for phases 1-6

In particular, rule 4 adds the first module, which is placed right next to a contour
wall. Rule 5 adds the rest of the modules, just adding one module next to an existing
one. Rules 6 and 7 are similar to rules 4 and 5, but they refer to bathroom modules.
Notice that the dimensions of these modules (both for the kitchen and the bathroom)
are directly extracted from the housing program of Montaner (see Table 5.2). Rule 8
marks a non-specialized space, and it works exactly as rule 3, except for the kind of
label in its right-hand side. Finally, rule 9 marks the entrance to the housing unit,
placed right next to a contour wall.

Rules are executed in order (the ordering is given by the rule numbers) and repeat-
edly applied as long as possible, or until a final state test has been satisfied. This final
state test depends on each rule. Tests for every rule are gathered in Table 5.3.

If this set of rules is used without further guidance to generate schemes, then when
executing each rule, all possible transformations are computed and one of them is
selected at random. Two examples of schemes generated by means of this random
process are depicted in Figure 5.13. As we will discuss in Section 5.2.2.4, the schemes
are not actually admissible, highlighting the need of extra guiding mechanisms in order
to comply with housing unit requirements.
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Rule Final state test
1 Total area = 46 m2

2 Execution continues until the rule cannot be applied any longer
3 A distribution hall label exists
4 The first kitchen module is placed
5 Six kitchen modules are placed
6 The first bathroom module is placed
7 Two bathroom modules are placed
8 Two specialized labels exist
9 The entrance to the house is placed

Table 5.3: Final state tests for every rule

Figure 5.12: Effect of the application of rule 2

5.2.2.3 Learning Processes for Naive Shape Rules

In order to generate valid designs, we must use an heuristic (policy) that determines
how to apply the rules. These policies will select the most suitable transformation to
be applied at each step in order to produce feasible solutions.

Nevertheless, not every rule in Figure 5.11 needs the use of a policy. For example,
rule 2 cannot perform badly, since it only erases residual walls that appear from the
repeated execution of rule 1 (see Figure 5.12).

Rule 3, which is in charge of placing the label for the distribution hall, can also
perform well randomly, since when it is applied, none of the elements of the scheme
has been placed yet. So this label can be placed at any point inside the scheme, and
then the rest of the elements will be placed considering its situation.

Rules 1, 4, 5, 6, 7, 8 and 9 need to be guided by a policy in order to perform properly,
because they have to meet requirements that have not been considered inside the rules
due to their naive nature.

These policies will be learnt through reinforcement learning. The rewards that
govern the learning process are determined from the conditions described in Section
5.2.2.1, concretely the ones in Table 5.2 and Figure 5.10. We also need to define
features, because we deal with a vast state space and thus storing the value of each
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state in a table is not practical; therefore, we will learn a function of the features that
returns the values of states.

The first phase is equivalent to the geometric problem we have used previously in
order to illustrate the proposed methodology, in which we seek to obtain shapes with a
high compactness factor. The reward for this phase is thus this compactness measure,
and the features are the same that have already been described, that is, number of
tiles with 1, 2, 3 and 4 neighbours.

The rewards for the learning process of rules 4-9 are defined as follows: the more
requirements a state complies with at a certain step, the bigger reward it gets. An
advantage of dividing the process in distinct phases is that we only have to consider
subsets of requirements.

For example, let us consider rule number 5, which is in charge of placing the kitchen
modules. It is depicted in figure 5.11. As we can see, the rule simply states that an
additional module can be placed next to an existing kitchen module. In this case, we
have considered six requirements that are evaluated as 1 or 0 depending on whether
they are fulfilled or not in the shape corresponding to a given state. The first one
is a geometric constraint: every module must lie inside the contour. The others are
direct translations of constraints imposed by the guideline Montaner Muxí arquitectes
(2008):

• r5,1(s) = 1 if every module is inside the contour.

• r5,2(s) = 1 if every module is accessible.

• r5,3(s) = 1 if the distance between modules and walls is bigger than 1,1 m.

• r5,4(s) = 1 if the distance between non-contiguous modules is larger than 1,1 m.

• r5,5(s) = 1 if the modules are at a proper distance from the distribution hall
(more than 1,2 m and less than 6).

• r5,6(s) = 1 if there are at least six modules.

The scalarized reward r(s) of a state (a shape) s in the context of rule 5 is computed
as the following sum:

r5(s) = 3 ∗ r5,1(s) + r5,2(s) + r5,3(s) + r5,4(s) + r5,5(s) + r5,6(s)

As we can see, some preferences (weights) have been used to define this reward:
we have given more importance to the fulfilment of the first requirement (the one that
determines if the modules are inside the contour).
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To define the features for this phase, we have decided to identify a feature with every
single requirement, so six binary features were considered for the shapes generated by
this rule. Each feature is computed over the shape s′ produced by applying action a
to the shape of state s:

f5,i(s, a) = r5,i(s′), 1 ≤ i ≤ 6

So the learned value Q5(s, a) is determined by the function:

Q5(s, a) = θ5,1 × f5,1(s, a) + · · ·+ θ5,6 × f5,6(s, a)

Using this kind of features implies that states that correspond to different shapes
can have the same features and thus the learning agent does not distinguish between
them. The way the features are defined, sometimes a rule application may not result in
a change of the features and it may seem that the agent cannot observe the immediate
consequences of applying the rule. However, this just means that the rule application
does not increase neither decrease the quality of the shape. As the rules that we are
using are additive, the underlying shapes do change with each rule application and, in
the end, a final state (which, in the previous example, is identified by the sixth feature)
will be reached.

The reward is defined for both intermediate and final states, and an action that
does not result in a change any of the features of an intermediate state still receives a
reward. Although it may seem that the quality of intermediate steps is not important,
if we also reward high-quality intermediate steps (even when there are no difference in
their features), then the final shapes can be better in architectural terms: it can happen
that the final shape of a given execution does not comply with some criteria, but if
we have favoured high quality intermediate states, then this final shape is probably
nearer to a good solution than if we had not favoured these good intermediate shapes.
This can be easily illustrated in the light of the previous example. Let us imagine
that every kitchen module is accessible until the fifth rule application, but the last
action spoils the accessibility. The second feature for the last shape is thus zero. Now
imagine another rule application in which the modules were accessible only during the
third first shapes in the sequence, so the second feature for the last shape is also zero.
However, the first sequence of actions is better because it leads to a final shape that
is nearer to our quality standards and can be easily modified to be a good one. The
agent can distinguish these situations thanks to the rewards of the intermediate states
and thanks to the fact that positive rewards are received even when the applied action
does not result in a change of the features.

In the end, the algorithm will learn the adequate coefficient θ for each feature f
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(that is, the policy), so as to determine which features must be pursued first in order
to maximize the accumulated reward obtained at the end of the rule application.

The complete set of requirements that define rewards for rules 1,4-9 is gathered
in Table 5.4, and the scalarized reward expressions used for each rule are gathered
in Table 5.5. All the requirements are binary, i.e one or zero when the associated
predicate is satisfied or not respectively.

Features for rules 4-9 have been defined according to the expression: fi,j(s, a) =
ri,j(s′), as we have explained for rule 5. As we explained before, other approaches for
features definition are possible (apart from directly translating design requirements).
This is the case of rule 1, for which the design requirement is a high compactness
factor, and we have not directly defined the features from this requirement, as in rules
4-9.

Except for the first rule, for which the axiom (initial state in the learning process)
is always the same (one module of 1 m2), for the rest of the rules the initial states
can be quite different. For example, in the case of rule 6, the initial state is the house
contour with the label of the distribution hall and the kitchen modules already placed.
The distribution hall and the kitchen modules could be in many different places, so it
would be illogical to always start the learning process with the distribution hall and
the modules exactly in the same place. It is better to use a set of distinct initial states
for every learning process. These initial states are generated by means of the previous
rules, using the already learnt policies when necessary.

The coefficients for each policy were initialized to arbitrary values (in our case, they
were set to zero) before the learning process. After running the reinforcement learning
algorithm, the values for these coefficients are learnt, with the objective of maximizing
the total accumulated reward. The learnt coefficients are gathered in table 5.6.

For rule 1, the learnt coefficients establish a combination of the number of tiles
with 1, 2, 3 or 4 neighbours. For rules 4-9, the learnt coefficients give importance to
each feature regarding the maximization of the accumulated reward. Possibly not all
requirements are going to be fulfilled at the end (that is, not every feature is going to
be 1-valued), so the learnt coefficients give insight to determine which requirements
must be pursued first in order to maximize the final total reward.

When all the policies have been learnt, we can automatically produce designs with
the rules guided by their policies when these are present (that is, in rules 1, 4, 5, 6, 7,
8 and 9). In Section 5.2.2.4 we show some obtained results.
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Rule 1 (generating the contour)
r1,1(s)→ the compactness factor has to be maximized
Rule 4 (placing the first kitchen module)
r4,1(s) = 1 if the module is at a proper distance from the distribution hall (more than
2 m and less than 4)
r4,2(s) = 1 if the module is separated from the walls by at least 1,1 m
Rule 5 (placing the rest of the kitchen modules)
r5,1(s) = 1 if every module is inside the contour
r5,2(s) = 1 if every module is accessible
r5,3(s) = 1 if the distance between modules and walls is bigger than 1,1 m
r5,4(s) = 1 if the distance between non-contiguous modules is larger than 1,1 m
r5,5(s) = 1 if the modules are at a proper distance from the distribution hall (more
than 1,2 m and less than 6)
r5,6(s) = 1 if there are at least six modules
Rule 6 (placing the first bath module)
r6,1(s) = 1 if the module does not overlap with kitchen modules
r6,2(s) = 1 if the module is at a proper distance from the distribution hall (more than
2 m and less than 4)
r6,3(s) = 1 if the module is separated enough from the walls
Rule 7 (placing the rest of the bath modules)
r7,1(s) = 1 if the modules do not overlap with any kitchen module
r7,2(s) = 1 if the modules are at a proper distance from the distribution hall (more
than 2 meters and less than 4)
r7,3(s) = 1 if the modules are separated enough from the walls
r7,4(s) = 1 if there are at least two modules
Rule 8 (labelling non-specialized spaces)
r8,1(s) = 1 if in each label a 3 meter-diameter circle can be centred, without overlap-
ping with walls or modules
r8,2(s) = 1 if there is a label separated from the bath by less than 4,5 m
r8,3(s) = 1 if there is a label separated from the kitchen by less than 4,5 m
r8,4(s) = 1 if there are 2 non-specialized labels separated at least by 3 m
r8,5(s) = 1 if the distance from each non-specialized label to the distribution hall
label is larger than 2 m and shorter than 6
r8,6(s) = 1 if when there is one single non-specialized label, then there is enough
space for another one
Rule 9 (labelling the entrance)
r9,1(s) = 1 if the entrance is separated by at least 1 m from every kitchen module
r9,2(s) = 1 if entrance is less than 2 m from some kitchen module
r9,3(s) = 1 if the entrance is separated by at least 4 m from every bathroom module
r9,4(s) = 1 if the distance from the entrance to the distribution hall label is shorter
than 4 m

Table 5.4: Requirements for rules 1-9

Rule Reward
1 area/perimeter2

4 r4,1(s) + r4,2(s)
5 3 ∗ r5,1(s) + r5,2(s) + r5,3(s) + r5,4(s) + r5,5(s) + r5,6(s)
6 3 ∗ r6,1(s) + r6,2(s) + r6,3(s)
7 3 ∗ r7,1(s) + r7,2(s) + r7,3(s) + r7,4(s)
8 3 ∗ r8,1(s) + r8,2(s) + r8,3(s) + r8,4(s) + r8,5(s) + r8,6(s)
9 r9,1(s) + r9,2(s) + r9,3(s) + r9,4(s)

Table 5.5: Rewards for every learning process
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Rule 1
θ1,1 = 0, 0037; θ1,2 = 0, 0044; θ1,3 = 0, 0338; θ1,4 = 0, 0624
Rule 4
θ4,1 = 9, 6338; θ4,2 = 10, 9915
Rule 5
θ5,1 = 11, 3647; θ5,2 = 5, 0703; θ5,3 = 6, 3998; θ5,4 = 6, 9184; θ5,5 = 7, 581; θ5,6 = 1, 7631
Rule 6
θ6,1 = 13, 9956; θ6,2 = 10, 9998; θ6,3 = 10, 7779
Rule 7
θ7,1 = 6, 7972; θ7,2 = 7, 2621; θ7,3 = 6, 8873; θ7,4 = 6, 8873
Rule 8
θ8,1 = 6, 3159; θ8,2 = 2, 9472; θ8,3 = 7, 2953; θ8,4 = 5, 1918; θ8,5 = 7, 4059; θ8,6 = 8, 3831
Rule 9
θ9,1 = 7, 4246; θ9,2 = 2, 0591; θ9,3 = 5, 7704; θ9,4 = 1, 5242

Table 5.6: Policies learnt for every rule
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Figure 5.13: Two schemes obtained with naive grammars

5.2.2.4 Results

All tests of this application case were run on an Intel Core i7 860 @2.80 GHz processor
with 8GB RAM and Windows 7 (64 bits).

5.2.2.4.1 Naive grammars without policies. A number of schemes were gen-
erated with the naive set of rules depicted in Figure 5.11, without benefiting from any
process of learning. Namely, the system was used to generate 100 schemes (two of
them are shown in Figure 5.13). For the final presentation of the schemes we have
(1) replaced labels for the kitchen, bath, distributor hall and non-specialized spaces
with suitable text, (2) replaced the entrance label with an arrow, and (3) surrounded
non-specialized spaced with dotted, 3×3 m. squares.

Computation was fast. The minimum generation time for a scheme was 30,42 s
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and the maximum 41,88 s. The mean time was 34,87 s.
All the schemes were different, but all of them violate several requirements of the

housing program described in Section 5.2.2.1. In particular, those in Figure 5.13 violate
the following requirements of Table 5.2:

• R2. The contours are scattered

• R3. The kitchen modules do not form a lineal space

• R4. The distance between kitchen modules and walls is not higher than 1,1 m

• R8. A 2,8 m-diameter circle cannot be inscribed inside each non-specialized space

• R9. There is not a support space that allows the circulation between spaces.

Regarding the relevant relationships gathered in Figure 5.10, these schemes do not
respect them mainly because a circulation cannot be established between the different
spaces in the housing unit.

These results could be expected given the use of naive, non-expert shape grammars
without further guidance. Grammar rules do not enforce the whole set of the involved
requirements, and thus arbitrary execution is not likely to lead to feasible designs.

5.2.2.4.2 Naive grammars with policies. A hundred designs were produced by
means of generation processes guided by policies when necessary (that is, for rules
1 and 4-9 in Figure 5.11). Only 11 out of these 100 schemes violated some of the
constraints in Table 5.2. Therefore, compared to the ones generated by the naive
grammars alone, these are closer to fulfil the housing program described in Section
5.2.2.1.

We arbitrarily chose 12 schemes out of the valid ones. The generated schemes
are depicted in Figures 5.14 and 5.15. Computation time was fast; the minimum
generation time for a scheme was 33,94 s and the maximum 44,35 s. The mean time
was 38,46 s. The slight time increase with respect to the random execution of the
naive grammars is due to the calculus of the feature values, that has to be performed
in this policy-driven approach, but not in the random one. Nevertheless, the number
of iterations (understood as rule derivations) is the same for both approaches, as the
final step tests (shown in Table 5.3) are shared.

The schemes show also great design diversity. A more in-depth discussion of the
quality of the results from an quantitative and architectural point of view can be found
in Section 5.2.2.5.



98
Chapter 5. Computational Techniques for Learning and Detecting Criteria in

Design Problems

Bathroom

Kitchen

Non-specialized

space

Distributor

(a) (b) (c)

(d) (e) (f)

Non-specialized

space

Kitchen
Kitchen

Kitchen

Kitchen

Kitchen

Distributor Distributor

Distributor

Distributor

Distributor

Bathroom

Bathroom

Bathroom

Bathroom

Bathroom

Non-specialized

space

Non-specialized

space

Non-specialized

space
Non-specialized

space

Non-specialized

space

Non-specialized

space

Non-specialized

space

Non-specialized

space

Non-specialized

space

Non-specialized

space

Figure 5.14: Some generated designs (results a-f)
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Rule Reward Improvement
1 2.452
4 2,2222
5 2.1667
6 1.1904
7 1.2174
8 1.6
9 1.8182

Table 5.7: Reward improvements gained thanks to the learned policies for every rule

5.2.2.5 Discussion

The results shown in section 5.2.2.4 can be discussed from several points of view. We
will focus on the following issues:

1. Admissibility of generated schemes

2. Architectural evaluation of the generated schemes

3. Variability of generated schemes and generation times

5.2.2.5.1 Admissibility of generated schemes. The first goal of the system
should be to generate admissible designs according to the Montaner program (that
is, regarding the items in Table 5.2 and the relationships depicted in Figure 5.10).
Obviously, a naive grammar generates inadmissible schemes: it is difficult for a scheme
generated at random to satisfy all the requirements. It was illustrated in Section
5.2.2.4.1.

However, when policies are learnt the rules generate better designs, as the rewards
considering Montaner criteria are maximized. Regarding conditions of Table 5.2 and
Figure 5.10, we found that in the set of the 100 generated housing units, the require-
ments were violated only 22 times.

In terms of the obtained rewards, we have measured the average reward improve-
ment that is gained thanks to the learned policies. For each rule i that can be combined
with a policy, we denote Ri as the average accumulated reward obtained when the rule
is applied randomly, and R

∗
i as the average accumulated reward obtained when the

learned policy is used to guide the rule application. The reward improvement for the
rule i is then represented by the expression R∗i /Ri. The reward improvements for every
rule in this application case are gathered in Table 5.7.

5.2.2.5.2 Architectural evaluation of the generated schemes. The results in
Figures 5.14 and 5.15 were studied by a team of architects. From the depicted set of
schemes, two were chosen by the architects as the best alternatives, and other two ones
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as the less adequate. Additionally, some improvements that can be easily performed
in order to obtain more plausible solutions are detailed.

Schemes (a) and (b) can perform well, since non-specialized spaces are each one
combined with a specialized space (kitchen or bathroom). In (a) there is an efficient
combination of entrance, kitchen, distribution hall and non-specialized space that re-
leases space and optimize the circulation. Moreover, when we enter the house we find
a wide space that gives the feeling of more spaciousness. The scheme (b) aligns the
kitchen and the bathroom, which is desirable given the possibility of sharing piping
installations.

On the other hand, schemes (g) and (h) are not feasible from an architectural point
of view. The kitchen and the bathroom have a diagonal disposition that strangulates
non-specialized spaces and makes the circulation difficult.

Schemes (e) and (k) can be easily improved by changing the location of the bath-
room, moving it from the bottom to the top of the scheme. Scheme (d) can be improved
by moving the kitchen to fit a corner (for example, the top-right one), and thus form
a more delimited space. In scheme (j) we could change the entrance position to one
more centred, in order to improve the circulation inside the house.

Interestingly, in (a) we can observe an unexpected fact concerning the entrance.
Normally, this kind of housing units have the entrance more or less centred in order
to make the circulation easier. Nevertheless, the entrance of scheme (a) performs
very well placed in a lateral position, given the high compactness of the solution.
Also, the contours of the housing units are to a great extent very unusual and inspire
grouping or clustering possibilities between units. These are examples of how we can
find unexpected and inspiring solutions using the shape grammar framework.

In general, except for schemes (g) and (h), all the solutions in Figures 5.14 and
5.15 are feasible with minor changes or even just as they have been generated, as is
the case of (a) and (b).

It is worth questioning why the set of criteria used by the team of architects has
not been considered in the assessment of schemes during the learning process. Firstly,
we emphasize that this architectural evaluation is part of the intended work flow in-
side which our system makes sense, that is: (1) generating many feasible and varied
schematic designs effortlessly, (2) studying and evaluating the proposals from the point
of view of the designer, and (3) using the best generated solution(s) as seed(s) for com-
plete architectural projects. Secondly, the criteria considered by our team of architects
do not belong to any architectural guideline (unlike the requirements that have been
used in the learning process, that stem from an architectural guideline), and can be
described as subjective and even elusive in some cases.
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5.2.2.5.3 Variability of generated schemes and generation times. An anal-
ysis of generation time and variability of solutions is interesting in the context of an
interactive system that is to be used by designers who are willing to obtain a big num-
ber of different design alternatives. These alternatives will be evaluated, and in case
they do not meet design criteria or they just do not satisfy the designer, he or she may
wish to generate another big set of solutions.

As mentioned in section 5.2.2.4 and shown in Figures 5.14 and 5.15, the system
generates different schemes for the given problem. In fact, when applying the policy,
we choose the action that yields the maximum value. In order to produce a potentially
distinct shape every time the policy is applied, we need more than a single action a

to yield the maximum possible value so that we can pick one action out of the set of
draws. As features aim at generalizing shapes, this behaviour is likely to occur: several
actions may yield shapes with the same feature values (this fact is described in section
2.3, see Table 5.1). Generated designs thus turn out to be substantially different in
our case.

Once the policies are learnt, the system must run in a reasonable amount of time,
suitable for an interactive environment. This goal is also achieved by the rules with
the learnt policies (generation times of about half a minute per scheme, see Section
5.2.2.4). Notice that generation times are very similar to those for the naive grammars
alone, so the effect of incorporating learnt policies to the rules is not relevant. Most
time was employed in learning processes, but this is only done once for each rule.

The knowledge intensive domain of housing unit design will benefit from this ap-
proach, as designers will be able to consider simultaneously a huge number of auto-
matically generated starting points (possibly unexpected) that will generally meet the
considered set of design criteria.

5.2.2.6 Validation

The described system has been validated in an academic context. The goal of the
experiments described here is to check whether the system based on shape grammars
and scalar reinforcement learning is able to assist architecture students in the early
stages of design, producing schemes that provide creative insight (Millán et al., 2014).

In any design task it is not easy to start a new project, so architecture students
usually struggle when they need to start a new design and face nothing but a blank
sheet of paper. To this end, designers often use inspiration sources, which can act as
triggers for the generation of new ideas, and even accelerate or facilitate the design
process, especially in the case of novice designers. For that reason, computer-aided
design tools or design assistants can be very useful in these early stages, allowing the
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exploration of different alternatives and providing feasible starting points.
To this end, we have developed BH-ShaDe (Basic House Shape Design), a software

tool that can produce schemes by means of the system of shape grammars and scalar
reinforcement learning described here. In this way, architecture students are provided
with many feasible and varied starting points (basic house schemes) which have been
obtained effortlessly. In order to analyse the usefulness of such starting points in the
process of developing residential projects, we performed an experiment with a group
of 78 architecture students of the University of Málaga.

BH-ShaDe allows students to automatically obtain housing units schemes according
to Montaner and Muxi´s guideline. These schemes are automatically generated by the
computer, using the shape grammar shown in Figure 5.11. Students just need to
specify the desired number of schemes and then the tool will generate them.

In Figure 5.16 we can see the different modules that interact in order to provide
students with the aforementioned features. The architecture of BH-ShaDe is based
on the architecture of ShaDe, described in Chapter 4 (see Figure 4.7). The main
difference with the architecture of ShaDe is that here we have an Automatic Generation
Module that generates habitable housing units schemes. This module applies the shape
grammars in Figure 5.11 by means of an ad-hoc subshape detection algorithm that only
works with these shape grammars, but is much faster than the general algorithm. With
the result of this algorithm, the Greedy Algorithm chooses the best rule application
with the help of the policies generated by the reinforcement learning processes.

The Shape Grammars Module encapsulates the shapes, the rules and the arith-
metic for manipulating shapes. These elements are used by the previously described
Automatic Generation Module and also by the Interactive Generation Module, which
is a limited version of the Design Generation Module of ShaDe. As we will explain
later, this module is mainly intended to help the users to learn the concept of shape
grammars. It also allows the interactive execution of a shape grammar that can be
applied over the schemes produced by the Automatic Generation Module. This gram-
mar is intended to delimit the non-specialized spaces with leaders, in case the users
want to visualize them as closed spaces.

On the top, we can find BH-ShaDe interface, that mainly interacts with the two
principal modules of BH-ShaDe (the automatic one and the interactive one). The rules
of the shape grammars and the results of successive applications of rules (according to
the user’s choices or to the automatic generation module) are shown in the interface,
as well as some tutorials and the typical file managing tasks.

The evaluation was performed with three groups of students enrolled in the subject
Architectural Projects VII, which is taught in the seventh semester of the Architec-
ture Degree of the University of Málaga. In total, 78 students participated in the
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Rule 1: add corridor Rule 2: add kitchen Rule 3: add kitchen 

Rule 4: add non- 
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Figure 5.18: Shape grammar for the generation of a simple housing unit

experiment. Next we will describe the task they had to perform.
In order to get the students familiarized with the concept of shape grammar and

their performance, the Interactive Generation Module of BH-ShaDe allows an inter-
active execution of two fixed sets of shape grammars. The first one is a toy example
that only adds squares. The second one is a small shape grammar (Figure 5.18) that
can generate very simple housing units (Figure 5.19).

Once the students had learnt the concept of shape grammars, they proceeded to
execute the automatic generation module. First, each student executed the grammar
in Figure 5.11 with the learned policies to automatically generate a basic housing unit
scheme. The students were then divided in groups of three members. Each group
had thus 3 schemes. This procedure could have continued so students had a large
enough collection of basic houses to use in their projects. However, the generation of
each scheme consumed some time that was not useful in our overall goal of generating
starting points that supported students. Therefore, we decided to use the automatic
generation module of BH-ShaDe to automatically generate a further 24 schemes for
each group, resulting in a total of 27 schemes per group. To promote discussion and
reflection among the students, these 3-member groups were joined in larger groups of
nine students. Each one of these larger groups had then 81 schemes that they had
to classify according to the following criteria: A (optimal), B (adequate), C (some
modifications needed), D (problematic) and E (absurd). Once the schemes had been
classified, they had to select the most suitable for different kinds of groupings: row-
houses, apartment blocks, galleries, single-family houses. Based on these selections
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(a) (b) 

Figure 5.19: Housing units schemes generated with the shape grammar in Figure 5.18

they had to develop a complete architectural project, proposing single-family hous-
ing solutions, both in 3D and 2D. The students presented their final projects in the
classroom, and the teachers commented and evaluated them.

In this section we will present the results obtained in the experiment. They ob-
tained results have been organized into different subsections: student’s survey, teacher’s
opinion and student’s final projects.

5.2.2.6.1 Student Survey. The survey was designed as 11 Likert items, relative to
four different topics. The students had to evaluate their degree of agreement with each
sentence (from 1 -low- to 6 -high-). We have used the methodology in Jamieson (2004)
to analyse nominal Likert items: mode, median, inter-quartile range and nominal levels
of disagree (degree of agreement of 1, 2 and 3) vs. agree (degree of agreement of 4,
5 and 6). Additionally, the survey included two free-text items where the students
could identify the strong and weak points of the software. We have analysed these
free-text items according to the constant comparative method (Corbin & Strauss,
2008), a methodology based on grounded theory (Glaser & Strauss, 1967). In the first
step, each student’s response is decomposed in the ideas it expresses (answers). Then
these answers are divided into categories. In the phenomenological reduction phase,
the categories are grouped by subject (themes). Finally, in the triangulation phase,
examples of supporting quotes are provided.

As aforementioned, 78 students answered the survey. Results are summarized in
Table 5.8, while Table 5.9 and 5.10 summarize the results of the two free text items
(using the constant comparative method).
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1 2 3 4 5 6 MEDIAN MODE (Q1, Q3) Don’t agree Agree
About the software tool...
1. I quickly learned how to use the tool 0 3 4 3 41 27 5 5 (5,6) 8, 97% 91, 03%
2. It was easy for me to use the tool 0 0 2 10 32 34 5 6 (5,6) 2, 56% 97, 44%
3. The user interface is intuitive 1 3 12 30 20 12 4 4 (4,5) 20, 51% 79, 49%
4. The tool worked quick enough 1 4 17 24 22 10 4 4 (3,5) 28, 21% 71, 79%
5. The tutorial was easy to follow and useful 1 3 8 11 36 19 5 5 (4,5) 15, 38% 84, 62%
About the schemas proposed by the tool...
6. They can be helpful in the design process 4 12 17 27 14 4 4 4 (3,4) 42, 31% 57, 69%
7. They can provide good starting points 2 9 8 25 29 5 4 5 (4,5) 24, 36% 75, 64%
8. The schemas were interesting 3 7 19 24 21 4 4 4 (3,5) 37, 18% 62, 82%
9. The diversity of the schemas generated was sufficient 5 17 13 18 17 8 4 4 (2,5) 44, 87% 55, 13%
10.The schemas were innovative 3 18 25 17 12 3 3 3 (2,4) 58, 97% 41, 03%
11.The schemas were reasonable from an architectural point of view 6 19 28 19 6 0 3 3 (2,4) 67, 95% 32, 05%
Global Evaluation
12.It was easy for me to create a dwelling in which I would like to live 5 15 17 24 15 2 4 4 (3,4) 47, 44% 52, 56%
13.Without the tool, this practice would have been more difficult 6 17 17 14 18 6 3 5 (2,5) 51, 28% 48, 72%
14.I would like to know more about this kind of tools 3 3 24 29 8 11 4 4 (3,4) 38, 46% 61, 54%
15.I would like to be able to define my own shape grammars 0 19 21 19 11 8 3 3 (3,4) 51, 28% 48, 72%
16.I would like to use this tool in the future 4 17 22 21 9 5 3 3 (2,4) 55, 13% 44, 87%
17.I would recommend the use of this tool to my classmates 6 16 24 16 10 6 3 3 (2,4) 58, 97% 41, 03%
About this practice
18.All in one, it was interesting 3 5 7 27 29 7 4 5 (4,5) 19, 23% 80, 77%
19.I think that the methodology used was suitable 1 3 15 26 25 8 4 4 (4,5) 24, 36% 75, 64%
20.It was rewarding to work in groups 1 3 12 13 26 23 5 5 (4,6) 20, 51% 79, 49%

Table 5.8: Results of Likert items

CATEGORIES
Name №answers % answers THEMES EXAMPLES OF SUPPORTING QUOTES

Diversity 26 19, 26%

ASPECTS
RELATIVE TO
QUALITY OF
SOLUTIONS
(25, 18%)

“Great variety of alternative solutions”
“What I liked most about this practice is that
I could develop a feasible project”
“The tool provides a great variety of cells,
some of them present little annex spaces that
could be grouped generating unexpected solu-
tions”

Validity 6 4, 44%

Versatility for groupings 2 1, 48%

Usability 3 2, 22%
Efficiency 10 7, 41%

Possibility of using
software tools in the

design process
3 2, 22%

ASPECTS
RELATIVE
TO THE

SOFTWARE
TOOL

(11, 85%)

“The tool was easy to use”
“The tool generated the schemas quickly and I
could take good advantage of some of them”
“Being able to use new computational methods
for architectural design based on randomness”

Possibility of working in
groups 10 7, 41%

TEAMWORK
(14, 82%)

“Working in groups and new relationships with
other students”
“Debates in the group about what is desirable
or not in architectural design”

Processes
of selection/reflection

carried out in the working
groups

10 7, 41%

Randomness 9 6, 67%
Happy accidents or bugs 3 2, 22%
Provides starting points 41 30, 37%
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Overcoming preconceived
solutions 12 8, 89%

CREATIVITY
(48, 15%)

“The tool provides a degree of randomness that
would be otherwise difficult to include in a
project”
“Little annex spaces that appear accidentally
can be used to generate diverse groupings”
“Being able to have an starting point instead
of a blank page”
“The tool generates schemas that you would
not think of”

Table 5.9: Categories, themes and supporting quotes for positive aspects
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CATEGORIES

Name №answers % answers THEMES EXAMPLES OF SUPPORTING QUOTES

Software capabilities for
edition 9 8, 82% ASPECTS RELATIVE

TO THE SOFTWARE
TOOL

(12, 74%)

“The user should be able to modify some as-
pects of the schemas generated”
“A more intuitive interface”Usability (interface) 4 3, 92%

Shape grammar should
include additional criteria 20 19, 61% ASPECTS

RELATIVE
TO SHAPE
GRAMMARS
(21, 56%)

“Shape grammars should include additional
architectonic criteria”
“To fully exploit the tool, the user should be
able to define his/her own shape grammars”

Possibility to include
user-defined shape

grammars
2 1, 96%

Overlapping of
non-specialized spaces 11 10, 78%

ASPECTS RELATIVE
TO DISTRIBUTION

OF SPACES
(17, 64%)

“Overlapping of non-specialized spaces should
be avoided”
“Some kitchen modules are inaccessible”
“The tool should not generate residual spaces”
“The location of the entrance door near to
the kitchen constraints the variety of the so-
lutions”
“Better distribution of spaces”
“Wet zones should be contiguous”

Bad distribution of
kitchen furniture 3 2, 94%

Residual spaces 10 9, 8%

Better location of doors 12 11, 76%

Better distribution of
spaces 3 2, 94%

Better placement of wet
zones 10 9, 80%

10
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Excess of randomness 9 8, 82%
ASPECTS
RELATIVE
TO THE

SOLUTIONS
(48, 03%)

“The randomness of the tool should be con-
trolled”
“Greater variety of schemas generated”
“Other parameters should be considered (envi-
ronment, social aspects, etc.) ”

Poor variety of solutions 7 6, 86%

Additional criteria should
be considered (not only

architectonic)
2 1, 96%

Table 5.10: Categories, themes and supporting quotes for aspects to be improved

Now we will use the presented results to analyse to what extent the starting points
provided by BH-Shade have been useful for the students in the early stages of their
design projects. With respect to this question, probably the more useful Likert items
are items number 6, 7 y 8. In particular, item number 7 is very relevant, and we
can see that 75,64% of the students agree that “The schemes provided by the tool
can provide good starting points”. In addition, the students seem to agree that “The
schemes were interesting” (62,82%), and that “The schemes can be helpful in the de-
sign process” (57,69%). This same conclusion can be reached from the analysis of
the positive aspects of the first free-text item. Indeed, the theme “Starting Points”
spontaneously emerged from student answers, being mentioned by 48,15% of the stu-
dents, and specifically 30,37% of them mentioned that “The tool provides good starting
points”. In this theme, other aspect mentioned by 8,89% of the students was the possi-
bility of overcoming preconceived solutions. Teacher’s feedback also seems to support
this conclusion, because they said that “However, the most interesting projects have
emerged from accidental elements like annex spaces or errors”. In fact, and according
to their experience, “the designs of the clusters of schemes obtained using traditional
methods are usually more rigid and less creative that the ones generated with the tool”.
Continuing with the positive aspects of the tool, the next more frequently mentioned
theme in the survey was “Aspects relative to the quality of solutions” (25,28%), and
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in particular, the category “Diversity” (19,26%). As for the teachers, they declared
that “the program generates such high variety of schemes that accidents occurred ran-
domly, giving birth to what at first sight could be considered as undesirable forms, but
finally generate the most interesting projects”. With respect to the tool, the students
emphasized (7,41%) its “Efficiency” (also the teachers said “The tool expedited the
design”). All in one we think that, according to both the teachers and the students,
the stronger point of BH-ShaDe is its capability to generate an unlimited number of
diverse, feasible, random and suggestive starting points for novice designers. With
respect to aspects to be improved (and focusing our discussion in the quality of the
starting points provided), the most frequently mentioned theme was “Aspects relative
to distribution of spaces” (48,03%), and specifically the categories “Better location of
doors” (11,76%), “Overlapping of non-specialized spaces” (10,78%), or “Better place-
ment of wet zones” (9,8%). Next more frequently mentioned theme was “Aspects
relative to Shape grammars” (21,56%), in particular, the category “Shape grammars
should include additional criteria” (19,61%).

5.2.2.6.2 Teacher’s opinion. Three architecture teachers participated in the ex-
periment. One of them was a member of our research team, while the other two did
not have previous knowledge of shape grammars or about the tool. We developed a
small survey for these two teachers, which had four open questions. For space reasons
we do not include their complete answer, but a brief summary of the more relevant
information. It seems that what the teachers liked most of this experience was the
possibility to use this kind of tool and learn about shape grammars, together with
the interdisciplinary work carried out by the research team and the fact that the tool
can provide an unlimited number of schemes, and therefore expedite the design pro-
cess. Overall, they said that the students had done a great job, and that the more
interesting projects emerged from the accidental elements, like the little annex spaces
generated in some of the automatic solutions presented by the software tool. More
concretely, they said that “The tool expedited the design process. The most inter-
esting projects have emerged from accidental elements, like annex spaces or errors.
Initially, they seemed not to have any practical use, buy finally they have served to
encourage the clustering of the dwellings, and have provided support so the students
could freely use their imagination. We do believe the tool has accelerated this kind
of discoveries". They also pointed out that the use of tool has provided an excellent
exercise of analysis and reflection. The students have learned in a practical way that
their preconceived ideas are not always the best ones.“Having 81 housing plan floors
automatically generated by the tool, so they could be discussed and selected by the
groups of students, has been an excellent exercise about analysis/reflection, which is
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Figure 5.20: Distribution of the total percentage of schemes of each type (A to E)

usually easier to carry out in other people’s work than in our own designs. At the same
time, the program generates such a wide variety of schemes that accidents occurred
randomly, giving birth to what at first sight could be considered as undesirable forms,
which finally generated the most interesting projects. Students have therefore learned
in a practical way that their preconceived ideas are not always the more appropriate
solutions". As for possible improvements, they mentioned that it would be useful to
include more architectural criteria in the shape grammars defined. “In relation to the
tool and its use in this particular activity, we think that it would be desirable to extend
the number of variables to be taken into account in the shape grammar".

5.2.2.6.3 Students’ Final Projects. In the last session of the experiment, groups
of students presented their final projects. Each group presented A1 sheets with the
81 schemes, evaluated from A (no changes needed) to E (the scheme is absurd). In
total, there were 9 groups of 81 schemes. The distribution of the percentage of schemes
classified according to the different grades (both among those produced by the students
and among those generated automatically by BH-ShaDe) is shown in Figure 5.20.

In their presentations, the students stated that they had held very productive
discussions to agree about criteria to classify schemes (recall that teachers also thought
that this discussion/reflection process had been very productive). To this respect, some
groups had established more demanding criteria than others. The teachers pointed out
that some of them had discarded useful schemes for irrelevant reasons, such as a poor
positioning of some elements (door, kitchen/bath furniture) or the superposition of
non-specialized spaces. The high number of schemes classified with D and E can be
explained by the fact that the students considered criteria (circulation, ventilation,
light distribution or grouping of wet zones) not accounted in the guideline used by the
tool.



5.2. Scalarized MORL for Design 111

(a) (b) 

Figure 5.21: Examples of student’s project: (a) Octagonal tower and (b) Gallery

From the schemes classified with A or B, each group selected four or five as the
basis to create more complex structures. They explored different kinds of groupings:
single-family houses, apartment blocks, galleries, etc.

There were many interesting projects, for illustration purposes we will show two of
them (selected by the teachers as illustrative for different criteria) in Figure 5.21. The
teachers selected the first project as representative of those than emerged from starting
points that contained accidental elements (and finally gave birth to creative solutions).
This group used one of the schemes generated by the computer, even when it had two
small corridors next to non-specialized spaces. The students decided to use these two
small corridors as terraces to generate an octahedron tower. The second project was
chosen because it illustrated a nearly feasible solution (in teacher?s words, it seemed
nearly pre-conceived). The students selected this scheme among those generated by
the computer because it has a good distribution of the so-called wet zones (kitchen
and bathroom). In this way, once the schemes are grouped, the wet zones occupy the
central part of the building.

Overall, it seems that both the teachers and the students think that the inclusion of
additional architectural criteria (circulation, ventilation, illumination, grouping of wet
zones...) could improve the quality of the solutions provided. Finally, and in relation
with the overall quality of the starting points, Figure 5.20 shows that the students
gave higher scores to their own designs than to those generated automatically by the
tool.

5.2.3 Application Case 2: Generation of Energy-Efficient Housing
Unit Designs

In this section we extend the previous application case by adding design requirements
related to energy consumption. Now we seek to generate schemes of habitable and
energy efficient housing units (Ruiz-Montiel et al., 2015; Hidalgo et al., 2015). Some
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previous works also rely on shape grammars to produce energy efficient design so-
lutions: Caldas (2008) uses generative rules along with evolutionary algorithms to
generate energy-efficient architecture solutions, and Granadeiro et al. (2013) converts
a shape grammar into a parametric design system able to yield envelope shapes that
can be evaluated by means of an integrated energy simulation software.

Certainly, research on energy efficient buildings is currently on demand, starting
with designs that consume the least amount of natural resources and produce a mini-
mum of residual materials along their life cycle.

Behling distinguishes between active systems, passive systems and the architectonic
form itself as central elements in the thermodynamics of a building (Ábalos, 2008,
2012). The first ones control the energy interchange in the building by means of
mechanic devices with a high energy consumption (such as ventilation, heating and
air conditioning systems). On the contrary, passive systems are elements added a
posteriori, in top of the architectonic form, that do not need from a mechanic action
(like covers, projections, fronts or sunshades). Finally, the architectonic form favours
an adequate energy interchange in a passive way, but it is projected a priori.

The traditional methodology consists on emphasizing the technology of active
energy-saving systems. This technology is usually superimposed to passive systems,
that are consequence of a choice of architectural forms where sustainability has been
disregarded. Behling (2012) proposes to invert the relative importance of these sys-
tems, so active ones have a residual importance and thus the process of selecting shapes
guarantees the sustainability of the project.

5.2.3.1 Energy Efficient Housing Unit Design

In order to generate energy-efficient housing units we have considered a set of good
design practices that can be found in several guides and research works (Enerbuilding,
2008; Passivhaus, 2011; Pacheco et al., 2012). These criteria, defined in the climatic
context of Spain, can be classified into three categories:

1. Contour-related criteria: according to Pacheco et al. (2012), passive design tech-
niques usually imply the maximization of both the compactness of the contour
and the portion of the façade oriented to the south

2. Inner spaces criteria: according to the Passivhaus Standard (Passivhaus, 2011),
the orientation of the different inner spaces of the house can affect to its energetic
efficiency. For example, the living room might works better oriented to the south
due to the adequacy of this orientation throughout the whole day, during both
summer and winter; and the bedroom can benefit from an east orientation, as it
allows to get advantage of the natural light of the sunrise in order to wake up
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Global requirements
R1: Total area must be of at least 48 m2

Habitability requirements
R2: There must exist two non-specialized spaces, a kitchen, a bathroom, a distributor
space and an access to the housing unit
R3: Spaces must not overlap
R4: Distance requirements extracted from Figure 5.10, where two spaces are here
considered to be adjoining if the distance between them is not greater than 4 meters
Energy efficiency requirements
R5: The contour must be compact
R6: The proportion of the façade oriented to the south (south-oriented perimeter/-
total perimeter) has to be maximized
R7: Non-specialized spaces must be south or east-oriented
R8: The total glazed surface must represent a minimum percentage of the total façade.
Such percentage depends on the compactness factor of the contour: if the perimeter is
greater than 40 meters, and hence we have a low compactness factor, the percentage
will be 25%. Otherwise, this percentage will be 30%
R9: Every space must have an associated window
R10: The glazed surface oriented to the south must represent at least the 40% of the
total south façade
R11: The glazed surface oriented to the south must represent at least the 40% of the
total glazed surface
R12: The glazed surface oriented to the west must represent at most the 20% of the
total glazed surface

Table 5.11: Requirement set for a energy efficient single-family basic house

3. Window-related criteria: according to the Enerbuilding guide (Enerbuilding,
2008), the amount of glazed surface oriented to the south must represent a sig-
nificant percentage of the total façade

Regarding the design criteria related to the habitability of the housing units, here
we have considered a similar set of requirements to those considered in the previous
example, but simplified. The whole set of considered criteria are gathered in Table
5.11. Here we consider some additional requirements that are not mentioned in the
guidelines, but have a considerable architectonic relevance: non-specialized spaces must
have an associated window, and the amount of glazed surface oriented to the west has
been limited.

5.2.3.2 Naive Grammars and Phases of Generation

The generation process for producing energy-efficient, habitable housing units has been
divided into four phases:

1. Generation of the contour

2. Placement of the different spaces in the housing unit

3. Placement of the windows
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Grammar 1 

A rule of the grammar 2.1 

A rule of the grammar 2.2 

A rule of the grammar 2.3 

Two rules of the grammar 2.4 

Two rules of the grammar 3 

Two rules of the grammar 4 

Figure 5.22: Some rules of the involved shape grammars

4. Grouping of contiguous windows

As in the previous application case, each phase is associated to a particular shape
grammar and a particular set of design criteria.

In Figure 5.22 we illustrate the some rules of shape grammars used in this case.
The complete set of rules can be found in the technical report that describes in detail
this application case (Hidalgo et al., 2015). For each grammar, a termination condition
is established, in order to decide when the application of the rules must stop. In the
following we detail the necessary steps for synthesizing a housing unit scheme:

1. The production of a scheme starts with an axiom defined by a rectangle of 6× 4
meters. Starting from this shape, the rule of the grammar 1 is applied until
reaching a contour of 48m2

2. The second phase consists of four grammars: the first three (grammars 2.1, 2.2
and 2.3) place the necessary spaces of the house, by adding different labels. Each
one of these grammars is applied once, by picking up one of their rules, over the
shape synthesized by grammar 1. Grammar 2.4 is used over the shape produced
by the grammar 2.3, and contains rules that move the placed spaces. These rules
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are applied until the design criteria related to the second phase are met or until
a limit of 50 rule applications

3. The third phase places the windows applying the grammar 3 over the shape
synthesized by the grammar 2.4. Rules of grammar 3 are applied until the total
glazed surface is greater or equal to a given percentage of the total façade. Such
percentage depends on the compactness factor of the contour. We work with
three types of windows: south-oriented, north-oriented and east/west-oriented,
each one with different protection elements

4. The fourth phase regroups the windows transforming them into large windows
of porches, applying grammar 4 randomly over the shape produced by grammar
3

In Figure 5.23 we show two schemes generated by means of this sequence of steps,
without using any rule heuristic that tells which rules are better to apply. That
is, the rule that is applied at each step is picked up randomly. As we will discuss
in Section 5.2.3.4, these schemes are not actually admissible, highlighting the need
for rule application heuristics in order to comply with the considered housing unit
requirements.

5.2.3.3 Learning Processes for Naive Shape Rules

In order to get good solutions we need to learn policies for phases 1, 2 and 3. Concretely,
the grammars that will benefit from this learned policies will be grammars 1, 2.4 and
3. These policies will decide which rule and transformations are better to apply at each
step, with the goal of synthesizing valid designs regarding the design criteria gathered
in Table 5.12. The fourth phase does not need such a policy, because we consider that
every generated group of windows is admissible.

In Table 5.12 we describe in detail the whole set of considered design criteria
(related to both energetic efficiency and habitability) that are sought in this example,
classified according to the grammar for which they will be considered.

The rewards for the learning processes of each grammar are defined in terms of the
requirements gathered in Table 5.12. They are described in Table 5.13.

The features for every grammar are detailed in Table 5.14. Once the policies
are learned, they will be used to guide the generative processes by choosing between
different combinations of features. For example, for grammar 2.4, the features are
based on the distance between pairs of spaces. What a policy for this phase can learn
is which ranges of distances for each pair are more suitable in order to attain the most
habitability and efficiency requirements.
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Requirements Grammar 1
R1-1: The total surface of the housing unit must be at least of 48 m2

R1-2: The compactness factor of the contour (area/perimeter2) has to be maximized
R1-3: The proportion of the façade oriented to the south (south-oriented perimeter/-
total perimeter) has to be maximized
Requirements Grammar 2.4
R2-1: There must exist two non-specialized spaces, a kitchen, a bathroom, a distrib-
utor space and an access to the housing unit
R2-2: Spaces must not overlap
R2-3: Distance requirements extracted from Figure 5.10, where two spaces are here
considered to be adjoining if the distance between them is not greater than 4 meters
R2-4: Non-specialized spaces must be south or east-oriented
Requirements Grammar 3
R3-1: The total glazed surface must represent a minimum percentage of the total
façade. Such percentage depends on the compactness factor of the contour: if the
perimeter is greater than 40 meters, and hence we have a low compactness factor, the
percentage will be 25%. Otherwise, this percentage will be 30%
R3-2: Every space must have an associated window
R3-3: The glazed surface oriented to the south must represent at least the 40% of the
total south façade
R3-4: The glazed surface oriented to the south must represent at least the 40% of the
total glazed surface
R3-5: The glazed surface oriented to the west must represent at most the 20% of the
total glazes surgace

Table 5.12: Requirement set for a single-family basic house, regarding habitability
conditions and energetic efficiency

Grammar Reward
1 The reward is a weighted sum of requirements R1-2 and R1-3, normalized between 0

and 1. In case this sum is greater than 0.8, the reward is truncated to 1, in order to
favour variability

2.4 Each individual requirement extracted from R2-2, R2-3 and R2-4 is evaluated to 1 or
-1 depending on whether it is fulfilled or not, respectively. The reward is a weighted
sum of these evaluations

3 Each individual requirement extracted from R3-2, R3-3, R3-4 and R3-5 is evaluated
to 1 or -1 depending on whether it is fulfilled or not, respectively. The reward is a
weighted sum of these evaluations

Table 5.13: Rewards for every learning process
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Features for Grammar 1 (normalized between 0 and 1)
FG1-1: Number of modules of 1m2 with one neighbour
FG1-2: Number of modules of 1m2 with two neighbour
FG1-3: Number of modules of 1m2 with three neighbour
FG1-4: Number of modules of 1m2 with four neighbour
FG1-5: Length of the south projection of the contour
Features for Grammar 2.4
In the learning process associated to this grammar, we work with 48 binary features
that characterize the final shapes by means of the distances between pairs of spaces.
For example, there are three features for the kitchen-bathroom pair, where the first
feature is evaluated to 1 if the distance between them is not greater than 2 meters,
and to 0 otherwise. Similarly, the second and third features are evaluated to 1 when
the distance is comprised between 2 and 4 meters, and to 0 when is greater than 4
meters, respectively
Features for Grammar 3
In the learning process associated to this grammar, we work with 12 binary features
that characterize the final shapes by means of the percentages of glazed surface on each
orientation. For example, there are three features for the south-oriented windows,
where the first feature is evaluated to 1 if the number of windows located in this
orientation represents less than the 35% of this façade, and to 0 otherwise. Similarly,
the second and third features are evaluated to 1 when the percentage is comprised
between 35% and 70% and when is greater than 70%, respectively

Table 5.14: Rewards and features for the learning processes

In the following section we show the obtained results.

5.2.3.4 Results

In this section we show some obtained results and evaluate them according to their
energy consumption. As we explained in previous sections, the rewards for this ap-
plication case have been chosen according to a set of good design practices aimed at
obtaining energy-efficient buildings. However, in order to test that these good prac-
tices really lead to energy-efficient designs when used as rewards inside a reinforce-
ment learning process, we perform an additional final step, apart from the generation
process, that consists on evaluating the energy consumption of the buildings that cor-
respond to the generated schemes. For this sake, we suppose that the materials and
structures for the walls of the housing units are determined by the constructive system
Baupanelr(Baupanel, 2015). As for the windows, the chosen materials are aluminium
for their structure and double glazing a with low-factor kind of glass. The evaluation
of the energetic demand of the housing units has been performed by means of the
official tool LIDER-CALENER, developed by the Spanish Government. According to
the Spanish normative, the energetic consumptions must not be greater than 15kw/m2

per year.
In this section we also measure the generation times for the schemes produced by

the naive rules by themselves (that is, without benefiting from the learned heuristics)
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Figure 5.23: Two schemes generated without extra control mechanisms, along with
their energetic evaluations

and by the naive rules with policies. All tests of this application case were run on an
Intel Core i7 860 @2.80 GHz processor with 8GB RAM and Windows 7 (64 bits).

5.2.3.4.1 Naive grammars without policies. A number of schemes was gener-
ated with the set of naive rules illustrated in Figure 5.22, without using the learned
policies. Namely, the system was used to generate 100 schemes (two of them are shown
in Figure 5.23). For the final presentation of the schemes, labels and segments are sub-
stituted with architectonic elements (walls, doors, windows, etcetera), and two and
three-dimensional detailed views are provided, as well as the evaluation of energetic
demands on cooling and heating.

Computation was even faster than in the previous application case, as less rule
applications are needed for generating a final scheme. The minimum generation time
for a scheme was 2,38 s and the maximum 2.86s. The mean time was 2.63 s.

The schemes are varied, but they violate several requirements of the housing pro-
gram described in Section 5.2.3.1. For example, those in Figure 5.23 violate the fol-
lowing requirements of Table 5.11:

• R3. Spaces overlap

• R4. Distance requirements are not fulfilled

• R5. The contour is not compact

• R6. The proportion of the façade oriented to the south has not been maximized

• R10. The glazed surface oriented to the south does not represent at least the
40% of the total south façade
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Figure 5.24: Four schemes generated using the learned policies, along with their ener-
getic evaluations

• R11: The glazed surface oriented to the south does not represent at least the
40% of the total glazed surface

Regarding the energetic efficiency, these designs do not comply with the limits im-
posed by the Spanish government, particularly in the case of the heating consumption.

These results could be expected given the use of naive rules without further guid-
ance, as they do not enforce the whole set of the involved requirements, and thus
arbitrary execution is not likely to lead to feasible designs. These deficiencies justify
the need for an extra control mechanism that determines which rule/s is/are better to
apply at each step.

5.2.3.4.2 Naive grammars with policies. A hundred designs were produced by
means of generation processes guided by policies when necessary. In Figure 5.24 we
can see four of them. As we can see, the energetic evaluation of these housing units
complies with the limits established by the Spanish normative.

Computation time was fast. The minimum generation time for a scheme was 7.23
s and the maximum 8.5s. The mean time was 7.95s. As in the previous application
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Grammar Reward Improvement
1 2.47
2.4 1.09
3 1.39

Table 5.15: Reward improvements gained thanks to the learned policies for every
grammar

case, the time increase with respect to the random execution of the naive rules is due
to the calculus of the features that has to be carried out in this policy driven approach.

5.2.3.5 Discussion

In this section we discuss the profit obtained thanks to the use of the learned policies.
As in the previous application case, here we have also measured the average reward
improvement that is gained thanks to the learned policies. For each grammar i that
can be combined with a policy, we denote Ri as the average accumulated reward
obtained when the grammar is applied randomly, and R∗i as the average accumulated
reward obtained when the learned policy is used to guide the grammar derivation. The
reward improvement for the grammar i is then represented by the expression R∗i /Ri.
The reward improvements for every grammar in this application case are gathered in
Table 5.15.

As we can appreciate in the light of tables 5.7 and 5.15, the gains obtained in
this application case are significantly more modest than in the previous one. This
fact is most evident in the case of grammar 2.4, where the improvement is almost
non-existent.

5.3 Pareto MORL for Design

In this section we describe a new methodology that also involves naive shape grammars
as a generative system and reinforcement learning as a method for discovering a rule
application heuristic. However, as opposed to the previously described system, this
methodology follows the axiomatic approach described by Roijers et al. (2013), so we
start from the premise that the output of the algorithm is a set of policies that yield
a Pareto front of optimal accumulated rewards.

Many proposals for multiple policy MORL follow a sequential scheme and com-
pute only a policy at once, corresponding to a certain combination of the objetives
(sometimes the combination of objectives is nonlinear (Shelton, 2001; Vamplew et al.,
2011; Van Moffaert et al., 2013b)). On the contrary, few algorithms aim to learn the
set of policies in a simultaneous manner. That means, for the linearizing approach,
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that weights are considered simultaneously and implicitly (Hiraoka et al., 2008; Mukai
et al., 2012).

Two recent proposals compute the Pareto set simultaneously and without assuming
a linearizing procedure or any other combination function (Handa, 2009; Van Moffaert
& Nowé, 2014), although they are not applied to design processes.

The work of Handa (2009) employs statistical learning in order to extract a set
of policies from a set of generated episodes. At each iteration of the process, the
learned set (or a set of uniform policies in the first iteration) is used to generate a
number of episodes, and the algorithm selects the best ones according to a Pareto-
related measure. The selected episodes are clustered depending on their associated
accumulated rewards, and each cluster is employed to extract a new policy by means
of statistical learning. The newly extracted policies are used in the next iteration, and
the process is repeated until a stopping criterion is reached.

The algorithm developed by Van Moffaert & Nowé (2014) also learns several policies
in a single run. At each step of the interaction the algorithm updates the expected
immediate reward for the visited state and action pair (s, a). The immediate rewards
learned so far and the learned values for the reached state s′ are employed to calculate
a set of Q values that can be obtained from (s, a). To compute these Q values, the
algorithm does not rely on the set of Q values learned previously for (s, a). Instead,
the algorithm learns the model on the go, that is, it stores the obtained immediate
rewards and approximates the probabilities of going from s to each s′ when performing
a.

The algorithm here presented also searches simultaneously for all the Pareto-
optimal deterministic solutions. Following the philosophy of Q-learningWatkins (1989),
the algorithm does not try to learn the model but just stores the Q-values. However,
in the MORL case it is also necessary to maintain a set of pointers that justify each
value.

In contrast with Handa (2009), the algorithm does not employ statistical learning
but temporal differences. It also bootstraps, that is, it relies on other value estima-
tions. In contrast with Van Moffaert & Nowé (2014), the algorithm strictly follows
the philosophy of Q-learning and temporal differences: Q-values are updated following
each interaction with the environment and taking into account the received rewards
and the previous Q-values.

In the following we describe the new algorithm, called PQ-learning (Ruiz-Montiel,
2013; Ruiz-Montiel et al., 2013b). Then we apply the new technique to the geometric
problem of maximizing the compactness factor and the perimeter of rectilinear poly-
gons (see Section 5.2.1.1). As PQ-learning is a tabular technique, now the methodology
followed to use PQ-learning for a design problem is straightforward, as we only have
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to define the rewards. It remains future work to extend PQ-learning so it can be used
along with generalization techniques.

5.3.1 PQ-learning: a New Multi-Policy MORL Approach

This section describes PQ-learning, an extension of the scalar Q-learning algorithm
that learns the set of all nondominated policies for a MOMDP. Since we aim to learn
the set of all nondominated policies at once, Q-learning is a promising starting point,
since the policy used to interact with the environment is not the same that is learned.

5.3.1.1 Characterization of Optimal Policies

Our problem is to find the policies that maximize the expected vector return of a
MOMDP (see Section 2.3.4 for a formalization for the concept of MOMDP and the
associated expected vector return). We will consider the dominance relation � or
Pareto order in Rn. For every pair of vectors ~v, ~w ∈ Rn, ~v � ~w iff there exists a
dimension i such that vi > wi and there is no dimension j such that vj < wj . We write
~v � ~w when ~v � ~w or ~v = ~w. Given a set X ⊂ Rn, the Pareto front of X, ND(X), is
the set of nondominated vectors in X, that is, ND(X) = {~x ∈ X | @~y ∈ X ~y � ~x}.

The vector value of a state s under a policy π, denoted ~v π(s), is the expected
vector return when starting from s and following π. We call ~v π(s) the state-vector
function for policy π. The vector value of taking action a in state s under a policy π,
denoted ~q π(s, a) is the expected vector return when starting from s, taking action a,
and thereafter following π. We call ~q π(s, a) the action-vector function for policy π.

We will say that a policy π dominates or equals a policy π′ iff forall s ∈ S, ~v π(s) �
~v π′(s). A policy is non-dominated iff it is not dominated by any other possible policy.
We denote a non-dominated policy as π∗, and its non-dominated action-vector function
as ~v π∗(s).

We denote the set of all action-vectors of taking action a in state s under any
non-dominated policy π∗ as Q∗(s, a).

5.3.1.2 Updating Expression

Just like Q-learning, PQ-learning learns action-vector values through repeated inter-
action with the environment. However, there are important differences that arise from
the fact that rewards are vectors, and that the algorithm does not learn a single policy,
but a set of policies at the same time.

The values learned in PQ-learning are sets Q(s, a), which are used to estimate the
optimal Q∗(s, a) sets. A decision-making agent interacts with the environment through
a sequence of steps. In the nth step, the agent observes its current state sn, selects and
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performs an action an, observes the following state s′, receives an immediate reward
−→r n and adjusts the set Q(sn, an) using a learning factor αn. Therefore, the essence of
PQ-learning is described by an updating expression, in many senses analogous to the
one of Q-learning.

The basic idea behind the updating procedure of PQ-learning is that a non-dominated
action-vector must result from the combination of non-dominated action-vectors as-
sociated to the same policy. Since PQ-learning learns all non-dominated policies at
the same time, the Q(s, a) sets store different vectors estimates. Each estimate arises
from the combination of a set of non-dominated state vectors of states s′ reached after
action a.

The scalar Q-learning algorithm calculates action valuesQ(s, a) combining the state
values V (s′) of states s′ reached after performing action a in state s. In the case of PQ-
learning, we have sets of state-vectors V(s′), defined as the set of nondominated action-
vectors for all possible actions in state s′. Each of these state-vectors is associated to
a different policy. Each action vector in Q(s, a) will result from the combination
of particular state-vector estimates of reached states, and should always be updated
according to them, reflecting thus a particular policy.

Formally, each vector estimate in Q(s, a) will consist of a pair (~q, P ), where ~q is
the current value of the vector estimate, and P is a set of indices. Each index p ∈ P
is a pair (s′, i) where s′ is an identifier of the accessed state and i stands for the i-th
vector in V(s′), precisely the one that is used to update ~q. Notice that the dimension
of ~q, given by the number of objectives, is fixed and the same for every state. However,
the size of P can be different for different states and grows during the execution of the
algorithm from 0 to the number of states reachable from s after performing action a.

We will say that a pair (s′, i) is new for a set Q(s, a) when there is no pair (~q, P ) ∈
Q(s, a) such that (s′, i) ∈ P , and write (s′, i) 6@ Q(s, a). Otherwise we will say that
(s′, i) is not new in Q(s, a) and write (s′, i) @ Q(s, a). We will say that a state s′ is
new for a set Q(s, a) when there is no index i such that (s′, i) @ Q(s, a). We will write
s′ 6@ Q(s, a). Otherwise we will say that s′ is not new in Q(s, a) and write s′ @ Q(s, a).
We also define the set P \ s′ as the result of removing all pairs (s′, i) from P , that is,
P \ {(s′, i)} (whatever i is).

We will formally define the sets V(s) in function of the vector estimates (this
definition is similar to the one used by White (1982) and Wiering & de Jong (2007)):

V(s) = ND
⋃
a∈A
{~q | (~q, P ) ∈ Q(s, a)} (5.3)

We can identify two different kinds of operations in the updating process of Q(s, a),
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1. Creating new vector estimates every time a state s′ is reached for the first time
after performing action a in state s.

2. Updating Q(s, a) after an already traversed transition leading to some node s′.
This includes updating, creating, and deleting particular vector estimates.

We assume that for all s ∈ S and for all a ∈ A, Q0(s, a) = {(~0,∅)}. The updating
expression for PQ-learning is,

Qn(s, a) =
{

Nn−1(s, a) ∪ Un−1(s, a) ∪ En−1(s, a) if s = sn ∧ a = an

Qn−1(s, a) otherwise
(5.4)

In the following we define the sets N,U and E depending on the kind of operation
that is being performed.

• Case 1. When a state s′ is reached for the first time from state s through action
a, every vector estimate in Qn−1(s, a) is updated with every vector estimate
inside Vn−1(s′), performing a pairwise update. If Vn−1(s′) only has one vector
estimate, then |Qn(s, a)| = |Qn−1(s, a)|. In general, when s′ is reached for the
first time, |Qn(s, a)| = m|Qn−1(s, a)|, where m is the number of vector estimates
inside Vn−1(s′). More formally,

Nn−1(s, a) = {((1− αn)~q + αn[~rn + γ~vj ], P ∪ {(s′, j)} |

(~q, P ) ∈ Qn−1(s, a) ∧ ~vj ∈ Vn−1(s′) ∧ s′ 6@ Qn−1(s, a)} (5.5)

In this case, U,E = ∅.

• Case 2. When the reached state s′ was already previously reached from state s
through action a, the previous pairwise update defined by the set N has already
been performed in some previous step corresponding to the first time that state
s′ was reached, thus now N = ∅. For correctly updating Q(s, a), we have to
distinguish those vector estimates inside V(s′) that have previously updated some
vector of Q(s, a) from those which not:

– Set U deals with the first kind of vectors in Q(s, a), which are updated with
their associated vectors in V(s′). The formula is entirely analogous to the
one in the single objective case:
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Un−1(s, a) = {((1− αn)~q + αn[~rn + γ ~vj ], P ) |

(~q, P ) ∈ Qn−1(s, a) ∧ (s′, j) ∈ P ∧ ~vj ∈ Vn−1(s′)} (5.6)

If any vector inside V(s′) has updated a vector in Q(s, a), then U = ∅.

– Set E deals with the second kind of vectors, arising when a previously
unknown vector appears in V(s′) (we call this an extra vector). These
vectors have not been used to update any vector of Q(s, a). The expres-
sion s′ @ Qn−1(s, a) ∧ (s′, j) 6@ Qn−1(s, a) characterizes this situation: as
this is not the first time s′ is reached, s′ @ Qn−1(s, a), but as ~vj is new,
(s′, j) 6@ Qn−1(s, a). In this case, we cannot make use of vectors estimates
inside Qn−1(s, a) to determine the value of the new vector, because all of
them have already been supported by some vector estimate inside previous
instances of V(s′), different from the extra vector ~vj . So in this situation we
have to set from scratch the value of the vector in the new pair that is being
inserted into Qn−1(s, a). However, we can establish the new set of indices
with the available information of the pairs inside Qn−1(s, a). Given an extra
vector ~vj , we will insert a new vector estimate in Qn(s, a) for each vector
estimate inside Qn−1(s, a), with the set of indices that arises of removing
the pair of the form (s′, k) (whatever k is) from the set of indices of the
vector estimate, and then adding the pair (s′, j):

En−1(s, a) = {(αn[~rn + γ ~vj ], (P \ s′) ∪ {(s′, j)}) |

~vj ∈ Vn−1(s′) ∧ s′ @ Qn−1(s, a) ∧ (s′, j) 6@ Qn−1(s, a)

∧ ∃~q (~q, P ) ∈ Qn−1(s, a)} (5.7)

If there are no new vectors appearing inside V(s′), then E = ∅.

When a vector estimate that was present in previous instances of V(s′) (and thus
there is an associated vector estimate inside Qn−1(s, a)) has been removed, it is
because now it represents a dominated policy. In that situation, the vector esti-
mate inside Qn−1(s, a) supported by the vector estimate removed from Vn−1(s′)
is not inside Qn(s, a).

Notice that PQ-learning keeps a vector in Q(s, a) for each possible combination
of non-dominated vectors from the state-vector sets of reachable states. However, by
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application of Bellman’s optimality principle, only the subset of non-dominated state
vectors of s, V(s), are needed to support action vectors in other Q sets.

5.3.1.3 Action Selection Mechanism

As Q-learning, PQ-learning is an off-policy technique, meaning that the policy that is
followed during learning is not the same as the one learned. Indeed, this fact is even
more evident in the multi-objective setting, as we are learning several policies at once,
but the agent is only following one path.

This off-policy essence allows the agent to follow any policy during the learning
process, as long as every state-action pair (s, a) is visited a potentially infinite number
of times. Nevertheless, devising a proper action-selection strategy can lead to a better
online performance.

The usual intuition behind an action-selection strategy is that, when exploiting
the already acquired knowledge, we choose one of the actions that yield a maximum
value. In a scalar setting we only have one maximum value, and if there is a draw,
then we choose one of the values randomly and take the action that yields it. The
spirit of the mechanism presented here is similar, as we can consider that all the
vector estimates inside V(s) are maximum values (because they are non-dominated).
However, the chances of choosing a particular action are not equally distributed: the
chances of choosing an action a, being in state s, are proportional to the number of
vector estimates of Q(s, a) that are also inside V(s).

Pr{an = a|sn = s} = |{~q : ~q ∈ Vn−1(s) ∧ ∃P : (~q, P ) ∈ Qn−1(s, a)}|
|Vn−1(s)| (5.8)

In our experiments we have used a ε-greedy mechanism, that is, with probability ε
a random action is chosen, and with (1 − ε) an action is chosen according to Expres-
sion 5.8. The balance between exploitation and exploration in this framework will be
studied in Section 5.3.1.6.

5.3.1.4 Using the Learned Policies

In scalar Q-learning, once the values have been learned, we can derive the optimal (or
near-optimal) policy by choosing the action that yields the maximum value. That is,
if we are in state s, the chosen action is argmaxaQ(s, a). However, in PQ-learning we
cannot use this operator, since we do not have scalar values Q(s, a) any more, but sets
Q(s, a). Moreover, our policies are non-stationary, so they do not condition only in
the current state, but also in the current time step.
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As our algorithm has been devised to work without the foreknowledge of the pref-
erences or weights for each objective, after the learning phase comes a selection phase,
in which we can resort to a particular weight combination or just to a user selection
process in which a single solution is directly chosen from the set. Regardless the selec-
tion method, the decision has to be made in the time step t0, that is, at the beginning
of the process.

The process for deriving a concrete learned policy in our case starts by computing
the V-set of the initial state (see Expression 5.3). Once we have this V-set, we have to
select a vector estimate out of it:

~qt0 = Θ(V(s0)) (5.9)

Where Θ() is a selection operator. The action to be taken in state s0 and time step
t0 is the one whose associated Q-set contains the chosen vector estimate:

π(s0, t0) = a : (∃Pt0 : (~qt0 , Pt0) ∈ Q(s0, a)) (5.10)

In the following time steps the selection operator is no longer needed, because the
decision of which policy is going to be followed has been already done. We must resort
to the set of indices P associated to the last chosen action, that is, Pt0 . In time step
t1, we need to look for the vector estimate inside V(s1) indexed in Pt0 :

~qt1 = ~vi : ~vi ∈ V(s1) ∧ (s1, i) ∈ Pt0 (5.11)

And the chosen action in state s1 and time step t1 is:

π(s1, t1) = a : (∃Pt1 : (~qt1 , Pt1) ∈ Q(s1, a)) (5.12)

It could happen that, when n > 0, we cannot find the suitable vector estimate ~qtn
inside V(sn). This is a symptom that the learning process is not completed, and we
still have a vector estimate inside V(s0) whose supporting values are no longer non-
dominated. In that case we can use the selection operator again in order to choose a
vector estimate inside V(sn).

Thus, in general, if we are in state sn at time step tn, the action to take is given
by the expression:
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π(sn, tn) = a : (∃Ptn : (~qtn , Ptn) ∈ Q(sn, a)) (5.13)

Where

~qtn =


Θ(V(s0)) if n = 0
~vi : ~vi ∈ V(sn) ∧ (s, i) ∈ Ptn−1 if n > 0 ∧ ∃~vi
Θ(V(sn)) otherwise

(5.14)

5.3.1.5 PQ-learning in Action

Let us assume a state transition diagram for a multi-objective Markov decision process
as depicted in figure 5.25. The task is episodic, it always start at state s1, and and
terminates whenever the agent reaches any of the states s3, s4 or s5 (terminal states).
Action a1 has a probabilistic outcome and may lead to states s2 or s3. Let us assume
that for all terminal states s′ we have V(s′) = {[~v1 = (0, 0), ∅]}, i.e. each state has a
single zero vector that is not supported by any index. Additionally, values for Q are
not defined, since there are no available actions at terminal states.

We will apply PQ-learning to this example assuming α = 0.1, and γ = 1. The
evolution of Q and V are displayed in table 5.16 for all state-action pairs and non-
terminal states, and for each time step. The initial conditions are given for time step
t = 0. What follows is a description of a possible sequence of transitions that illustrates
the application of the PQ-learning rule.

1. A first episode starts at s1, where a1 is the only action available. Let us assume
the transition leads to s2 with reward ~r = (0, 0). Since V(s2) has two vectors,
the application of the PQ-learning rule results in the following,

N1(s1, a1) = {[(0.9× (0, 0) + 0.1× ((0, 0) + (0, 0)), {(s2, 1)}]

[(0.9× (0, 0) + 0.1× ((0, 0) + (0, 0)), {(s2, 2)}]}

U1(s1, a1) = ∅

E1(s1, a1) = ∅

Q1(s1, a1) = {[~v1 = (0, 0), {(s2, 1)}]

[~v2 = (0, 0), {(s2, 2)}]}

2. Assume that at t = 2 action a2 is chosen, leading to state s4 with reward ~r =
(1000, 2000). Notice that after this step, V(s2) has only one non-dominated
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vector.

N2(s2, a2) = {[(0.9× (0, 0) + 0.1× ((1000, 2000) + (0, 0)), {(s4, 1)}]}

U2(s2, a2) = ∅

E2(s2, a2) = ∅

Q2(s2, a2) = {[~v1 = (100, 200), {(s4, 1)}]}

3. At t = 3 a new episode starts, transitioning again from s1 to s2. Now, V(s2) =
{[~v1 = (100, 200)(s4, 1)]}, therefore,

N3(s1, a1) = ∅

U3(s1, a1) = {[(0.9× (0, 0) + 0.1× ((0, 0) + (100, 200)), {(s2, 1)}]}

E3(s1, a1) = ∅

Q3(s1, a1) = {[~v1 = (10, 20), {(s2, 1)}]}

4. Assume now that at t = 4 action a3 is chosen, due to an exploration step. This
leads to state s5 with reward (2000, 1000). Since this state is reached for the first
time from state-action pair (s2, a3), the rule is applied as follows,

N4(s2, a3) = {[(0.9× (0, 0) + 0.1× ((2000, 1000) + (0, 0)), {(s5, 1)}]}

U4(s2, a3) = ∅

E4(s2, a3) = ∅

Q4(s2, a3) = {[~v2 = (200, 100), {(s5, 1)}]}

5. At t = 5 a third episode starts, transitioning once again stochastically from s1

to s2. However, now V(s2) presents an extra vector. Therefore,

N5(s1, a1) = ∅

U5(s1, a1) = {[(0.9× (10, 20) + 0.1× ((0, 0) + (100, 200)), {(s2, 1)}]}

E5(s1, a1) = {[(0.1× ((0, 0) + (200, 100)), {(s2, 2)}]}

Q5(s1, a1) = {[~v1 = (19, 38), {(s5, 1)}]

[~v3 = (20, 10), {(s2, 2)}]}
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Figure 5.25: Sample state transition diagram.

6. Assume the episode terminates with a new transition from s2 to s4. The update
rule is applied as follows,

N6(s2, a2) = ∅

U6(s2, a2) = {[(0.9× (100, 200) + 0.1× ((1000, 2000) + (0, 0)), {(s4, 1)}]}

E6(s2, a2) = ∅

Q6(s2, a2) = {[~v1 = (190, 380), {(s4, 1)}]}

7. Finally, let us assume the last episode leads from s1 to s3. This illustrates the
case where each vector in Q(s1, a1) is supported by two vectors, one from s2, and
other from s3,

N7(s1, a1) = {[(0.9× (19, 38) + 0.1× ((1000, 1000) + (0, 0)), {(s2, 1)(s3, 1)}]

[(0.9× (20, 10) + 0.1× ((1000, 1000) + (0, 0)), {(s2, 2)(s3, 1)}]}

U7(s1, a1) = ∅

E7(s1, a1) = ∅

Q7(s1, a1) = {[~v1 = (117.1, 134.2), {(s2, 1)(s3, 1)}]

[~v3 = (118, 109), {(s2, 2)(s3, 1)}]}
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t s (s, a) Qt(s, a) Vt(s)
0 s1 (s1, a1) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅

s2 (s2, a2) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅
(s2, a3) ~v2 = (0, 0) ∅ ~v2 = (0, 0) ∅

1 s1 (s1, a1) ~v1 = (0, 0) (s2, 1) ~v1 = (0, 0) (s2, 1)
~v2 = (0, 0) (s2, 2) ~v2 = (0, 0) (s2, 2)

s2 (s2, a2) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅
(s2, a3) ~v2 = (0, 0) ∅ ~v2 = (0, 0) ∅

2 s1 (s1, a1) ~v1 = (0, 0) (s2, 1) ~v1 = (0, 0) (s2, 1)
~v2 = (0, 0) (s2, 2) ~v2 = (0, 0) (s2, 2)

s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)
(s2, a3) ~v2 = (0, 0) ∅

3 s1 (s1, a1) ~v1 = (10, 20) (s2, 1) ~v1 = (10, 20) (s2, 1)
s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)

(s2, a3) ~v2 = (0, 0) ∅
4 s1 (s1, a1) ~v1 = (10, 20) (s2, 1) ~v1 = (10, 20) (s2, 1)

s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

5 s1 (s1, a1) ~v1 = (19, 38) (s2, 1) ~v1 = (19, 38) (s2, 1)
~v3 = (20, 10) (s2, 2) ~v3 = (20, 10) (s2, 2)

s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

6 s1 (s1, a1) ~v1 = (19, 38) (s2, 1) ~v1 = (19, 38) (s2, 1)
~v3 = (20, 10) (s2, 2) ~v3 = (20, 10) (s2, 2)

s2 (s2, a2) ~v1 = (190, 380) (s4, 1) ~v1 = (190, 380) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

7 s1 (s1, a1) ~v1 = (117.1, 134.2) (s2, 1)(s3, 1) ~v1 = (117.1, 134.2) (s2, 1)(s3, 1)
~v3 = (118, 109) (s2, 2)(s3, 1) ~v3 = (118, 109) (s2, 2)(s3, 1)

s2 (s2, a2) ~v1 = (190, 380) (s4, 1) ~v1 = (190, 380) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

Table 5.16: Evolution of estimated values over time with PQ-learning. Thicker hori-
zontal lines indicate division between training episodes.
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5.3.1.6 Benchmark Results

Now we analyse the results obtained when applying PQ-learning to two benchmark
problems proposed by Vamplew et al. (2011). We have measured the train/test per-
formance, suitable for multiple-policy algorithms, as they are likely to be used in an
off-line setting (Vamplew et al., 2011). As several policies are learned at once, every
time a set of policies is evaluated we compute the hypervolume of the set of accumu-
lated vectorial rewards obtained by each intermediate learned policy (Vamplew et al.,
2011). The hypervolume of a set of vectors S, given a reference point dominated by
every vector in S, is the volume of the space that is dominated by the points in S and
that dominates the reference point. The quality of a set of learned policies is measured
comparing its hypervolume with the hypervolume of the true front.

All results in this section have been averaged over ten runs of the algorithm, on a
Intel Core i7 CPU @2.80Ghz with 8 GB RAM and Windows 7.

5.3.1.6.1 Deep Sea Treasure. The first problem considered is Deep Sea Treasure
(DST). This problem can be used to test if a MORL algorithm is able to find all the
state vectors for a problem where these define a non-convex frontier in reward space
(Vamplew et al. (2008)). DST has two objectives, and its true front of non-dominated
solutions contains ten state vectors and has a hypervolume of 535, according to the
reference point (−20, 0).

The environment is a grid of 10 rows and 11 columns, as we can see in Figure
5.26(a). The agent controls a submarine that searches for undersea treasures. There
are ten treasure locations with different values; the first objective is to minimize the
time that the submarine takes to reach the treasure, and the second one is to maximize
the value of the achieved treasure. The task is episodic, with each episode starting in
the top-left position of the grid and ending when a treasure is reached or after 1000
actions have been taken by the agent. At each step, four actions are available: moving
one square to the top, right, bottom or left. If an action would move the submarine
outside of the grid, then the position of the submarine remains unchanged.

The reward received at each step is a vector of 2 elements; the first one is a
punishment of −1 for the time consumed, and the second one is the value of the
achieved treasure, that will be 0 in all steps except when the agent reaches a treasure
location (the values are indicated in Figure 5.26(a)). In Figure 5.26(b) we can see the
ten non-dominated accumulated rewards associated to the non-dominated policies of
this problem.

We need to set three parameters for PQ-learning: the discount rate, the learning
rate and the exploration rate. In our experimentations we have found that the process
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(a) DST Environment (b) DST Frontier

Figure 5.26: Deep Sea Treasure problem: Environment (a) and Frontier (b) (repro-
duced from Vamplew et al. (2008))

is more sensitive for the last one, that is, for different values of epsilon. We show the
train/test performance for ε ∈ 0.2, 0.3, 0.4, 0.5 in Figure 5.28(a), being the higher value
the one that yielded the best performance, as the true hypervolume was reached in
less episodes. This high exploration rate is a feature particular to the DST problem
(it is not a necessary requirement for our algorithm). The discount rate was set to 1
and the learning rate to 0.1.

The hypervolume of the accumulated rewards yielded by every set of intermediate
learned policies is averaged over 10 runs, along 100000 episodes. The average execution
time was 2471.55 seconds. PQ-learning converges to the full set of nondominated
solutions, in spite of these defining a non-convex frontier.

5.3.1.6.2 Resource Gathering. The second problem considered is Resource Gath-
ering (RG). RG has three objectives, its true front contains eight vectors, and has an
hypervolume of 1.8299, according to the reference point (−1,−1,−1).

RG was first proposed by Barrett & Narayanan (2008). The environment is a grid
of five rows and five columns, as shown in Figure 5.27(a). The problem is a resource
gathering task, as required in many strategy games. An agent has to gather gold
and gems while minimizing the attack of enemies, given that the agent is attacked
in the enemies position with a probability of 0.1. The first objective is to minimize
the punishment for being attacked, the second one is to maximize the gold taken
and the third one is to maximize the gems taken. Although the original problem
describes a continuing taks, we have reformulated it to be episodic. This allows the
exact calculation of the front by means of the Multi-Objective Dynamic Programming
method by White (1982) in an affordable time. Each episode starts at the home
position, and ends when some of the followings events occurs: (1) The agent returns
home with gold or gems, (2) the agent is attacked (in this case, it automatically returns
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home, losing all the gathered gold and gems, if any) or (3) 1000 actions have been taken
by the agent. At each step, four actions are available: moving one square to the top,
right, bottom or left. If an action would move the agent outside of the grid, then its
position remains unchanged.

(a) RG Environment
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Figure 5.27: Resource Gathering problem: Environment (a) (reproduced from Barrett
& Narayanan (2008)) and Frontier (b)

The reward received at each step is a vector of three elements. The first one is the
punishment for being attacked, being 0 at every step except when the agent visits an
enemy position and is attacked. The second one is the reward for gathering gold, that
will be 0 at every step except when the agent is back home with gold, in which case it
is 1. The third element is like the second one, but for gems instead of gold. In Figure
5.27(b) we can see the eight non-dominated policies of this problem, given a discount
rate γ = 0.9.

We have applied PQ-learning ten times to RG. The parameters for these experi-
ments are the following:

• Discount rate γ = 0.9 (to favour shorter paths)

• Learning rate α = 0.1

• Exploration rate ε ∈ 0.2, 0.3, 0.4, 0.5

Being the performance for ε = 0.5 the best one, as the hypervolume was approxi-
mated in less episodes.

In Figure 5.28(b) we can see the train/test performance, averaged over 10 runs,
along 10000 episodes. The average execution time was 730′07 seconds. Again, PQ-
learning converges to the full set of nondominated vectors in the true front.



5.3. Pareto MORL for Design 135

episodes 

h
yp

er
vo

lu
m

e 
o

f 
th

e 
o

b
ta

in
ed

 r
ew

ar
d

s 

Deep Sea Treasure 

(a) DST Results

episodes 

h
yp

er
vo

lu
m

e 
o

f 
th

e 
o

b
ta

in
ed

 r
ew

ar
d

s 

Resource Gathering 

(b) RG Results

Figure 5.28: Train/test performance for DST (a) and RG (b)

5.3.1.6.3 Memory Requirements. We have also studied the memory require-
ments for each problem, in terms of the number of stored vectors inside the Q-sets and
the V-sets. Results are depicted in Figure 5.29. As we can see, the number of stored
vectors grows as the agent explores the environment, but it remains manageable and
stable once the true front has been approximated.
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(b) Memory requirements for RG

Figure 5.29: Memory requirements (total number of stored vectors) of PQ-learning for
the DST (a) and RG (b) problems
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5.3.1.7 Comparison to Scalarized Q-learning

In this section we perform an empirical comparison of PQ-learning to the linear scalar-
ization multi-policy approach, consisting in running Q-learning with a linear combi-
nation of the rewards and several sets of weights. We use a dichotomic scalarizing
procedure analogous to the one described in Balachandran & Gero (1984) to solve a
test set of biobjective problems.

Algorithm 1 (SCAL) displays an iterative description of the scalarizing procedure
that finds the costs of all supported nondominated solutions to a bi-objective problem.
The algorithm repeatedly optimizes a linear function f(x, y) = w1 × x+ w2 × y (that
combines the values x and y of both scalar objectives for each candidate solution) with
different values for w1, w2. It receives as input parameters the costs of the two extreme
solutions p and q. The former is obtained solving the problem with w1 >> w2, and the
latter with w1 << w2. If p 6= q, then the procedure is invoked to find all nondominated
supported costs between p and q. The algorithm uses a stack S to keep track of all
the optimizations that need to be carried out. Each one tries to find a new supported
solution between two pairs of points a and b. In our case, the optimization would
be carried out using the scalar Q-learning algorithm. If the new point found c is
in the same line that joins a and b, then no new supported solution costs can be
found between them. Otherwise, c is a new supported nondominated cost, and two
new optimizations will need to be carried out, one between a and c, and another one
between c and a. Therefore, these two pairs of points are stored in the stack. The
procedure terminates when the stack becomes empty. For a biobjective problem with
n > 1 supported solutions, this procedure guarantees that all of them are found in
2n− 1 scalar applications of Q-learning.

As in the previous section, performance has been measured according to the number
of learning steps needed to reach the whole set of solutions inside V∗(s0), where s0 is the
initial state of the environment. In the case of the scalarized procedure, this number
is the sum of the steps in each individual application of scalar Q-learning.

Notice that the number of reachable solutions varies according to the method that
is being used, as linear scalarization techniques can only find supported solutions.

The original DST frontier only has two supported solutions out of the ten Pareto-
optimal ones, and all treasures are reachable by Pareto-optimal policies. In order to
perform a more complete comparison, we have compared PQ-learning and the scalar-
ized version for three additional variants with different frontier configurations. In Fig-
ure 5.30 we illustrate the environments for each variant, and in Table 5.17 we gather
the different features of their respective frontiers. In the following we explain in detail
the considered variants.
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Input: p, q (2D points representing extreme solution costs), P (a problem)
Output: R (list of supported solution costs)
Local variables: a, b, c (2D points representing solution costs), S (a stack)
R← list(p, q); // A new list with p and q
S ← empty-stack; // Create a new stack
S ← push([p, q], S); // Push a vector with p and q in the stack
while S is not empty do

// Pop the next pair of points from the stack:
[a, b]← pop(S);
// Calculate the parameters of the new
// linear objective function:
w1 ← ay − by;
w2 ← bx − ax;
// Solve P to find a new solution and get
// its cost vector c:
c← optimize(P, w1, w2)
if (w1 × ax + w2 × ay) 6= (w1 × cx + w2 × cy) then

// c is the cost of a new supported solution
S ← push([a, c], S); // Push new pair in the stack
S ← push([c, b], S); // Push new pair in the stack
R← add(c,R) ; // Add c to the result

end
end
return R ;

Algorithm 1: Algorithm to obtain all supported costs to a bi-objective optimization
problem. Method ‘optimize(P, w1, w2)’ solves problem P with a linear objective
function f(x, y) = w1 × x+ w2 × y that combines the values x and y of both scalar
objectives for each candidate solution.
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(a) DST-2 Environment (b) DST-3 Environment

(c) DST-4 Environment

Figure 5.30: Deep Sea Treasure problem variants: environments for DST-2 (a), DST-3
(b) and DST-4 (c)

5.3.1.7.1 DST-2 In this second variant of DST we aim to test the algorithms
behaviour when there are some non-optimal undersea treasures. Particularly, we have
changed the value of the seventh treasure from 24 to 100, so treasures 50 and 74 are
not Pareto-optimal any more.

5.3.1.7.2 DST-3 In the third variant of DST we want to test the algorithms be-
haviour when the number of unsupported solutions is closer to the number of Pareto-
optimal solutions. Particularly, in this setting there are five supported solutions (as
opposed to the two solutions in the original DST environment) out of ten Pareto-
optimal solutions.

5.3.1.7.3 DST-4 In this fourth setting of DST we want to test the algorithms
behaviour when the number of unsupported solutions equals the number of Pareto-
optimal solutions, that is, when the frontier is fully convex. In this variant all ten
Pareto-optimal solutions are supported.
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DST setting Supported solutions Pareto solutions
Original 2 10
DST-2 3 8
DST-3 5 10
DST-4 10 10

Table 5.17: Frontier features for the considered variants of the Deep Sea Treasure
environment

Problem Avg. steps Max steps
Original (SCAL) 1074645.3 1494433
Original (PQ) 1260451.1 3478320
DST-2 (SCAL) 14786851.0 23931695
DST-2 (PQ) 23905464.7 39318415
DST-3 (SCAL) 5862617.5 10698936
DST-3 (PQ) 4602536.4 6229090
DST-4 (SCAL) 15618235.0 19845973
DST-4 (PQ) 6294062.1 10193190

Table 5.18: Scalarized algorithm vs. PQ-learning: training steps until convergence of
V (0, 0), over 100 agents

5.3.1.7.4 Results. For each setting we have executed 100 agents of the scalarized
algorithm and 100 agents of PQ-learning, with the same parameter setting that we
used for solving the original DST problem with PQ in Section 5.3.1.6.

In Table 5.18 we gather the average and maximum number of training steps that
each method needs to converge to the whole set of reachable solutions in V∗(s0).

5.3.1.7.5 Discussion. As we have already mentioned, it is well known that scalar-
izing methods based on linear functions can only obtain the subset of supported solu-
tions of a MOMDP. On the contrary, PQ-learning can approximate the whole Pareto
front.

It can be argued that in some cases it suffices to learn the set of supported solutions.
However, in the light of the obtained results, even when only supported solutions are
sought, in some cases PQ-learning can outperform the linear scalarizing method in
terms of training steps, as we can see in Table 5.18. Particularly, it has been the
case of the problems DST-3 and DST-4. It seems reasonable to speculate that when
the ratio of supported solutions/Pareto solutions grows, PQ-learning tends to need
less training steps than the linear scalarized method. In any case, if only supported
solutions are required, these can be easily obtained from the set of all Pareto-optimal
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reward vectors X provided by PQ-learning. For example, algorithm 1 could be used.
In this case the “optimize” function would only need to test the linear function over
all points in X and return the optimal one.

5.3.2 Example: Compactness-Perimeter Problem

Once we have described PQ-learning as a general MORL technique, we can illustrate
how can it be applied to a design problem. The application of this algorithm is more
direct than in the previous single-policy methodology case, as we do not need to
establish weights for defining the rewards. Regarding generalization techniques, the
integration of function approximation with PQ-learning remains future work, so by
the moment we just tackle tabular approaches. As a result, now we do not need to use
features.

Let us return to our geometric example, in which we seek to generate rectilinear
polygons with nine tiles according to two conflicting design requirements: obtain a
high compactness factor and a high perimeter.

5.3.2.1 Definition of Rewards

The reward is in this case a vector of two values, namely the compactness factor and
the perimeter:

r(s, a) =
{

(area(s′)/perimeter(s′)2, perimeter) if s′ has nine tiles
~0 otherwise

(5.15)

Where s′ is the state that represents the shape generated by applying the action a
over the state s. For the intermediate shapes with less than nine tiles, the reward is
defined as the zero vector.

The Pareto frontier of possible optimal accumulated rewards for shapes with nine
tiles is depicted in Figure 5.31. This frontier is non-convex, meaning that a linear
scalarization approach would not be useful for discovering every policy yielding every
Pareto optimal solution: only policies for the supported ones (in this case, the ones in
the right and left extremes of the frontier) would be discovered.

As we can see in Figure 5.31, there are five non-dominated points, each one cor-
responding to a different optimal accumulated reward. Hence, the solution to the
problem is a set of five policies, each one producing different kinds of shape, which are
depicted in Figure 5.32.

We can see that, except for the accumulated reward that only maximizes the com-
pactness (point (1, 0.6)), for which the unique associated shape is a square of 3 × 3
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Figure 5.31: Pareto frontier of the compacity-perimeter problem

Figure 5.32: Kinds of shape solutions for the compactness-perimeter problem
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Figure 5.33: Train/test performance of PQ-learning applied to the compactness-
perimeter problem

tiles, there is more than one possible shape associated to each long-term value.

5.3.2.2 Performance

The train/test performance of PQ-learning applied to our geometric problem (averaged
over 10 runs) is depicted in Figure 5.33. The parameters has been set to the following
values: γ = 1, α = 0.1, ε = 0.5. We can see that the hypervolume of the set of
accumulated rewards yielded by the intermediate sets of learned policies, converges
to the true hypervolume of the front, which is 0.8102. Both hypervolumes have been
calculated considering (0, 0) as the reference point.

Due to the nature of PQ-learning, a particular policy of a given run of the algorithm
will yield the same shape every time it is executed. This is due to the index search
that must be performed in order to follow a concrete policy, which was described in
Section 5.3.1.4. So, if we want to obtain more than one of the shapes associated with
a given accumulated reward, we must run PQ-learning several times.

One particular run of PQ-learning yielded an initial V-set (that is, the V-set of the
initial state) with the following five values: (1, 0.6), (0.5625, 0.8), (0.4444, 0.9), (0, 7347, 0.7)
and (0.3597, 0.9992), associated with five different policies. In order to apply one of
these policies, we must choose one of the values and then follow the process described
in Section 5.3.1.4, using the indexes in order to apply the proper actions that in the
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Figure 5.34: Shapes produced by the five policies learned in a single run of PQ-learning,
applied to the compactness-perimeter problem

end will yield the desired long-term value. This process has been followed for the five
learned policies, producing the five shapes depicted in Figure 5.34.





Chapter 6

Conclusions and Future Work

What is the future of design?
(no answer)

Question: Madame L’Amic. Answer: Charles
Eames

Design problems usually involve the consideration of multiple criteria of different
nature, involving technical, economical, social, and environmental needs, among others.
Traditional CAD tools help designers in the representation, modification, analysis,
documentation and evaluation of their designs. A more sophisticated role is that of
computational design, which consists in the synthesis of new design solutions. This
thesis has focused on this non trivial role, being its general goal the development of
new computational design techniques able to deal with design criteria.

Some aspects of the design process can be understood as a search or exploration
over a space of design alternatives. This perspective facilitates the exploitation of com-
putational techniques in order to implement methods intended to synthesize solutions
that fulfil the purpose of a given design problem.

In order to develop computational design methodologies, we need a generative
system able to represent and generate a design space. In this thesis we have considered
the framework of shape grammars due to its wide usage along the computational
design literature, and also to its versatility. The traditional approach for using shape
grammars as a computational design method consists in hard-coding the whole set
design criteria inside the shape rules, giving room to expert shape grammars that are
difficult to create, modify and maintain. They also promote predictable solutions, as
the shape grammar designer crafts the rules with the foreknowledge of the requirements
that the produced shapes need to meet. In this dissertation we have considered another
alternative, which consists in reducing or minimizing the number of criteria hard-
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coded inside the rules. We deal thus with more naive shape grammars that cannot
produce feasible solutions by themselves, and need for a control method that guides
the derivation towards good designs. Particularly, we have relied on search processes
and reinforcement learning methods in order to perform this control.

In the following section we detail the main conclusions of this dissertation and the
possible lines of future work.

6.1 Conclusions

The main conclusions of this thesis can be summarized as follows:

1. A classification scheme for possible approaches to computational de-
sign based on shape grammars has been proposed. The different classes
depend on the nature of the involved rules and the external control methods.
Concretely, we have proposed a scheme in which two aspects are considered in
order to classify shape grammar-based computational design techniques. The
first aspect considers the amount of design criteria codified inside the shape
rules, being totally expert shape grammars those in which the whole set of de-
sign requirements is codified in this manner. The less requirements are codified
inside the rules, the more naive they can be considered. The second classification
facet considers the complexity of the control method, ranging from non-existing
control techniques to sophisticated ones like search methods or reinforcement
learning algorithms. These two aspects give rise to the following four classes:
(1) expert grammars without control, (2) expert grammars with sophisticated
control, (3) naive grammars with sophisticated control and (4) naive grammars
without control. The first class stands for the traditional shape grammars that
have been used in many areas. The second and third classes encompass the main
contributions of this thesis. In addition, the third class, standing for naive shape
grammars with sophisticated control, also covers some recent computational de-
sign techniques, such as shape annealing or evolutionary algorithms applied to
shape grammars. The fourth class has also been considered in the context of
this dissertation, with the goal of studying how architecture students respond to
computational design tools in which randomness is highly present.

2. A computational design technique based on expert shape grammars
and sophisticated control has been developed. Concretely, this methodol-
ogy is based on the idea of encoding some of the design requirements into rules,
while explicitly using others for evaluating the shapes produced along the gener-
ative process and guiding it towards good designs. The involved shape grammars
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are thus less expert than in the traditional approach of encoding every design
requirement into the rules. In this setting we distinguish between design require-
ments that are easier to specify in a geometric manner and requirements that
are amenable to be expressed as logic predicates. The former are encoded in-
side shape rules enhanced with layers, which can help in the organization and
representation of the shapes, as well as in reducing the derivation time. The
latter are programmed as design constraints and goals, which are used to guide
a depth-first search algorithm.

3. A software tool (ShaDe) for editing and executing layered shape gram-
mars with constraints and goals has been developed. ShaDe allows the
creation of generic shape grammars that can be organized into layers. The typi-
cal CAD facilities related to layers, such as selective visualization and selection
of shapes belonging to different layers, are available in ShaDe. It also provides
the user with a set of predefined design constraints and goals, as well as means
for customizing them and even creating new ones. The layered shape grammars
can be executed inside ShaDe in order to produce design solutions complying
with the specified constraints and goals.

4. A computational design technique based on naive shape grammars and
sophisticated control has been developed. Concretely, this methodology is
based on the idea of using the whole set of design requirements as the rewards
of a reinforcement learning process, in order to learn a heuristic (or a set of
heuristics) that determines how to apply the rules of the generative system. In
the generation process, we just rely on the newly discovered information in order
to apply the rules, so design requirements are used in an implicit manner. Two
alternatives for learning the policies have been presented, depending on how we
deal with the multi-objective nature of design problems. Namely, in the first
alternative the rewards are scalarized according to a set of design preferences
that are known a priori, so the algorithm yields a unique policy for each shape
grammar. The second alternative does not scalarize the rewards, so the algorithm
learns multiple policies that can be used to produce a set of Pareto optimal
solutions.

5. A new multi-objective reinforcement learning technique (PQ-learning)
has been proposed. In the context of the non-scalarizing methodology, we
have developed a new reinforcement learning technique that directly extends
the algorithm Q-learning in order to deal with vectorial rewards. This newly
proposed method has been tested according to two benchmark problems.
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6. The developed methodologies have been put into practice in different
scenarios related to the architectural domain. Concretely, the technique
based on layered shape grammars with constraints and goals has been used to
synthesize two kinds of designs: (1) housing units configured according to the
Hele Module proposed by the architect Rafael Leoz, and (2) virtual restaurants
that can be used as scenarios for video games. The computational design tech-
nique based on naive shape grammars and reinforcement learning has been put
into practice in two application cases related to the generation of housing unit
schemes complying with habitability and energy-efficient requirements.

7. Two empirical studies with architecture students have been performed.
Particularly, they were associated to the methodologies corresponding to naive
shape grammars with and without control. The experiment corresponding to the
methodology of naive shape grammars without control was carried out in order
to study how architecture students react to a computational design tool where
random commands are allowed. The main conclusion was that users are open
to explore randomness, so computational design tools should provide a certain
amount of that; however, these tools should also provide means for controlling
and taming such randomness. The experiment associated to the methodology of
naive grammars with control was performed in order to validate such technique
when it is used to generate habitable housing units schemes, being the main
conclusion that the tool can provide interesting starting points for architectural
projects.

6.2 Future Work

In the following we detail those aspects of this dissertation that deserve further inves-
tigation:

• The extension of the proposed methodologies to more complex forms of shape
grammars, such as three-dimensional or even parametric ones, in which shapes
are defined not only by the disposition of geometric elements but also by variable
parameters, such as the width and height of a rectangle.

• The application cases involving naive shape grammars and scalarized reinforce-
ment learning relies on a division of the tackled design problem into several
phases. This separation of the generation process in sequential phases manages
to reduce the set of requirements that are taken into account at every step. How-
ever, it also introduces an important shortcoming that may have an impact when
dealing with more complex design problems: the learning process deals only with
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the local requirements of each phase, and thus the policies cannot reflect global
issues. For example, in the context of our housing design example, a globally op-
timal policy would give insight about how to place the kitchen modules regarding
the future placing of non-specialized spaces. The shortcoming of not dividing the
process into these phases is the arising necessity for considering the whole set of
design criteria in a unique phase. A possible way of circumventing this issue is
the integration with more powerful, non-linear generalization techniques such as
neural networks.

• We have shown that the proposed methodology involving naive shape grammars
and PQ-learning can be used to deal with geometric problems, but more re-
search is needed in order to apply the methodology in real-world scenarios. We
believe that this can be managed by means of the integration of PQ-learning
with generalization techniques.

• Finally, the application of the proposed methodologies to other design domains
is also an important line of research.





Appendix A

Resumen

A.1 Introducción

El diseño es una tarea compleja que implica considerar criterios de diversa índole para
alcanzar un propósito. Involucra la integración de necesidades técnicas, económicas,
sociales y medioambientales, entre otras.

Hoy en día, la importancia de los ordenadores en el proceso de diseño es incuestio-
nable. Las herramientas CAD (computer-aided design, diseño asistido por ordenador)
han expandido las capacidades humanas, proporcionando a los diseñadores mecanismos
precisos para representar, describir, visualizar, organizar y simular proyectos de diseño.

En esta tesis partimos de la premisa de que los ordenadores también pueden par-
ticipar en la síntesis de nuevas soluciones de diseño. Esta nueva área de investigación
ha sido bautizada como diseño computacional (Cagan et al., 2005), y se ha visto ace-
lerada gracias a diversos avances en la comprensión del diseño desde una perspectiva
computacional. Desde cierto punto de vista, algunos aspectos del proceso de diseño
pueden ser entendidos como una búsqueda o exploración en un espacio de alternativas
de diseño (Simon, 1973). El hilo conductor de esta tesis consiste en la idea de emplear
técnicas de inteligencia artificial para tratar este espacio de diseño de diversas maneras.
Estas técnicas han de considerar requisitos de diseño de diversa naturaleza, relevantes
para el propósito del problema considerado.

En este contexto, se necesitan mecanismos que puedan representar y generar de
manera explícita el espacio de diseño, lo cual nos conduce al área de los sistemas
generativos. Concretamente, en este trabajo nos centraremos en el formalismo de las
gramáticas de formas (Stiny & Gips, 1972), ampliamente utilizado en el área del diseño
computacional debido a su versatilidad.

Los criterios de diseño pueden ser directamente codificados en las reglas de los
sistemas generativos, dando lugar a sistemas expertos que siempre sintetizan soluciones

151



152 Appendix A. Resumen

factibles. Sin embargo, estos sistemas son generalmente difíciles de crear, modificar
y mantener. Otra alternativa es la externalización parcial o total de estos criterios,
dando paso a sistemas más ingenuos en el sentido de que no pueden producir buenas
soluciones por ellos mismos: necesitan un método de control que asegure la producción
de diseños factibles. En esta tesis seguiremos este último enfoque, y utilizaremos
distintas técnicas computacionales y de inteligencia artificial tales como algoritmos
de búsqueda y métodos de aprendizaje por refuerzo (Sutton & Barto, 1998), siempre
desde una perspectiva multi-criterio.

En esta tesis profundizaremos en dos alternativas para combinar el sistema genera-
tivo de las gramáticas de formas con un mecanismo externo de control, dependiendo de
la manera de codificar y emplear los criterios de diseño. La primera alternativa consiste
en reducir el número de criterios codificados dentro de las reglas, tratando parte de
ellos de una manera explícita en la que son directamente usados para evaluar las formas
generadas en cada paso del proceso generativo y guiar dicho proceso hacia soluciones
factibles. La segunda alternativa va un paso más allá, e intenta utilizar el conjunto
completo de criterios de diseño en un proceso de aprendizaje automático para obtener
un heurístico. Tal heurístico determinará cómo aplicar las reglas de la gramática de
formas. Así, en el proceso generativo únicamente se utiliza de manera explícita la
nueva información aprendida, y los criterios de diseño se usan implícitamente.

A continuación describimos brevemente las principales contribuciones de esta tesis:

1. Un esquema de clasificación para posibles aproximaciones al diseño computa-
cional basadas en gramáticas de formas. Las diferentes clases dependerán en
la naturaleza de la reglas involucradas, la manera de formalizar los criterios de
diseño y los métodos de control externo empleados.

2. El desarrollo de una metodología basada en la idea de codificar algunos criterios
en las reglas de las gramáticas de formas, y utilizar el resto de manera explícita
para evaluar las formas producidas a lo largo del proceso de generación y guiar
dicho proceso hacia buenos diseños.

3. El desarrollo de una metodología basada en la idea de minimizar los criterios
de diseño codificados en las reglas, y usarlos en un proceso de aprendizaje au-
tomático para aprender un heurístico que determine cómo aplicar la gramática
de formas.

4. La aplicación de las metodologías desarrolladas en diferentes ámbitos relaciona-
dos con la arquitectura.
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A.2 Resumen de los capítulos

A.2.1 Antecedentes

El Capítulo 2 proporciona una visión general de los distintos ámbitos de investigación
de esta tesis. Comienza por ofrecer una definición de diseño, como un proceso carac-
terizado por un propósito. Desde cierto punto de vista, este proceso se configura como
una búsqueda en un espacio de estados (Simon, 1973).

Los ordenadores han jugado desde hace años un papel incuestionable en los procesos
llevados a cabo por los profesionales del diseño. Las herramientas CAD proporcionan
asistencia en numerosas tareas relacionadas con la descripción, documentación y visua-
lización de los proyectos de diseño. Adicionalmente, mediante técnicas de inteligencia
artificial, los ordenadores pueden cumplir roles más activos, como la optimización y
simulación de soluciones de diseño existentes e incluso la síntesis de nuevas soluciones.
La presente tesis se centra en esta última tarea, habitualmente referida en la literatura
como diseño computacional (Cagan et al., 2005).

La concepción del diseño como una búsqueda en un espacio de posibles alterna-
tivas convierte a ciertas técnicas de inteligencia artificial en herramientas adecuadas
para desarrollar metodologías de diseño computacional. Para ello, en primer lugar, es
necesario un sistema generativo capaz de representar y generar de manera explícita
el espacio de diseño. Algunos ejemplos de este tipo de sistemas los constituyen los
autómatas celulares (propuestos por von Neumann a finales de la década de los 50),
los sistemas-L (Lindenmayer, 1968), las gramáticas de grafos (Gips & Stiny, 1980) y
las gramáticas de formas (Stiny & Gips, 1972). En esta tesis nos centraremos en este
último formalismo dada su versatilidad y potencia. Ciertamente, las gramáticas de
formas han sido utilizadas en numerosos ámbitos de diseño, siendo algunos ejemplos
recientes los trabajos de Garcia & Romão (2015) (para el diseño de sillas), Palacz et al.
(2015) (para estructuras tipo rejilla o grid) y Kielarova et al. (2015) (para diseño de
joyas).

En la literatura se han explorado tres posibilidades a la hora de utilizar los distintos
criterios para explorar o generar el espacio de diseño. La primera de ellas consiste en
codificar dichos criterios en las reglas del sistema generativo, dando lugar a sistemas
expertos que siempre producen soluciones factibles pero que habitualmente son difíciles
de crear, modificar y mantener. En el contexto de las gramáticas de formas, dichos
sistemas se corresponden con las tradicionales gramáticas expertas (Stiny & Mitchell,
1978; Cagdas, 1996; Flemming, 1987; Pugliese & Cagan, 2002; McCormack et al., 2004).
Las otras dos posibilidades se corresponden con gramáticas más ingenuas en las que
una parte o la totalidad de los criterios se emplean de manera externa. Concretamente,
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la segunda alternativa consiste en utilizar de manera explícita los criterios de diseño
para evaluar las distintas formas producidas a lo largo del proceso de generación y guiar
dicho proceso hacia buenas soluciones (Grzesiak-Kopec & Ogorzalek, 2014b; Grzesiak-
Kopeć & Ogorzałek, 2014; Grzesiak-Kopec & Ogorzalek, 2014a); y la tercera consiste
en utilizar los criterios para aprender un heurístico que determine cómo aplicar las
reglas de la gramática (Cagan & Mitchell, 1993; Shea & Cagan, 1997, 1999b,a; Gero
et al., 1994; Jin & Li, 2007; Caldas, 2008; Wu et al., 2008).

En el contexto de esta tercera alternativa, en esta tesis proponemos el uso de
técnicas de aprendizaje por refuerzo (Bertsekas & Tsitsiklis, 1996; Kaelbling et al.,
1996; Sutton & Barto, 1998; Wiering & van Otterlo, 2012) para aprender el heurístico
o política a seguir para aplicar las reglas de gramáticas de formas ingenuas. Este tipo
de aprendizaje descubre qué acciones elegir en un entorno concreto, con el objetivo de
maximizar la recompensa obtenida a largo plazo. El aprendizaje sucede mediante una
interacción con el entorno, recibiendo recompensas positivas o negativas tras ciertas
acciones. Las recompensas pueden ser escalares o vectoriales, siendo las primeras las
que han sido tratadas tradicionalmente en el ámbito del aprendizaje por refuerzo.
Las alternativas para manejar recompensas vectoriales han sido englobadas bajo la
disciplina denominada aprendizaje por refuerzo multi-objetivo. Según Roijers et al.
(2013), los enfoques multi-objetivo se dividen en: (1) aquellos que suponen la existencia
de una función de escalarización que permite expresar valores vectoriales como una
utilidad escalar, y (2) aquellos que no suponen dicha función y por tanto asumen que
la solución al problema está configurada por una frontera de Pareto.

A.2.2 Control, síntesis y criterios

En el Capítulo 3 proponemos un esquema de clasificación para sistemas de diseño
computacional basados en un sistema generativo particular. En nuestro caso, este
sistema se corresponde con el formalismo de las gramáticas de formas.

En el capítulo anterior describimos distintas alternativas para combinar criterios
de diseño con sistemas de diseño generativo. Los criterios pueden ser: (1) codificados
en su totalidad dentro de las reglas del sistema generativo, (2) usados explícitamente
para evaluar soluciones potenciales y efectuar una búsqueda sistemática en el espacio de
diseño, o (3) usados para descubrir un heurístico que determine cómo aplicar las reglas
del sistema generativo. En el contexto de las gramáticas de formas, cada posibilidad se
asocia a un tipo particular de reglas: la codificación de los criterios en las reglas da lugar
a las denominadas gramáticas expertas, mientras que el uso explícito o implícito de los
criterios en procesos de control externos a las reglas da lugar a gramáticas ingenuas.
Sin embargo, esta separación entre gramáticas expertas e ingenuas no es nítida, dado
que podemos establecer diferentes grados de ingenuidad: cuantos más criterios de
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diseño sean considerados externamente a las reglas, menos factibles serán las formas
generadas por la gramática, y por tanto más ingenuas podrán ser consideradas. Con
respecto a los procesos de control susceptibles de ser combinados con sistemas gene-
rativos, el amplio espectro de técnicas descrito en el capítulo anterior (desde procesos
directos de búsqueda hasta técnicas más complejas como el recocido simulado o los
algoritmos evolutivos) también sugiere una clasificación basada en la complejidad de
dichos procesos.

Así, proponemos el uso de las dos dimensiones definidas en el párrafo anterior para
clasificar las distintas aproximaciones al diseño computacional basadas en gramáticas
de formas, es decir: la ingenuidad de las gramáticas involucradas y la complejidad
del proceso de control elegido. Podemos representar este esquema de clasificación
gráficamente, con la ayuda de dos ejes perpendiculares que dan lugar a cuatro secciones,
tal y como se muestra en la Figura A.1. En esta figura, el eje horizontal representa
la ingenuidad de las gramáticas de formas involucradas en el sistema. El extremo
izquierdo representa a las gramáticas completamente ingenuas, es decir, diseñadas sin
tener en cuenta los criterios de diseño. Cuanto más expertas sean las gramáticas,
más a la derecha estarán situadas, siendo el extremo derecho el representante de las
gramáticas de formas puramente expertas. El eje vertical representa la complejidad
del método de control usado en combinación con las gramáticas de formas, siendo el
extremo inferior representativo de la no existencia de tal método, y el extremo superior
de mecanismos de control complejos.

Así, este esquema de clasificación da lugar a cuatro clases: (1) gramáticas exper-
tas sin control externo, (2) gramáticas expertas combinadas con un mecanismo de
control complejo, (3) gramáticas ingenuas con un mecanismo de control complejo y
(4) gramáticas ingenuas sin control externo. La primera clase se corresponde con las
gramáticas de formas tradicionales. Las clases segunda y tercera comprenden las prin-
cipales contribuciones de esta tesis. La cuarta clase representa otra técnica de diseño
computacional desarrollada en el contexto de esta tesis, con el objetivo de estudiar
cómo un grupo de estudiantes de arquitectura responde a herramientas en las que la
aleatoriedad está presente.

A.2.3 Un Sistema de Diseño Computacional para Manejar Criterios
en Problemas de Diseño

En este capítulo describimos un sistema de diseño computacional basado en la idea
de codificar algunos de los criterios de diseño en las reglas, manejando otros de ma-
nera explícita en un proceso de búsqueda basado en predicados lógicos (Ruiz-Montiel
et al., 2011b, 2014). Respecto al sistema de clasificación introducido en el capítulo
anterior, este sistema quedaría representado por la clase (2), es decir, la correspon-
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Gramáticas Ingenuas Gramáticas 
Expertas 

Sin Control 

Control Sofisticado 

GGFF Expertas 

GGFF con restricciones,  
objetivos y capas 

GGFF y Aprendizaje por Refuerzo 

GGFF ingenuas y control  
aleatorio / manual 

Figure A.1: Esquema de clasificación para sistemas de diseño computacional basados
en gramáticas de formas

diente a gramáticas expertas (dado que se siguen codificando parte de los criterios de
diseño en las reglas) con un mecanismo de control complejo. El proceso de búsqueda
emplea predicados para evaluar las formas producidas en el proceso de generación. Un
predicado puede ser una restricción o un objetivo. El proceso de búsqueda descartará
las formas que violen alguna restricción, y devolverá una solución cuando encuentre
una forma que satisfaga todos los objetivos de diseño.

Esta separación entre criterios definidos en las reglas y criterios utilizados como
predicados obedece a dos razones. En primer lugar, en los problemas de diseño pode-
mos encontrar requisitos de diversa naturaleza, quedando claro que algunos de estos
requisitos son más fáciles de especificar por medio de su codificación en reglas visuales,
mientras que otros se adaptan mejor a mecanismos simbólicos. El diseñador debería
poder expresar los criterios de diseño tanto en formato visual, en forma de reglas
de formas, como explícitamente, en forma de restricciones y objetivos de diseño. En
segundo lugar, dado que la cantidad de criterios de diseño que se consideran en las re-
glas se reduce, las gramáticas de formas son más fáciles de crear y mantener, y pueden
producir soluciones más diversas que una gramática de formas puramente experta.

Adicionalmente, el sistema permite el uso de capas para diseñar y visualizar las
reglas. Este mecanismo ayuda a los diseñadores en el proceso de creación de reglas,
dado que pueden beneficiarse de las ventajas relacionadas con las capas ofrecidas por
las herramientas CAD. Una ventaja adicional es que las capas reducen el tiempo de
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ejecución del algoritmo de reconocimiento de subformas utilizado en las gramáticas de
formas, dado que podemos tener varias formas simples separadas en capas distintas en
lugar de una forma compleja dentro de una única capa.

Este sistema ha sido implementado en una herramienta software que permite a los
usuarios la edición y ejecución de gramáticas de formas con restricciones, objetivos y
capas. Además, ha sido puesto en práctica en dos ejemplos: (1) el diseño de viviendas
configuradas según el módulo Hele propuesto por el arquitecto Rafael Leoz, y (2)
restaurantes virtuales que pueden ser utilizados como escenarios para determinados
videojuegos.

A.2.4 Técnicas Computacionales para Aprender y Detectar Criterios
en Problemas de Diseño

En este capítulo describimos en detalle el sistema introducido en el capítulo A.2.2,
basado en aprender un heurístico que determine cómo aplicar las reglas de un sistema
ingenuo. En este enfoque, la cantidad de criterios de diseño codificados en las reglas
es minimizada, de modo que la creación y modificación de tales reglas es fácil. Sin em-
bargo, una ejecución a ciegas de estas reglas ingenuas conduce a soluciones no factibles.
Aquí proponemos la combinación de gramáticas de formas ingenuas con técnicas de
aprendizaje por refuerzo que codifiquen los criterios de diseño como recompensas que se
obtienen durante el proceso de generación, y que descubran heurísticos que determinen
cómo aplicar las reglas de modo que tales recompensas sean maximizadas y por tanto
se produzcan soluciones factibles (Ruiz-Montiel et al., 2011a,b, 2013a, 2015). Respecto
al sistema de clasificación introducido en el capítulo A.2.2, este sistema quedaría re-
presentado por la clase (3), es decir, la correspondiente a gramáticas ingenuas con un
mecanismo de control complejo.

Dependiendo de la manera de tratar la naturaleza multi-criterio de los proble-
mas de diseño, nuestra propuesta se divide en: (1) la aplicación de aprendizaje por
refuerzo multi-objetivo escalarizado y (2) la aplicación de aprendizaje por refuerzo
multi-objetivo basado en la premisa de que no existe una función de escalarización
que permita expresar las preferencias, y por tanto el algoritmo ha de proporcionar un
conjunto de políticas que se corresponda con un conjunto de soluciones Pareto-óptimas.

En la primera propuesta, utilizamos la técnica Q(λ) (Sutton & Barto, 1998) junto
con técnicas de generalización, empleadas para representar la información aprendida
mediante una función en lugar de una tabla, lo cual permite reducir las necesidades
de tiempo y memoria del sistema. Esta metodología es puesta en práctica en dos
casos de aplicación relacionados con la arquitectura: el diseño de viviendas habitables
(Ruiz-Montiel et al., 2011a, 2013a) y el diseño de viviendas energéticamente eficientes
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(Ruiz-Montiel et al., 2015; Hidalgo et al., 2015). Adicionalmente, el primer caso de
aplicación ha sido validado en un entorno educativo, en el cual un grupo de alumnos
utiliza la metodología para obtener un conjunto de puntos de partida para sus proyectos
de vivienda (Millán et al., 2014).

En la segunda propuesta, proponemos una nueva técnica, denominada PQ-learning,
que aprende todas las políticas que dan lugar a soluciones Pareto-óptimas (Ruiz-
Montiel et al., 2013a; Ruiz-Montiel, 2013). Dicha técnica es una extensión directa
del algoritmo Q-learning (Sutton & Barto, 1998). El nuevo algoritmo es aplicado a un
problema geométrico con dos criterios de diseño.

A.3 Conclusiones y Trabajo Futuro

Los problemas de diseño suelen involucrar la consideración de criterios de diferente
naturaleza, incluyendo necesidades técnicas, económicas, sociales y medioambientales,
entre otras. Las herramientas CAD tradicionales ayudan a los diseñadores en la re-
presentación, modificación, análisis, documentación y evaluación de sus diseños. Sin
embargo, los ordenadores pueden cumplir un papel más complejo: el del diseño com-
putacional, consistente en la síntesis de nuevas soluciones de diseño. Esta tesis se
ha enfocado en este rol no trivial, siendo su objetivo general el desarrollo de nuevas
técnicas de diseño computacional capaces de considerar criterios de diseño.

Algunos aspectos del proceso de diseño pueden entenderse como una búsqueda o
exploración en un espacio de alternativas de diseño. Esta perspectiva facilita la ex-
plotación de técnicas computacionales para implementar métodos que sinteticen solu-
ciones de acuerdo al propósito de un problema de diseño dado.

Para el desarrollo de metodologías de diseño computacional, es necesario un sis-
tema generativo capaz de representar y generar el espacio de diseño. En esta tesis
hemos considerado el formalismo de las gramáticas de formas dado su uso intensivo
en la literatura de diseño computacional y dada también su versatilidad. El enfoque
tradicional a la hora de usar gramáticas de formas consiste en codificar el conjunto
completo de criterios de diseño en las mismas reglas, dando lugar a gramáticas exper-
tas que son difíciles de crear, modificar y mantener. Este tipo de gramáticas también
promueve soluciones previsibles, dado que las reglas han sido creadas con el conoci-
miento previo de los requisitos que las formas han de cumplir. En esta tesis hemos
considerado otra alternativa, que consiste en reducir o minimizar el número de criterios
codificados en las reglas. Así, tratamos con gramáticas más ingenuas que no pueden
producir soluciones factibles por ellas mismas, luego necesitan de un mecanismo de
control que guíe la derivación hacia buenos diseños. Concretamente, hemos utilizado
algoritmos de búsqueda y métodos de aprendizaje por refuerzo para llevar a cabo dicho
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control.
Las principales conclusiones de esta tesis pueden ser resumidas como sigue:

1. Se ha propuesto un esquema de clasificación para posibles enfoques
al diseño computacional basados en gramáticas de formas. Las distin-
tas clases dependen de la naturaleza de las reglas involucradas y de los métodos
de control utilizados. Concretamente, hemos propuesto un esquema en que se
consideran dos aspectos para clasificar técnicas de diseño computacional basadas
en gramáticas de formas. El primer aspecto considera la cantidad de criterios
de diseño codificados en las reglas, siendo las gramáticas puramente expertas
aquellas en las que la totalidad de los criterios han sido codificados de esta ma-
nera. Cuantos menos criterios sean codificados en las reglas, más ingenua puede
ser considerada la gramática. El segundo aspecto considera la complejidad del
método de control empleado, desde sistemas que carecen de dicho sistema de
control hasta sistemas que emplean mecanismos complejos como métodos de
búsqueda o algoritmos de aprendizaje por refuerzo. Estos dos aspectos dan lugar
a las siguientes cuatro clases: (1) gramáticas expertas sin un mecanismo de con-
trol, (2) gramáticas expertas combinadas con un mecanismo complejo de control,
(3) gramáticas ingenuas combinadas con un mecanismo complejo de control, y
(4) gramáticas ingenuas sin un mecanismo de control. La primera clase repre-
senta a las gramáticas de formas tradicionales, utilizadas en numerosas áreas.
Las clases segunda y tercera comprenden las principales contribuciones de esta
tesis. La cuarta clase también ha sido considerada en el contexto de esta tesis,
con el objetivo de estudiar cómo reaccionan los estudiantes de arquitectura ante
herramientas de diseño computacional en las que la aleatoriedad está presente.

2. Se ha desarrollado una metodología de diseño computacional basada
en gramáticas de formas expertas y un mecanismo de control complejo.
Concretamente, esta metodología está basada en la idea de codificar algunos re-
quisitos de diseño en las reglas y utilizar el resto de manera explícita para evaluar
las formas producidas a lo largo del proceso de generación, guiando dicho pro-
ceso hacia buenos diseños. Las gramáticas de formas involucradas son por tanto
menos expertas que en el enfoque tradicional en el cual se codifica la totalidad
de los criterios de diseño en las reglas. En esta configuración distinguimos en-
tre criterios que son más fáciles de especificar geométricamente y criterios que
son más fáciles de expresar como predicados lógicos. Los primeros son codifica-
dos dentro de reglas con capas, las cuales pueden ayudar en la organización y la
representación de las formas, así como reducir el tiempo de derivación de las mis-
mas. Los segundos son programados como restricciones y objetivos de diseño, los
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cuales son usados para guiar un algoritmo de búsqueda primero-en-profundidad.

3. Se ha desarrollado una herramienta software (ShaDe) para editar y
ejecutar gramáticas de formas con capas, restricciones y objetivos.
ShaDe permite la creación de gramáticas de formas genéricas que pueden ser
organizadas en capas. La herramienta también ofrece un conjunto predefinido de
restricciones y objetivos de diseño, asi como medios para personalizarlos e incluso
crear nuevos predicados. Las gramáticas de formas pueden ser ejecutadas en
ShaDe para producir soluciones que cumplan los criterios y objetivos de diseño
especificados.

4. Se ha desarrollado una metodología de diseño computacional basada
en gramáticas de formas ingenuas y un mecanismo de control complejo.
Concretamente, esta metodología está basada en la idea de usar el conjunto com-
pleto de criterios de diseño como recompensas en un proceso de aprendizaje por
refuerzo, con el objetivo de aprender un heurístico (o conjunto de heurísticos)
que determine cómo aplicar las reglas del sistema generativo. En el proceso de
generación, únicamente tenemos en cuenta la información aprendida para aplicar
las reglas, de modo que los criterios de diseño se utilizan de manera implícita.
Se han presentado dos alternativas para aprender las políticas de aplicación de
reglas, dependiendo de la manera de tratar la naturaleza multi-objetivo de los
problemas de diseño. En la primera, las recompensas son escalarizada de acuerdo
a un conjunto de preferencias de diseño que se conocen a priori, de modo que el
algoritmo averigua una única política para una gramática de formas dada. La
segunda alternativa no escalariza las recompensas, luego el algoritmo aprende
múltiples políticas que pueden ser utilizadas para producir un conjunto de solu-
ciones Pareto-óptimas.

5. Se ha propuesto un nuevo algoritmo de aprendizaje por refuerzo multi-
objetivo (PQ-learning). En el contexto de la metodología en la que no se es-
calarizan las recompensas, hemos propuesto una nueva técnica de aprendizaje por
refuerzo, basada en una extensión directa del algoritmo Q-learning, que trabaja
con recompensas vectoriales. Este nuevo método ha sido probado en dos proble-
mas pertenecientes a un benchmark de aprendizaje por refuerzo multi-objetivo.

6. Las metodologías desarrolladas han sido puestas en práctica en difer-
entes escenarios relacionados con la arquitectura. Concretamente, la téc-
nica basada en gramáticas de formas con capas, restricciones y objetivos ha
sido utilizada para sintetizar dos tipos de diseños: (1) viviendas configuradas de
acuerdo al módulo Hele propuesto por el arquitecto Rafael Leoz, y (2) restauran-
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tes virtuales que pueden ser usados como escenarios en ciertos videojuegos. La
técnica basada en gramáticas de formas ingenuas y aprendizaje por refuerzo ha
sido puesta en práctica en dos casos de aplicación relacionados con la generación
de viviendas habitables y energéticamente eficientes.

7. Se han llevado a cabo dos estudios empíricos con estudiantes de arqui-
tectura. Particularmente, fueron asociados con las metodologías correspondien-
tes a gramáticas de formas ingenuas con y sin control. El experimento relativo
a la metodología de las gramáticas ingenuas sin control fue llevado a cabo para
estudiar cómo los estudiantes de arquitectura reaccionan ante una herramienta
de diseño computacional donde se permiten comandos aleatorios. La principal
conclusión fue que los estudiantes están dispuestos a explorar la aleatoriedad, de
modo que las herramientas de diseño computacional deberían tenerla en cuenta;
sin embargo, también deberían proporcionar medios para controlar dicha aleato-
riedad. El experimento asociado a la metodología de gramáticas de formas ingen-
uas con control fue llevado a cabo para validar dicha metodología al ser utilizada
para generar esquemas de viviendas habitables, siendo la principal conclusión
que la herramienta puede proporcionar puntos de partida interesantes para los
proyectos arquitectónicos.

A continuación detallamos los aspectos de esta tesis que merecen una investigación
más profunda:

• La extensión de las metodologías propuestas a tipos más complejos de gramáticas
de formas, tales como gramáticas tridimensionales o incluso paramétricas, en
las cuales las formas se definen no sólo a partir de la disposición de distintos
elementos geométricos sino también a partir de parámetros variables, tales como
la anchura y altura de un rectángulo.

• Los casos de aplicación que involucran gramáticas ingenuas y aprendizaje por
refuerzo escalarizado se basan en una división en fases del problema de diseño
considerado. Esta separación del proceso de diseño en fases secuenciales sirve
para reducir el conjunto de criterios que han de tenerse en cuenta en cada paso.
Sin embargo, también introduce una limitación importante que puede afectar
al proceso de generación en el caso de problemas de diseño más complejos: el
proceso de aprendizaje sólo trata con los criterios locales de cada fase, y por tanto
las políticas no pueden reflejar aspectos globales. Por ejemplo, en el contexto de
nuestro ejemplo de diseño de viviendas, una política globalmente óptima daría
pistas acerca de cómo ubicar la cocina teniendo en cuenta la futura ubicación de
los ámbitos no especializados. El problema de no dividir el proceso en fases es la
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necesidad de considerar el conjunto completo de criterios de diseño en una única
fase. Una posibilidad para afrontar dicho problema es la integración con técnicas
más potentes como la generalización no lineal ofrecida por las redes neuronales.

• Hemos mostrado cómo la metodología basada en gramáticas ingenuas y PQ-
learning puede ser utilizada para abordar problemas geométricos, pero es nece-
saria más investigación para aplicar dicha metodología en escenarios reales. Creemos
que esto puede conseguirse por medio de la integración de PQ-learning con téc-
nicas de generalización.

• Finalmente, la aplicación de las metodologías propuestas a otros ámbitos de
diseño es también una línea importante de investigación.
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