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Abstract

Human activity recognition is one of the key competences for human
adaptive technologies. The idea of such technologies is to adapt their
services to human users, so being able to recognise what human users
are doing is an important step to adapt services suitably.

One of the most promising approaches for human activity recognition
is the knowledge-driven approach, which has already shown very in-
teresting features and advantages. Knowledge-driven approaches al-
low using expert domain knowledge to describe activities and envi-
ronments, providing efficient recognition systems. However, there are
also some drawbacks, such as the usage of generic and static activity
models, i.e. activities are defined by their generic features - they do not
include personal specificities - and once activities have been defined,
they do not evolve according to what users do.

This dissertation presents an approach to using data-driven techniques
to evolve knowledge-based activity models with a user’s behavioural
data. The approach includes a novel clustering process where initial in-
complete models developed through knowledge engineering are used
to detect action clusters which describe activities and aggregate new
actions. Based on those action clusters, a learning process is then de-
signed to learn and model varying ways of performing activities in or-
der to acquire complete and specialised activity models. The approach
has been tested with real users’ inputs, noisy sensors and demanding
activity sequences. Results have shown that the 100% of complete and
specialised activity models are properly learnt at the expense of learn-
ing some false positive models.





Resumen

El reconocimiento de actividades realizadas por humanos es una de
las competencias clave para las tecnologı́as cuyo objetivo es adaptarse
a los humanos. La principal idea de dichas tecnologı́as es adaptar los
servicios que ofrecen a sus usuarios, por lo que ser capaz de identi-
ficar lo que el usuario hace en cada momento es muy importante para
adaptar los sevicios de forma adecuada.

Uno de los sistemas más prometedores para reconocer las actividades
humanas es el llamado sistema basado en el conocimiento, que ya
ha demostrado varias propiedades interesantes y ventajas importantes.
Los sistemas basados en el conocimiento permiten usar el conocimien-
to de expertos para describir las actividades y los entornos en los que
se llevan a cabo, ofreciendo sistemas de reconocimiento eficientes. Sin
embargo, dichos sistemas también presentan algunos inconvenientes,
como son el uso de modelos de actividad genéricos y estáticos. Es de-
cir, por un lado las actividades se definen por sus caracterı́sticas gene-
rales, y por ello no son capaces de incorporar información personal, y
por otro, una vez que las actividades se han definido, no hay mecanis-
mos para hacer que evolucionen a medida que los usuarios cambian.

Esta tesis doctoral presenta un sistema de modelado que usa técnicas
basadas en datos para hacer evolucionar modelos de actividad basados
en el conocimiento usando los datos generados por un usuario. El sis-
tema de modelado se basa en un algoritmo nuevo de clustering donde
se usan modelos incompletos iniciales creados por técnicas basadas en
el conocimiento para detectar grupos de acciones que describen ac-
tividades y poder añadir ası́ nuevas acciones. Sobre estos grupos de
acciones se despliega un proceso de aprendizaje para aprender y mode-
lar distintas formas de realizar actividades. De este modo, se obtienen
modelos completos y especializados de las actividades definidas ini-
cialmente. El sistema de modelado se ha probado con información de
usuarios reales, sensores defectuosos y secuencias exigentes de activi-
dades. Los resultados muestran que se pueden aprender el 100 % de los
modelos de actividad completos y especializados, con el inconveniente
de aprender también algunos modelos falsos.





Laburpena

Giza-jarduerak igartzeko gaitasuna mugarrietako bat da gizakiengana
egokitzen diren teknologiak garatzerako orduan. Teknologia horien
helburua zerbitzuak gizakien behar eta nahietara egokitzea da, eta ho-
rretarako, giza-erabiltzailea momentuoro egiten ari dena igartzeko gai
izatea oso garrantzitsua da.

Giza-jarduerak igartzeko egin diren sistemen artean, etorkizun oparoe-
netako bat duen sistema ezagutzan oinarriturikoa da. Ezagutzan oina-
rrituriko sistemek jada hainbat abantaila eta ezaugarri interesgarri era-
kutsi dituzte. Beren muinean dago adituen ezagutza erabili ahal izatea
giza-jarduerak eta inguruneak deskribatzeko, eta modu horretara, jar-
duerak igartzeko sistema eraginkorrak eskaintzen dituzte. Hala ere,
sistema horiek badituzte beren desabantailak ere. Hala nola, jarduera
ereduak orokorrak izan ohi dira, hots, jarduerak beren ezaugarri oro-
korren medioz deskribatzen direnez, ez dituzte ezaugarri pertsonalak
erabiltzen, eta gainera jarduerak behin definituz gero, ez dira denboran
zehar eguneratzen.

Tesi honetan giza-jarduerak modelatzeko sistema berri bat aurkezten
da. Erabiltzaileek sortutako datuak erabiliz eta datuetan oinarritutako
teknikak aplikatuz, ezagutzan oinarritutako jarduera ereduak egunera-
tzako sistemak aurkezten dira. Sistemaren oinarrietako bat clustering
algoritmo berri bat da. Bere bitartez, ezagutzan oinarrituriko hasierako
eredu osatugabeak erabiltzen dira giza-jarduerak deskribatzen dituzten
ekintza multzoak detektatu eta ekintza berriak gehitzeko. Ekintza mul-
tzo horien gainean, ikasketa prozesu bat jartzen da martxan, jarduera
bat egiteko modu ezberdinak ikasi eta modelatzeko. Modu horreta-
ra, jarduera eredu oso eta espezializatuak ikas daitezke. Modelatze
sistema benetako erabiltzaileen informazioa, sentsore zaratatsuak eta
jarduera sekuentzia konplexuak erabiliz probatu da. Emaitzek erakus-
ten duten arabera, jarduera eredu oso eta espezializatuak ikas daitezke
%100eko arrakasta tasekin, nahiz eta eredu faltsu batzuk ere ikasten
diren prozesuan.
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The first step, my son, which one
makes in the world, is the one on
which depends the rest of our days.

François Marie Arouet, Voltaire

CHAPTER

1
Introduction

HUMAN activity recognition aims at recognising what a human is doing in
different environments and domains. To perform activity recognition,
different kinds of sensors have to be deployed in human-populated en-
vironments to monitor inhabitants’ behaviours and capture environ-

mental changes generated by human actions. The information provided by those
sensors has to be processed through data analysis techniques and/or knowledge
representation formalisms to create appropriate activity models and subsequently
use them for activity recognition. Thus using sensing and computing capabilities,
activities performed by humans can be detected and recognised.

Being able to recognise what human beings are doing in their daily life can
open the door to a lot of possibilities in diverse areas. Technology is becoming
more and more human-centred in order to provide personalised services. In other
words, technological services have to adapt to human users and not the other way
around.

Following that trend, human activity recognition becomes a natural enabler to
adaptive technologies. As such, it has become an important research topic in ar-
eas such as pervasive and mobile computing (Choudhury and Consolvo, 2008),
ambient assisted living (Philipose and Fishkin, 2004), social robotics (Fong et al.,
2003), surveillance-based security (Fernández-Caballero, 2012) and context-aware
computing (Laerhoven and Aidoo, 2001).

The scientific community has developed two main approaches to solve activ-
ity recognition, namely the data-driven and knowledge-driven approaches. Data-
driven approaches make use of large-scale datasets of sensors to learn activity
models using data mining and machine learning techniques. On the other hand,
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1. Introduction

knowledge-driven approaches exploit rich prior knowledge in the domain of inter-
est to build activity models using knowledge engineering and management tech-
nologies.

For knowledge-driven activity recognition systems, a widely recognised draw-
back is that activity models are usually static, i.e. once they have been defined, they
cannot be automatically adapted to users’ specificities (Chen et al., 2014). This is
a very restrictive limitation, because it is not generally possible to define complete
activity models for every user. Domain experts have the necessary knowledge about
activities, but this knowledge may not be enough to generate complete models in
all the cases. To make knowledge-driven activity recognition systems work in real
world applications, activity models have to evolve automatically to adapt to users’
varying behaviours. It turns out that model adaptability and evolution are aspects
that can be properly addressed by data-driven approaches. Hence, the objective of
this dissertation is to use data-driven techniques to make knowledge-based activity
models evolve automatically based on sensor data generated by specific users.

The remainder of this chapter is structured as follows: Section 1.1 explains
the context and motivation of the research. Afterwards, Section 1.2 formulates the
hypothesis, derived goals and the scope of the work. Section 1.3 describes the
followed research methodology to achieve the goals, and Section 1.4 summarises
the scientific and technical contributions of this dissertation. The chapter finalises
with an outline of the dissertation in Section 1.5.

1.1 Context and Motivation
Independently from the approach used to implement activity recognition systems, it
is usually the case that activity modelling and recognition are carried out separately.
Activity modelling is very important for activity recognition, since it provides the
models which have to be recognised in the sensor datasets generated by humans
while they perform activities. While data-driven approaches obtain those models
directly from user generated data, knowledge-driven approaches obtain them by
means of knowledge engineering techniques. However, both approaches share usu-
ally the same assumption, i.e. activity modelling is performed once and afterwards,
the generated models are used for activity recognition.

Assuming the static nature of activity models does not fit to the reality. People
tend to change the way they perform the same activities in time. Hence, the same
activity models cannot be used forever. From the point of view of data-driven activ-
ity modelling approaches, implementing dynamic activity models is not a problem,
as incremental learning techniques can be used (Rashidi and Cook, 2011). More-
over, as activity models are learnt directly from user generated data, personalised
activity models are naturally obtained. Two of the positive features of data-driven
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modelling are thus dynamic and personalised models. But those virtues pose also
some drawbacks: activity models are not generic so they cannot be applied to other
users and activity models are usually incomprehensible for humans which make
their usage for other applications much harder.

On the other hand, knowledge-driven modelling produces generic and human
understandable models, since activities are modelled by their intrinsic features and
relations rather than from data, and activity models are expressed using logical and
descriptive formalisms (Chen et al., 2012b). However, those models are usually
static, i.e. once they have been defined they do not evolve. In addition to it, ob-
taining personalised models is very complicated because experts cannot know in
advance all the personal features of a concrete user.

It is quite clear then that both activity modelling approaches have complemen-
tary advantages and disadvantages. An approach excels where the other fails. It
seems natural thus to try to combine both approaches in order to develop a better
activity modelling process where generic and personalised models can be obtained
and those models evolve in time with user generated data.

In this dissertation, a continuous activity modelling process is presented, where
domain experts provide initially generic activity models using knowledge engineer-
ing tools, to afterwards run data-driven learning algorithms on user generated data
to learn personalised models. Such personalised models will be presented to the ex-
pert, who can add or update them in the knowledge base. This loop is continuously
repeated in time to achieve dynamic and personalised models based on initially
provided generic models and user generated data. Figure 1.1 shows a diagram with
the described process.

Personalised
Model

Personalised
Model

Generic
Models

Domain 
expert Smart

Environment

Learning
System

Knowledge base

Present models
to expert

Obtain sensor
data

Learn
Models

Provide
initially

Add/update

Figure 1.1: The continuous activity model process to obtain dynamic and personalised
models from generic expert provided models.

The described activity modelling process uses generic knowledge-based activ-
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ity models provided by a domain expert, achieving thus generic and understandable
activity models. To solve the problem of personalised models, user generated data
is used in a learning process to produce knowledge-based personalised models.
This means that data-driven learning techniques are used to capture personal fea-
tures of generic activities and obtain understandable personalised activity models.
Such models, after expert validation, are added to the knowledge base to use them
subsequently in activity recognition systems. Repeating this process continuously,
dynamic activity models are obtained, which evolve in time as users change - or
not - their habits.

When modelling activities, two major aspects are considered: the actions car-
ried out to perform the activity and the descriptive features of the activity (Chen
et al., 2014). Actions refer to object interactions. For example, to prepare a coffee
a user might have coffee and a cup to drink the coffee. This sequence can be mod-
elled as the action sequence of hasCoffee and hasContainer, which are obtained
from the interactions with the respective objects monitored by sensors. Descriptive
properties of an activity refer to the time when the activity has been performed, its
duration, the concrete set of objects used and their order. Both aspects of an activity
model, i.e. actions and descriptive properties, may vary from person to person.

As far as learning personalised descriptive properties for knowledge-based
models regards, Chen et al. already combined data-driven and knowledge-driven
approaches in (Chen et al., 2014). However, to the best of our knowledge, a sim-
ilar work to learn specific actions for activity models has not been published yet.
In that sense, the work presented in this dissertation tackles a novel problem. In
fact, Chen et al. assume in their work that the actions in the seed activity models
provided by domain experts can be applied to any user. This means that every user
has to execute the same actions to perform a concrete activity.

In this dissertation, the problem of learning actions for given activities is anal-
ysed. It cannot be generally assumed that every user executes the same actions to
perform a concrete activity. Imagine, for instance, that a user prepares a coffee and
adds sugar to it. To make it simple, the activity model for this user could contain the
actions hasCoffee, hasContainer, hasWater and hasFlavour. But there is another
user who does not like any flavourant, so she prepares coffee by means of actions
hasCoffee, hasContainer and hasWater. As it can be seen, both activity models are
different as far as actions regard, but both of them are valid models for the activity
of making a coffee.

To develop a proper activity modelling process, learning actions is a key fea-
ture. It has been observed that generic activity models provided by a domain expert
have the necessary actions to perform an activity, but not sufficient actions for per-
sonalised models. Those activity models can be used to further learn new actions
for different users and thus generate new personalised activity models. Let us il-
lustrate our hybrid activity modelling approach with an example. Figure 1.2 shows
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an initial generic activity model for the MakeCoffee activity, which is composed
by the actions hasCoffee and hasContainer. These are the necessary actions for
every person to perform a MakeCoffee activity, which highlight the indispensable
actions of making a coffee, i.e. the use of coffee and a container to place the coffee
in. Nevertheless, some users might add some milk and sugar, others cream and
so on. The idea of our approach is to create high-level activity models with only
these indispensable actions - generic models -, and then use the data generated by a
specific user performing the activity to learn those new actions which also config-
ure the personal way of making coffee. In the case of Figure 1.2, where the initial
activity model will only include coffee and container, the system would learn that
MakeCoffee is performed in two ways by the user: in the first one, the user adds
milk (hasMilk) and sugar (hasFlavour), while in the second one only sugar is added
(hasFlavour). Hence two specialised and complete activity models of MakeCoffee
can be learnt. This way, experts, initially, only have to provide generic but incom-
plete activity models with necessary actions. Afterwards the learning system can
analyse a user’s behavioural data and learn the specialised and complete models to
enrich the knowledge base, thus improving initial activity models.

MakeCoffee

hasCoffee hasContainer

Initial
Activity 
Model

MakeCoffee

hasCoffee

hasMilk hasContainer

hasFlavour1 hasCoffee

hasContainer

hasFlavour2

Learned Activity Model
with 2 specialised and

complete models

Learning
Algorithm

User
Generated

Data

Figure 1.2: Illustrative example of the objective of the dissertation: using the initial
incomplete model for MakeCoffee and user generated data, the learning algorithm
learns two specialised and complete models.

Running the proposed learning process periodically with new data generated by
a concrete user, a dynamic activity modelling system is achieved. As a user evolves
regarding the way she performs certain activities, the learning approach learns new
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versions of the initial activity models. Hence, activity models can be adapted to
users’ varying behaviours.

Notice that the proposed modelling approach does not only learn new actions
for initial activity models, but it also learns sub-activities of already defined activ-
ities. In the example depicted in Figure 1.2, the two specialised models are two
sub-activities of the MakeCoffee activity, namely MakeBlackCoffee and Make-
CoffeeWithMilk. This feature makes possible for the expert to define activities
in a higher level of abstraction and let the system learn different sub-activities to
generate specialised knowledge.

As a summary, this dissertation is focused on making another step towards dy-
namic and personalised activity models for knowledge-driven activity recognition
systems. A learning system to obtain complete and specialised activity models
from generic but incomplete expert provided models has been developed. This step
allows implementing activity modelling approaches that use expert knowledge to
have generic activity models applicable to every user, and learn new actions for
concrete users achieving personalised and dynamic activity models.

1.2 Hypothesis, Objectives and Scope
Based on the current state of activity modelling and recognition, the hypothesis of
this dissertation is:

Hypothesis. Using domain experts’ previous knowledge as generic but incomplete
activity models and data-driven learning techniques on user generated data, it is
possible to learn accurately new actions to obtain personalised activity models for
every user.

To be able to validate this hypothesis the general goal of this dissertation is:

Goal. To design and implement a learning system that uses generic but incomplete
activity models to analyse unlabelled activity sensor datasets and acquire person-
alised models which contain new actions.

This general goal can be achieved by addressing the following more specific
and measurable objectives:
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1. To study the current state of the art on knowledge- and data-driven activity
modelling and recognition.

2. To choose a knowledge representation formalism and design proper struc-
tures to represent domain experts’ knowledge.

3. To design and implement a multiple step learning algorithm which uses pre-
vious knowledge and user generated data to obtain personalised activity mod-
els.

4. To identify the evaluation methodology for the learning system which better
addresses the requirements of the system.

5. To validate the obtained results quantitatively, with the objective of capturing
the 100% of real activity models performed by a user.

The resulting learning system should also fulfil the following requirements:

1. User independence: the learning system should be able to acquire person-
alised models for any user.

2. Use the same generic activity models for every user: to show that incomplete
activity models provided by experts are really generic, the same models have
to be used for every user.

3. Environment independence: the knowledge representation formalism and the
learning algorithm should be defined to cope with different environments.
As such, representing new locations and objects of a different environment
should be straightforward.

The work presented in this dissertation does not deal with the following condi-
tions:

1. Unknown activities: this dissertation does not propose any method to iden-
tify and learn unknown activities. Personalised models of already defined
activities are learnt, thus leaving the integration of other techniques to learn
unknown activities for future work.

2. Multiple users being monitored: it is assumed that only one user will be
monitored in a particular experiment and dataset. Considering multi-user
monitoring approaches is beyond the scope of this research work.

3. Concurrent and interwoven activities: users are not allowed to perform ac-
tivities concurrently, i.e. once they start an activity, they have to finish it
before starting another activity. Concurrent and interwoven activities pose
challenges that will not be addressed in this dissertation.
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1.3 Methodology
A research strategy has been defined in order to achieve the statement and derived
goals presented in Section 1.2. The strategy is defined as follows:

1. Update knowledge by reviewing the literature in the area of activity mod-
elling and recognition, knowledge engineering, machine learning and data
mining. This analysis has been reinforced by attending specialised scientific
conferences.

2. Critically evaluate existing activity modelling and recognition solutions,
analysing their scope and limitations and identifying weak areas where con-
tributions to the state of the art can be done.

3. Design and develop the different modules of the activity model learner, in-
crementally adopting more complex and efficient solutions.

4. Test developed modules through experiments and analyse results to enhance
the performance of the system.

5. Attend conferences and workshops to present partial results and validate
them with the scientific community.

6. Experimentation and evaluation of the prototype at each particular stage.

7. Network with experts at conferences, project meetings and consortia (the
author is an active member of the SONOPA project1 - SOcial Networks for
Older adults to Promote an Active Life -). Contact for particular details by e-
mail or by visiting other research groups (the author was a visiting researcher
in De Montfort University for 6 weeks in 2014).

8. Redesign the activity model learner system with feedback from all this net-
work, as well as the literature.

9. Select an appropriate evaluation methodology and evaluate consequently the
activity model learner system.

10. Dissemination of the results obtained during the research process.

This methodology is illustrated in Figure 6.1, as a cyclic process which starts
with the review of the state of the art and finishes with the publications and the final
prototype.

1http://www.sonopa.eu/
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Evaluation

Development

Solution
Design
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Update
Knowledge

Prototypes

Expert
feedback

Review state
of the art

Experimental
feedback

Publications
Final prototype

Figure 1.3: Followed research methodology.

1.4 Contributions
The following scientific contributions can be found in this dissertation:

• A two-step activity clustering algorithm which uses generic but incomplete
activity models and context knowledge to recognise action clusters that form
an activity and aggregate new actions. The activity clustering algorithm idea
is introduced in Chapter 3 and is explained through Chapter 4.

• A learning algorithm that uses action clusters which describe activities to
learn personalised activity models for every defined activity. This learning
algorithm is first presented in Chapter 3 and further developed in Chapter 5.

• A hybrid evaluation methodology for activity modelling and recognition,
based on surveys to users and simulation tools. This evaluation methodology
is fully described and applied in Chapter 6. The details of the methodology
can be found in Section 6.1.2.

In order to deliver those scientific contributions, a technical contribution has
also be posed in this dissertation:

• A synthetic dataset generator tool: a special simulation tool for sensor dataset
generation designed and developed to apply the hybrid evaluation methodol-
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ogy to the activity modelling approach. The software tool is described in
Chapter 6, concretely in Section 6.1.2.2.

1.5 Thesis Outline
The thesis is structured in seven chapters.

Chapter 1 is the current chapter. It presents the context and motivation of the
research, as well as the hypothesis, goals and scope. To achieve those goals and
validate the hypothesis, a research methodology is proposed. Finally, the contribu-
tions of the dissertation and their location in the document are also shown.

Chapter 2 describes the state of the art relevant to the dissertation. The most
important activity monitoring, modelling and recognition approaches are presented
providing a well structured taxonomy. The chapter also shows the position in such
taxonomy of the research performed in this dissertation.

Chapter 3 establishes the basis of the dissertation, giving a high-level view of
the whole system. First of all, the chapter describes in detail ontology-based ac-
tivity modelling approaches, which serve as reference for the work carried out in
this dissertation. Afterwards, a set of definitions and constraints is posed to estab-
lish the scope of the research clearly. The knowledge representation formalism and
structures are presented and the input data of the system is identified. Finally, the
intuition behind the learning system and a high-level design are described.

Chapter 4 describes the proposed activity clustering algorithm, which is divided
into two main steps: initialisation and action aggregation. Both steps are described
in detail, providing pseudo-code for their implementation.

Chapter 5 explains the last stage of the learning process. Design decisions
are explained and a rigorous analysis of all available information to learn activity
models is done. The learning algorithm’s steps are described in detail and pseudo-
code for its implementation is provided.

Chapter 6 evaluates the complete learning system and its constituent parts. For
this purpose, the most relevant evaluation methodologies for activity recognition
systems are shown and their suitability to evaluate the learning system is analysed.
The chapter proposes a new hybrid evaluation methodology, based on surveys to
users and simulation tools. Afterwards, evaluation scenarios and metrics are pre-
sented and obtained results are shown, leading to a discussion of the learning sys-
tem, its advantages and drawbacks.

Finally, Chapter 7 summarises the dissertation, draws the conclusions of this
research work and shows the related future lines of work.
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If I have seen further it is by stand-
ing on the shoulders of giants.

Isaac Newton

CHAPTER

2
Related Work

HUMAN activity recognition is a broad research area which can be anal-
ysed from many different points of view. The objective of this chapter
is to provide a high-level picture of the current status of the research
topic, to then describe more in detail the concrete approaches that are

related to the work presented in this dissertation.
First of all, Section 2.1 introduces the concept of Human Activity Recognition,

shows its main applications and provides a high-level taxonomy of activity recog-
nition approaches. Section 2.2 describes in detail the category in which this disser-
tation fits regarding the monitoring approach: Sensor-Based Activity Recognition.
Based on the specific sensors used for activity monitoring, Section 2.3 presents a
more detailed taxonomy for the category of sensor-based activity recognition. On
the other hand, the following sections analyse the main currents of activity mod-
elling, which is the focus of this dissertation: Section 2.4 presents Data-Driven
Approaches, while Section 2.5 describes in detail Knowledge-Driven Approaches.
A summary and comparison of both activity modelling currents is provided in Ta-
ble 2.1. Some recent work has settled the basis to combine both currents, giving as
result the Hybrid approaches, as shown in Section 2.6. This dissertation is another
step in order to achieve hybrid approaches that can combine effectively the best fea-
tures of knowledge- and data-driven approaches. The chapter finalises with Section
2.7, where a concise summary is provided alongside with some conclusions.

11



2. Related Work

2.1 Human Activity Recognition
Human activity recognition has become a key research topic in diverse areas, in-
cluding pervasive and mobile computing (Weiser, 1991) (Choudhury and Con-
solvo, 2008), surveillance-based security (Poppe, 2010), (Akdemir et al., 2008),
(Weinland et al., 2011), context-aware computing (Laerhoven and Aidoo, 2001),
(Wren and Tapia, 2006), ambient assisted living (Philipose and Fishkin, 2004),
(Cook and Schmitter-Edgecombe, 2009), (Kasteren and Noulas, 2008), (Chen
et al., 2012b) and social robotics (Fong et al., 2003). The recent increase in in-
terest in activity recognition can be attributed to the intensive thrusts from the
latest technology development and application demands. The progress in sensor
technologies has been substantial over the past decade, especially low-power, low-
cost, high-capacity and miniaturised sensors, wired and wireless communication
networks (Pantelopoulos and Bourbakis, 2010), (Alemdar and Ersoy, 2010), (Ding
et al., 2011). In parallel, data processing techniques have also shown important ad-
vances, based on higher computational capabilities of devices and the development
of novel algorithms. The progress and maturity of these supporting technologies
have pushed the research focuses of the aforementioned areas to shift from low-
level data collection and transmission towards high-level information integration,
context processing and activity recognition and inference.

At the same time, activity recognition has been demanded by a growing number
of solutions for real-world problems and applications. For example, surveillance
and security try to make use of activity recognition technologies to address the
threats of terrorists (Akdemir et al., 2008). Ambient assisted living aims to exploit
activity monitoring, recognition and assistance to support independent living and
ageing in place. Other emerging applications, such as intelligent meeting rooms
(Mikic et al., 2000) and smart hospitals (Sánchez et al., 2008), are also dependent
on activity recognition in order to provide multimodal interactions, proactive ser-
vice provision, and context aware personalised activity assistance.

As a result of the technology push and application pull, activity recognition has
built its own space in the academic world. As such, research related to activity
recognition has become regular topics in mainstream international conferences in
related areas such as the AAAI Conference on Artificial Intelligence1, Computer
Vision and Pattern Recognition2, International Joint Conference on Artificial Intel-
ligence3, International Joint Conference on Pervasive and Ubiquitous Computing4,
International Conference on Pervasive Computing and Communications5 and In-

1http://www.aaai.org/
2http://www.cvpr201x.org/
3http://ijcai.org/
4http://ubicomp.org/
5http://www.percom.org/
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ternational Joint Conferences on Ambient Intelligence1. In order to try to channel
the research towards future applications, a substantial number of projects and ini-
tiatives have been undertaken. Good examples are The Ambient Assisted Living
Joint Programme2, The House of the Future3, The Gator-Tech Smart House4 or
The iDorm project5.

Apart from potential applications, activity recognition has gained research in-
terest because it is a multidisciplinary and complex process. Activity recognition
can be roughly characterised by four basic tasks. These tasks include:

1. Selection and deployment of appropriate sensors to objects and environments
in order to monitor and capture a user’s behaviour along with the state change
of the environment.

2. To collect, store and process perceived information through data analysis
techniques and/or knowledge representation formalisms at appropriate levels
of abstraction.

3. To create computational activity models in a way that allows software sys-
tems/agents to conduct reasoning and manipulation.

4. To select or develop reasoning algorithms to infer activities from sensor data.

Each individual task can be tackled by a great variety of methods, technologies
and tools. It is often the case that the selection of a method used for one task is
dependent on the method of another task. As such, activity recognition has been
classified in the following ways according to (Chen et al., 2012a). The first clas-
sification criterion focuses on the sensors used for activity monitoring, while the
second one pays attention to activity modelling techniques:

1. Vision-based vs. sensor-based activity recognition: In terms of the type of
sensor that is used for activity monitoring, activity recognition can be gen-
erally classified into two categories. The first is referred to as vision-based
activity recognition, which is based on the use of visual sensing facilities
such as video cameras to monitor an actor’s behaviour and environmental
changes. The generated sensor data are video sequences or digitized visual
data. The approaches in this category exploit computer vision techniques,
including feature extraction, structural modelling, person and object recog-
nition, movement segmentation, action extraction and movement tracking to

1http://www.ami-conferences.org/
2www.aal-europe.eu
3http://architecture.mit.edu/house n
4http://www.icta.ufl.edu/gt.htm
5http://cswww.essex.ac.uk/iieg/idorm.htm
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analyse visual observations for pattern recognition. The second category is
referred to as sensor-based activity recognition, which is based on the use
of emerging sensor network technologies for activity monitoring (Section
2.2). The generated sensor data from sensor-based monitoring are mainly
time series of state changes and/or various parameter values that are usually
processed through data fusion, probabilistic or statistical analysis methods
and formal knowledge technologies for activity recognition. Sensor-based
activity monitoring can be further classified into two categories: (i) wearable
sensor-based activity monitoring, where sensors are attached to an actor un-
der observation, and (ii) dense sensing-based activity monitoring, where sen-
sors are attached to objects that constitute the activity environment. Wearable
sensors, including modern smartphones, often use inertial measurement units
and RFID tags to gather an actor’s behavioural information. This approach is
effective for recognising physical movements such as physical exercises. In
contrast, dense sensing infers activities by monitoring human-object interac-
tions through the usage of multiple multi-modal miniaturised sensors.

2. Data-driven vs. knowledge-driven activity recognition: The information
obtained through activity monitoring has to be structured and processed to
recognise activities. For that purpose, activity models play a critical role. In
particular, the mechanisms activities are recognised are closely related to the
nature and representation of activity models. Generally speaking, activity
models can be built using one of two methods. The first is to learn activ-
ity models from pre-existent large-scale datasets of users’ behaviours using
data mining and machine learning techniques. This method involves the cre-
ation of probabilistic or statistical activity models, followed by training and
learning processes. As this method is driven by data, and the ensued activ-
ity inference is based on probabilistic or statistical classification, it is often
referred to as data-driven or bottom-up approaches (in the rest of this disser-
tation, data-driven will be used to refer to this category). The advantages of
the data-driven approaches are the capabilities of handling uncertainty and
temporal information (Brand et al., 1997). However, this method requires
large datasets for training and learning, and suffers from the data scarcity or
the “cold start” problem. It is also difficult to apply learnt activity models
from one person to another. As such this method suffers from the problems
of scalability and reusability. Data-driven approaches are described in detail
in Section 2.4. The other method for building activity models is to exploit
rich prior knowledge in the domain of interest to construct activity models
directly using knowledge engineering and management technologies. This
usually involves knowledge acquisition, formal modelling and representa-
tion. Activity models generated in this method are normally used for activity
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recognition or prediction through formal logical reasoning, e.g., deduction,
induction or abduction. As such, this method is referred to as knowledge-
driven or top-down approach (knowledge-driven will be used from now on).
Knowledge-driven approaches have the advantages of being semantically
clear, logically elegant and easy to get started. But they are weak in han-
dling uncertainty and temporal information and the models could be viewed
as static and incomplete. For a complete review of knowledge-driven ap-
proaches, see Section 2.5. With the purpose of combining the advantages of
those two methods, hybrid approaches have recently emerged (Section 2.6).

The situation generated by both classification criteria is represented in Figure
2.1, providing a high-level view of activity recognition systems’ taxonomy.

Data
driven

Knowledge
driven

Sensor
based

Vision
based

Activity
Monitoring

Activity
Modelling

Figure 2.1: A high-level taxonomy of activity recognition systems, spanned by two
axis: monitoring and modelling approach.

Vision-based activity recognition has been a research focus for a long period
of time due to its important role in areas such as surveillance, robot learning and
security. However, as this dissertation is based on sensor-based approaches, an
exhaustive review of vision-based systems is not provided. Detailed up to date
reviews can be found in (Poppe, 2010), (Moeslund et al., 2006), (Yilmaz et al.,
2006), (Weinland et al., 2011) and (Turaga, 2008). Even though all those surveys
cover different topics, together they have provided an extensive overview on the
vision-based approach. It is concluded from those contributions that while visual
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monitoring is intuitive and information-rich, vision-based activity recognition suf-
fers from issues relating to privacy and ethics (Yilmaz et al., 2006) as cameras are
generally perceived as recording devices.

Compared to the number of surveys in vision-based activity recognition, and
considering the wealth of literature in sensor-based activity recognition, there is a
lack of extensive review on the state of the art of sensor-based activity recognition.
This may be because the approach only recently became feasible when the sensing
technologies matured to be realistically deployable in terms of the underpinning
communication infrastructure, costs and sizes. An exception to this rule is the
survey published by Chen et al. (Chen et al., 2012a), which can be considered as
the reference work for any sensor-based activity recognition approach.

2.2 Sensor-Based Activity Recognition
For the upcoming discussions about activity monitoring, modelling and recogni-
tion, it is useful to distinguish human behaviours at different levels of granularity.
For physical behaviours, the terms “action” and “activity” are commonly used in
activity recognition communities. In some cases they are used interchangeably and
in other cases they are used to denote behaviours of different complexity and dura-
tion. In the latter cases the term “action” is usually referred to as simple ambula-
tory behaviour executed by a single person and typically lasting for short durations
of time. Examples of actions include bending, retrieving a cup from a cupboard,
opening a door, putting a teabag into a cup and so forth. On the other hand, the
term “activities” here refers to complex behaviours consisting of a sequence of ac-
tions and/or interleaving or overlapping actions. They could be performed by a
single human or several humans who are required to interact with each other in
a constrained manner. They are typically characterized by much longer temporal
durations, such as making tea or two persons making meals. For the rest of this dis-
sertation, the second case will be adopted. As such, “actions” will be considered
short-time simple executions, while “activities” will be described by a sequence of
actions.

The first approaches that implemented the idea of using sensors for activity
monitoring and recognition appeared in the late 90s. The Neural Network House
(Mozer, 1998), in the context of home automation, can be considered a pioneer in
this area, alongside with a number of location-based applications aiming to adapt
systems to users’ whereabouts (Leonhardt and Magee, 1998), (Golding and Lesh,
1999), (Ward et al., 1997). The approach was soon found to be more useful and
suitable in the area of ubiquitous and mobile computing – an emerging area in the
late 90s, due to its easy deployment. As such, extensive research has been un-
dertaken to investigate the use of sensors in various application scenarios of ubiq-
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uitous and mobile computing, leading to considerable work on context-awareness
(Schmidt et al., 1999), (Randell and Muller, 2000), (Gellersen et al., 2002), smart
appliances (Schmidt and Laerhoven, 2001), (Laerhoven and Aidoo, 2001) and ac-
tivity recognition (Laerhoven, 2001), (Foerster and Fahrenberg, 2000), (Lee and
Mase, 2002). Those initial research works usually made use of wearable sensors,
either dedicated sensors attached to human bodies or portable devices like mo-
bile phones, with application to ubiquitous computing scenarios such as providing
context-aware mobile devices. Activities being monitored in these researches are
mainly physical activities like motion, walking and running. These early works lay
a solid foundation for wearable computing and still inspire and influence today’s
research.

In the early 2000s, a new sensor-based approach that uses sensors attached
to objects to monitor human activities appeared. This approach, which was later
dubbed as the “dense sensing” approach, performs activity recognition through
the inference of user-object interactions (Bao and Intille, 2004), (Patterson et al.,
2003). The approach is particularly suitable for dealing with activities that involve
a number of objects within an environment, or instrumental Activities of Daily
Living (ADL) (Chan et al., 2008), (Nugent and Mulvenna, 2009). Research on
this approach has been heavily driven by the intensive research interests and huge
research effort on smart home based assisted living, such as the EU’s Ambient As-
sisted Living program. In particular, sensor-based activity recognition can better
address sensitive issues in assisted living such as privacy, ethics and obtrusive-
ness than conventional vision-based approaches. This combination of application
needs and technological advantages has stimulated considerable research activities
in a global scale, which gave rise to a large number of research projects, where a
plethora of impressive works on sensor-based activity recognition have been de-
veloped (Kern et al., 2003), (Mantyjarvi, 2001), (Philipose and Fishkin, 2004),
(Patterson and Fox, 2005), (Buettner and Prasad, 2009), (Wren and Tapia, 2006),
(Gu et al., 2009), (Patterson et al., 2003), (Liao et al., 2007a).

While substantial research has been undertaken, and significant progress has
been made, the two main approaches, wearable sensors based and dense sensing
based activity recognition are currently still focuses of study. The former is mainly
driven by the ever-popular pervasive and mobile computing while the latter is pre-
dominantly driven by smart environment applications such as ambient assisted liv-
ing. Interests in various novel applications are still increasing and application do-
mains are rapidly expanding.
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2.3 Sensor and Activity Monitoring
Thanks to the rapid development in electronics, a wide range of sensors, including
contact sensors, RFID, accelerometers, audio and motion detectors, to name but
a few, are available for activity monitoring. These sensors are different in types,
purposes, output signals, underpinning theoretical principles and technical infras-
tructure. However, they can be classified into two main categories in terms of the
way they are deployed in activity monitoring applications. These are wearable
sensors and dense sensors, and are described in detail in the following sections.

2.3.1 Wearable sensor-based activity monitoring
Wearable sensors generally refer to sensors that are positioned directly or indirectly
on human body. These kinds of sensors can be worn by humans, so they are named
wearable sensors. They generate signals when the user performs actions and ac-
tivities. As a result, they can monitor features that are descriptive of the person’s
physiological state or movement. Wearable sensors can be embedded into clothes,
eyeglasses, belts, shoes, wristwatches, mobile devices or positioned directly on the
body. They can be used to collect information such as body position and movement,
pulse, and skin temperature. Researchers have found that different types of sensor
information are effective for classifying different types of activities. As wearable
sensors are not directly related to this dissertation, some references are shown for
further reading, classified by the sensors used:

1. Inertial measurement units: those sensors are composed by accelerometers
and gyroscopes and are probably the most frequently used wearable sen-
sor for activity monitoring. Inertial measurement units provide information
about acceleration and speed of the units while moving. In consequence,
they are appropriate to monitor human movements and actions and activities
related to body motion, such as physical exercise. Some examples of the
usage of inertial measurement units are provided in (Bao and Intille, 2004),
(Lukowicz et al., 2004), (Lee and Mase, 2002) and (Mantyjarvi, 2001).

2. GPS sensors: specially used for monitoring outdoor location-based activities,
such as in (Patterson et al., 2003), (Ashbrook and Starner, 2003) and (Liao
et al., 2007b).

3. Biosensors: to monitor activities through vital signs, e.g. (Sung, M., DeVaul,
R., Jimenez, S., Gips, J., Pentland, 2004), (Harms et al., 2008) and (Finni
et al., 2007).

Wearable sensor-based activity monitoring suffers from limitations. Most wear-
able sensors need to run continuously and be operated hands-free. This may have
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difficulties in real world application scenarios. Practical issues include the accept-
ability or willingness to use wearable sensors and the viability and ability to wear
them. Technical issues include the size, ease of use, battery life and effectiveness
of the approach in real-world scenarios. A way to overcome such problems is to
make use of existing gadgets that have already been carried in a daily basis like
smartphones as intelligent sensors for activity monitoring, recognition and assis-
tance. This practice has been in place for a while (Gellersen et al., 2002), (Schmidt
and Laerhoven, 2001) and is expected to gain large-scale uptake given the latest de-
velopment and affordability of such palm-held electronic devices. Recently, a new
and promising class of wearable sensors have appeared in the market, namely the
Google Glasses1 (see Figure 2.2). Those special glasses include a camera, a small
eye-screen, headphones and a computing unit. It is expected that the irruption of
such glasses will bring to market more similar options. The potential of these kinds
of devices for activity monitoring and recognition is still to be explored.

Obviously wearable sensors are not suitable for monitoring activities that in-
volve complex physical motions and/or multiple interactions with the environment.
In some cases, sensor observations from wearable sensors alone are not sufficient to
differentiate activities involving simple physical movements (e.g., making tea and
making coffee). As a result, dense sensing based activity monitoring has emerged,
which is described below.

Figure 2.2: The Google Glass wearable, with its processing unit, camera, headphones
and screen.

2.3.2 Dense sensing-based activity monitoring
Dense sensing-based activity monitoring is based on attaching sensors to objects
that a user manipulates while performing activities. Hence activity monitoring is

1https://www.google.com/glass/start/
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carried out by detecting user-object interactions. The approach is based on real-
world observations that activities are characterised by the objects that are manip-
ulated during their performance. A simple indication of an object being used can
often provide powerful clues about the activity being undertaken. As such it is
assumed that activities can be recognised from sensor data that monitors human
interactions with objects in the environment. By dense sensing, the way and scale
with which sensors are used is characterised. Using dense sensing a large number
of sensors, normally low-cost low-power and miniaturised, are deployed in a range
of objects or locations within an environment for the purpose of monitoring move-
ment and behaviour. Following the dense sensing paradigm, sensors are moved
from human bodies to human-populated environments.

The dense sensing paradigm has been widely used for creating ambient intelli-
gent applications such as smart homes, because sensors are embedded within en-
vironments. The pre-eminence of dense sensing in ambient assisted living (AAL),
via the smart home paradigm, can be seen in (Chan et al., 2008), (Nugent and
Mulvenna, 2009) or (Helal et al., 2005). Sensors in a smart home can monitor
an inhabitant’s movements and environmental events so that activities can be in-
ferred based on the sensor observations, thus providing just-in-time context-aware
assistance. For instance, a switch sensor in the bed can strongly suggest sleeping
or relaxing, and pressure mat sensors can be used for tracking the movement and
position of people within the environment.

Since the introduction of the idea in early 2000s (Bao and Intille, 2004), (Pat-
terson et al., 2003), extensive research has been undertaken to investigate the appli-
cability of the approach in terms of sensor types, modalities and applications. For
example, Tapia et al. (Tapia et al., 2004) use environmental state-change sensors
to collect information about interaction with objects and recognise activities that
are of interest to medical professionals such as toileting, bathing, and grooming.
Wilson et al. (Wilson and Atkeson, 2005) use four kinds of anonymous and binary
sensors, motion detectors, break-beam sensors, pressure mats, and contact switches
for simultaneous tracking and activity recognition. Wren et al. (Wren and Tapia,
2006) employ networks of passive infrared motion sensors to detect presence and
movement of heat sources. With this captured data they can recognise low-level ac-
tivities such as walking, loitering, and turning, as well as mid-level activities such
as visiting and meeting. Srivastava et al. (Srivastava et al., 2001) exploit wireless
sensor network to develop smart learning environment for young children. Hol-
losi et al. (Hollosi and Schroder, 2010) use voice detection techniques to perform
acoustic event classification for monitoring in Smart Homes. Simple object sensors
are adopted in (Aipperspach et al., 2006).

Given the abundance of different types and modalities of sensors, sensors have
been used in different ways and combinations for dense sensing activity monitoring
in many application scenarios. It is impossible to claim that one sensor deployment
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for a specific application scenario is superior to the other. The suitability and per-
formance is usually down to the nature of the type of activities being assessed and
the characteristics of the concrete applications.

Generally speaking, wearable sensor-based activity monitoring receives more
attention in mobile computing while dense sensing is more suitable for intelligent
environment enabled applications. It is worth pointing out that wearable sensors
and dense sensing are not mutually exclusive. In some applications they have to
work together. For example, RFID (Radio Frequency Identification) based activity
monitoring requires that objects are instrumented with tags and users wear an RFID
reader affixed to a glove or a bracelet. Philipose and Fishkin (Philipose and Fishkin,
2004), (Fishkin et al., 2005) developed two devices, iGlove and iBracelet, working
as wearable RFID readers that detect when users interact with unobtrusively tagged
objects. Patterson et al. (Patterson and Fox, 2005) performed fine-grained activity
recognition (i.e., not just recognising that a person is cooking but determining what
they are cooking) by aggregating abstract object usage. Hodges et al. (Hodges and
Pollack, 2007) proposed to identify individuals from their behaviour based on their
interaction with the objects they use in performing daily activities. Buettner et al.
(Buettner and Prasad, 2009) recognise indoor daily activities by using an RFID sen-
sor network. In most cases wearable sensors and dense sensing are complementary
and can be used in combination in order to yield optimal recognition results. For
example, Gu et al. (Gu et al., 2009) combine wearable sensors and object sensors
for collecting multimodal sensor information. Through a pattern-based method,
they recognise sequential, interleaved and concurrent activities.

Dense sensing activity monitoring has also some drawbacks. One of the most
obvious ones is the need to install a lot of sensors in human populated environ-
ments, which may involve considerable infrastructure changes (install pressure
mats or movement sensors), or the problem of adding sensors to any new object in-
troduced in the environment (attach contact sensors to glasses bought in the super-
market). The practical feasibility of the approach is probably linked to introducing
sensors in the production steps of objects and building phases of the environments.
Another drawback is the simple information provided by the sensors, which cannot
be enough if very detailed activities have to be recognised. A contact sensor may
indicate an interaction between a human and an object, but it cannot provide any
information about how the object is being used by the human.

2.4 Data-Driven Approaches
In terms of the techniques and methods used for activity modelling and recognition,
abstracting from specific activity monitoring systems, data-driven activity mod-
elling is one of the most successful approaches. Data-driven activity modelling can
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be generally classified into two main categories: generative and discriminative. The
generative approach attempts to build a complete description of the input or data
space, usually with a probabilistic model such as a Bayesian Network. In contrast,
the discriminative approach only models the mapping from inputs (data) to outputs
(activity labels). Discriminative approaches include many heuristic (rule-based)
approaches, neural networks, conditional random fields and linear or non-linear
discriminative learning (e.g. support vector machines). Results using each of those
methods are covered in the following.

2.4.1 Generative modelling
The simplest possible generative approach is the Naı̈ve Bayes classifier, which has
been used with promising results for activity recognition (Bao and Intille, 2004),
(Brdiczka et al., 2007), (Cook and Schmitter-Edgecombe, 2009), (Tapia et al.,
2004), (van Kasteren and Krose, 2007), (Maurer and Rowe, 2006). Naı̈ve Bayes
classifiers model all observations (e.g. sensor readings) as arising from a common
causal source: the activity, as given by a discrete label. The dependence of obser-
vations on activity labels is modelled as a probabilistic function that can be used
to identify the most likely activity given a set of observations. Despite the fact that
these classifiers assume conditional independence of the features, the classifiers
yield good accuracy when large amounts of sample data are provided. Neverthe-
less, Naı̈ve Bayes classifiers do not explicitly model any temporal information,
usually considered important in activity recognition.

The Hidden Markov Model (HMM) is probably the most popular generative
approach that includes temporal information. A HMM is a probabilistic model
with a particular structure that makes it easy to learn from data, to interpret the data
once a model is learnt, and is both easy and efficient to implement. It consists of
a set of hidden (latent) states coupled in a stochastic Markov chain, such that the
distribution over states at some time depends only on the values of states at a finite
number of preceding times. The hidden states then probabilistically generate ob-
servations through a stochastic process. HMMs made their impact initially through
use in the speech recognition literature, where latent states correspond to phoneme
labels, and observations are features extracted from audio data. HMMs have more
recently been adopted as a model of choice in computer vision for modelling se-
quential (video) data (see (Gavrila, 1999), (Moeslund et al., 2006) for surveys and
(Galata et al., 1999), (Starner, 1995) for early examples). HMMs use a Markov
chain over a discrete set of states. A closely relative of the HMM uses continuous
states, a model usually referred to as a linear dynamical system (LDS). State es-
timation in LDSs is better known as a Kalman filter. LDSs have been used with
inputs from a variety of sensors for physiological condition monitoring (Quinn,
2009) in which a method is also introduced to deal with unmodelled variations in
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data, one of the major shortcomings of the generative approach.
HMMs form the basis of statistical temporal models. They are, in fact, a special

case of the more general Dynamic Bayesian Networks (DBNs), which are Bayesian
networks in which a discrete time index is explicitly represented. Inference and
learning in DBNs is simply an application of network propagation in Bayesian
networks. DBNs usually make a Markovian assumption, but explicitly represent
conditional independence in the variables, allowing for more efficient and accurate
inference and learning. A well known early use of DBNs for activity monitoring
was in the Lumiére project, where a Microsoft Windows user’s need for assistance
was modelled based on their activities on the screen (Horvitz et al., 1998).

A simple DBN extension of HMMs is the coupled HMM for recognition of
simultaneous human actions (e.g. pedestrian motions (Brand et al., 1997)). Cou-
pled Hidden Markov Models (CHMMs) have two Markovian chains, each mod-
elling a different stream of data, with a coupling between them to model their inter-
dependence. Oliver et al. (Oliver et al., 2004) learn a multi-layer model of office
activity to choose actions for a computational agent. The model uses multimodal
inputs, making only very slight use of computer vision. The Assisted Cognition
project (Kautz et al., 2002) has made use of DBNs, in particular for Opportunity
Knocks (Liao et al., 2007b), a system designed to provide directional guidance to a
user navigating through a city. This system uses a three level hierarchical Markov
model represented as a DBN to infer a user’s activities from GPS sensor readings.
Movement patterns, based on the GPS localization signals, are translated into a
probabilistic model using unsupervised learning. From the model and the user’s
current location, future destinations and the associated mode of transportation can
be predicted. Based on the prediction, the system has the ability to prompt the user
if an error in route is detected.

Wilson and Atkeson use DBNs to simultaneously track persons and model their
activities from a variety of simple sensors (motion detectors, pressure sensors,
switches and so on) (Wilson and Atkeson, 2005). DBNs were also used in the
iSTRETCH system, a haptic robotic device to assist a person with stroke rehabil-
itation (Kan et al., 2011). The DBN models the person’s current behaviours, their
current abilities, and some aspects of their emotional state (e.g. their responsive-
ness, learning rate and fatigue level). The person’s behaviours correspond to how
long they take for each exercise, what type of control they exhibit and whether they
compensate. These behaviours are inferred from sensors on the device and in the
person’s chair.

Even though they are simple and popular, HMMs and DBNs have some lim-
itations. A HMM is incapable of capturing long-range or transitive dependencies
of the observations due to its very strict independence assumptions (on the obser-
vations). Furthermore, without significant training, a HMM may not be able to
recognise all of the possible observation sequences that can be consistent with a
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particular activity.

2.4.2 Discriminative modelling
A drawback of the generative approach is that enough data must be available to
learn the complete probabilistic representations that are required. In this section,
an alternative approach for modelling is discussed, in which the focus is on solving
the classification problem, rather than on the representation problem. The complete
data description of a generative model induces a classification boundary, which can
be seen by considering every possible observation and applying the classification
rule using inference. The boundary is thus implicit in a generative model, but a lot
of work is necessary to describe all the data to obtain it. A discriminative approach,
on the other hand, considers this boundary to be the primary objective.

Perhaps the simplest discriminative approach is Nearest Neighbour (NN), in
which a novel sequence of observations is compared to a set of template sequences
in a training set, and the most closely matching sequences in the training set vote
for their activity labels. This simple approach can often provide very good results.
Bao and Intille investigated this method along with numerous other base-level clas-
sifiers for the recognition of activities from accelerometer data (Bao and Intille,
2004). They found that the simple NN approach is outperformed by decision trees,
a related method, where the training data is partitioned into subsets according to ac-
tivity labels and a set of rules based on features of the training data. The rules can
then be used to identify the partition (and hence the activity label) corresponding
to a new data sample. Maurer et al. (Maurer and Rowe, 2006), employed decision
trees to learn logical descriptions of activities from complex sensor readings from
a wearable device (the eWatch). The decision tree approach offers the advantage of
generating rules that are understandable by the user, but it is often brittle when high
precision numeric data is collected. Stikic and Schiele use a clustering method in
which activities are considered as a “bag of features” to learn template models of
activities from data with only sparse labels (Stikic and Schiele, 2009).

For the classification problem, the points closest to the boundary are the ones
that give more information about the boundary itself. Points lying far apart the
boundary should not be taken into account then. There are several discriminative
approaches that effectively take advantage of this fact. The challenge is therefore to
find these “hard” data points (the ones closest to the boundary). These data points
will be known as the “support vectors”, and actually define the boundary. A sup-
port vector machine (SVM) is a machine learning technique to find these support
vectors automatically. A recent example of an SVM in use for activity modelling is
presented by Brdiczka et al. (Brdiczka, 2009) where a model of situations is learnt
automatically from data by first learning roles of various entities using SVMs and
labelled training data, then using unsupervised clustering to build ’situations’ or
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relations between entities, which are then labelled and further refined by end users.
The key idea in this work is to use a cognitive model (situation model) based on
cognitive theory motivated by models of human perception of behaviour in an en-
vironment. The CareMedia project (Chen et al., 2005) also uses an SVM to locate
and recognise social interactions in a care facility from multiple sensors, includ-
ing video and audio. The fusion of video and audio allowed 90% recall and 20%
precision in identifying interactions including shaking hands, touching, pushing
and kicking. The CareMedia project’s goals are to monitor and report behaviour
assessments in a care home to caregivers and medical professionals.

Ravi et al. also found that SVMs performed consistently well, but also in-
vestigated meta-level classifiers that combined the results of multiple base-level
classifiers (Ravi et al., 2005). Features extracted from worn accelerometers are
extracted and classified using five different base-level classifiers (decision tables,
decision trees, k-NN, SVM and Naı̈ve Bayes). The meta-level classifiers are gen-
erated through a variety of techniques such as boosting, bagging, voting, cascading
and stacking. For recognising a set of eight activities including standing, walk-
ing, running, going up/down stairs, vacuuming and teeth brushing, they found that
a simple voting scheme performed the best for three easier experimental settings,
whereas boosted SVM performed best for the most difficult setting (test/training
separation across users and days)

In practice, many activities may have non-deterministic natures, where some
steps of the activities may be performed in any order, and so are concurrent or in-
terwoven. A conditional random field (CRF) is a more flexible alternative to the
HMM that addresses such practical requirements. It is a discriminative and gen-
erative probabilistic model that represents the dependence of a hidden variable y
on an observed variable x (Sutton et al., 2007). Both HMMs and CRFs are used
to find a sequence of hidden states based on observation sequences. Nevertheless,
instead of finding a joint probability distribution p(x, y) as the HMM does, a CRF
attempts to find only the conditional probability p(y|x). A CRF allows for arbitrary,
non-independent relationships among the observation sequences, hence the added
flexibility. Another major difference is the relaxation of the independence assump-
tions, in which the hidden state probabilities may depend on the past and even
future observations. A CRF is modelled as an undirected acyclic graph, flexibly
capturing any relation between an observation variable and a hidden state. CRFs
are applied to the problem of activity recognition in (Vail et al., 2007) where they
are compared to HMMs, but only in a simple simulated domain. Liao et al. use hi-
erarchical CRFs for modeling activities based on GPS data (Liao et al., 2007a). Hu
and Yang use skip-chain CRFs, an extension in which multiple chains interact in a
manner reminiscent of the CHMM, to model concurrent and interleaving goals (Hu
and Yang, 2008), a challenging problem for activity recognition. Mahdaviani and
Choudhury show how semi-supervised CRFs can be used to learn activity models
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from wearable sensor data (Mahdaviani and Choudhury, 2008).

2.4.3 Other approaches
There are many approaches in the literature which cannot be clearly classified into
discriminative or generative categories, but rather use a combination of both. The
Independent Lifestyle Assistant (ILSA) is an example, as it uses a combination of
heuristic rules and statistical models of sequential patterns of sensor firings and
time intervals to help a person with planning and scheduling (Guralnik and Haigh,
2002). PEAT (the Planning and Execution Assistant and Trainer) is a cognitive as-
sistant that runs on a mobile device, and helps compensate for executive functional
impairment. PEAT uses reactive planning to adjust a user’s schedule based on their
current activities. Activity recognition in PEAT is based on what the user is doing,
and on data from sensors on the mobile device. These are fed into a HMM, the
outputs of which are combined with the reactive planning engine (Modayil et al.,
2008).

Other work has investigated how activities can be modelled with a combination
of discriminative and generative approaches (Lester et al., 2005), how common
sense models of everyday activities can be built automatically using data mining
techniques (Pentney et al., 2008), (Pentney et al., 2007), and how human activities
can be analysed through the recognition of object use, rather than the recognition of
human behaviour (Wu and Osuntogun, 2007). This latter work uses DBNs to model
various activities around the home, and a variety of radio frequency identification
(RFID) tags to bootstrap the learning process. Some authors have attempted to
compare discriminative and generative models (Bao and Intille, 2004), (Ravi et al.,
2005), generally finding the discriminative models yield lower error rates on unseen
data, but are less interpretable. Gu et al. use the notion of emerging patterns to look
for frequent sensor sequences that can be associated with each activity as an aid for
recognition (Gu et al., 2009). Omar et al. present a comparative study of a variety of
classification methods for analysing multi-modal sensor data from a smart walker
(Omar et al., 2010).

One of the biggest problems of data-driven approaches, regardless their cate-
gory, is the need of large-scale labelled data bases. This problem arises because
activity recognition is posed as a supervised learning problem. However, due to the
required effort and time for annotating activity data bases, supervised methods do
not scale up well in practice. Annotating activity data imposes a burden on anno-
tators and users and often introduces a source of error in the process. Rashidi and
Cook show how to overcome the problem of depending on labelled activity data
bases in (Rashidi and Cook, 2011), improving the approach in (Rashidi and Cook,
2013). They use a non-labelled data base, where they extract activity clusters using
unsupervised learning techniques. More concretely, they develop a new activity
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modelling method named COM, which stands for Continuous, varied Order, Multi
Threshold. COM not only discovers discontinuous patterns and their variations, but
is able to better handle real life data by dealing with different frequencies/sensor
problem. All patterns discovered by COM are then used as inputs for a hierarchi-
cal agglomerative clustering algorithm. The clustering algorithm aims at grouping
those sensor patterns which are similar in terms of their structure. An activity struc-
ture is defined as the start time, duration and region or location. Those clusters are
finally used to train a boosted HMM, which is shown to be able to recognise dis-
covered activities.

Rashidi and Cook bring a new paradigm to data-driven activity recognition in
their work, showing the real possibility of using an unsupervised model and avoid
data base annotation problems. However, their approach still suffers some other
traditional problems of data-driven approaches. Firstly, even though they do not
use labelled data bases, they do not overcome the “cold start” problem, since they
have to collect data in order to discover activities and train HMMs. Besides, as
other data-driven approaches, they have many difficulties when generalising what
they have discovered and learnt from previous users, since every user has his/her
own ways of performing activities. The price to pay for avoiding labelled data bases
is that the approach cannot set activity granularity and that discovered activities do
not have any semantic meaning. The first problem refers to the impossibility of de-
ciding at design phase what kind of activities will be recognised. For example, if a
user usually washes dishes after preparing meal, COM will discover this sequence
as a typical activity. However, the discovered activity is actually a sequence of
two lower-grain activities. The second problem refers to the fact that discovered
activities are only sequences of sensors with their location and time information,
but without any semantic meaning. A human expert is needed afterwards to in-
terpret discovered activities and label them with semantic tags. Notice that this a
posteriori labelling step may be difficult since activity granularity is not set.

The other big problem of data-driven approaches is related to activity model
generalisation. As activity models are learnt from specific users’ behavioural data,
the acquired models are personal. Those personal models cannot be generalised and
applied to other users. To overcome this problem, some researchers have already
worked on transfer learning techniques. A complete survey on transfer learning
techniques for activity recognition can be found in (Cook et al., 2013). The idea
behind transfer learning is to take advantage of the learnt models whenever a new
training process is launched in a new environment and/or for a new user. This way,
the new training phase can be boosted, transferring the knowledge acquired in a
previous scenario. Information about sensors, specific activities or locations can be
very similar and can provide interesting hints to train new models with few data.

Transfer learning scenarios usually distinguish between the source domain and
the target domain. The first domain is composed by the environment, sensors, activ-
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ities and person where initial activity models have been learnt. The second domain
refers to the environment, sensors, activities and person where the new models have
to be learnt. Notice that there can be big differences between both domains. For in-
stance, sensors may be completely different, some new activities may appear in the
target domain or environments may vary slightly. Depending on those differences,
learning techniques vary. However, the most influential parameters to define the
learning techniques are related to the availability of labelled data in both domains.
Following the classification established in (Cook et al., 2013), depending on the
availability of labelled data, the following scenarios are distinguished:

• Informed supervised transfer learning: when labelled data is available for
both, target and source domains. Those scenarios are solved using inductive
learning techniques.

• Uninformed supervised transfer learning: labelled data is only available in
the source domain, so transductive learning approaches are applied.

• Informed unsupervised transfer learning: in this case, labelled data is avail-
able only in the target domain. Inductive learning techniques are used for
those kinds of scenarios.

• Uninformed unsupervised transfer learning: there is no labelled data avail-
able, neither in the target nor in the source domain. Unsupervised learning
techniques have to be used to work in those scenarios.

Transfer learning can mitigate the problem of model generalisation, and thus,
reusability, but it cannot solve those problems completely. Notice that whenever a
new domain is approached, even using transfer learning techniques, a new training
phase has to be carried out. The merit of transfer learning is to use previously learnt
models to enhance and accelerate new training processes.

2.4.4 Summary of data-driven approaches
Data-driven approaches have been extensively used for activity recognition. Their
advantages and disadvantages are very well known by the scientific community (a
summary and comparison to knowledge-driven approaches can be found in Table
2.1):

Advantages
• Uncertainty modelling: as probabilistic and statistical activity modelling is

used, data-driven approaches are very good modelling sensor uncertainty.
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As sensors do not provide certain information and are exposed to failures,
modelling uncertainty is a very important feature for real-world deployments.

• Temporal information modelling: modelling approaches such as DBNs,
HMMs and similar implicitly model temporal information of activities, such
as time lapses between two sensor readings, activity duration or activity start
time. Time information can be learnt from data in a natural way.

• Introduce heuristics: discriminative approaches make possible introducing
heuristics about activity models. Heuristics can be used to insert basic knowl-
edge about activities and avoid making activity models totally dependent on
data.

• Dynamic activity models: as learning is a continuous process, activity mod-
els evolve as the user changes its habits. As such, activity models are dy-
namic.

• Personal activity models: learning activity models directly over user data,
makes activity models personalised. This means that activity models capture
the particular way of performing an activity by a user.

Disadvantages
• “Cold start” problem: data is needed to model activities. The dependency

with data arises the “cold start” problem, since data-driven techniques cannot
work immediately after deployment. A data collecting and activity model
training process is required for every user.

• Lack of reusability: as activity models are directly learnt from concrete user
data, they cannot generally be used for other users. The main problem is that
data-driven approaches cannot build generic activity models, only personal
activity models. These problems are mitigated, but not solved, by transfer
learning techniques, as shown in Section 2.4.3.

• Dataset annotation problems: if annotated datasets are needed (supervised
learning approaches), scalability becomes a real problem, since the effort
required for annotation is huge and annotation methods are prone to errors. If
annotated datasets are not used (unsupervised approach), activity granularity
and activity semantics is lost.
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2.5 Knowledge-Driven Approaches
It has been observed that for most activities the list of objects required for a par-
ticular activity is limited and functionally similar. Knowledge-driven activity mod-
elling is motivated by those observations. The idea is that even if the activity can
be performed in different ways the number and type of involved objects do not
vary significantly. For example, it is common sense that the activity “make coffee”
consists of a sequence of actions involving a coffee pot, hot water, a cup, coffee,
sugar and milk; the activity “brush teeth” contains actions involving a toothbrush,
toothpaste, water tap, cup and towel. On the other hand, as humans have different
life styles, habits or abilities, they may perform various activities in different ways.
For instance, one may like strong white coffee and another may prefer a special
brand of coffee. Even for the same type of activity (e.g., making white coffee),
different individuals may use different items (e.g., skimmed milk or whole milk)
and in different orders (e.g., adding milk first and then sugar, or vice versa). Such
domain-dependent activity-specific prior knowledge provides valuable insights into
how activities can be constructed in general and how they can be performed by in-
dividuals in specific situations.

Similarly, knowledge-driven activity recognition is founded upon the observa-
tions that most activities, in particular, routine activities of daily living and work-
ing, take place in a relatively specific circumstance of time, location and space.
The space is usually populated with events and entities pertaining to the activities,
forming a specific environment for specific purposes. For example, brushing teeth
is normally undertaken twice a day in a bathroom in the morning and before go-
ing to bed and involves the use of toothpaste and a toothbrush; meals are made in a
kitchen with a cooker roughly three times a day. The implicit relationships between
activities, related temporal and spatial context and the entities involved (objects and
people) provide a diversity of hints and heuristics for inferring activities.

Knowledge-driven activity modelling and recognition intends to make use of
rich domain knowledge and heuristics for activity modelling and pattern recogni-
tion. The rationale is to use various methods, in particular, knowledge engineer-
ing methodologies and techniques, to acquire domain knowledge. The captured
knowledge can then be encoded in various reusable knowledge structures, includ-
ing activity models for holding heuristics and prior knowledge in performing ac-
tivities, and context models for holding relationships between activities, objects
and temporal and spatial contexts. Comparing to data-driven activity modelling
that learns models from large-scale datasets and recognises activities through data
intensive processing methods, knowledge-driven activity modelling avoids a num-
ber of problems, including the requirement for large amounts of observation data,
the inflexibility that arises when each activity model needs to be computationally
learnt, and the lack of reusability that results when one person’s activity model is
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different from another’s.
Knowledge structures can be modelled and represented in different forms, such

as schemas, rules or networks. This will decide the way and the extent to which
knowledge is used for further processing such as activity recognition, prediction
and assistance. In terms of the manner in which domain knowledge is captured, rep-
resented and used, knowledge-driven approaches to activity modelling and recog-
nition can be roughly classified into three main categories as presented in the fol-
lowing sections.

2.5.1 Mining-based approach
The objective of a mining-based approach is to create activity models by mining ex-
isting activity knowledge from publicly available sources. More specifically, given
a set of activities, the approach seeks to discover from the text corpuses a set of
objects used for each activity and extract object usage information to derive their
associated usage probabilities. The approach essentially views an activity model
as a probabilistic translation between activity names (e.g., “make coffee”) and the
names of involved objects (e.g., “mug”, “milk”). As the correlations between ac-
tivities and their objects are common-sense prior knowledge (e.g., most of us know
how to carry out daily activities), such domain knowledge can be obtained from
various sources such as how-tos (e.g., those at ehow.com or wikihow.com), recipes
(e.g., from epicurious.com), training manuals, experimental protocols, and facili-
ty/device user manuals.

A mining-based approach consists of a sequence of distinct tasks. Firstly it
needs to identify activities of concern and relevant sources that describe these ac-
tivities. Secondly, it uses various methods, predominantly information retrieval
and analysis techniques, to retrieve activity definitions from specific sources and
extract phrases that describe the objects used during the performance of the activ-
ity. Then algorithms, predominantly probabilistic and statistic analysis methods
such as co-occurrences and association are used to estimate the object-usage prob-
abilities. Finally, the mined object and usage information is used to create activity
models such as a HMM that can be used further for activity recognition.

Mining-based activity modelling was initially investigated by researchers from
Intel Research (Wu and Osuntogun, 2007), (Wyatt et al., 2005). Perkowitz et al.
(Perkowitz et al., 2004) proposed the idea of mining the Web for large-scale ac-
tivity modelling. They used the QTag tagger to tag each word in a sentence with
its part of speech (POS) and a customized regular expression extractor to extract
objects used in an activity. They then used the Google Conditional Probabilities
(GCP) APIs to determine automatically the probability values of object usage. The
mined object and their usage information are then used to construct DBN models
through Sequential Monte Carlo (SMC) approximation. They mined the website
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ehow.com for roughly 2300 directions on performing domestic tasks (from “boiling
water in the microwave” to “change your air filter”), and the website ffts.com and
epicurious.com for a further 400 and 18,600 recipes respectively, generating a total
21,300 activity models. Using the DBN activity models they have performed activ-
ity recognition for a combination of real user data and synthetic data. While initial
evaluation results were positive, the drawback was that there are no mechanisms to
guarantee the mined models capturing completely the sequence probabilities and
the idiosyncrasy of certain activities. The inability to capture such intrinsic charac-
teristics may limit the model’s accuracy in real deployments.

Wyatt et al. (Wyatt et al., 2005) followed Perkowitz’s approach by mining the
Web to create DBN activity models. However, this group extended the work in
three aspects, aiming to address the idiosyncrasies and to improve model accuracy.
To cover the wide variety of activity definition sources, they mined the Web in a
more discriminative way in a wider scope. They did this by building a specialised
genre classifier trained and tested with a large number of labelled Web pages. To
enhance model applicability, they used the mined models as base activity models
and then exploited the Viterbi Algorithm and Maximum Likelihood to learn cus-
tomized activity parameters from unsegmented, unlabelled sensor data. In a bid
to improve activity recognition accuracy they also presented a bootstrap method
that produced labelled segmentations automatically. Then they used the Kullback-
Leibler (KL) divergence to compute activity similarity.

A difficulty in connecting mined activities with tagged objects (Perkowitz et al.,
2004), (Wyatt et al., 2005) is that the activity models may refer to objects synony-
mously. For example, both a “mug” and “cup” can be used for making tea; both
a “skillet” and “frying pan” may be used for making pasta. This leads to a situa-
tion that one activity may have different models with each having the same activity
name but different object terms. To address this, Tapia et al. (Tapia et al., 2006)
proposed to extract collections of synonymous words for the functionally-similar
objects automatically from WordNet, an online lexical reference system for the En-
glish language. The set of terms for similar objects is structured and represented
in a hierarchical form known as the object ontology. With the similarity measure
provided by the ontology, an activity model will not only cover a fixed number
of object terms but also any other object terms that are in the same class in the
ontology.

Another shortcoming of early work in the area (Perkowitz et al., 2004), (Wyatt
et al., 2005) is that the segmentation is carried out in sequential order based on
the duration of an activity. As the duration of performing a specific activity may
vary substantially from one to another, this may give rise to applicability issues.
In addition, in sequential segmentation one error in one segment may affect the
segmentations of the subsequent traces. To tackle this, Palmes et al. (Palmes et al.,
2010) proposed an alternate method for activity segmentation and recognition. In-

32



2.5 Knowledge-Driven Approaches

stead of relying on the order of object use, they exploited the discriminative trait
of the usage frequency of objects in different activities. They constructed activity
models by mining the Web and extracting relevant objects based on their weights.
The weights are then utilised to recognise and segment an activity trace containing
a sequence of objects used in a number of consecutive and non-interleaving activi-
ties. To do this, they proposed an activity recognition algorithm, KeyExtract, which
uses the list of discriminatory key objects from all activities to identify the activities
present in a trace. They further proposed two heuristic segmentation algorithms,
MaxGap and MaxGain, to detect the boundary between each pair of activities iden-
tified by KeyExtract. Boundary detection is based on the calculation, aggregation,
and comparison of the relative weights of all objects sandwiched in any two key ob-
jects representing adjacent activities in a trace. Though the mining based approach
has a number of challenges relating to information retrieval, relation identification
and the disambiguation of term meaning, nevertheless, it provides a feasible alter-
native to model large amount of activities. Initial research has demonstrated the
approach is promising.

Mining-based approaches are similar to data-driven approaches in that they all
adopt probabilistic or statistical activity modelling and recognition. But they are
different from each other in the way that the parameters of the activity models
are decided. The mining-based approaches make use of publicly available data
sources avoiding the “cold start” problem. Nevertheless they are weak in dealing
with idiosyncrasies of activities. On the other hand, data-driven approaches have
the strength of generating personalised activity models, but they suffer from issues
such as “cold start” and model reusability for different users.

2.5.2 Logic-based approaches
A logic-based approach views an activity as a knowledge model that can be for-
mally specified using various logical formalisms. From this perspective, activ-
ity modelling is equivalent to knowledge modelling and representation. As such,
systematic knowledge engineering methodologies and techniques are used for do-
main knowledge acquisition and formal construction of activity structures. Knowl-
edge representation formalisms or languages are used to represent these knowledge
models and concrete knowledge instances, thus enabling inference and reasoning.
In this way, activity recognition and other advanced application features such as
prediction and explanation can be mapped to knowledge-based inference such as
deduction, induction and abduction.

Logic-based approaches are composed of a number of distinct tasks. Even
though each task can be undertaken in different ways the role of each task is specific
and unique. Normally the first step is to carry out knowledge acquisition, which
involves eliciting knowledge from various knowledge sources such as domain ex-
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perts and activity manuals. The second step is to use various knowledge modelling
techniques and tools to build reusable activity structures. This will be followed by a
domain formalization process in which all entities, events and temporal and spatial
states pertaining to activities, along with axioms and rules, are formally specified
and represented using representation formalism. This process usually generates
the domain theory. The following step will be the development of a reasoning
engine in terms of knowledge representation formalisms to support inference. In
addition, a number of supportive system components will be developed, which are
responsible for aggregating and transforming sensor data into logical terms and
formula. With all functional components in place, activity recognition proceeds by
passing the logical representation of sensor data onto the reasoning engine. The
engine performs logical reasoning, e.g., deduction, abduction or induction, against
the domain theory. The reasoning will extract a minimal set of covering models of
interpretation from the activity models based on a set of observed actions, which
could semantically explain the observations.

There exist a number of logical modelling methods and reasoning algorithms
in terms of logical theories and representation formalisms. One thread of work is
to map activity recognition to the plan recognition problem in the well studied ar-
tificial intelligence field (Carberry, 2001). The problem of plan recognition can be
stated in simple terms as: given a sequence of actions performed by an actor, how
to infer the goal pursued by the actor and also to organise the action sequence in
terms of a plan structure. Kautz et al. (Kautz, 1991) adopted first-order axioms
to build a library of hierarchical plans. They proposed a set of hypotheses such as
exhaustiveness, disjointedness and minimum cardinality to extract a minimal cov-
ering model of interpretation from the hierarchy, based on a set of observed actions.
Wobke (Wobcke, 2002) extends Kautz’s work using situation theory to address the
different probabilities of inferred plans by defining a partial order relation between
plans in terms of levels of plausibility. Bouchard et al. (Bouchard et al., 2006)
borrow the idea of plan recognition and apply it to activity recognition. They use
action Description Logic (DL) to formalize actions and entities and variable states
in a smart home to create a domain theory. They model a plan as a sequence of
actions and represent it as a lattice structure, which, together with the domain the-
ory, provides an interpretation model for activity recognition. As such, given a
sequence of action observations, activity recognition amounts to reasoning against
the interpretation model to classify the actions through a lattice structure. It was
claimed that the proposed DL models can organize the result of the recognition
process into a structured interpretation model in the form of lattice, rather than a
simple disjunction of possible plans without any classification. This minimises the
uncertainty related to the observed actor’s activity by bounding the plausible plans
set.

Another thread of work is to adopt the Event Calculus (EC) (Shanahan, 1997)

34



2.5 Knowledge-Driven Approaches

formalism, a highly developed logical theory of actions, for activity recognition
and assistance. The EC formalizes a domain using fluents, events and predicates.
Fluents are any properties of the domain that can change over time. Events are
the fundamental instrument of change. All changes to a domain are the result of
named events. Predicates define relations between events and fluents that specify
what happens when and which fluents hold at what times. Predicates also de-
scribe the initial situation and the effects of events. Chen et al. (Chen and Nugent,
2008) proposed an EC-based framework in which sensor activations are modelled
as events, and object states as properties. In addition, they developed a set of high-
level logical constructors to model compound activities, i.e. the activities consist-
ing of a number of sequential and/or parallel events. In the framework, an activity
trace is simply a sequence of events that happen at different time points. Activity
recognition is mapped to deductive reasoning tasks, e.g., temporal projection or
explanation, and activity assistance or hazard prevention is mapped to abductive
reasoning tasks. The major strength of this work is its capability to address tempo-
ral reasoning and the use of compound events to handle uncertainty and flexibility
of activity modelling.

Logic-based approaches are totally different from data-driven approaches in the
way activities are modelled and the mechanisms activities are recognised. They do
not require pre-existing large-scale datasets, and activity modelling and recogni-
tion is semantically clear and elegant in computational reasoning. It is easy to
incorporate domain knowledge and heuristics for activity models and data fusion.
The weakness of logical approaches is their inability or inherent infeasibility to
represent fuzziness and uncertainty even though there are recent works trying to
integrate fuzzy logics into the logical approaches. Another drawback is that logical
activity models are viewed as one-size-fits-all, inflexible for adaptation to different
users’ activity habits.

2.5.3 Ontology-based approaches
Using ontologies for activity recognition is a recent endeavour and has gained
growing interest. In the vision-based activity recognition community, researchers
have realised that symbolic activity definitions based on manual specification of a
set of rules suffer from limitations in their applicability, because the definitions are
only deployable to the scenarios for which they have been designed. There is a need
for a commonly agreed explicit representation of activity definitions or an ontol-
ogy. Such ontological activity models are independent of algorithmic choices, thus
facilitating portability, interoperability and reuse and sharing of both underlying
technologies and systems. Chen et al. (Chen et al., 2004) propose activity ontolo-
gies for analysing social interaction in nursing homes, Hakeem et al. (Hakeem and
Shah, 2004) for the classification of meeting videos, and Georis et al. (Georis et al.,
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2004) for activities in a bank monitoring setting. To consolidate these efforts and
to build a common knowledge base of domain ontologies, a collaborative effort has
been made to define ontologies for six major domains of video surveillance. This
has led to a video event ontology (Nevatia et al., 2004) and the corresponding repre-
sentation language (Francois et al., 2005). For instance, Akdemir (Akdemir et al.,
2008) used the video event ontologies for activity recognition in both bank and
car park monitoring scenarios. In principle these studies use ontologies to provide
common terms as building primitives for activity definitions. Activity recognition
is performed using individually preferred algorithms, such as rule-based systems
(Hakeem and Shah, 2004) and finite-state machines (Akdemir et al., 2008).

In the dense sensing-based activity recognition community, ontologies have
been utilised to construct reliable activity models. Such models are able to match
different object names with a term in an ontology which is related to a particular
activity. For example, a Mug sensor event could be substituted by a Cup event in
the activity model MakeTea as Mug and Cup can both be used for the MakeTea
activity. This is particularly useful to address model incompleteness and multiple
representations of terms. Tapia et al. (Tapia et al., 2006) generated a large object
ontology based on functional similarity between objects from WordNet, which can
complete mined activity models from the Web with similar objects. Yamada et al.
(Yamada et al., 2007) use ontologies to represent objects in an activity space. By
exploiting semantic relationships between things, the reported approach can au-
tomatically detect possible activities even given a variety of object characteristics
including multiple representation and variability. Similar to vision-based activity
recognition, these studies mainly use ontologies to provide activity descriptors for
activity definitions. Activity recognition can then be performed based on proba-
bilistic and/or statistical reasoning (Tapia et al., 2006), (Yamada et al., 2007).

Ontology-based modelling and representation has been applied to general am-
bient assisted living. Latfi et al. (Latfi et al., 2007) propose an ontological architec-
ture of a telehealth-based smart home aiming at high-level intelligent applications
for elderly persons suffering from loss of cognitive autonomy. Klein et al. (Klein
et al., 2007) developed an ontology-centred design approach to create a reliable and
scalable ambient middleware. Chen et al. (Chen et al., 2009) pioneered the notion
of semantic smart homes in an attempt to leverage the full potential of semantic
technologies in the entire lifecycle of assistive living i.e. from data modelling, con-
tent generation, activity representation, processing techniques and technologies to
assist with the provision and deployment. While these endeavours, together with
existing work in both vision- and dense sensing-based activity recognition, provide
solid technical underpinnings for ontological data, object, sensor modelling and
representation, there is a gap between semantic descriptions of events/objects re-
lated to activities and semantic reasoning for activity recognition. Most works use
ontologies either as mapping mechanisms for multiple terms of an object (Tapia
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et al., 2006) or the categorization of terms (Yamada et al., 2007) or a common
conceptual template for data integration, interoperability and reuse (Latfi et al.,
2007), (Klein et al., 2007), (Chen et al., 2009). Activity ontologies which provide
an explicit conceptualization of activities and their interrelationships have only re-
cently emerged and have been used for activity recognition. Chen et al. (Chen and
Nugent, 2009), (Chen et al., 2012b) proposed and developed an ontology-based ap-
proach to activity recognition. They constructed context and activity ontologies for
explicit domain modelling. Sensor activations over a period of time are mapped to
individual contextual information and then fused to build a context at any specific
time point. They made use of subsumption reasoning to classify the constructed
context based on the activity ontologies, thus inferring the ongoing activity. Ye et
al. (Ye et al., 2011) developed an upper activity ontology that facilitates the cap-
ture of domain knowledge to link the meaning implicit in elementary information
to higher-level information that is of interest to applications. Riboni et al. (Riboni
and Bettini, 2011b) investigated the use of activity ontologies, in particular, the
new feature of rule representation and rule-based reasoning from OWL2, to model,
represent and reason complex activities.

Compared with data-driven and mining-based approaches, ontology-based ap-
proaches offer several compelling features: firstly, ontological ADL models can
capture and encode rich domain knowledge and heuristics in a machine understand-
able and processable way. This enables knowledge based intelligent processing at
a higher degree of automation. Secondly, DL- based descriptive reasoning along a
time line can support incremental progressive activity recognition and assistance as
an ADL unfolds. The two levels of abstraction in activity modelling, concepts and
instances, also allow coarse-grained and fine-grained activity assistance. Thirdly,
as the ADL profile of an inhabitant is essentially a set of instances of ADL con-
cepts, it provides an easy and flexible way to capture a user’s activity preferences
and styles, thus facilitating personalised ADL assistance. Finally, the unified mod-
elling, representation and reasoning for ADL modelling, recognition and assistance
makes it natural and straightforward to support the integration and interoperability
between contextual information and ADL recognition. This will support system-
atic coordinated system development by making use of seamless integration and
synergy of a wide range of data and technologies.

Compared with logic-based approaches, ontology-based approaches have the
same mechanisms for activity modelling and recognition. However, ontology-
based approaches are supported by a solid technological infrastructure that has
been developed in the semantic Web and ontology-based knowledge engineering
communities. Technologies, tools and APIs are available to help carry out each
task in the ontology-based approach, e.g., ontology editors for context and activity
modelling, web ontology languages for activity representation, semantic repository
technologies for large-scale semantic data management and various reasoners for
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activity inference. This gives ontology-based approaches huge advantage in large-
scale adoption, application development and system prototyping.

2.5.4 Summary of knowledge-driven approaches
The advantages and drawbacks of knowledge-driven approaches are summarised
in the following listing. A summary and comparison with data-driven approaches
can be found in Table 2.1.

Advantages
• No “cold start” problem: knowledge-driven approaches model activities us-

ing generic knowledge rather than data, so activity models are built before
deployment and the system does not need any training/learning process be-
fore beginning to work.

• Interoperability and reusability: specially true for ontology-based ap-
proaches, but also for all the other approaches, as activity models are mod-
elled using knowledge engineering techniques and built models are generic
and not specific to a concrete user.

• Clear semantics: activity models are semantically clear and can be under-
stood by human beings. This allows interpreting how the system works and
developing easier auxiliary systems that work on top of the activity recogni-
tion system, such as notification systems, recommender systems and so on.

Disadvantages
• Weak in handling uncertainty: inference and reasoning are usually based

on certain facts, rather than uncertain sensor information. There are some
approaches that work using fuzzy logics and/or probabilistic reasoning, but
they are not fully integrated with modelling techniques yet (Helaoui et al.,
2013), (Almeida and López-de-Ipiña, 2012).

• Weak in handling temporal information: inference and reasoning mecha-
nisms used for activity recognition do not usually consider temporal aspects
of activities. In order to tackle this limitation, there are already some ap-
proaches that, for example, integrate ontological and temporal knowledge
modelling formalisms for activity modelling (Okeyo and Chen, 2012).

• Static activity models: knowledge-based activity models are static, since
once they are defined, they cannot automatically evolve. This means that
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if a user changes its way of performing activities, initially defined activity
models will still be used for activity recognition.

2.6 Hybrid Approaches
Analysing carefully the advantages and disadvantages of knowledge- and data-
driven approaches, it can be seen that they are complementary at some extent. For
instance, while knowledge-driven approaches are weak in handling uncertainty and
temporal information, data-driven ones are good at it. On the other hand, while
data-driven approaches cannot build reusable generic activity models, knowledge-
driven approaches can. This complementarity has recently raised the need to re-
search on hybrid approaches to activity modelling. The main idea of hybrid ap-
proaches is to fuse data- and knowledge-driven approaches in order to solve the
problems of both approaches in a single system.

Tran et al. (Tran and Davis, 2008) and Healaoui et al. (Helaoui et al., 2011)
use Markov Logic Networks (MLN) to model temporal relations between actions
and activities. The first one uses MLNs to naturally integrate common sense rea-
soning with uncertain analyses produced by computer vision algorithms for object
detection, tracking and movement recognition. The second work is focused on pro-
viding activity models for interleaved and concurrent executions using qualitative
and quantitative temporal relationships. With a similar objective, Steinhauer et al.
(Steinhauer and Chua, 2010) combine HMMs with Allen logic, providing another
hybrid approach example. All those approaches encode and use temporal knowl-
edge and rely on automatically extracting these temporal patterns from datasets.

Another hybrid approach example is provided by Riboni et al. (Riboni and
Bettini, 2011a). Their approach combines statistical inference techniques with on-
tological activity modelling and recognition. Statistical inferencing is performed
based on raw data retrieved from body-worn sensors (e.g., accelerometers) to pre-
dict the most probable activities. Then, symbolic reasoning is applied to refine the
results of statistical inferencing by selecting the set of possible activities performed
by a user based on his/her current context. By decoupling the use of context in-
formation, statistical inferencing becomes more manageable in terms of necessary
training data, while symbolic reasoning can more effectively select candidate ac-
tivities taking into account context-dependent ontological relationships.

Finally, Chen et al. (Chen et al., 2014) present an ontology-based hybrid ap-
proach to activity modelling. They combine knowledge-based activities with spe-
cially developed learning algorithms to overcome the “cold start” problem, model
reusability and incompleteness. The approach uses semantic technologies as a con-
ceptual backbone and technology enablers for ADL modelling, classification and
learning. The distinguishable feature of the approach from existing approaches is
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2.7 Summary and Conclusions

that ADL modelling is not a one-off effort, instead, a multi-phase iterative pro-
cess that interleaves knowledge-based model specifications and data-driven model
learning. The process consists of three key phases. In the first phase the initial
seed ADL models are created through ontological engineering by leveraging do-
main knowledge and heuristics, thus solving the “cold start” problem. Ontological
activity modelling creates activity models at two levels of abstractions, namely as
ontological activity concepts and their instances respectively. Ontological activity
concepts represent generic coarse-grained activity models applicable and reusable
for all users, thus solving the reusability problem. The seed ADL models are then
used in applications for activity recognition at the second phase. In the third phase,
the activity classification results from the second phase are analysed to discover
new activities and user profiles. These learnt activity patterns are in turn used to
update the ADL models, thus solving the incompleteness problem. Once the first
phase completes, the remaining two-phase process can be iterated many times to
incrementally evolve the ADL models, leading to complete, accurate and up-to-
date ADL models. In consequence, this approach is a first step to solve the static
nature of activity models in knowledge-driven systems. However, the approach has
a limitation: it considers that seed activity models contain all the actions performed
by any user to perform an activity and hence, it is limited to learn only descriptive
properties. This means that if different users perform the same activity by means of
different sets of actions, the system will not be able to learn those distinct actions.

2.7 Summary and Conclusions
A deep review of human activity recognition has been provided in this chapter.
In terms of activity monitoring technologies, the work presented in this disserta-
tion can be classified into the dense sensing-based category. In principle, there are
no limitations to extend the methods and techniques exposed in this dissertation
to other activity monitoring approaches such as wearable sensor- or vision-based
categories. But dense sensing paradigm has been chosen because it is the best ap-
proach for Intelligent Environments - since there are no privacy issues with users
and specific objects can be monitored - and the usage of simple sensors makes sen-
sor processing steps simpler. As research on sensor processing is beyond the scope
of this work, dense sensing-based activity monitoring provides a perfect scenario.
Notice that the selection of the dense sensing-based activity monitoring scenario is
more an implementation decision rather than a theoretical limitation.

In terms of activity modelling, the work presented in this dissertation clearly
falls into the hybrid approach. It combines knowledge- and data-driven techniques
in order to provide dynamic activity models that combine generic and personalised
models. As such, it tries to solve the problem of the hybrid activity modelling
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approach presented by Chen et al. (Chen et al., 2014), i.e. learning new actions for
any user. Solving other problems of knowledge-driven approaches, such as sensor
uncertainty or temporal information handling, is out of scope of this dissertation.
The concrete position of this dissertation in the two axis taxonomy adopted for
activity recognition can be seen in Table 2.2.

Activity Monitoring Approach
Vision-based Sensor-based

Wearable-based Dense sensing-based
Activity

Modelling
Approach

Data-Driven
Knowledge-Driven

Hybrid X

Table 2.2: The classification of this dissertation in terms of activity modelling and
activity monitoring approaches marked with an X.

Finally, this chapter has been mainly focused on single user - single activity
scenarios, although some examples of single user - concurrent activities scenarios
were also described. This is because the human activity recognition research com-
munity has mainly focused its efforts in the single user - single activity scenario,
despite recently, single user - concurrent activities scenario has gained more popu-
larity. It is worth to highlight that the work presented in this dissertation has been
designed to tackle the single user - single activity scenario.
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Simplicity is the shortest path to a
solution.

Ward Cunningham

CHAPTER

3
The Approach to Learn

Specialised and Complete
Activity Models

THIS chapter describes the theoretical foundations of the dissertation and
describes the high-level solution designed to learn activity models from
user’s behavioural data and previous knowledge. The contributions of
this dissertation are based on the ontology-based activity modelling ap-

proach, where an important limitation has been found: providing complete and
generic activity models is generally impossible. To solve this problem, a learning
solution is suggested, whose underpinning modules and their relationships are de-
scribed in detail. The integration of the developments presented in Chapters 4 and
5 is structured around the designed solution in this chapter.

The chapter is divided in four sections: Section 3.1 describes the ontology-
based activity modelling approach on which the contributions of this dissertation
are built. Section 3.2 provides formal definitions of the concepts and terms that will
be used during the following chapters and shows the constraints of the approach to
learn activity models. Section 3.3 discusses the adopted solution design, describing
the defined architecture, constituent modules and their relationships. And finally
Section 3.4 concludes the chapter with a summary and extracted conclusions.
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3. The Approach to Learn Specialised and Complete Activity Models

3.1 Ontology-Based Activity Modelling
Ontology-based activity modelling has already been introduced in Chapter 2, con-
cretely in Section 2.5.3. Some of the most relevant research work was presented
there. However, the objective of this section is to provide a deep description of one
of the presented approaches, which is the basis of the contributions presented in
this dissertation.

The activity modelling approach introduced in (Chen et al., 2012b) is central to
the real-time activity recognition system for smart homes described in the paper.
This approach has been designed for the dense sensing-based activity monitoring
scenario and deployed in a smart home research laboratory, obtaining an average
activity recognition rate of 94.44%. The reported results suggest that the system
performs robustly for the selected scenarios.

Even though the activity recognition process is very interesting, the focus of
this section will be on the ontology-based activity modelling approach which is
introduced in (Chen et al., 2012b). Roughly speaking, two high-level concepts are
modelled in the paper to support activity recognition: (i) Activities of Daily Living
(ADL) and (ii) the context in which those ADLs are performed (in the case of the
paper, a smart home). To specify conceptual structures and relationships, DL based
markup language, i.e. Web Ontology Language (OWL) and Resource Description
Framework (RDF)1 are used. Both languages support inference and reasoning, a
feature which plays a key role for activity recognition.

3.1.1 Ontological ADL modelling
Activities of Daily Living, or ADLs, refer to a set of activities that are performed
by any person in a daily basis. Some examples for ADLs are making tea, making
pasta or washing dishes. When ADLs are carefully analysed, two features can be
identified: (i) ADLs can be defined at different levels of granularity, and (ii) ADLs
are generic, but each person performs them in different ways. Both features can be
properly addressed by the ontological ADL modelling approach.

The first feature, activity granularity, refers to the fact that ADLs form super-
class and sub-class relations. For example, making a hot chocolate can be consid-
ered a sub-activity of making a hot drink, which can also be classified as a sub-
activity of making a drink. As such, ADLs form a tree where leafs model primitive
ADLs and other nodes refer to composite ADLs (see Figure 3.1).

To address different levels of activity granularity, ontological modelling, i.e.
the process to explicitly specify key concepts and their properties for a problem
domain, is applied. More concretely, ADLs are modelled as ontological concepts

1http://www.w3.org/
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Make drink

Make hot drink Make cold drink

Make chocolate Make coffee Make tea Make juice

Figure 3.1: An example of ADL granularity represented as a tree.

which are organised in a hierarchical structure in terms of their shared properties
to form super-class and sub-class relations. Those relations between primitive and
composite ADLs are characterised by “is-a” and “part-of” relationships, properly
supported by OWL. For example, as shown in Figure 3.1 making tea is a subclass
of making hot drink. The ADL for making tea is represented by the ontological
concept of MakeTea, while making hot drink is represented by MakeHotDrink.
Properties establish the interrelations between concepts. For instance, hasDrink-
Type is a property of the MakeHotDrink activity that links the DrinkType concept
(e.g., tea, coffee, chocolate) to the MakeHotDrink concept. Both, concepts and
properties, are modelled using the commonly shared terms in the problem commu-
nity. The resulting ontologies are essentially knowledge models able to encode and
represent domain knowledge and heuristics.

The second feature of ADLs highlights the difference between generic and per-
sonalised ADLs. Even though making coffee implies the use of coffee and a con-
tainer, some users prefer African coffee to Colombian coffee and some users use
cups and others mugs. Furthermore, the order of the sequence of objects used to
make coffee, vary from user to user, e.g. some users might add sugar before coffee
and others add sugar once coffee has been poured to the container. In consequence,
generic and personalised ADLs can be distinguished.

1. Generic activity models: defined at the conceptual level as an activity class
described by a number of properties. These properties describe the types of
objects and their usage to perform an activity. Generic activity models are
applicable to all users.

2. Personalised activity models: they capture the specific way of a user to per-
form an activity and are modelled as instances of a corresponding conceptual
activity model, which consists of specific information related to the concrete
objects used and the sequential order they are used in.
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Activities are defined as ontological concepts and all actions that are required
to perform the activity as the properties of the concept. For example, making tea
involves taking a cup from the cupboard, putting a teabag into the cup, adding hot
water to the cup, then milk and/or sugar. The ontological model of making tea,
i.e. MakeTea concept, can be defined by action properties hasContainer, hasTe-
abag, hasHotwater, hasMilk and hasFlavour in conjunction with descriptive prop-
erties such as activity start time actStartTime and duration actDuration. Notice that
two kinds of properties are defined: action properties, which refer to action-based
properties and descriptive properties, which are used to characterise the manner in
which an activity is performed. This distinction is very important, because action
properties play a crucial role for activity recognition. Indeed, activities are inferred
from action properties which are generated by the sensor activations occurring due
to human-object interactions. On the other hand, descriptive properties are not de-
terminant in activity recognition. For instance, making coffee can happen at any
time, it can be performed in different sequences and it may take variable amounts
of time. As such, descriptive properties are used to model user’s activity profiles,
which are not used for the activity recognition process.

Hence, action properties define generic ADL models, which are used for activ-
ity recognition and are applicable to any user. Descriptive properties capture the
different ways of performing generic ADLs, in terms of the objects used, the order
in which those objects have been used, activity start time and duration. Person-
alised ADL models are instances of the corresponding generic ADL model.

In summary, ontological ADL modelling properly addresses different levels of
activity granularity and the difference between generic and personalised ADLs,
using the tools provided by markup languages such as OWL and RDF.

3.1.2 Ontological context modelling
The ADL modelling scheme described above establishes a clear dependency be-
tween the context and an ADL. Indeed, ADLs are described as a set of context
events, where context refers to temporal, spatial, event and environmental aspects.
Exemplary temporal aspects of an ADL may be the start time and the duration of
the activity, which are captured by descriptive properties. Spatial aspects relate to
location information and surrounding entities such as rooms, household furniture
and appliances. Event contexts capture dynamic state changes of the objects of the
environment, for example, state changes of doors, fridge door or a microwave oven.
Those events are modelled by action properties. Finally, environmental aspects of
the context are composed of environmental information such as temperature, hu-
midity and general weather conditions.

In the dense sensing paradigm, contextual information is captured through var-
ious sensors. Each sensor monitors and reflects one facet of a situation. Based on
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this observation the context modelling is centred on ontological sensor modelling.
Sensors are inherently linked to a number of physical and conceptual entities such
as objects, locations and states. For example, a contact sensor is attached to a teapot
in the second cupboard to the left of the sink in the kitchen. By explicitly capturing
and encoding such domain knowledge in a sensor model it is possible to infer the
corresponding objects and location from the activation of the sensor. This implies
that a user performs an activity in the inferred location with the inferred object.

As most ADLs require the interlinking and fusion of data from multiple, dis-
parate sensor sources in order to infer the high-level activities, it is necessary to
aggregate a sequence of sensor activations to generate a situation at a specific time
point. The situation formation process can be described as follows. Each sensor
has a default state value for its state property, denoting the state of the object to
which it is attached. When a sensor is activated, the state property will change.
Subsequently the system will translate the state change as an occurrence of a user-
object interaction at the specific time. As it is difficult, if not impossible, to moni-
tor what happens at detailed levels after an object is interacted with, it is common
practice to interpret a sensor activation as a user-object interaction, ignoring how
the object is used and when it is de-activated. As such a user-object interaction is
equivalent to an instantaneous sensor activation and can be interpreted as an ob-
ject being used for performing an activity. In this way, by aggregating individual
user-object interactions along a timeline the situation at specific time points can be
generated.

Under this context modelling approach, sensor activations are assumed to be
produced by user-object interactions, which may denote an action property or a
descriptive property, depending on the nature of the object and sensor. For exam-
ple, a thermometer state change will be captured by a descriptive property such as
hasTemperature(value), whereas a contact sensor installed in a cup will generate
the action property hasContainer(cup).

3.1.3 Final remarks about ontology-based activity modelling
A common framework to model ADLs and contextual information is provided by
the ontology-based activity modelling approach described in (Chen et al., 2012b).
Ontology-based activity modelling provides semantically clear, structured and
reusable models. Furthermore, it offers a unified framework to combine generic
models that can be applied to any user with personal models. By means of on-
tological modelling some traditional problems of data-driven approaches can be
avoided, such as the manual class labelling, pre-processing and training processes.
In addition, ontologies allow software agents to interpret data and reason against
ontological contexts, thus enhancing the capabilities of automated data interpreta-
tion and inference.

47



3. The Approach to Learn Specialised and Complete Activity Models

However, the main problem of this modelling approach is related to model in-
completeness. Obtaining complete models from domain knowledge for every per-
son is not generally possible. An ADL model is composed by action and descriptive
properties, so model incompleteness refers to the impossibility of completely defin-
ing all the action and descriptive properties of an ADL. In the case of descriptive
properties, model incompleteness is obvious, since those properties refer to person-
alised ways of performing activities. Chen et al. propose in (Chen et al., 2014) a
hybrid activity modelling approach to learn descriptive properties from user gen-
erated data. But they assume that ADL models in terms of action properties are
complete. This assumption does not generally hold, because even though there are
certain actions that every user performs for a given activity, there might be some
other actions that cannot be known in the modelling step.

Hence, this dissertation tackles the problem of learning unmodelled action
properties for activity models. By means of learning new actions through incre-
mental data-driven learning techniques, the static and generic nature of knowledge-
based activity models is also tackled. The contributions of this dissertation allow
dynamic activity models which evolve in time and support both, generic and per-
sonalised models.

3.2 Definitions and Constraints
For the rest of the dissertation the following terms and concepts will be used ac-
cording to the definitions provided in this section:

Definition 1 (Sensor activation (SA)). A sensor activation occurs when a sensor
changes its state from the no-interaction state to interaction state. Reverse tran-
sitions, i.e. de-activations of sensors, are not considered. For example, when a
user takes a glass, the activation is tagged as glassSens. A sensor activation is then
composed by a timestamp and a sensor identifier:

SA = {timestamp, sensorID} (3.1)

Definition 2 (Sensor activation dataset). A time-ordered sequence of sensor acti-
vations.

Definition 3 (Actions). Actions are the primitives of activities and are directly
linked to sensor activations. For example, the activation of sensors cupSens and
glassSens are linked to the action hasContainer. A sensor activation can only be
mapped to one single action, but an action can be generated by different sensor
activations. Actions do not have any duration and are hence described by a times-
tamp.
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Definition 4 (Type). When referring to activities and objects, type captures a pur-
pose based classification. In this dissertation, the types considered are Cooking,
Hygiene, Entertainment and Housework. An activity can only have one type, while
objects can have more than one. For example, an object like a tap can be used for
cooking, housework or hygiene. But a MakeCoffee activity can only be a cooking
activity. On the other hand, when referring to sensors, type classifies sensors in
terms of their technological base. In this dissertation, the modelled sensor types
are contact, electric, pressure and tilt sensors.

Definition 5 (Location). Location refers to semantic places of the monitored envi-
ronment, where sensor activations occur and hence, activities are performed. For
example, in a house, possible locations might be bedroom, bathroom or kitchen.

Definition 6 (Initial Activity Model (IAM)). Activity models are sequences of ac-
tions defined by a domain expert. Initial activity models refer to the minimum
number of necessary actions to perform an activity. The objective of such models
is to represent incomplete but generic activity models applicable to any user. Initial
activity models also have an estimation of the maximum duration of the activity.

IAM(Activityn) = {actiona, actionb, . . . ,max duration} (3.2)

Definition 7 (Extended Activity Model (EAM)). A complete and specialised ver-
sion of an IAM. By complete we mean that an activity model contains all the actions
performed by a user for the corresponding activity. By specialised we mean there
are two or more different complete action sequences for the corresponding activ-
ity, i.e. specialised sub-classes of that activity exist. The EAM for an activity is
represented as a list of action sequences with their occurrence frequency:

EAM(Activityn) = {as1, as2, . . . , asn} where

asi = {frequency, actiona, actionb, . . . , actionm}
(3.3)

Definition 8 (User Erratic Behaviour). It happens when a user interacts with an
object but the interacted object is not being used to perform the ongoing activity.
Consider the case where a user wants to prepare pasta. In order to take the pasta
from the store, the sugar package has to be removed first. The user will touch the
sugar package and thus, a sensor activation will be generated. But this interaction
does not mean that sugar is being used to prepare pasta.

Definition 9 (Positive Sensor Noise). A sensor that should not get activated, i.e.
there is no interaction with the object monitored by the sensor, gets activated be-
cause of sensor or monitoring infrastructure errors.

Definition 10 (Missing Sensor Noise). A sensor that should get activated, i.e. there
is an interaction with the object monitored by the sensor, does not get activated
because of sensor or monitoring infrastructure errors.
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The learning approach for activity models presented in this dissertation has
some constraints:

Constraint 1 (Dense sensing-based activity monitoring). Even though there is no
theoretical constraint that prevents the approach to be implemented for other ac-
tivity monitoring approaches, the implementation presented in this dissertation is
designed for the dense sensing-based activity monitoring approach.

Constraint 2 (Single user - single activity scenario). This is a hard constraint, in
the sense that the theoretical foundations of the learning approach assume explic-
itly that only one user is being monitored and this user is not allowed to perform
concurrent or interleaving activities.

Constraint 3 (Uniquely located activities). It is assumed that an activity can only
be performed in a single location, during a concrete execution, i.e. although Read-
Book can be performed in the bedroom and in the lounge, a concrete execution will
take place in the bedroom or in the lounge (exclusive or).

Constraint 4 (“Static” objects). Objects used by a user are assumed to be “static”
respect to the location, i.e. if the location of a toothbrush is the bathroom, the
object will always stay in the bathroom.

3.3 Solution Design
Based on the definitions and constraints shown in Section 3.2, an offline system
for extended activity model learning is presented. The objective of the system is
to learn extended activity models (EAM, Definition 7) for every defined activity
and a particular user, since every user has his/her own way to perform activities in
terms of executed actions. The initial activity models (IAM, Definition 6) for every
activity provided by a domain expert will be the same for every user, because they
are generic models. But the extended activity models are personal models. They
capture different complete activity models performed by a user. Notice that EAM
learning has several implications in the ontology-based activity model approach:

1. Complete models are learnt for every activity and a particular user. Complete
refers to the sequence of executed actions for a concrete activity.

2. If two or more different complete models are learnt for a concrete activ-
ity, specialised models of the same activity are found. This means that the
defined activity is not a leaf in the ADL ontological tree and hence, sub-
activities of that activity are discovered.

3. Activity models can be dynamic. If the EAM learning system is continuously
updated with new data, activity models can be updated. In consequence,
activity models evolve and are adapted to users’ varying behaviours.
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3.3.1 Inputs of the learning system
The learning system for EAMs works on user generated data. It combines domain
knowledge and user generated data in a learning algorithm. Notice that user data
comes in an unlabelled sensor activation dataset, so there is no need to manually
label any dataset. On the other hand, domain knowledge concerning the environ-
ment and activities is provided to the learning system. More concretely, the inputs
of the EAM learning system are:

1. Context knowledge: the context knowledge represents the prior knowledge
provided by a domain expert which is relevant to learn activity models. The
concepts modelled in the context knowledge include:

(a) Activities: every activity is defined by its name, type, location and IAM.
Following Definition 4, an activity has only one type. However, an
activity can be performed in several locations (notice that this does not
contradict Constraint 3).

(b) Objects: objects refer to every object in the environment which is mon-
itored by sensors and is used to perform activities. An object is defined
by its name, type, location and attached sensors. As Definition 4 states,
an object can have several types. But an object is subjected to Con-
straint 4, so it has a unique location. In principle, objects can be mon-
itored by several sensors. For instance, a fridge may have a tilt sensor
attached to its door to monitor open/close door actions and an electric
sensor to monitor the power usage.

(c) Sensors: following Constraint 1, sensors are attached to objects and
they are defined by a sensor identifier, type, described action and object
to which is attached. Sensors produce sensor activations (Definition 1)
when they transition from their no-interaction state to interaction state.
Sensors have a unique type and they are mapped to one single action,
as stated in Definition 3. The object to which the sensor is attached is
also stored in the context knowledge.

2. Sensor activation dataset: as defined in Definition 2, an unlabelled times-
tamped sensor activation dataset with the activity traces of a concrete user.

In the current implementation, context knowledge is formatted in a JavaScript
Object Notation (JSON)1 file. JSON has been selected because it provides a light-
weight knowledge formatting syntax which is widely supported and used to share

1http://json.org/
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information. Although OWL or RDF could be used to implement context knowl-
edge, the overhead introduced by such markup languages comes without any ad-
vantage for the EAM learning system. The decision of using JSON responds to
the principle of providing a simple solution, focusing on modelling only relevant
knowledge. As an example, Figure 3.2 shows how an activity, an object and a sen-
sor are modelled in the context knowledge file. This knowledge is provided by a
domain expert and modelled by knowledge engineers.

” MakeCoffee ” : {
” t y p e ” : [ ” Cooking ” ] ,
” l o c a t i o n ” : [ ” K i t c h e n ” ] ,
”IAM” : [ ” h a s C o n t a i n e r ” , ” h a s C o f f e e ” ] ,
” d u r a t i o n ” : 300

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
” k i t c h e n−t a p ” : {

” t y p e ” : [ ” Cooking ” , ” HouseWork ” ]
” l o c a t i o n ” : ” K i t c h e n ”
” s e n s o r s ” : [ ” k t a p S e n s ” ]

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
” k t a p S e n s ” : {

” t y p e ” : ” t i l t ” ,
” a c t i o n ” : ” turnOnTap ” ,
” a t t a c h e d−t o ” : ” k i t c h e n−t a p ”

}

Figure 3.2: Example of activities, objects and sensors modelled in the context knowl-
edge file. Activity duration is given in seconds.

The second input to the EAM learning system is the sensor activation dataset.
For the implementation presented in this dissertation, sensor activation datasets are
formatted in Comma Separated Value files (CSV)1. Each row of the file contains
a timestamp (year, month, day and time) and a sensor activation tagged with the
sensor identifier which has produced the activation (see Figure 3.3).

Based on those inputs, a context knowledge file and a sensor activation dataset,
the output of the EAM learning system is a list of action sequences for each activity,
which describe the EAMs for each activity (see Equation 3.3).

1http://en.wikipedia.org/wiki/Comma-separated values
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2014−05−23 0 9 : 4 7 : 3 3 . 9 8 4 3 4 1 , s t o r e S e n s
2014−05−23 0 9 : 4 7 : 3 9 . 3 3 3 5 2 8 , p o t S e n s
2014−05−23 0 9 : 4 7 : 5 2 . 7 5 0 2 1 6 , c o o k e r S e n s
2014−05−23 0 9 : 4 8 : 0 7 . 7 6 4 1 3 8 , f r i d g e S e n s
2014−05−23 0 9 : 4 8 : 1 2 . 5 9 1 8 3 6 , wmilkSens
2014−05−23 0 9 : 4 8 : 4 7 . 1 9 9 5 1 2 , chocoSens
2014−05−23 0 9 : 5 4 : 1 1 . 5 5 3 6 9 5 , mugSens
2014−05−23 0 9 : 5 4 : 4 0 . 7 9 4 9 7 9 , r c o n t r o l S e n s
2014−05−23 0 9 : 5 4 : 5 0 . 3 9 0 6 9 6 , t v S e n s
2014−05−23 0 9 : 5 4 : 5 9 . 3 4 8 8 6 2 , s o f a S e n s

Figure 3.3: A slice of a sensor activation dataset.

3.3.2 Intuition behind the solution
The rationale for the designed solution to EAM learning comes when sensor ac-
tivations are plotted in a three-dimensional space spanned by location, type and
time, as shown in Figure 3.4. This three-dimensional space, named activity space,
reflects the prior knowledge about activities. An activity has a concrete type that
is shared with the object types used to perform that activity and is performed in a
location and a time segment.

When sensor activations describing several activities are plotted in the activity
space, several lumps or clusters can be distinguished. Intuition says that sensor
activations, and hence actions, have to be close to each other when they form an
activity (close in the activity space), i.e. if a user is making pasta, it is common
sense to think that sensor activations describing that activity will be located in the
kitchen, and the objects which are being used by the user will be for cooking pur-
poses. As far as time regards, sensor activations will occupy a time segment which
will denote the duration of the activity.

This grouping of actions in the activity space can be seen in Figure 3.4. Six ac-
tivities can be identified there, namely MakeChocolate, BrushTeeth, WashHands,
MakePasta, MakeCoffee and WatchTelevision. Due to time resolution in the
graphic, actions composing BrushTeeth, WashHands and WatchTelevision cannot
be properly distinguished. Those three activities are quite short in time, but de-
picted actions for each of them are respectively five, three and three. There are
some actions that are not grouped in any activity. Those actions are generated by
objects that have multiple types. For example, in the case of MakePasta, the kitchen
tap is used. The kitchen tap can be used for cooking or for housework and that is
why it appears in both positions.

It is interesting to see how Figure 3.4 supports the intuition about action distri-
bution in the activity space. In general, actions can be easily grouped in activities,
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Figure 3.4: A plot of the actions executed by a user for performing several activities
in the three-dimensional space spanned by location, type and time.

but there are also some tough cases. This is the case of actions composing activities
BrushTeeth and WashHands, which are very close in time and are performed in the
same location and with the same purpose. The last action of MakePasta seems also
difficult to group, since it is closer in time to activity MakeCoffee, sharing again
the same location and type.

In consequence, the idea is to design a clustering algorithm which takes advan-
tage of location, type and time information to aggregate actions to clusters. The
clustering process needs heuristics and metrics that take special care of those ac-
tions that are difficult to group in the corresponding activity. But this is not enough.
Action clusters have to be identified and labelled with one of the defined activities.
To identify action clusters with activity names, initial activity models in the con-
text knowledge can be used. Initial activity models contain an incomplete sequence
of actions. Despite being incomplete sequences, they can be used to identify ac-
tivities. So the clustering algorithm has to produce several labelled action/sensor
activation sequences per activity.

The clusters extracted in the clustering process may contain all the actions exe-
cuted by a user to perform a concrete activity. Those clusters may be used to learn
different ways of performing an activity and hence, to learn extended activity mod-
els. In summary, the key idea is to design a clustering algorithm that uses initial
activity models to detect activities and some metrics in the activity space to aggre-
gate actions to activities. Afterwards, using the clusters extracted and labelled, they
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are analysed to learn extended activity models for each activity.

3.3.3 Description of the solution
Following the rationale described in section 3.3.2, a solution for the EAM learning
system has been designed. The devised system architecture is depicted in Figure
3.5. At a first glance, the two important blocks identified in section 3.3.2 can be
distinguished in the architecture: a clustering process and an activity model learn-
ing process. The clustering process is implemented in two modules, namely the
Semantic Activity Annotation module (SA3) and the Action Aggregator module
(AA). On the other hand, the activity learning process is implemented by a module
called Activity Model Learner (AML).

Action
Aggregator

Semantic Activity
Annotation

Synthetic
Data Generator

Sensor activation
dataset

Context
Knowledge

ADL script

Partially Annotated
dataset

Activity clusters

Activity Model
Learner

Learnt Action Sequences
for Activities

Clustering process

Real smart
environment

Fully Annotated
dataset

Figure 3.5: The detailed design architecture of the proposed approach to learn EAMs.

Two kinds of elements can be distinguished in the architecture depicted in Fig-
ure 3.5: files and software modules. The only exception to this rule is the real smart
environment, which represents a sensorised environment where a user performs
several activities. All the other elements can be classified into files or software
modules. There are three kinds of files: plain text files (ADL script), JSON files
(context knowledge, activity clusters and learnt action sequences for activities) and
CSV files (sensor activation dataset, partially annotated dataset and fully anno-
tated dataset). Files are used to exchange information between software modules.
The developed software modules are four: Synthetic Data Generator, Semantic Ac-
tivity Annotation, Action Aggregator and Activity Model Learner. All the software
modules of the diagram have been implemented using Python 2.71 and its packages
Numpy2 for numerical computing and Pandas3 for data analysis.

1https://www.python.org/
2http://www.numpy.org/
3http://pandas.pydata.org/
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Once the elements of the architecture have been described, the solution itself
will be detailed. Firstly, a sensor activation dataset has to be collected for a concrete
user. A real smart environment or a synthetic data generator can be used to get this
dataset. The sensor activation dataset contains all sensor activations registered for
a user performing certain activities during a fixed period of time. Remember that
sensor activations are unlabelled. Whatever method has been chosen to obtain it,
the resulting sensor activation dataset is formatted in a CSV file and its information
has already been described in Definition 2.

Afterwards, a novel clustering process is run on the sensor activation dataset,
using the context knowledge provided by an expert and formatted in a JSON file.
The proposed clustering process, which is extensively discussed in Chapter 4, is
divided into two steps:

1. Semantic Activity Annotation algorithm (SA3): this algorithm uses IAMs
stored in the context knowledge to detect activities in the unlabelled dataset.
It transforms sensor activations to actions according to the given context
knowledge to apply a novel pattern recognition algorithm that has been de-
signed and implemented to detect the occurrence of IAMs in the unlabelled
sensor activation dataset. SA3 also uses object and activity location infor-
mation to infer from sensor activations where an activity is being performed
and analyse consequently the feasibility of the detected pattern. SA3 is an
initialisation process from the clustering point of view, because it finds initial
clusters in the time axis and identifies the label of those clusters. The output
of SA3 is given in the so called partially annotated dataset, where sensor
activations and their resultant actions are labelled with activity names or the
special label None, which indicates that the action could not be labelled with
any known activity name. Notice that SA3 only labels those actions that per-
tain to IAMs thus leaving the vast majority of actions without any label. This
is the reason why the output of the algorithm is called partially annotated. A
detailed description of SA3 is given in Section 4.1.

2. Action Aggregator algorithm (AA): the input to the algorithm is the output
of SA3, i.e. the partially annotated dataset file. AA uses activity, object and
action knowledge described in the context knowledge to expand initial action
clusters detected by SA3. To analyse those actions that remain unlabelled
after SA3, AA defines boolean functions based on location, type and time
information of actions and objects. It analyses unlabelled actions that are
close to initial clusters, checking the feasibility of those actions pertaining
to those close initial clusters. The feasibility is computed using location,
type and time information, implementing the idea that actions pertaining to
an activity are performed in the same location, with a coherent purpose and
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close in time. The AA algorithm’s result is stored in another CSV file called
fully annotated dataset, which assigns an activity label to all actions and their
original sensor activations. The special label None is used for those actions
that are not considered part of any activity. Those actions can be originated
by sensor noise or user erratic behaviour, i.e. a user that interacts with an
object that is not being used for performing an activity. Additionally, AA
also generates a JSON file called activity clusters. This file contains all the
clusters found by the algorithm for each activity. Clusters, which are action
sequences, come with an occurrence frequency. The activity clusters file is
also used to store some interesting statistics found byAA about the frequency
of objects used and actions executed for each activity, frequency of locations
where each activity has been performed and activity duration statistics (mean
and standard deviation). An example of an activity clusters file can be seen
in Figure 3.6. The AA algorithm is described in Section 4.2.

The main result of the clustering process is thus stored in the activity clusters
JSON file. This file has the information of all action sequences executed by a user
to perform a concrete activity. For example, in the file shown in Figure 3.6, in the
“patterns” section, all the action sequences found by AA are stored. In this case,
for activity ReadBook, only one cluster has been generated with 53 occurrences in
the sensor activation dataset. According to AA, ReadBook has been performed by
means of executing the action sequence useFurniture, turnOnLamp and hasBook.
Nevertheless, AA generally finds many different clusters per activity. Those clus-
ters are finally processed by Activity Model Learner (AML), which filters incor-
rect action sequences and outliers to learn final EAMs as a list of action sequences.
AML uses action sequence similarity metrics to implement an outlier detection al-
gorithm. Notice that all action sequences or clusters detected by AA are not valid
activity models, since they may contain incorrectly labelled actions (due to cluster-
ing errors, sensor errors and/or user erratic behaviour) and missed actions (due to
sensor errors). Those spurious action sequences have to be detected and removed,
to discover those action sequences that are valid models for a given activity. Valid
action sequences are the EAMs for activities and are stored in a JSON file called
learnt action sequences for activities. All the details about AML are provided in
Chapter 5.

3.4 Summary and Conclusions
A global solution has been designed to learn extended activity models from initial
generic but incomplete activity models. The base of the solution is the ontology-
based activity modelling, which provides a unified and reusable framework to
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” ReadBook ” : {
” l o c a t i o n s ” : [

[ 4 2 , ” Bedroom ” ] ,
[ 1 1 , ” Lounge ” ]

] ,
” a c t i o n s ” : [

[ 5 3 , ” u s e F u r n i t u r e ” ] ,
[ 5 3 , ” turnOnLamp ” ] ,
[ 5 3 , ” hasBook ” ]

] ,
” p a t t e r n s ” : [

[
53 ,
[

” u s e F u r n i t u r e ” ,
” turnOnLamp ” ,
” hasBook ”

]
]

] ,
” o b j e c t s ” : [

[ 4 2 , ” bed ” ] ,
[ 4 2 , ” bedroom−lamp ” ] ,
[ 4 2 , ” book−b ” ] ,
[ 1 1 , ” s o f a ” ] ,
[ 1 1 , ” lounge−lamp ” ] ,
[ 1 1 , ” book−a ” ]

] ,
” o c c u r r e n c e s ” : 53 ,
” d u r a t i o n ” : [

14 .773584905660377 ,
2 .6467602797835856

]
} ,

Figure 3.6: Information stored in the activity clusters file for activity ReadBook.
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model ADLs. The presented solution for learning aims at completing and spe-
cialising initial activity models provided by a domain expert.

For that purpose, this chapter introduces some important definitions and con-
straints, setting the scenario in which the learning system works. Afterwards, the
rationale behind the solution design has been described. It has been shown that
when actions pertaining to activities are plotted in the so called activity space -
spanned by time, type and location - activities are arranged in clusters. The idea
is to be able to identify those clusters and aggregate surrounding actions defin-
ing appropriate metrics and heuristics. Once those clusters have been identified, a
learning algorithm will be deployed to learn extended activity models from identi-
fied clusters.

In conclusion, this chapter has established the ground in which the contributions
of the dissertation stand. The addressed problem has been described and a solution
for that problem has been proposed. The following chapters will show how this
solution is deployed.
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If you keep doing what you’ve al-
ways done, you’ll keep getting what
you’ve always gotten.

Neil Strauss

CHAPTER

4
A Clustering Process for

Activity Annotation

A novel clustering process for activity annotation in an unlabelled dataset
is described in this chapter. Using previous knowledge obtained from a
domain expert, the clustering process identifies activities performed by
a user in an unlabelled sensor activation dataset. The clustering process

is claimed to be novel because it combines unsupervised learning techniques with
domain knowledge. In contrast with a typical clustering algorithm, which finds
a structure in a given dataset, the proposed algorithm can also link the extracted
structures with a semantic activity name. This is possible because initial activity
models are used, i.e. generic but incomplete activity models provided by a domain
expert.

The clustering algorithm is divided into two steps, as introduced in Chapter 3:
(i) a special pattern recognition algorithm that finds initial activity models’ occur-
rences in the sensor activation dataset (SA3), and (ii) a data aggregation step where
object, sensor and action knowledge is used to define location, type and time based
metrics which are used to aggregate actions to activities (AA). Following this di-
vision, the chapter is divided in three sections: Section 4.1 describes the Semantic
Activity Annotation algorithm (SA3), which is presented as the initialisation step
of the clustering process. Section 4.2 presents the second step of the clustering
process, where actions are aggregated to corresponding initial action clusters pro-
vided by SA3 which describe an activity performance. Section 4.3 summarises this
chapter and draws the extracted conclusions.
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4.1 SA3: Semantic Activity Annotation Algorithm
The objective of the SA3 algorithm is to find sequences of actions that are describ-
ing an activity in an unlabelled sensor activation dataset. For that purpose, initial
activity models (IAM) stored in the context knowledge are used. Remember that
IAMs, as defined in Definition 6, are characterised by a sequence of necessary
actions to perform an activity plus a duration estimation.

The problem can be stated more formally as:

Problem (SA3). Given a context knowledge file where activities, sensors and ob-
jects are described and an unlabelled sensor activation dataset, find the occur-
rences of IAMs that form valid executions of activities.

Considering that IAMs are sequences of actions and that sensor activation
datasets are sensor sequences, the SA3 problem can be seen as a pattern recognition
problem, where IAMs act as the patterns to be recognised in the sensor activation
dataset. Although SA3 is actually a pattern recognition algorithm, there are some
important features that make the problem special:

1. IAMs are sequences of actions, whereas sensor activation datasets contain
sensor activations, i.e. the activation of a concrete sensor of the environment.

2. As IAMs are incomplete activity models, a user will generally execute more
actions than those considered in the IAMs to perform activities. As a con-
sequence a sensor activation dataset will generally include sensor activations
and actions that are interleaved with IAM actions for the same activity.

3. IAMs have no information about the order in which actions are executed, thus
if IAM(A) = {a, b, c}, a sensor activation dataset containing the sequence
{c, a, b} has to be identified as activity A, i.e. the elements of the pattern to
be recognised might appear in varied orders.

4. Even though a sequence corresponding to an IAM is found, it does not neces-
sarily describe a valid activity, since duration and location are important. For
example, for an activity whose typical duration is 5 minutes, the correspond-
ing actions are found but their distance is of 3 hours; it is then common sense
to think that those actions do not form a valid activity. Hence, the pattern
recognition algorithm needs to take action time distances and locations into
account.

5. Sensors are prone to errors and in consequence, sensor activation datasets
contain noise. The pattern recognition algorithm has to work thus in noisy
environments. More concretely, the considered kinds of sensor noise are
positive and missing sensor noise (Definitions 9 and 10).

62



4.1 SA3: Semantic Activity Annotation Algorithm

In summary, SA3 has to use IAMs as patterns to be recognised in an unla-
belled sensor activation dataset, where actions are executed in varied orders, where
actions that are not in IAMs can appear interleaved, where duration and location
information is crucial for the validity of a pattern and where sensor noise exists.

In order to tackle the described problem a three-step algorithm has been de-
signed and implemented (see Figure 4.1). The first step, named sensor-action trans-
formation step, uses sensor information from the context knowledge to transform
sensor activations into actions (Section 4.1.1). The second step, the activity se-
quence finding step, runs a pattern recognition algorithm using IAMs and object
information from context knowledge, as described in Section 4.1.2. This step ad-
dresses the varied order of actions, interleaved actions not pertaining to IAMs,
duration and location information for valid activities and sensor noise. Finally,
the third step called correct activity sequence fitting fixes the overlapping activities
generated in the second step (Section 4.1.3).

Activity Sequence
Finding

Sensor-action
transformation

Sensor activation
dataset

Context
Knowledge

Partially Annotated
dataset

Correct Activity
Sequence Fitting

Sensor
info

IAM and 
object
info

Figure 4.1: The three-step algorithm for SA3.

The result of SA3 is the partially annotated dataset. SA3 can only label those
actions pertaining to IAMs and thus it cannot infer a label for all the other actions of
the sensor activation dataset. An example of how a partially annotated dataset looks
like is provided in Table 4.1. The first column shows the timestamp of the sensor
activation. The second column shows the activated sensor. Those two columns
form the sensor activation dataset. SA3 adds the third, fourth and fifth columns,
where action, activity label and start/end tags are provided. Start tag refers to the
first action pertaining to the IAM of a valid activity discovered by SA3. End tag
has the same meaning but for the last action. In consequence, start and end tags
show the start and end times for a detected activity. For convenience, and even
though any action not pertaining to the IAM of the detected activity cannot be
labelled by SA3, all the actions between start and end times are labelled with the
detected activity name, and not with the special label None. This labelling criterion
is applied to make visualization easier and it does not have any effect on the output
of SA3, neither for AA nor for evaluation purposes.

The next sections describe in detail the three steps of SA3 depicted in Figure

63



4. A Clustering Process for Activity Annotation

Timestamp Sensor Action Activity Start/End
2014-05-23 07:42:17.106962 wsugarSens hasFlavour None
2014-05-23 07:49:17.310460 bedSens useFurniture None
2014-05-23 09:43:44.128079 cupSens hasContainer MakeChocolate start
2014-05-23 09:47:33.984341 storeSens openStore MakeChocolate
2014-05-23 09:47:39.333528 potSens useCookingUtensil MakeChocolate
2014-05-23 09:47:52.750216 cookerSens useCookingAppliance MakeChocolate
2014-05-23 09:48:07.764138 fridgeSens openFridge MakeChocolate
2014-05-23 09:48:12.591836 wmilkSens hasMilk MakeChocolate
2014-05-23 09:48:47.199512 chocoSens hasChocolate MakeChocolate end
2014-05-23 09:54:11.553695 mugSens hasContainer None

Table 4.1: Example of a partially annotated dataset, the output of the SA3 algorithm
shown in table format.

4.1. Finally, Section 4.1.4 shows the complete algorithm and illustrates it with an
example.

4.1.1 The sensor-action transformation step
The first step takes as inputs the sensor activation dataset and the context knowledge
file to transform every sensor activation into an action. For each sensor activation
in the dataset, the corresponding sensor model is checked in the context knowl-
edge file. As shown in Figure 3.2 every sensor has the action to which it has to be
mapped in the context knowledge file provided by the domain expert. This simple
transformation is possible due to the dense sensing-based activity monitoring ap-
proach, where sensor activations are directly linked to user-object interactions and
thus to actions.

In consequence, a sensor activation sequence such as:

{cupSens, wsugarSens, smilkSens}

will be transformed to:

{hasContainer(cup), hasF lavour(white-sugar), hasMilk(skimmed-milk)}

For the sake of clarity, and given that action matching does not care about
concrete objects used to execute that action, hasContainer(cup) will be used as
hasContainer. But notice that the object information obtained through the sensor
activation is not removed.

Sensor-action transformation step allows performing pattern recognition in the
action space, abstracting from concrete sensor activations. This step can be kept
simple thanks to the dense sensing-based approach. For different activity monitor-
ing approaches, such as wearable sensors, more complex sensor-action transforma-
tion steps should be implemented. However, notice that as far as sensor information
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can be transformed to actions, SA3 and the entire clustering process can work with-
out any problem. This is why Constraint 1 is considered to be a weak constraint.

4.1.2 The activity sequence finding step
The objective of this step is to find all valid occurrences of IAMs in the action
space obtained from the sensor-action transformation step. An iterative process is
run over actions. Firstly, the algorithm checks whether the current action pertains
to any of the IAMs stored in the context knowledge file. If the answer is no, the
action is labelled with the None label and the next action is treated. But if the
answer is yes, the IAMs of the activities in which the action appears are considered
as possible activities. Notice that if the action pertains to more than one IAM,
all the possibilities are treated. Assume the action a pertains to IAM(A1) and
IAM(A2). Two action sequences are created S(A1) = {a} and S(A2) = {a}. The
algorithm iterates through the next actions, in order to find sequences of actions
that form valid activities in correspondence of possible activities.

The process to find valid activities works as follows:

1. Current action b is added to the created action sequences: S(Ai) =
append(S(Ai), b).

2. If current action b pertains to an IAM of an activity for which no sequence
has been open, open a new sequence.

3. Check whether candidate sequences form a valid activity in terms of comple-
tion, duration and location

4. If any of the candidate sequences forms a valid activity, close the sequence
and follow with remaining sequences.

5. Iterate through actions until all sequences are closed (valid activities) or re-
moved (invalid activities).

To fully understand the described process to check for valid activities, the com-
pletion, duration and location criteria have to be explained:

1. Completion criterion: an action sequence has to contain all the actions of
the corresponding IAM to be considered a complete action sequence for the
corresponding activity. An action sequence S(Ai) is complete for activity Ai

if and only if
IAM(Ai) ⊆ S(Ai) (4.1)
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2. Duration criterion: for an action sequence to fulfil the duration criterion, the
duration of the action sequence has to be smaller than the duration estima-
tion of the corresponding IAM. The duration of an action sequence S(Ai) is
calculated as the rest of the timestamps of the last action and the first action:

∆t(S(Ai)) = t(S(Ai)last)− t(S(Ai)first) (4.2)

where t(S(Ai)j) is the timestamp of the j-th action of the sequence S(Ai).
Duration estimations for activities are stored in the context knowledge file
and are written as ∆t(Ai). Hence, the duration criterion establishes that an
action sequence fulfils the duration criterion if and only if

∆t(S(Ai)) ≤ ∆t(Ai) (4.3)

3. Location compatibility criterion: the actions of sequence S(Ai) which per-
tain to IAM(Ai) have been transformed from corresponding sensor activa-
tions. Those sensor activations can be traced in the context knowledge to the
used objects. And those objects have a location in their model. Hence, the
location of actions can be inferred using the context knowledge file. Using
this information, the location of the possible activity described by sequence
S(Ai) is inferred. The location of sequence S(Ai) is inferred as the com-
mon locations of actions of the sequence pertaining to IAM(Ai). If actions
pertaining to the IAM do not share a common location, the sequence has no
location and thus, it is not compatible with any activity in terms of location.
On the other hand, if a common location is shared, that location has to be
compatible with the locations of the corresponding activity, modelled in the
context knowledge file. Notice that only locations of actions pertaining to
an IAM are considered. All the other actions can be generated by noise or
erratic behaviour and in consequence, their locations are not considered in
SA3. This can be seen better with an example: let S = {a, b, c, d} be a
sequence of actions, where a and d pertain to the IAM of activity A. For
location inference, only actions that pertain to the IAM of the detected ac-
tivity are considered, since all the other actions of the sequence S cannot be
considered as part of the activity yet. For instance, some of those actions
might be produced by positive noise. Hence, the sequence S is an activity A
with location L if a and d have been executed in the same location and that
location is compatible with A activity’s locations. Formally expressed:

S = {a, b, c, d}, A : candidate activity and IAM(A) = {a, d}
S is explained by A→ loc(obj(a)) = loc(obj(d)) ∈ Locations(A)

(4.4)

66



4.1 SA3: Semantic Activity Annotation Algorithm

where obj(a) returns the object which has been mapped to action a, loc(o)
returns the location of object o in the environment and Locations(A) returns
the list of possible locations of activityA according to the context knowledge
file.

Action sequences that fulfil the completion, duration and location criteria will
be considered as valid activities and stored as such. Action sequences that do not
fulfil those criteria will be removed, since they do not form a valid activity descrip-
tion.

4.1.3 The correct activity sequence fitting step
Depending on the activity models, the sensor activation dataset and noise levels,
valid activities can overlap each other. Moreover, as many IAMs will share some
actions, activity overlapping will be a normal situation after the activity sequence
finding step described in Section 4.1.2. But by virtue of Constraint 2 (only single
user - single activity scenarios are considered), interleaving thus overlapping ac-
tivities cannot appear in the sensor activation dataset. So a special step has to be
designed to treat overlapping activities generated in the activity sequence finding
step.

Having a set of overlapping activities, described through the corresponding ac-
tion sequences, this step introduces a heuristic directly derived from Constraint 2
to return a set of non-overlapping activities which provides the best explanation
for the generated situation. The heuristic states that in a set of overlapping action
sequences, the maximum number of non-overlapping action sequences have to be
returned.

The reason to adopt this heuristic is that the vast majority of sensor activations
are originated by deliberated user-object interactions. In consequence, the vast
majority of sensor activations must be part of an activity. In order to maximise
the number of sensor activations which correspond to the execution of an activity,
the heuristic chooses the maximum number of non-overlapping activities in a given
sequence. Because this is the way to maximise the number of sensor activations in
activities.

4.1.4 The complete SA3 algorithm
Sections 4.1.1, 4.1.2 and 4.1.3 describe the first, second and third steps of the SA3

algorithm. This three-step algorithm is depicted as pseudo-code in Algorithm 1. It
has been designed to work with noisy sensor activations, varying order for activity
executions and sensor activations that do not belong to any initial activity model.
That flexibility allows applying the tool to many different datasets.

67



4. A Clustering Process for Activity Annotation

Algorithm 1 SA3 algorithm for semantic activity annotation
Require: sensor activation dataset, context knowledge
Ensure: partially annotated dataset
partially annotated dataset← createDataset(sensor activation dataset)
action dataset ← applyTransformFunction(sensor activation dataset,
context knowledge)
IAM list← obtainIAMS(context knowledge)
for all action ∈ action dataset do

if action ∈ initial activity models then
activities← obtainActivities(action, IAM list)

end if
for all activity ∈ activities do
// Use duration, completion and location criteria
valid activities← findV alidActivities(context knowledge)

end for
end for
partially annotated dataset← findNonOverlappingActivities(valid activities)

return partially annotated dataset

An illustrative example is shown next, to describe how SA3 works. Timestamps
are ignored in the example, assuming that the duration criterion is fulfilled by the
shown action sequence and considered activities. This assumption helps making
the example clearer. The illustrative example has been designed to show in detail
how SA3 works, so it does not have to be coherent with the reality.

Imagine initial activity models for MakeCoffee, MakeTiramisu, Make-
WhippedCream and BrushTeeth are defined as follow:

MakeCoffee = {hasCoffee, hasContainer, hasF lavour}
MakeT iramisu = {hasCream, hasContainer, hasCoffee}

MakeWhippedCream = {hasF lavour, hasContainer, hasCream}
BrushTeeth = {hasBrusher, hasToothPaste, turnOnTap}

Notice that there are many actions that are used for the IAMs of several activi-
ties. For instance, hasContainer is used in the IAMs of MakeCoffee, MakeTiramisu
and MakeWhippedCream. Using the same actions for various activities makes the
problem harder, since overlapping activities are more common.

Let us consider the following sensor activation sequence from the sensor acti-
vation dataset:
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{mugSens, creamSens, spoonSens, whitesugarSens, brusherSens,
afcoffeeSens, toothpasteSens, glassSens, btapSens}

Applying the sensor-action transformation step using the context knowledge
as described in Section 4.1.1, the following action sequence is obtained (concrete
objects are ignored in the action sequence):

{hasContainer, hasCream, useCookingUtensil, hasF lavour, hasBrusher,
hasCoffee, hasToothpaste, hasContainer, turnOnTap}

Figure 4.2 shows all the activities found by the second step of SA3 (Section
4.1.2). Activities overlap each other, because there are several actions that belong
to several activities. Notice also that there are some actions that are not in any
activity model, which is totally feasible for the approach.

h a s C o n t a i n e r | |
hasCream | MWC |
u s e C o o k i n g U t e n s i l | |
h a s F l a v o u r | | MT
h a s B r u s h e r | |
h a s C o f f e e | |
h a s T o o t h p a s t e | BT
h a s C o n t a i n e r |
turnOnTap |

Figure 4.2: Illustrative example of the output of the activity sequence finding step of
SA3. MWC refers to MakeWhippedCream, MT to MakeTiramisu and BT to Brush-
Teeth.

Assuming that the duration criterion is always fulfilled for this example, Fig-
ure 4.2 shows how the completion and location criteria work. For instance, action
sequence S = {hasContainer, hasCream, useCookingUtensil, hasF lavour}
is a valid sequence to describe activity MakeWhippedCream, because it con-
tains all the actions of IAM(MakeWhippedCream) and it is location com-
patible. Actions hasContainer, hasCream and hasFlavour, which pertain to
IAM(MakeWhippedCream) are obtained by interacting with objects mug,
cream and white-sugar. The location of all those objects is the kitchen. As ac-
tivity location for MakeWhippedCream is also the kitchen, the action sequence
and the activity are location compatible.
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However, consider the following action sequence S = { hasF lavour,
hasBrusher, hasCoffe, hasToothpaste, hasContainer}. Assuming duration
criterion is satisfied, it can be seen that the completion criterion is also satisfied for
activity MakeCoffee. But sequence S does not form a valid activity because the
last action hasContainer is produced by the object glass, which is located in the
bathroom. As hasContainer is in IAM(MakeCoffee), its location is taken into
account for location inference and compatibility. In this case, sequence S does not
have a unique location and hence, it is removed.

After the activity sequence finding step finishes, three overlapping valid activi-
ties are found, namely MakeWhippedCream, MakeTiramisu and BrushTeeth. Such
a situation cannot happen in a single user - single activity scenario, so the third step
has to be applied: the correct activity sequence fitting step (Section 4.1.3). Using
the defined heuristic, two activities are returned:

MakeWhippedCream = {hasContainer, hasCream, useCookingUtensil,
hasF lavour}

BrushTeeth = {hasBrusher, hasCoffee, hasToothPaste, hasContainer,
turnOnTap}

Those two activities correspond to the maximum number of non-overlapping
activities found in the set of valid activities. The action sequence for Make-
WhippedCream makes perfect sense. There is an action, useCookingUtensil, which
is not in any IAM, but it is very coherent with the activity. Even though SA3 labels
this action with the MakeWhippedCream tag, remember there is no way for SA3 to
know whether this action is really part of the activity. Such a labelling is done only
for convenience. On the other hand, the action sequence for activity BrushTeeth
contains a strange action: hasCoffee. In a noisy scenario this action may be gener-
ated by sensor or communication infrastructure errors. The other action which is
not in the IAM of BrushTeeth is hasContainer. It is generated by the glass sensor,
which is located in the bathroom. The action hasContainer may refer to a glass
used in the bathroom to rinse the mouth.

Looking at Figure 4.2, the heuristic defined in the correct activity sequence
fitting step can be visually understood. As it can be seen, returning the maximum
number of non-overlapping activities maximises also the number of actions inside
activities.

4.2 AA: Action Aggregator
Initial clusters provided by SA3 are expanded in this step, using context knowledge
and time-based metrics for action aggregation. The inputs of the AA algorithm
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are the context knowledge file (see Section 3.3 and specially Figure 3.2) and the
partially annotated dataset returned by SA3 (see Table 4.1). The output of SA3

is interpreted as the initialisation of the clustering process in the activity space
spanned by location, type and time axis. SA3 has been designed to provide the
number of clusters in the dataset, their semantic label and their centroids in the
time axis. Having this initialisation, AA is responsible for analysing all actions
considering the three dimensions of the activity space and deciding which actions
are aggregated to the initial clusters provided by SA3.

Assume Figure 4.3 shows the output of SA3 for a concrete sequence of actions.
For simplicity, only the time axis is shown in the figure. Dashes represent time
intervals without any action. Circles represent actions that are in one or more IAMs.
Notice that two circles do not necessarily have to be the same action. The only
property they have is that a circle action is in at least one of the IAMs of the context
knowledge file. Crosses, on the other hand, are actions that are not included in any
IAM. Once again, two crosses do not have to represent the same action.

Outsider action

Insider action

Figure 4.3: Output of SA3 for a concrete sequence of actions, where outsider and
insider actions are identified.

Figure 4.3 shows that SA3 detects activities A1 and A2 in that sequence of
actions. As stated in Section 4.1 only actions that are in the IAM of the detected
activity can be really considered part of that activity, i.e. only circles that are inside
activities A1 and A2 are labelled with the corresponding activity labels.

Given that action classification, two new definitions can be assumed:

Definition 11 (Insider action). Every action that is inside the initial clusters pro-
vided by SA3 but is not in their IAMs is considered an insider action or insider, in
short.

Definition 12 (Outsider action). Every action out of the initial clusters provided by
SA3 is an outsider action or outsider, in short.

Due to single-user single-activity scenario constraint (Constraint 2), an insider
may pertain to its wrapping activity or to none assuming the output of SA3 is
correct, i.e. it has been produced by noise or user erratic behaviour. There is
no chance for an insider to pertain to an activity other than its wrapping activity
because such an assumption would imply the existence of interleaved activities
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(remember this is true assuming that the output of SA3 is correct, which is assumed
in the AA algorithm). The situation for outsiders is different since an outsider can
pertain to its previous activity, next activity or to none.

The inherent difference between insiders and outsiders demands a different
treatment for both cases. AA first treats all insider actions and afterwards com-
putes all outsiders using different approaches.

4.2.1 Insider actions
To decide whether an insider has to be added to its wrapping activity, a compatibil-
ity function between an activity and an action is defined. The compatibility function
is a boolean function that captures whether an insider action has been executed in
the same location as the activity and its purpose is coherent with the activity type:

Comp(A, a) = Loc(A, a) ∧ Type(A, a) (4.5)

where A is an activity and a is an action. Loc(A, a) is the location compatibility
between an activity and an action, defined as in Section 4.1.2. The location of the
concrete activity A is inferred using the same process as in SA3, i.e. the common
location of the actions pertaining to the IAM of the activity is set to be the location
of the activity. Loc(A, a) returns whether the inferred location for action a is the
same as the inferred location for activity A. On the other hand, Type(A, a) is the
type compatibility between an activity and an action. Action type is inferred from
the object used to execute the action. Every object in the context knowledge has
a list of types. Activity type is unique and it is also retrieved from the context
knowledge file. So Type(A, a) is calculated as the intersection between the list of
types of the action a and the type of the activity A. If the intersection is empty, the
action and the activity are not type compatible.

Hence an insider action a will only be aggregated to its wrapping activity A,
if Comp(A, a) = True, i.e. the insider has been executed in the same location of
the activity, and its purpose is compatible with the activity type. If Comp(A, a) =
False, the insider will be labelled with the None label, which means that it is not
part of any activity.

4.2.2 Outsider actions
As an outsider can be aggregated to its previous or next activity, first of all the
algorithm checks the feasibility of both options, defining another boolean function
called candidate function:

Cand(A, a) = Comp(A, a) ∧ InRange(A, a) (4.6)
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Comp(A, a) has already been defined in Equation 4.5, so the candidate func-
tion also takes into account location and type. The InRange function is an-
other boolean function that captures time feasibility. Thus the candidate function
states that an activity A is a candidate activity for action a, if they are compatible
(Comp(A, a) = True) and in range (InRange(A, a) = True).

As commented above, the InRange function has been defined to capture the
time feasibility. For example, if an action has been executed two hours before
an activity whose estimated duration is three minutes, the action should not be
aggregated to that activity, since it is almost impossible for the action to be related
with the activity. This reasoning can be implemented in a boolean function using
time distance and activity duration.

To capture time feasibility, the duration given by the expert in an IAM is inter-
preted as the standard deviation for concrete executions of that activity, i.e. the vast
majority of the activities executed by any user, will lie inside the time area limited
by the duration. This can be seen in Figure 4.4. So time distances among actions
pertaining to a concrete activity are modelled by a Gaussian distribution, where the
duration estimation given by the expert for that activity is the standard deviation. A
Gaussian distribution has been selected since it captures perfectly the idea of activ-
ity duration as a time estimation where the majority of executions of that activity
occur. The probability for actions of an activity to lie in the area limited by the
duration estimation is very high and gets lower as it gets further from that duration.

Nevertheless, due to human behaviour variations, there will be some executions
whose duration is outside the standard deviation. To capture those executions, the
InRange function considers all the actions lying inside k standard deviations. For
the experiments run in this dissertation k = 2 has been set, but the value can be
adjusted depending on the area which is desired to cover. For a concrete activity
execution, the mean of the activity is calculated as the centre of the detected start
and end of the activity, as given by SA3. Using this mean calculation, the duration
estimation given in the context knowledge is the standard deviation of the Guas-
sian distribution for action time distances. Hence, in the case depicted in Figure
4.4, where Gaussian distributions are calculated as described, the outsider action
represented with a star is in range with activities A1 and A2 for k = 2.

In consequence, using the candidate function, the following cases can be faced
for an outsider action a and surrounding activities A1 and A2:

1. Cand(A1, a) = Cand(A2, a) = False→ a is noise (None label)

2. Cand(A1, a) = True ∧ Cand(A2, a) = False→ aggregate a to A1

3. Cand(A1, a) = False ∧ Cand(A2, a) = True→ aggregate a to A2

4. Cand(A1, a) = Cand(A2, a) = True→ need of a new heuristic
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Figure 4.4: Gaussian distributions of activity durations for activities A1 and A2. Ver-
tical lines show the standard deviation and the star represents an outsider action.
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The first three cases provide a clear classification for an outsider. The candidate
function determines unambiguously the label for action a. But for the fourth case,
where previous and next activities are both candidate activities, a new heuristic has
to be defined. There is no more information in the context knowledge than the
location and type information to relate outsider actions to activities, thus context
knowledge cannot be used to decide between activities A1 and A2. Hence a new
heuristic is defined stating that an outsider action a will be aggregated to the time
closest activity:

min{∆t(A1, a),∆t(A2, a)} (4.7)

To implement this heuristic, a definition for ∆t(A, a), the time distance between
an activity and an action, is needed. As an activity has a duration and an action is
described by a time instant, three time metrics are proposed:

1. Simple time distance: the distance between the centre of the activity as given
by SA3 and the action time coordinate.

∆t(A, a) = |CA − ta|, where CA =
tSA

3

end − tSA
3

start

2
(4.8)

2. Normalised time distance: simple time distance normalised by the duration
of the activity as given by the expert. This time metric, as opposed to the
simple time distance, treats equally all activities regardless of their duration.
Notice that the duration given by the expert is used rather than the duration
detected by SA3, since SA3 may give varying durations depending on the
order of executed actions that pertain to the IAM of the detected activity.
Hence, the duration given by SA3 cannot be a good reference. But notice
also that to calculate the centre of the activity, the output of SA3 is used. In
this case, this information is the only one that allows calculating the centre.
So the duration given by the expert is projected symmetrically around the
centre calculated from SA3:

∆t(A, a) =
|CA − ta|
DurationA

, where CA =
tSA

3

end − tSA
3

start

2
(4.9)

3. Dynamic centre normalised time distance: only used for the previous activ-
ity, it dynamically calculates the centre of the activity depending on already
aggregated actions.

∆t(A, a) =
|CA − ta|
DurationA

, where CA =
tAA
start +DurationA

2
(4.10)
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Let us explain the third time distance in detail. Activity start and end times
provided by SA3 are not generally trustful, since they depend on what actions are in
the IAM of the detected activity and on the order of executions of those actions by
the user. Imagine that IAM(A) = {a, b} and that the action sequence processed by
SA3 is S = {d, b, a, c}. Assume that sequence S is the action sequence performed
by the user for activity A. SA3 will detect that activity A is being performed in
sequence S, but it will only label actions b and a as pertaining to the activity. SA3

does not have any information to know whether actions d and c pertain to activity
A. So the start time of activityA for SA3 will be the timestamp associated to action
b and not to action d. The same happens for the activity end time.

Nevertheless, while executing the AA algorithm, starting times of activities can
be estimated better, but with some limitations. In the previous example, as outsiders
in AA are treated in time order for convenience, when treating outsider c, all the
actions preceding action c have already been treated (in this case, action d, since
actions b and a are in the IAM of activity A). AA has already determined that
action d pertains to activity A. This means that the start of activity A, which is the
previous activity for action c, has been fixed and it is different from the start time
provided by SA3 (tAA

start 6= tSA
3

start).
In contrast with time metrics 1 and 2, where activity start and end were given

by SA3 and activity duration was assumed to be located symmetrically around the
centre of the activity, the third time metric uses the start time of the previous activity
as found by AA. Afterwards, the centre of the activity is calculated projecting the
duration from the starting point. This makes the previous activity treatment more
accurate. However, notice that the same approach cannot be applied to the next
activity, since it has not been treated yet. The estimation given by SA3 cannot be
improved, because surrounding activities have not been treated when action c is
being analysed. Hence, the best guess is to keep using start and end times provided
by SA3.

4.2.3 The complete AA algorithm
To sum up, the AA algorithm takes the results of SA3 as the initialisation step.
First, it treats insiders for all the activities detected by SA3, using the compatibility
function (Equation 4.5). Afterwards, it treats outsiders in time order, using the
candidate function (Equation 4.6) and defined three time metrics (Equations 4.8,
4.9 and 4.10). The complete algorithm is depicted as pseudo-code in Algorithm 2.

The algorithm returns two files: (i) a fully labelled sensor activation dataset,
which is formatted in a CSV file in the current implementation, and (ii) a list of
clusters, which has been implemented through a JSON file. Additionally, that file
contains: (i) the frequency of each action cluster, (ii) duration statistics (mean and

76



4.2 AA: Action Aggregator

Algorithm 2 AA algorithm for action aggregation
Require: partially annotated dataset, context knowledge
Ensure: fully annotated dataset, activity clusters file
fully annotated dataset← createDataset(partially annotated dataset)
insiders← obtainInsiders(partially annotated dataset)
outsiders← obtainOutsiders(partially annotated dataset)
for all action ∈ insiders do
activity ← obtainWrappingActivity(action, partially annotated dataset)

if Comp(activity, action, context knowledge) then
label(a, activity, fully annotated dataset)

else
label(a,None, fully annotated dataset)

end if
end for
for all action ∈ outsiders do
previous activity ← obtainPreviousActivity(action, partially annotated dataset)

next activity ← obtainNextActivity(action, partially annotated dataset)

Prev ← Cand(action, previous activity, context knowledge)
Next← Cand(action, next activity, context knowledge)
if ¬Prev ∧ ¬Next then
label(a,None, fully annotated dataset)

else if Prev ∧ ¬Next then
label(a, previous activity, fully annotated dataset)

else if ¬Prev ∧Next then
label(a, next activity, fully annotated dataset)

else if Prev ∧Next then
//Use time metrics
prev dist← timeDist(action, previous activity, time metric)
next dist← timeDist(action, next activity, time metric)
if prev dist ≤ next dist then
label(a, previous activity, fully annotated dataset)

else
label(a, next activity, fully annotated dataset)

end if
end if

end for
activity clusters← createClusters(fully annotated dataset)
return fully annotated dataset, activity clusters
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standard deviation), (iii) frequencies of used objects and actions and (iv) frequen-
cies of locations per activity.

An example of the fully annotated dataset can be seen in Table 4.2. AA takes the
partially annotated dataset generated by SA3 (columns Activity* and Start/End*)
and adds two new columns: the label assigned by AA (Activity) and the start and
end tags for activities (Start/End). Table 4.2 is taken from a real experiment and
shows very well the difference between SA3 andAA. The action sequence depicted
shows a particular execution of the MakePasta activity, where due to sensor errors, a
rcontrolSens activation occurred. It can be seen how SA3 detects that a MakePasta
activity is being performed in the action sequence. But activity start and end times
differ substantially from the real ones. However, AA detects perfectly activity start
and end times, using the outsider action treatment process. And for the insider
action hasRemoteControl, AA assigns a None label, since the action is not type
compatible with the activity. So in this case, AA completes its work perfectly,
assigning the appropriate labels to every action and enhancing the results obtained
by SA3.

Timestamp Sensor Action Activity* Start/End* Activity Start/End
2014-05-23 13:34:09 storeSens openStore None MakePasta start
2014-05-23 13:34:15 potSens useCookingUtensil MakePasta start MakePasta
2014-05-23 13:34:35 ktapSens turnOnTap MakePasta MakePasta
2014-05-23 13:35:01 cookerSens useCookingAppliance MakePasta MakePasta
2014-05-23 13:35:59 rcontrolSens hasRemoteControl MakePasta None
2014-05-23 13:36:15 macaroniSens hasPasta MakePasta end MakePasta
2014-05-23 13:45:15 drainerSens useCookingUtensil None MakePasta
2014-05-23 13:45:54 fridgeSens openFridge None MakePasta
2014-05-23 13:46:00 baconSens hasBacon None MakePasta
2014-05-23 13:46:05 creamSens hasCream None MakePasta end

Table 4.2: Example of a fully annotated dataset, the output of theAA algorithm shown
in table format. To visualise better, timestamps have been shortened. The asterisk
refers to the result given by SA3.

An example of the activity clusters file has already been shown in Figure 3.6.
As it can be seen in that figure, several concepts per activity are stored in the file:

1. Locations: a list of different locations where the activity has been performed
with occurrence frequencies. Locations are obtained using activity location
inference.

2. Actions: a list of actions executed by the user to perform the activity with
associated occurrence frequencies.

3. Patterns: patterns refers to different action sequences performed by the user
for the activity, i.e. the action clusters detected by the clustering process.
Every detected cluster has its occurrence frequency.
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4. Objects: a list of objects used by the user while performing the activity. Once
again, every object has its occurrence frequency.

5. Occurrences: the total number of instances of the activity captured by the
clustering process, which has to be equal to the sum of all the occurrences of
patterns.

6. Duration: the mean duration of the detected instances of the activity and the
standard deviation, both in seconds.

This information will be used by the Activity Model Learner (AML) algorithm
to learn EAMs from the clusters extracted by the clustering process. Additionally,
the information stored in the activity clusters file may be very useful to domain
experts, since they may be able to analyse how activities are carried out by different
users in terms of the executed actions, used objects, different sequences of actions
and duration. The potential applications of such information, specially considering
that it can be updated periodically to monitor the evolution of the user, is out of the
scope of this dissertation, but it can open the doors to detect cognitive impairment
and its evolution, inappropriate behaviour or user bad habits.

4.3 Summary and Conclusions
A two-step clustering process has been developed and implemented in this chap-
ter, in order to detect and identify activities in a sensor activation dataset using the
context knowledge provided by a domain expert. The first step of the clustering
process has been devoted to find the occurrences of IAMs in an unlabelled sensor
activation dataset. For that purpose, a novel pattern recognition algorithm has been
developed, which uses IAMs as patterns, but also takes into account duration, lo-
cation and completeness criteria. The algorithm is called SA3 and it can work in
scenarios where actions can appear in varied orders and both positive and missing
sensor noise exist.

The initial clusters detected by SA3 are then expanded in the second step of the
clustering process. The AA algorithm distinguishes between insider and outsider
actions. For the former group of actions, a compatibility function has been defined
to decide whether an insider belongs to its wrapping activity, whereas for the latter
group, previous and next activities are analysed in terms of compatibility and time
feasibility. For those actions which can be aggregated to the previous and the next
activities, three time metrics have been defined. Using those metrics, the actions
are aggregated to the time closest activity.

The results of the clustering process are finally stored in two files: the fully
annotated dataset, where every sensor activation has an activity label, and the ac-
tivity clusters file, where different clusters for each activity are depicted alongside
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other information. Even though the clustering process has to be understood inside
the global solution designed to learn extended activity models, it can also be used
for further objectives. For instance, it can be used to annotate sensor activation
datasets. Notice that manual methods are usually used for annotating datasets that
are used for activity recognition applications. However, manual annotation has a lot
of problems, namely it is prone to errors and it is very time consuming, as shown by
Rashidi and Cook in (Rashidi and Cook, 2011). Hence, the developed activity clus-
tering process for unlabelled sensor activation datasets can be used as an activity
annotator method, as far as the required previous knowledge can be provided.
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The beautiful thing about learning
is that nobody can take it away from
you.

B.B. King

CHAPTER

5
Activity Model Learner

THE objective of this chapter is to describe and analyse the proposed learn-
ing algorithm for specialised and complete activity models which is
called Activity Model Learner (AML). AML uses the results obtained
by the activity clustering process described in Chapter 4, where different

action sequences for every activity are identified in the form of clusters. The aim
of AML is to learn extended activity models from the information given by the
clustering process.

The learning algorithm presented in this chapter is a statistical algorithm. It uses
the similarity between action sequences describing the same activity to identify
spurious action sequences, based on statistical outlier detection techniques. As
real world scenarios contain sensor errors and as the clustering process may not
always label correctly the actions, some of the clusters provided to AML will not
be valid. More concretely, some of the clusters will be spurious variations of the
actual activity models for a given activity. AML detects those spurious action
sequences and fuses them with the most similar action sequence which has been
considered valid. The result of such a process is a set of specialised and complete
activity models for every activity defined in the context knowledge.

The chapter is divided in four sections: Section 5.1 states clearly and concisely
the objectives of the learning algorithm and the criteria followed to design it. Sec-
tion 5.2 discusses the relevance of all the information provided by the clustering
process to learn extended activity models, in order to identify what information
can be used and why. Section 5.3 describes in detail the Activity Model Learner
algorithm. Section 5.4 provides a summary of the chapter and presents the most
relevant conclusions.
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5.1 Objectives
The main objective of the Activity Model Learner is to learn extended activity
models (EAM), which have been defined in Definition 7. An EAM of an activ-
ity represents complete and specialised models of the activity for a concrete user.
Assuming that different users execute different actions to perform the same activ-
ity and that a concrete activity may be performed in different ways by the same
user, a user adaptable activity modelling approach has to be able to capture activity
models that fulfil these requirements. For example, making a coffee is a common
activity for many users. However, a concrete user may prepare a coffee with milk
sometimes and a black coffee other times. Both, coffee with milk and black coffee,
are specialised sub-activities of making coffee, which will be characterised by dif-
ferent action sequences. So the objective of AML is to learn those different action
sequences for a concrete user based on the output given by the clustering process
described in Chapter 4.

Problem (AML). Given the activity clusters and fully annotated dataset files com-
ing from the activity clustering process, learn extended activity models, i.e. com-
plete and specialised activity models for a concrete user.

Notice that in some cases, a user may only perform an activity in a single way.
In that case AML would learn only one complete activity model, since for a model
to be considered a specialised model, at least two complete models have to be
learnt.

When extended activity models are learnt, they are presented to the domain
expert, mainly due to two reasons: (i) the specialised models do not have a semantic
tag as sub-activities of the detected activity - e.g. sub-activities MakeBlackCoffee
and MakeCoffeeWithMilk may be learnt, but their names or semantic tags cannot
be known by the learner - and (ii) to let the expert analyse and add the learnt models
to the main activity ontology if convenient. The first reason refers to the fact that the
AML cannot know whether an specialised model refers to making a black coffee
or making coffee with milk. Nevertheless, having the specialised activity model, it
is usually easy for an expert to decide the semantic label of the specialised activity
model. The second reason is derived from the fact that the AML will not be able
to deliver without any error, specially considering the limited previous knowledge
provided and the noisy sensor scenario in which it has to work. An expert will
analyse the EAMs learnt by the AML to filter them if necessary and add them to
the activity ontology with appropriate specialised activity labels.

Based on the role of the domain expert and assuming that the action clusters
obtained in the clustering process do contain all the activity variations for a concrete
user, a conservative policy for activity learning is the best option. In this context,
conservative means that it is better to learn false activity models as far as all real
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activity models are learnt. If an activity variation detected by the clustering process
is removed in the learning stage, the expert will no be able to recover that variation
from the information provided by the AML. However, false activity models can
be purged by the expert, so the objective of the AML is to learn the 100% of real
activity models, minimising the number of spurious models learnt.

5.2 Identifying Relevant Information
To address the problem addressed in Section 5.1, the information that theAML can
use is the one stored in the output of the clustering process (activity clusters and
fully annotated dataset) and the context knowledge file. Notice that the information
from the context knowledge has already been exploited in the clustering process
(Chapter 4), both by SA3 (Semantic Activity Annotation Algorithm explained in
Section 4.1) and AA (Action Aggregator, described in Section 4.2), so it cannot
offer any new relevant information for AML. In other words, the output of the
clustering process cannot be further analysed and refined using the information
from the context knowledge file.

Thus, theAML can only rely on the activity clusters file and the fully annotated
dataset. It is important to identify what information can be obtained from those
files and whether they are relevant in order to learn EAMs from the action clusters
which define activities. Basically, the activity clusters file is obtained as a summary
of the fully annotated dataset. The only information which is not stored in the
activity clusters file and it is in the fully annotated dataset is the start and end times
for concrete executions of activities. Notice that the mean duration and standard
deviation are calculated for each activity (not for each activity variation) and stored
in the activity clusters file. However, all the clusters in the activity clusters file have
been obtained applying the time feasibility InRange function (Equation 4.6), so
all of them are feasible models from the duration point of view. Hence, concrete
activity durations are not relevant forAML and in consequence, the fully annotated
dataset will not be used as an input to AML.

The activity clusters file is then the only input to the AML algorithm. The
information provided in this file has already been shown in Figure 3.6 and described
in Section 4.2.3. Now, this information will be analysed to assess its relevance to
learn EAMs:

1. Locations: the locations contained for each activity are compatible with the
locations defined in the context knowledge. The relative occurrences of those
locations are not relevant to learn EAMs. They can be used to learn descrip-
tive properties, for instance, but this is not the objective ofAML, so locations
will not be used.
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2. Actions: the list of all actions used and their frequencies may serve to identify
actions that are executed very rarely for a given activity. However, even being
rare, an action could really be executed for a given activity by a concrete
user. In those cases, the conservative policy selected dictates that frequency
information of actions cannot be directly used to discard any of them.

3. Patterns: patterns represent the action sequences (clusters) with their asso-
ciated frequencies. They contain all the varied ways a user performed an
activity, so they are the key element to learn EAMs.

4. Objects: the AML aims to learn activity models as sequences of actions.
The concrete objects used to execute those actions are not relevant. Objects
may be used to learn descriptive properties, but not action properties, so they
will not be used for the AML.

5. Occurrences: the total number of clusters for a given activity. It does not
provide any significant information to learn EAMs.

6. Duration: it can be used to learn descriptive properties and update duration
information provided by domain experts in the context knowledge. However,
it cannot be used to learn action properties.

In consequence, the information stored in patterns is the only relevant informa-
tion for the AML. Remember that patterns store all the different action sequences
extracted by the clustering process for a given activity with associated frequencies.

5.3 The Learning Algorithm
Summing up the conclusions obtained in Sections 5.1 and 5.2, the task of learning
EAMs can be seen as purging spurious action clusters from all the clusters extracted
by the clustering process. The information that the AML can use for this task is
the action clusters themselves and associated occurrence frequencies. So the main
idea is that action clusters contain all the action sequences performed by a user
for each activity, but some of those clusters are spurious, due to sensor noise, user
erratic behaviour and/or clustering errors. The AML has to detect those spurious
action sequences or outliers and remove them in order to keep only those action
sequences that really represent an activity.

The designed learning algorithm works on the similarity between action se-
quences and their occurrence frequencies. A two-step process has been designed
and implemented for that purpose: (i) the filtering step (Section 5.3.1), where action
sequences will be treated in terms of repeated actions and varied order of actions,
and (ii) the similarity-based outlier detection step (Section 5.3.2), where outlier
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action sequences will be detected in the similarity space and fused with the most
similar action sequence taking their occurrence frequencies into account. The com-
plete AML algorithm and its final output are described in Section 5.3.3.

5.3.1 The filtering step
If action clusters which define activities are carefully analysed, it can be seen that
there are some clusters that contain repeated actions. Additionally, some clus-
ters contain the same actions but in different order. In the ontology-based activity
modelling approach described in Section 3.1, the activity models in terms of ac-
tion properties do not contain repeated actions and the order in which actions are
executed is not important (notice that descriptive properties do reflect this infor-
mation, but they are not used when recognising activities). In consequence, two
filtering steps are performed:

1. Remove repeated actions into a sequence: some action sequences contain
repeated actions. For instance, consider the sequence S = {a, b, a, c}. As
repeated actions do not add any new information for activity modelling, they
are removed. S becomes S ′ = {a, b, c}. Notice that this step does not remove
any action sequence of an activity. This step can be omitted depending on
how activity models are used by the activity recognition system. The work
presented in this paper is based on the knowledge-driven approach developed
by Chen et al. in (Chen et al., 2012b). This activity recognition system does
not consider repeated actions in the recognition phase, so activity models do
not have this information. However, if the recognition system is sensitive to
repeated actions, the learning algorithm can be easily modified to omit this
first filtering step.

2. Fuse equal action sequences: some action sequences contain the same ac-
tions, but in different order. For example, S1 = {a, b, c} and S2 = {b, c, a}.
The order of actions is not important for activity models, so both sequences
are fused. Two action sequences are equal if:

S1 ∩ S2 = S1 ∪ S2 (5.1)

Any two action sequences that fulfil Equation 5.1 are fused. Fusing implies
removing one of the action sequences and to sum occurrence frequencies of
both action sequences to assign it to the fused sequence. Thus from two
sequences a resultant sequence will remain, reducing the number of valid
action sequences.

As a consequence of the filtering step, the number of clusters for an activity
will be equal or less than the clusters provided as input.
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5.3.2 The similarity-based outlier detection step
The idea behind the similarity-based outlier detection is simple: all the action se-
quences describing the same activity will have their own similarity distribution de-
pending on the varied ways of performing the activity by a concrete user. Spurious
action sequences will be those which are very similar to valid action sequences, and
their difference will be related to sensor noise or clustering errors. Hence, if out-
liers are detected in the similarity space between action sequences, those outliers
will point to spurious action sequences.

The first thing needed to apply the idea introduced above is a similarity mea-
sure for two action sequences. The literature offers a lot of similarity measures
to compare two sequences. However, many of them take into account the order
of the elements of both sequences, such as the Levenshtein distance (Levenshtein,
1966), Hamming distance (Hamming, 1950) or most frequent k characters (Seker
et al., 2014). As explained in Section 5.3.1, the order of actions is not relevant for
ontology-based activity modelling, thus order-based similarity measures are not
useful to detect outlier action sequences.

There are two similarity measures that do not care about the order of the el-
ements of sequences, namely the Jaccard coefficient (Jain and Dubes, 1988) and
the Sørensen-Dice coefficient (Sørensen, 1948). The Jaccard coefficient measures
similarity between finite sample sets, and is defined as the size of the intersection
divided by the size of the union of the sample sets:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(5.2)

It can be seen that Jaccard(A,B) ∈ [0, 1]. Moreover, if sequencesA andB are
equal, Jaccard(A,B) = 1. IfA andB are empty sequences the Jaccard coefficient
is defined to be 1.

The Sørensen-Dice coefficient is very similar to the Jaccard coefficient. It is
denoted as QS and defined as the size of the intersection multiplied by two divided
by the sum of the elements of both sequences:

QS(A,B) =
2|A ∩B|
|A|+ |B|

(5.3)

Similarly to Jaccard coefficient,QS(A,B) ∈ [0, 1]. Since it does not satisfy the
triangle inequality, the Sørensen-Dice coefficient can be considered a semimetric
version of the Jaccard coefficient. This coefficient is mainly useful for ecological
community data. Justification for its use is primarily empirical rather than theoret-
ical, although it can be justified theoretically as the intersection of two fuzzy sets
(Roberts, 1986).
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For the outlier detection step, the Jaccard coefficient has been selected, because
it is a theoretically well founded measure which can be seen as the basis of the
Sørensen-Dice coefficient. So the similarity between two action sequences is given
by the Jaccard coefficient of both sequences. The value 1 denotes that both se-
quences are equal, whereas 0 means that there is nothing in common between both
sequences. Notice that due to the filtering step (Section 5.3.1) there will not be
equal action sequences at this stage, hence value 1 will not appear. Similarly, hav-
ing a 0 value is also impossible, since all the action sequences describing the same
activity share at least the actions contained in their IAMs.

The similarity-based outlier detection is an iterative algorithm which uses the
Jaccard coefficient to calculate the similarity between action sequences. The algo-
rithm calculates the so called Jaccard Matrix (JM ), which is a square matrix of
all action sequences that remain from the previous iteration (in the case of the first
iteration, action sequences coming from the filtering step in Section 5.3.1). JMi,j

stores the Jaccard coefficient for action sequences Si and Sj .

JM =

 Jaccard(S0, S0) · · · Jaccard(S0, SN)
... . . . ...

Jaccard(SN , S0) · · · Jaccard(SN , SN)

 (5.4)

The diagonal of JM is 1, since two equal action sequences’ Jaccard coefficient
is 1 (∀i, j : i = j → Jaccard(Si, Sj) = 1). Diagonal values do not provide
any information for outlier detection, so they are removed. Additionally, values
from the upper and lower triangles of JM are the same, since Jaccard(Si, Sj) =
Jaccard(Sj, Si). So extracting only the values of the upper triangle from JM ,

ˆJM is obtained, which is stored as a vector. The ˆJM vector has the information
of the similarity of all action sequences detected for a concrete activity. Figure
5.1 shows a plot of the similarity values between 11 action sequences, taken from
a real example (they are representing the activity MakePasta for a concrete user).
The idea of the similarity-based outlier detection is to identify similarity values that
stand out among everyone else; then, take the action sequences that are represented
by those outlier similarity values and fuse them.

To detect outlier similarity values, a statistical approach has been defined. Fix-
ing a static threshold value for every activity is not appropriate, since some ac-
tivities may contain many actions, whereas others are performed by means of few
actions. So a difference of a single action in a “short” activity cannot have the same
weight as in a “long” activity (short and long are here used to refer to the number
of actions of activities). Furthermore, some users may execute very different action
sequences to perform the same activity, while others may only add slight variations.
In consequence, the outlier detection method has to calculate a threshold for every
action sequence group describing an activity.
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Figure 5.1: Jaccard coefficient-based similarity values for 11 action sequences de-
tected for a concrete activity and a concrete user.

The strategy followed to calculate the threshold is based on the median value of
the ˆJM vector. The median is the numerical value separating the higher half of a
data sample from the lower half. The median of a finite list of numbers can be found
by arranging all the observations from lowest value to highest value and picking
the middle one. If there is an even number of observations, then there is no single
middle value; the median is then usually defined to be the mean of the two middle
values. The median has been chosen rather than the mean, because the median is a
robust estimator which is less influenced by outliers than the mean value. Using the
median allows detecting the similarity “centre of gravity” minimising the influence
of outliers.

Once the median of ˆJM measures the central tendency, another statistic is
needed to capture the dispersion of similarity in ˆJM . Two good candidates to mea-
sure the dispersion in univariate datasets have been found in the literature (Hoaglin
et al., 1983). The first one is the median absolute deviation (MAD) and it is defined
as the median of the absolute deviations from the data’s median:

MAD = mediani(|Xi −medianj(X)|) (5.5)

The MAD is a measure of statistical dispersion. Moreover, the MAD is a robust
statistic, being more resilient to outliers in a dataset than the standard deviation. In
the standard deviation, the distances from the mean are squared, so large deviations
are weighted more heavily, and thus outliers can heavily influence it. In the MAD,
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the deviations of a small number of outliers are irrelevant.
There is another dispersion measure, which is known as the average absolute

deviation about median (ADM). The ADM offers a direct measure of the scale of
a random variable about its median and it is defined as:

ADM = Ei|Xi −median(X)| (5.6)

where Ei|X| stands for the mean value of X . Both the MAD and the ADM can be
used to establish a proper threshold and identify outlier similarity values. However,
in the current implementation the ADM has been chosen. It is true that the ADM
is more influenced by outliers than the MAD, but from the point of view of the
conservative policy selected for learning, the ADM is more suitable. The reason is
that the MAD can have a value of zero if there are some similarity values with the
same values as the median. This fact makes that the median itself could be taken as
the threshold, which is quite aggressive. On the other hand, the only way the ADM
can be zero is to have all similarity values being equal to the median. Moreover, it
can be shown mathematically that the MAD of a given dataset will always be less
or equal to the ADM, so the MAD is more aggressive in all the cases.

Due to those reasons, the ADM has been chosen to establish a statistical thresh-
old to separate normal similarity values from outlier values. The threshold is de-
fined as:

θS = median( ˆJM) + ADM( ˆJM) (5.7)

As the threshold in Equation 5.7 has been calculated using statistical ap-
proaches, it is denoted as θS . Applying Equation 5.7 to the similarity values plotted
in the example of Figure 5.1, a threshold can be calculated. This threshold is de-
picted in Figure 5.2. Similarity values above the threshold can be considered as
outliers.

Statistical approaches work well when “a lot of” data is available. But when
“few” data is available, statistic-based approaches may extract weak conclusions.
For example, imagine the following action sequences are being analysed by AML
for the activity MakePasta (this example is extracted from a real experiment):

S1 = {turnOnTap, useCookingAppliance, hasPasta,
useCookingUtensil, hasPesto}

S2 = {hasPasta, useCookingAppliance, turnOnTap,
hasBacon, hasCream, useCookingUtensil}

S3 = {turnOnTap, useCookingAppliance, hasPasta,
useCookingUtensil, hasTomato}
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Outliers

Threshold

Figure 5.2: The threshold calculated for the similarity values of 11 action sequences
representing a concrete activity.

The difference between S1 and S3 is that the user adds pesto in the first and
tomato in the second, i.e. only one action out of five. All three action sequences are
really performed by the user and they should not be removed or fused. However, if
θS is calculated for the group of action sequences, a value of 0.6 is obtained. Con-
sidering that Jaccard(S1, S3) = 0.66, action sequences S1 and S3 should be fused,
thus removing one of the action sequences which has actually been performed by
the user. Notice that detecting outliers using statistical approaches on three samples
is not generally feasible. Removing one of the action sequences would contradict
the conservative policy selected for the AML, where the priority is given to learn-
ing all real action sequences performed by a user. Hence, a defensive mechanism
for those cases is adopted. The threshold to identify outliers is defined as:

θ = max{θS, λ} (5.8)

where λ is a fixed value. The idea of this approach is to state a similarity value
that acts as a minimum value for action sequences to be fused. In the experiments
performed in this dissertation λ = 0.75 (Chapter 6). If λ is set to higher values, the
AML will be even more conservative, whereas decreasing λ will make the AML
rely more on the statistic-based approach (θS). Figure 5.3 shows both thresholds, θS
and λ, for the example of MakePasta activity and its three action sequences. Notice
that Jaccard(S1, S2) = Jaccard(S2, S3) and thus, only one point is depicted in
the graphic. It can be seen clearly how using only θS , Jaccard(S1, S3) is an outlier
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and in consequence, sequences S1 and S3 would be incorrectly fused. But using
Equation 5.8 and taking the maximum of both thresholds, there is not any outlier
and hence all three sequences are kept as valid activity models.

θ S

λ

Figure 5.3: Both thresholds depicted in an example of few available data: θS and λ.

The similarity-based outlier detection algorithm is an iterative process that fuses
sequences whose Jaccard coefficient is higher than θ, until no sequences can be
fused. Fusing implies defining a function which returns a single action sequence
having as input two different action sequences. In the case of the AML a fusing
heuristic has been adopted, which states that given two action sequences to be
fused, the lower frequency sequence is a spurious variation of the higher frequency
sequence. In consequence, the higher frequency action sequence is the valid one
and the function will return it as the fused action sequence.

Fusion(Si, Sj) =

{
Si, if fSi

≥ fSj

Sj, otherwise (5.9)

where fSi
is the occurrence frequency of action sequence Si. The fused action

sequence will have a new occurrence frequency which is calculated as the sum of
the occurrence frequencies of fused sequences: fSfused

= fSi
+ fSj

.

5.3.3 The complete AML algorithm
Combining the filtering step described in Section 5.3.1 and the similarity-based
outlier detection step described in Section 5.3.2, the complete AML algorithm can
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be built. Its inputs are the activity clusters file, where the result of the clustering
process is given, and the fixed threshold λ. Algorithm 3 shows the AML algorithm
written in pseudo-code.

Algorithm 3 AML algorithm for learning extended activity models
Require: activity clusters, λ
Ensure: learnt action sequences
activities← obtainActivities(activity clusters)
for all activity ∈ activities do
action sequences← obtainSequences(activity, activity clusters)
// The filtering step
action sequences← filteringStep(action sequences)
// The similarity-based outlier detection step
repeat
JM ← jaccardMatrix(action sequences)

ˆJM ← extractUpperTriangle(JM)
θS ← calculateStatisticThreshold( ˆJM)
outliers← detectOutliers( ˆJM, θS, λ)
action sequences← fuseSequences(action sequences, outliers)

until outliers = ∅
learnt action sequences← addActivityModel(activity, action sequences)

end for
return learnt action sequences

The output of the AML algorithm is the so called learnt action sequences file,
stored in a JSON file in the current implementation. This file contains the ex-
tended activity models for every activity defined in the context model. An example
can be seen in Figure 5.4, where two complete and specialised models for activity
MakePasta are provided. The example is extracted from a real experiment, where
the user prepares pasta carbonara more or less the 50% of times and pasta with
tomato sauce also around 50% of times. Looking at the action sequences, the dif-
ferent ways of preparing pasta can be distinguished. In the first way, labelled by
the user as pasta carbonara, bacon and cream are used by the user (actions hasBa-
con and hasCream). In the second way, action hasTomato appears, which makes
reference to the usage of tomato sauce. Notice also that the first action sequence
contains an openFridge action, which suggests that some of the ingredients are
stored in the fridge. This does not happen in the second action sequence, where all
the ingredients are taken from the food store (action openStore).
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” MakePasta ” : {
” 1 ” : [

0 .5074626865671642 ,
[

” h a s P a s t a ” ,
” us eC o ok in g Ap p l i an ce ” ,
” hasBacon ” ,
” turnOnTap ” ,
” o p e n F r i d g e ” ,
” o p e n S t o r e ” ,
” hasCream ” ,
” u s e C o o k i n g U t e n s i l ”

]
] ,

” 2 ” : [
0 .49253731343283574 ,
[

” hasTomato ” ,
” h a s P a s t a ” ,
” us eC o ok in g Ap p l i an ce ” ,
” turnOnTap ” ,
” o p e n S t o r e ” ,
” u s e C o o k i n g U t e n s i l ”

]
]

} ,

Figure 5.4: Example of the output of the AML algorithm. Two specialised and
complete models for MakePasta activity are depicted. As their semantic tags are not
known, they are tagged with numbers 1 and 2.

93



5. Activity Model Learner

5.4 Summary and Conclusions
An algorithm to learn extended activity models has been designed and developed in
this chapter. The algorithm takes the results of the clustering process described in
Chapter 4, assuming that the action clusters have all the action sequences executed
by a user to perform a concrete activity. Based on this assumption, it has been
shown that learning extended activity models from action clusters can be seen as
purging spurious action sequences which appear due to sensor noise, clustering
errors and/or user erratic behaviour (Section 5.1). It is very important to highlight
the conservative policy adopted by the AML algorithm. The highest priority is
given to keep all real action sequences, even though this may imply not removing
all spurious action sequences. The AML algorithm has been designed around this
conservative policy.

Before describing the AML algorithm, all the available information has been
analysed in order to identify what is relevant to learn extended activity models (Sec-
tion 5.2). It has been shown that the action clusters per activity and their associated
occurrence frequencies are the only relevant available information.

With the objective clearly defined and the relevant input information identified,
Section 5.3 describes how theAML algorithm has been developed. It has two main
steps: the filtering step (Section 5.3.1), where action sequences are filtered based
on the repeated actions and their order, and the similarity-based outlier detection
step (Section 5.3.2), where the Jaccard coefficient is used to compute the similarity
between action sequences to calculate a threshold which allows distinguishing be-
tween inlier and outlier similarities; the action sequences whose similarity is higher
than the threshold are fused, taking their occurrence frequencies into consideration.
The complete AML algorithm and the output it generates have been described in
Section 5.3.3.

One of the most surprising facts about the AML might be that it does not use
the occurrence frequencies of action sequences in the outlier detection step. It can
be argued that if spurious action sequences are generated by sensor noise, clustering
errors and/or user erratic behaviour, their occurrence frequency should be relatively
low. This is generally true. However, using frequencies to detect outliers has a
pernicious effect: it can identify as spurious those action sequences that even being
valid, have been executed few times by the user. Imagine, for instance, that a
user prepares coffee frequently. Only in some special occasions, this user likes
preparing Irish coffee. If frequency is taken into account for outlier detection, the
action sequences describing the preparation of an Irish coffee might be removed.
This contradicts the conservative policy adopted for the AML.

Indeed, the first metrics used for outlier detection combined Jaccard-based simi-
larity and occurrence frequencies. It was observed that when the executed action se-
quences for a concrete activity had big differences in their occurrence frequencies,
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those with lowest frequencies were fused incorrectly with other action sequences.
After defining and testing many metrics combining similarity and frequency, the
conclusion was that frequencies should not be used for detecting outliers. As de-
scribed in Section 5.3.2, AML uses frequency only in the fusion function (Equa-
tion 5.9) implementing the heuristic that for two action sequences to be fused, once
their similarity has been identified as being an outlier, the lower frequency action
sequence is a spurious variation of the higher frequency one.

The output of AML, stored in the learnt action sequences file (Figure 5.4),
is presented to the domain expert, who can analyse the extended activity models
extracted by the solution and add them to the knowledge base with appropriate
activity names, if convenient. As such, a human expert will always have the last
decision about the learnt activity models. That is one of the main reasons why the
conservative approach for AML has been adopted. If an activity model is removed
incorrectly, a human expert will not have any way to recover that activity model.
But if a spurious activity model is learnt, the domain expert may remove it easily,
looking at the action sequence and occurrence frequencies.
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Science is a way of trying not to
fool yourself. The first principle is
that you must not fool yourself, and
you are the easiest person to fool.

Richard Feynman
CHAPTER

6
Evaluation

THIS chapter describes and analyses the proposed evaluation methodol-
ogy for the extended activity model learning system described through
Chapters 3, 4 and 5. To test the learning system properly, detailed data
from various users is needed, containing different ways of performing

the same activity by the same user. In order to achieve such datasets, the proposed
evaluation methodology is based on surveys to users and a synthetic dataset gener-
ator tool. Surveys allow capturing how users perform activities in terms of actions,
while the synthetic dataset generator uses survey information to generate sensor
activation datasets, introducing different kinds of sensor noise.

Once the methodology is described and discussed, evaluation scenarios and
metrics will be introduced. To assess the performance of the learning system in
various situations, several evaluation scenarios have been prepared, considering
different kinds of sensor noise and set-ups. Similarly, and based on the available
literature, the most significant performance metrics have been chosen to measure
the performance of the approach.

Applying the evaluation methodology on the prepared scenarios and selected
metrics, results are obtained. Those results are widely discussed in this chapter
and compared to the objectives defined in Chapter 1. As the problem tackled in
this dissertation has not been approached by any other researcher (see Section 1.1),
comparing different approaches has not been possible.

The chapter is divided in three sections: Section 6.1 introduces the conven-
tional evaluation methodology used for activity recognition, detects its drawbacks
and proposes a new evaluation methodology which is more appropriate to validate
the learning system. Section 6.2 presents evaluation scenarios, metrics, results and
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discussions divided in three main parts: SA3 performance (Section 6.2.1), the com-
plete activity clustering performance (Section 6.2.2) and finally the EAM learning
system performance (Section 6.2.3). All three sections discuss the results and com-
pare them with the objectives identified at the beginning of this dissertation (Chap-
ter 1). To conclude, Section 6.3 provides a global view of the system performance,
summarises the contents of the chapter and presents the most relevant conclusions.

6.1 Evaluation Methodology
Even though activity recognition is very diverse in terms of sensor approaches and
algorithmic choices, evaluation is usually carried out applying a very well known
methodology (Riboni and Bettini, 2011a), (Rashidi and Cook, 2011), (Tapia et al.,
2004) which can be summarised in the following steps:

1. Choose a target environment and deploy sensors to acquire and process in-
formation about human activities.

2. Select a group of people who can perform target activities in the prepared
environment.

3. Select a dataset labelling system so datasets generated by users can be used
as a ground truth, both for the activity recognition system and the evaluation
process.

4. Run experiments with users and label the obtained activity datasets.

5. Use the same datasets to test the activity recognition system and store the
labels produced by it.

6. Compare the labels of the activity recognition system with the ground truth
using appropriate metrics.

Each of the enumerated steps may vary depending on the activity recognition
approach and the available resources. The described methodology, which will be
called standard methodology for the rest of the dissertation, is conventionally the
reference for any group working on human activity recognition.

Nevertheless, there are some problems that make very difficult to implement
the so called standard methodology. For instance, (i) it is not always possible to
own an environment and install sensors and processing systems, due to economic
reasons, (ii) running experiments with human beings imply ethical and legal issues
that can slow down the research process or sometimes make it impossible, (iii)
dataset labelling systems are not perfect, since most of them rely on users’ memory
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or discipline to annotate every activity carried out, and (iv) regulatory limitations
on the use of human subjects prohibit the collection of extensive datasets that can
test all scenarios and theories under all circumstances.

There are several research groups who have made the datasets that they obtain
in their pervasive environments publicly available, following different variants of
the standard methodology. A Wiki Page called BoxLab1 contains a detailed list
of public datasets collected in home environments. It contains a description of
the deployed sensors, whether it is an annotated dataset and the availability of the
dataset. Those public datasets can be a very good alternative for those research
groups which cannot run their own experiments. Furthermore, public datasets can
also be used for benchmarking different activity recognition systems.

6.1.1 Analysis of the viability of the standard methodology for
the extended activity model learning system
To evaluate properly the EAM learning system, activity datasets that fulfil several
conditions are needed. Namely:

1. Contain a lot of samples of different activities to enable a proper learning
process. To make data-driven learning a meaningful process, many samples
of the same activities are needed, specially to learn noise free activity models.
If few samples are available and those samples are affected by noise, it is very
difficult for the learning process to distinguish between noisy and noiseless
models.

2. Sensor activations must be labelled in order to provide a solid ground truth.
An accurate evaluation process needs an accurately labelled dataset, where
all sensor activations produced due to an activity execution are annotated
with that activity name, whereas sensor noise is not included in the activity.

3. Specific objects used for activities have to be monitored (dense sensing sce-
nario). Instead of getting data from context sensors such as thermometers,
humidity sensors or even movement sensors, datasets have to contain sensor
activations monitoring concrete objects such as cups, dishes, food and so on,
in order to be able to produce accurate activity models.

4. At least some of the activities have to be performed in varied ways to see
whether the presented learning process can capture all those variations. Dif-
ferent ways of performing the same activity are needed, since the EAM learn-
ing system aims at capturing sub-activities. If all the activities are performed

1http://boxlab.wikispaces.com/List+of+Home+Datasets
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the same way in terms of executed actions, the dataset will only serve to
evaluate the learning of complete models, but not specialised models.

5. Several users are needed as the approach aims at capturing personalised ac-
tivity models for concrete users. Every user has his/her own way to perform
the same activities and one of the objectives of the EAM learning system is
to be able to model those personalised models. Thus, to show that the EAM
learning system can really deal with different users, datasets of several users
are required.

Following the standard methodology to generate such datasets implies a high-
cost and lengthy process with many ethical and legal constraints regarding the use
of people for experiments. That cost, both economical and time cost, could not be
assumed during the development of the current dissertation. Due to this limitation,
public dataset repositories were analysed carefully to find an appropriate dataset.

Unfortunately, datasets that meet all the enumerated conditions could not be
found in those public repositories. Some datasets used different activity monitoring
approaches, such as vision- and wearable-based monitoring. Some other datasets
could be used for the dense sensing scenario since they monitor specific objects,
but activities are performed from a list where no variations can be found. Yet other
datasets are more focused on monitoring the contextual information, rather than
concrete user-object interactions.

As Helal et al. state in their paper (Helal et al., 2011):

Access to meaningful collections of sensory data is one of the major
impediments in human activity recognition research. Researchers of-
ten need data to evaluate the viability of their models and algorithms.
But useful sensory data from real world deployments of pervasive
spaces are very scarce. This is due to the significant cost and elabo-
rate groundwork needed to create actual spaces. Additionally, human
subjects are not easy to find and recruit. Even in real deployments, hu-
man subjects cannot be used extensively to test all scenarios and verify
multitudes of theories. Rather, human subjects are used to validate the
most basic aspects of the pervasive space and its applications, leaving
many questions unanswered and theories unverified.

This is the case of the presented approach for EAM learning. It turns out that no
datasets were found from real pervasive environments to verify the exposed theory.
However, Helal et al. propose a solution to this problem in the same paper (Helal
et al., 2011):

It is thus necessary to develop alternative and practical approaches to
studying human activity recognition. Powerful and realistic simulation
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tools could be used to support the growing demand for test data. Sim-
ulations enable researchers to create focused synthetic replications of
important events and activities under study. It can be easily changed
and refined allowing researchers efficiently to experiment, analyze and
fine-tune their models and associated algorithms. Simulation also al-
lows a wider community of researchers to engage and collaborate to
solve a specific problem. Hence, a design based on preliminary sim-
ulation studies would most likely to be a more robust and inclusive
design. Also, a simulation model that mimics an existing real world
pervasive space is most likely to answer more questions (and generate
much more data) than the target actual space.

Following those ideas, simulation tools have already been used for activity
recognition. For example, Okeyo et al. use a synthetic data generator tool to simu-
late time intervals between sensor activations (Okeyo et al., 2012). Their research
is focused on sensor data stream segmentation, so the tool generates varying pat-
terns of sensor activations in order to verify their approach. Liao et al. combine
simulation tools and real data for activity recognition in (Liao et al., 2006). A
more elaborated simulator has been developed by Bruneau et al. in (Bruneau et al.,
2009): DiaSim. The DiaSim simulator executes pervasive computing applications
by creating an emulation layer and developing simulation logic using a program-
ming framework. However, it is more focused on simulating applications such as
fire situations, intrusions and so on to identify potential conflicts. In consequence,
DiaSim cannot be directly applied to activity recognition. Finally, Helal et al. pro-
pose to develop powerful and realistic simulation tools to study human activity
recognition. They develop a simulator called Persim, which has been enhanced in
the new version Persim-3D (Helal et al., 2012). Persim is an event driven simulator
of human activities in pervasive spaces. Persim is capable of capturing elements
of space, sensors, behaviours (activities), and their inter-relationships. Persim is
becoming a very complete simulator tool for activity recognition in pervasive envi-
ronments. However, it is still under development and one of the main limitations is
that it does not provide a way to model realistically human behaviour. Authors have
already identified this limitation and they are currently working on programming
by demonstration approaches to overcome the problem.

As can be seen in the literature review done in the paragraph above, simula-
tion tools can be used for activity recognition, since they provide accurate enough
datasets to verify some theories. However, none of the references given above
specify a concrete methodology to use simulators to evaluate activity recognition
approaches. There is no information about how activities should be defined, how
different users can be modelled, sensor error models and so forth, which are key
issues when using a simulator. Therefore, there is a lack of a sound methodology
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that addresses the usage of simulation tools for activity recognition evaluation.

6.1.2 Hybrid evaluation methodology approach
The hybrid evaluation methodology has been specially designed for activity recog-
nition systems which assume the dense sensing paradigm (see Constraint 1). Even
though the methodology itself is not limited to concrete scenarios, the implementa-
tion presented in this document works for single user - single activity scenarios, i.e.
only one user is considered and concurrent or interleaved activities are not taken
into account (see Constraint 2).

The methodology has been named hybrid because it combines real users’ in-
puts and simulation tools. The key idea is to circulate surveys among target users
with the objective of capturing how they perform certain activities of daily living.
Additionally, users are also requested to describe how their days are in terms of
defined activities. For example, a user might make a coffee and brush her teeth in
week days between 7:00 and 7:30 AM. So the aim of those surveys is to model
real human behaviour, covering one of the major weaknesses of simulation-based
evaluation methodologies. Using the information collected by surveys, individual
scripts are prepared, which are then processed by a synthetic dataset generator tool
to simulate arbitrary number of days and generate perfectly labelled datasets of
activities. To get as close as possible to real world settings, the synthetic dataset
generator uses probabilistic sensor noise models and probabilistic time lapses.

Based on those constraints and ideas, the proposed hybrid evaluation method-
ology has the following steps (see Figure 6.1):

1. Design activity surveys: to capture how users perform activities and model
their behaviour, a proper survey has to be designed. A detailed explanation
of how surveys are designed for this dissertation can be found in Section
6.1.2.1.

2. Select target users: depending on the objectives of the research, several user
groups can be selected. For example, if the system aims at providing help to
elderly people, selecting members of that target group is recommended.

3. Distribute surveys among target users: a suitable way to distribute surveys
has to be used, which guarantees users’ anonymity. The distribution method
can also be influenced by target users. For example, using web-based sur-
veys can be a bad idea if surveys are directed to elderly people, who can
be unfamiliar with those technologies. Personal interviews may be a good
alternative for those cases.
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4. Translate surveys to scripts: appropriate criteria have to be adopted to trans-
late the answers obtained from surveys to scripts for the synthetic dataset
generator - or any other simulator -. It is very important not to alter or lose
the information provided by users.

5. Model sensor noise: sensor noise has to be modelled in order to achieve
realistic activity datasets. Real sensors are not perfect and depending on
their technological base, error models have to be provided.

6. Run synthetic dataset generator: using the scripts obtained from surveys and
sensor error models, the synthetic dataset generator is executed. The output
of the tool is a labelled activity dataset which will serve as the ground truth
for evaluation.

7. Develop the activity modelling and/or recognition system: researchers have
to develop the activity modelling and/or recognition system in order to be
tested. Notice that datasets generated by the synthetic dataset generator can
also be used in this step, specially for data-driven approaches.

8. Compare results: finally, the results obtained by the activity modelling and/or
recognition system have to be compared with the ground truth, using appro-
priate metrics.

Labelled
Activity Dataset

Design
activity survey

Select
target users

Distribute
survey

Translate surveys 
to scripts

Run Synthetic
dataset generator

with scripts

Model
sensor noise

Develop activity 
recognition

system

Compare
results

Figure 6.1: The hybrid evaluation methodology steps depicted in a flowchart.
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6.1.2.1 Survey for activities of daily living
One of the main advantages of considering dense sensing scenarios is that activities
are described in terms of the objects which have been used to perform that activity.
Furthermore, as only sensor activations (and not de-activations) are important for
the approach (see Definition 1), to model an activity, it is enough to know which ob-
jects are used by the user and the order of usage of those objects. This information
is easy to obtain in a survey and will be named activity model.

Definition 13 (Activity model). An activity model is a sequence of objects used
by a user to perform an activity. A user might provide several activity models per
each defined activity, because the same activity can be performed in several ways.
Activity models also provide a typical duration given by the user.

On the other hand, to model human behaviour appropriately, acquiring activity
models is not enough. It is very important to know what activities are performed
by a concrete user in a daily basis, alongside with the time slots and time lapses
between contiguous activities.

Definition 14 (Behaviour model). A behaviour model is a sequence of activities
with associated time slots and time lapses. A user might provide several behaviour
models, as every day can be different in terms of performed activities and times.

The main objective of the survey is to obtain activity and behaviour models
from target users. Hence, the survey for activities of daily living has two main parts.
The first part is devoted to capture what activities are performed in different days,
i.e. behaviour models (see Definition 14). The second part, on the other hand, asks
users about how they perform those activities based on user-object interactions, i.e.
activity models. The concrete survey used for the experiments carried out in this
dissertation can be found in the web1.

As can be seen in Figure 6.2, the survey begins with a brief explanation for
target users, where the aims of the survey are stated and the target activities are
presented. In this case, the target activities are seven: (i) make a coffee, (ii) make
a chocolate, (iii) make pasta, (iv) brush teeth, (v) watch television, (vi) wash hands
and (vii) read a book. Afterwards, under the heading of “Day Description”, users
are asked to describe their week days in terms of activities. They are expected
to provide information about time slots and activity sequences performed in those
time slots. Users are also asked to provide time relations between two consecutive
activities. For example, between 7:00 and 7:30 AM a user might make a coffee and
ten minutes later might brush her teeth. This first part has been designed to obtain
behaviour models for target users.

1http://goo.gl/etCNyi

104



6.1 Evaluation Methodology

Figure 6.2: The first part of the survey. A brief introduction can be found where the
aim of the survey is explained, continuing with the behaviour model part.

The second part of the survey is longer. Target activities are presented one by
one. For each activity, several questions are asked to users, to capture the locations
of activities, the ways activities are performed, the objects used for each activity,
a description of how those objects are used and typical duration estimations. An
example of those questions can be found in Figure 6.3 for the activity MakeCoffee.

As Figure 6.3 shows six questions are asked per activity. The first question is
to know where the activity is performed by the user. As stated in the brief expla-
nation under the question, expected locations are home locations such as kitchen,
lounge and so forth. Each activity may be performed in several locations, in con-
cordance with the context knowledge model shown in Figure 3.2. Notice also that
the expected locations fulfil with the location definition given in Definition 5.

The second question deals with different ways of performing an activity, i.e.
sub-activities. Users are asked to provide a variation name, which will define the
name of the sub-activity. The next question asks about the objects used to per-
form the activity. This will serve not only to model the activity itself, but also to
model the context knowledge, where objects and attached sensors are represented
(see Section 3.3.1). Afterwards, the most important question for activity modelling
comes: a description of how the enumerated objects are used to perform the activ-
ity. Descriptions are requested for each activity variation. From those descriptions,
object usage order and time lapses will be obtained. Finally, the last question aims
at modelling typical durations for the variations of the target activity.

As described in the steps of the hybrid evaluation methodology in Section 6.1.2,
it is also important to decide the way to circulate the survey and to guarantee user
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Figure 6.3: The questions of the survey to capture the activity model of MakeCoffee.
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anonymity. In our current experiments, we use the Google Forms1 service, mainly
for three reasons:

1. Easy circulation: surveys can be sent by e-mail to target users, who receive a
link to the web-based survey. This makes survey circulation easy and clear.

2. Anonymity: the answers of users are completely anonymous. When a user
submits his/her answers, only a tag like “user 1” appears. There is no way to
link user answers to a concrete user.

3. Simple and centralised answer management: the Google Forms service gen-
erates a centralised table where all the answers are collected. The table is
automatically updated whenever a new answer arrives. This web-based table
system for answers makes data management much easier.

Summarising, the survey for activities has different questions in order to ob-
tain activity and behaviour models according to their definitions (Definitions 13
and 14). Surveys are circulated among target users using Google Forms, which
offers convenient tools to send them by e-mail and collect anonymous answers in a
centralised manner.

6.1.2.2 Synthetic dataset generator
Although the hybrid methodology for evaluation could be used in principle with
any simulator for human activity recognition, a custom simulation tool has been
developed to evaluate the EAM learning system. Available simulators such as Per-
sim do not cover all the conditions to evaluate the EAM learning system appropri-
ately. It may be very useful in the future, but nowadays it does not have the tools
to model sensor errors and different variations of activities.

Following the ideas of Okeyo et al. (Okeyo et al., 2012), instead of developing
a simulator tool that provides visual interaction like Persim, a synthetic dataset gen-
erator has been developed. The tool presented by Okeyo et al. does a very good job
simulating time relations between sensor activations and activities, so their ideas
regarding time management have been borrowed. But the simulator tool developed
for this dissertation has more capabilities, allowing researchers to introduce differ-
ent sensor activation sequences for activities with occurrence probabilities, activity
sequences which occur only with a given probability and different ways to model
sensor errors.

The synthetic dataset generator tool has been implemented in Python 2.72. The
inputs to the synthetic dataset generator are a script called ADL script, where ac-
tivity and behaviour models for a concrete user are represented, and the context

1http://www.google.com/google-d-s/createforms.html
2https://www.python.org/
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knowledge file, where some sensor error models are provided. As sensor error
models are linked to their type (pressure, tilt, contact and so on), it is a natural
choice to place them where all the sensors of a concrete environment are repre-
sented, i.e. in the context knowledge file. This part of the context knowledge file
has not been introduced in Section 3.3.1 because it was not important for the EAM
learning system. However, for simulation purposes, sensor error models play a cru-
cial role, and including them in the context knowledge file was the straightforward
solution. The considered sensor error modalities are two: sensor positive noise (see
Definition 9) and missing noise (see Definition 10).

Figure 6.4 shows a high-level design for the synthetic dataset generator. As can
be seen in the figure, activity and behaviour models and sensor positive noise are
represented in the ADL script. On the other hand, sensor missing noise models are
obtained from the context knowledge file. Using probabilistic time management
tools, the synthetic dataset generator creates a sensor activation dataset, where all
sensor activations are properly labelled to use it as ground truth. Sensor activations
which are part of an activity are labelled with the activity name. But sensor activa-
tions which appear due to sensor noise are labelled with the special label None.

Synthetic
Data Generator

Labelled sensor 
activation dataset

ADL script

Context
Knowledge

Activity models
Behaviour models

Sensor positive noise

Sensor 
missing 
noise

Figure 6.4: High-level design of the synthetic dataset generator tool.

One of the design decisions was to separate the representation of both sensor
error models between two different files. The reason is that sensor missing noise
is completely linked to sensor technology and the pervasive infrastructure (wire-
less receivers, communication, and system sampling and conversion mechanisms),
whereas sensor positive noise is more related to environmental aspects, such as the
distribution of objects and human behaviour. Hence while sensor missing noise
can be considered a property of a sensor, sensor positive noise is more influenced
by the inhabitant and the environment. That is why the missing error models are
included in the context knowledge file depending on the sensor type and positive
error models are represented in the ADL script which represents a concrete user.
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To make this decision the research carried out by Chen et al. in (Chen et al.,
2012b) has been considered. They show some experiments for activity recognition
in a smart home environment using the dense sensing activity monitoring approach.
Throughout the experiment of 144 activities, a total of 804 user-object interactions
were performed. They used the so called User-object Interaction Recognition Ac-
curacy (UoIR), defined as the system’s correctly captured interactions against the
total occurred interactions, as the metric to evaluate the reliability and performance
of the activity monitoring mechanism. This metric takes into account not only un-
fired or misread interactions caused by faulty sensors but also those circumstances
caused by the pervasive infrastructure. As such it is more accurate to reflect the
system monitoring performance. Table 6.1 shows the UoIR for different types of
sensors with an overall average UoIR of 96.89%. They conclude that these data
prove the monitoring and acquisition mechanism of the system as being very reli-
able.

Sensor type Total interactions Captured interactions Accuracy (%)
Contact 624 611 97.92

Tilt 126 119 94.44
Pressure 36 32 88.89
Sound 18 17 94.44

Table 6.1: Interaction recognition rate as shown in (Chen et al., 2012b).

However, no positive sensor noise has been identified in (Chen et al., 2012b),
even though they simulate it in some of their experiments. This is quite reasonable,
since the normal state of the sensor represents no interaction. It is very complicated
from the technological point of view to change the state of a sensor when no inter-
action occurs, so it can be concluded that spontaneous sensor activations are very
rare. If positive sensor noise is registered, it has to be mainly caused by undesired
interactions that actually occur, even though they are not part of the activity. Those
undesired interactions can be due to human erratic behaviour (see Definition 8) or
interactions among objects caused by their distribution and casual movements.

Given that according to literature spontaneous sensor activations are rare and
interactions among objects usually occur due to human intervention, it can be con-
cluded that sensor positive noise is mainly caused by user erratic behaviour. Thus
it has been included in the ADL script rather than in the contextual knowledge file.

ADL script
The ADL script defines activity models, behaviour models and sensor positive
noise for a concrete user. It is currently implemented as a plain text file which
has its own syntax. A parser function has been implemented to parse the file and
obtain all the models defined on it.
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The first information given in the ADL script refers to the number of days that
has to be simulated. A natural number is provided there.

The next part of the file is for defining sensor activation patterns for activi-
ties. Sensor activation patterns are used to describe how activities are performed in
terms of sensor activations and thus represent activity models in terms of sensors.
An activity can have an arbitrary number of sensor activation patterns, which are
specified with an occurrence probability and a sequence of sensor activations with
relative time lapses. An example of sensor activation patterns for activity Make-
Coffee can be found in Figure 6.5.

MakeCoffee 2
0 . 7 cof feePo tSens@0 ktapSens@10 afco f feeSens@30 cookerSens@20

cupSens@180 fr idgeSens@10 smilkSens@5 wsugarSens@10
0 . 3 cof feePo tSens@0 ktapSens@10 afco f feeSens@30 cookerSens@20

cupSens@180 wsugarSens@10

Figure 6.5: Sensor activation patterns for MakeCoffee activity obtained from a real
user. The activity has two activation patterns with different occurrence probabilities.

First of all, the name of the activity is defined. The number that comes after the
name specifies the number of sensor activation patterns for that activity. The next
line represents the first sensor activation pattern, which begins with an occurrence
probability p ∈ [0, 1]. Notice that the occurrence probabilities of all sensor acti-
vations for a given activity must sum to 1. The probability number is followed by
a sequence of sensor activations and relative time lapses. The first sensor activa-
tion’s time has to be 0, indicating that it is the first sensor activation of the activity.
The values that come after the ’@’ symbol represent the time in seconds between
the previous sensor activation and the current one. In consequence, in the exam-
ple given in Figure 6.5, cookerSens@20 means that sensor activation cookerSens
occurs 20 seconds after the afcoffeeSens sensor activation. The specific way the
synthetic dataset generator treats those time lapses will be explained later, when
the simulation loop is described.

Once all activity models are represented using appropriate sensor activation
patterns, behaviour models are defined, which represent different days of the user
in terms of performed activities (see Definition 14). Two kinds of behaviour models
are defined:

1. Sequences: where a time slot is given with a sequence of activities and rel-
ative time lapses between two consecutive activities. Sequences are used to
define those activity sequences that are always performed by a user in con-
crete days.
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2. Alterations: where a probability value is assigned to an activity to be per-
formed in a concrete time slot. Alterations represent a different kind of be-
haviour model. Some users might perform an activity regardless of the week
day. For example, a user might watch television in evenings with a certain
probability. Some days the user watches television, but some days does not.
It does not depend on the day, but on some other causes (mood, last hour
plans and so forth).

Specific week days are not represented in behaviour models. Instead of that,
the probability of a concrete list of sequences and alterations is given. A list of
sequences and alterations models a day. So if such a day model occurs 2 days in a
week, i.e. in weekends, the assigned probability will be 2/7 ' 0.29. An example
is depicted in Figure 6.6. A typical day of a user is described, with an occurrence
probability of 0.29, since the activity pattern describes a weekend day. In this case,
the user reported that (s)he sometimes reads a book in the afternoon. Alterations
allow modelling this kind of behaviour.

Prob 0 . 2 9 4
S 9:00−10:00 MakeCoffee@0 BrushTeeth@1800 ReadBook@120
S 13:30−14:30 MakePasta@0 BrushTeeth@600
S 22:00−23:00 BrushTeeth@0 WashHands@10
A 18:00−20:00 ReadBook 0 . 5

Figure 6.6: An example of a behaviour model for a concrete day, which has an occur-
rence probability of 0.29 and it is composed of three sequences and an alteration.

As it happens with sensor activation patterns, the occurrence probabilities of
behaviour models must sum to 1.

The last part of the script is to define sensor positive noise (see Definition 9).
As sensor positive noise is mainly caused by user erratic behaviour it is very com-
plex to model it accurately. Besides, obtaining those models from user surveys
is impossible, since users cannot tell how they interact with objects unpurposely.
For those reasons, a simple sensor error model has been adopted which guarantees
noise generation independently from ongoing activities. A probability value can
be assigned to concrete sensors to get activated in an hour interval using a uniform
probability distribution. For example, sensor cupSens can be assigned an activation
probability of 0.1, which means that each hour, the sensor has a 0.1 probability of
getting activated.
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Context knowledge file
The context knowledge file has been described in Section 3.3.1, where an example
of such a file was provided in Figure 3.2. But sensor missing noise models were
not shown in that example. As sensor missing noise is mainly related to the sensor
type, another part is added to the context knowledge file. More concretely, Figure
6.7 shows an example of how such error models are implemented for contact and
tilt sensors. For each sensor type, a missing probability p ∈ [0, 1] is provided.

” e r r o r m o d e l s ” : {
” c o n t a c t ” : {

” prob ” : 0 .0208
} ,
” t i l t ” : {

” prob ” : 0 .0556
} ,
. . .

}

Figure 6.7: Example of sensor missing noise models for contact and tilt sensors.

In consequence, the context knowledge file has the information about activities,
objects, sensors and sensor missing noise models. It is mandatory for the synthetic
dataset generator to keep the coherence between the sensors used in the ADL script
and in the context knowledge file. The tool itself makes sure that coherence exists.
If there is a sensor activation in the ADL script which is not represented in the
context knowledge file, the synthetic dataset generator raises an error.

Simulation loop
Using the ADL script and the context knowledge file, the synthetic dataset gener-
ator creates a CSV file where each sensor activation has an associated timestamp
and is labelled with an activity name or with the special label None if it is caused
by noise. Additionally, activity start and end times are marked in the dataset.

For the purpose of generating realistic sensor activation datasets, the synthetic
dataset generator has a simulation loop which has been represented in a flowchart
in Figure 6.8. First of all, the simulator fixes the first day to start the simulation.
In the current implementation the same day the simulator is launched is used as
the first day. Afterwards, for the selected day, sensor positive noise is generated.
For that purpose, the simulator generates a random number per each sensor with
a probability greater than zero. If the sensor has to be activated, the simulator
chooses a concrete time inside the current hour using a uniform distribution. The
process finishes when the 24 hours of the day have been treated.
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Figure 6.8: A flowchart of the simulation loop of the synthetic dataset generator.
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Once sensor positive noise has been generated for the whole day, a behaviour
model is chosen, taking into account the probabilities of each model. The behaviour
model is a list of sequences and alterations. The first element of the list is taken.
If it is a sequence, the activities of the sequence are executed in the specified time
slot.

Let us show an example of how a sequence is executed by the simulator. As-
sume the sequence to be executed is such that

S 9:00−10:00 MakeCoffe@0 WatchTelevis ion@30 BrushTeeth@1800

In that case, the simulator generates a start time for the sequence in the provided
time slot, using a uniform distribution. Afterwards, it picks the first activity (Make-
Coffee) and looks for the sensor activation patterns of that activity. The simulator
probabilistically chooses one of the sensor activation patterns of the activity and
executes it. While executing the activity itself, two main aspects are taken into
account:

1. Time lapses between sensor activations: the time lapses provided in the script
are used as the mean values of Gaussian distributions, whose standard devi-
ation is fixed to a 25% of the mean by default. So the time lapse is generated
probabilistically using as reference the value given in the script. This makes
varying and realistic time lapses for consecutive sensor activations.

2. Sensor missing noise: before generating the sensor activation, its missing
probability is consulted in the context file. The simulator uses the missing
probability to decide whether to generate the activation.

Similarly to sensor activations, time lapses between activities are treated
through Gaussian distributions. At the end of the process, the whole sequence will
be executed, with probabilistically chosen time lapses and sensor missing errors.

To execute an alteration, the simulator uses its occurrence probability. If it has
to be executed, the activity is performed as in sequences. When the behaviour
model is fully executed, i.e. all the elements of the list have been treated, the
simulator generates the next day and repeats the whole process until the last day is
reached. When this happens, the generated dataset is written in a CSV file, where
properly labelled timestamped sensor activations can be found.

6.1.3 Discussion about the hybrid methodology
The hybrid methodology explained in Section 6.1.2 is based on the limitations and
solutions identified in the literature (Helal et al., 2011), (Helal et al., 2012), (Okeyo
et al., 2012). It has been specially designed to evaluate the EAM learning system
and thus, it has some specific tools to adapt the methodology to the constraints
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of the system. However, the methodology itself, apart from concrete implemen-
tations, can be used to evaluate other activity recognition systems and has several
advantages over the standard methodology explained in the beginning of Section
6.1. Let us enumerate and justify the advantages:

1. The hybrid methodology is cost effective, both from economic and time per-
spectives: from the economic point of view, the hybrid methodology does not
need any pervasive environment, which can become an important investment.
Furthermore, the cost of the experiments is also avoided, such as paying to
participants, preparations and so on. From the time point of view, savings can
be very important too, specially if a high number of experiments is planned.
Preparing, distributing and processing surveys among users needs a variable
amount of time, but it is unarguably less than preparing and running real
experiments with humans.

2. A lot of users’ information can be used: as is based on surveys, it is generally
easy to achieve a great number of users for the tests, in contrast with what
happens using the standard methodology. When running experiments with
humans, finding volunteers is usually very difficult, specially if the experi-
ment is long in time.

3. Ethical and legal issues are much softer: as there are no experiments with
human beings many ethical and legal aspects can be avoided. The only im-
portant point to be considered is the anonymity of users regarding the infor-
mation they provide in the surveys.

4. Datasets can be generated on demand: using the synthetic dataset genera-
tor or any other convenient simulator, arbitrary number of datasets can be
generated as needed.

5. Perfectly labelled datasets can be obtained: the synthetic dataset generator
labels all sensor activations according to the given script and sensor error
models. In consequence, the generated dataset is a perfect ground truth. On
the other hand, when using the standard methodology, dataset annotation is
a real issue. As noted by Rashidi and Cook in (Rashidi and Cook, 2011):
‘An aspect of activity recognition that has been greatly under-explored is the
method used to annotate sample data that the scientist can use to train the
activity model.’ Several annotation methods have been used by researchers,
but all of them have their weaknesses. As a consequence, those datasets
are not perfectly labelled and they can include spurious sensor activations in
activities as ground truth.
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6. Any kind of scenarios can be implemented: the synthetic dataset generator
allows preparing experiments where no sensor noise exists, where only a
concrete kind of sensor noise exists or where conditions are as close as pos-
sible to realistic settings. The chance of implementing all those varieties of
scenarios allows researchers to test deeper their activity recognition systems,
since they can see the influence of any factor they consider relevant.

The core ideas of the hybrid methodology are using surveys to capture user
behaviour and simulators to generate synthetic data. The concrete implementations
for the EAM learning system are derived from the constraints and features of the
system, such as focusing on dense sensing scenarios, single user - single activity
scenarios and so forth. However, when constraints are different, different tools can
be used inside the same evaluation methodology.

In this case, the constraints and features of the EAM learning system make fea-
sible the usage of surveys and simulators. The dense sensing paradigm for activity
monitoring establishes that user-object interactions are monitored through simple
sensor activations, which are used for activity modelling. So sensor activations are
boolean valued, making simulation much easier. For example, Persim introduces
sensor value generation functions, because the simulated sensors are broader and
can produce different values depending on the context.

Another simplification comes from the activity modelling approach, which is
based on action sequences mapped from sensor activations which monitor objects.
This means that sensors like thermometers, humidity sensors and so on do not have
to be modelled and simulated for the EAM learning system. Only sensors attached
to objects. The same activity modelling approach makes feasible obtaining accurate
activity models from users, since it is easy for any user to describe what objects are
used to perform activities.

The single user - single activity constraint also simplifies the whole evaluation
process. Firstly, users do not have to provide information about overlapping and
concurrent activities, which is very complicated. Additionally, activity models and
behaviour models are kept simple for simulation. Modelling and simulating con-
current activities is a challenge that is avoided in this case.

Finally, time lapses between actions and activities can also be simulated appro-
priately, as shown by Okeyo et al. (Okeyo et al., 2012). Users report approximate
time lapses in the surveys and the synthetic dataset generator uses Gaussian random
number generators in order to generate user based varying time lapses.

However, there are some disadvantages too and they are mainly related to hu-
man behaviour modelling. The first handicap is that modelling user erratic be-
haviour is complex. It is very difficult for any user to specify what objects (s)he
interacts with unpurposely or to say how an activity is aborted because another
thing has to be done. The synthetic dataset generator offers a very straightforward
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way to model this kind of interactions, but it is the researcher who has to assign
probability values to specific sensors without having an appropriate way to model
user erratic behaviour. The strategy followed in this dissertation is to introduce
high levels of random positive noise to compensate the lack of appropriate models.
As it will be shown in Section 6.2, the difference in the number of sensor activa-
tions between noiseless and noisy scenarios are greater than 35% in average, which
means that the introduced sensor positive noise is more than a third of the original
dataset.

Another disadvantage refers to the information provided in surveys regarding
activity models. Some users are very precise in their answers, but some are not.
Activity descriptions given by some users might be discarded due to their vague-
ness. But this is not generally a big problem, since obtaining more answers is
usually easy. Some other users may omit important details of activities in their
answers, forgetting for example an object which has been used, hence the precise
way of performing activities cannot always be captured. This is certainly a problem
while modelling activities, but from the EAM learning evaluation perspective, it is
a minor problem. The aim of the EAM learning system is to learn activity models
which are represented in the datasets. Whether those datasets are really an accurate
version of an activity is not that important as far as the learning system captures
and models them as they appear.

In consequence, it can be claimed that the hybrid evaluation methodology with
its current implementation, is appropriate to evaluate the proposed EAM learning
system. Its advantages are many and very important, while the disadvantages can
be coped with specific strategies.

6.2 Evaluation Scenarios, Results and Discussions
Using the tools and methodologies described in Section 6.1, several evaluation sce-
narios have been prepared to test and validate the most important aspects of the
EAM learning system. More concretely, three major evaluation scenarios can be
distinguished:

1. SA3 evaluation scenarios: SA3 is a very important part of the whole EAM
learning system, since it is the initialisation step of the clustering algorithm.
The performance of SA3 has to be carefully analysed to understand how it
works, its main advantages and strong points as well as its main weaknesses.
Remember that the AA algorithm works on the results of SA3, adding -or
not- actions to the initial action clusters detected by SA3. But if SA3 fails at
detecting an activity, AA cannot recover it. Thus, the performance of SA3

in all possible situations is key for the performance of the clustering process
and in consequence, the performance of the EAM learning system.
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2. Activity clustering evaluation scenarios: the activity clustering process is the
sum of the SA3 and AA algorithms. As a result of the process itself, every
sensor activation of a dataset is labelled and several clusters for the defined
activities are obtained. Action clusters’ quality is directly linked to labelling
performance. Remember that those action clusters are finally processed by
the AML algorithm to learn extended activity models, so assessing the per-
formance of the clustering process by means of labelled sensor activations is
very important.

3. EAM learning evaluation scenarios: finally, the EAM learning system has to
be evaluated. The system is composed by the sequential use of SA3, AA and
AML. Evaluation scenarios have to be set-up in order to validate that the
EAM learning system is able to learn extended activity models for different
users. The results obtained in those evaluation scenarios are the most impor-
tant ones, because they give a clear vision of the performance of the whole
system.

6.2.1 SA3 performance
6.2.1.1 Evaluation scenarios and metrics
To assess the performance of SA3 exhaustively, the features of the synthetic dataset
generator will be used to set up different kinds of scenarios. To prepare those
scenarios, surveys will not be used. In the case of SA3, the main interest is to
measure the performance in presence of severe constraints, e.g. increasing noise,
activities with several variations, varied order of actions, using IAMs that share
the same actions, activity sequences that are very close in time and so on. As
SA3 alone is not going to be used for real applications, the usage of surveys is
not necessary. SA3 makes sense inside the complete activity clustering algorithm,
whose performance will be tested using real users’ inputs.

With this purpose, four scenarios have been prepared:

1. The ideal scenario: SA3 will be tested in ideal conditions, i.e. there is no
sensor noise in the dataset.

2. Missing sensor noise scenario: increasing missing error probability is intro-
duced to two sensors that are mapped to actions of the IAMs of two activ-
ities, to understand how the detection of those activities evolves compared
to noiseless activities. It is also important to see whether the missing noise
affecting to some activities influence the detection of the others.

3. Positive sensor noise scenario: increasing positive noise is introduced to as-
sess the performance of SA3 in presence of positive noise.
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4. Demanding activities scenario: the fourth scenario tests how SA3 performs
when IAMs of several activities share many actions among them.

The base of the first three scenarios is an ADL script prepared to offer some
common features to all experiments. From the activity models point of view: (i)
several variations for every activity, (ii) different probability distributions between
activity variations, (iii) varied order of actions in activities and (iv) varied time
lapses between consecutive sensor activations. From the behaviour model perspec-
tive: (i) different day types, (ii) activities which are very close in time and (iii)
combinations of sequences and alterations.

MakeCoffee 2
0 . 5 mugSens@0 smilkSens@20 microwaveSens@20 afcof feeSens@120

wsugarSens@20
0 . 5 cupSens@0 ktapSens@10 microwaveSens@15 wsugarSens@90

afco f feeSens@30
MakeChocola te 2
0 . 8 mugSens@0 wmilkSens@20 microwaveSens@20 chocoSens@120
0 . 2 cookerSens@0 potSens@5 wmilkSens@20 chocoSens@30

mugSens@200
MakePasta 2
0 . 8 potSens@0 ktapSens@20 cookerSens@30 macaroniSens@120

ftomatoSens@600
0 . 2 s p a g h e t t i S e n s @ 0 potSens@20 ktapSens@25 cookerSens@30

baconSens@50 creamSens@600
BrushTee th 2
0 . 7 brusherSens@0 t o o t h p a s t e S e n s @ 5 glassSens@30 btapSens@5
0 . 3 brusherSens@0 t o o t h p a s t e S e n s @ 5 glassSens@30 btapSens@5

d e n t a l f l o s s S e n s @ 1 5
W a t c h T e l e v i s i o n 2
0 . 5 sofaSens@0 r c o n t r o l S e n s @ 5 tvSens@10
0 . 5 r c o n t r o l S e n s @ 0 tvSens@5 sofaSens@5
WashHands 2
0 . 8 5 btapSens@0 bsoapSens@15 handcreamSens@40
0 . 1 5 btapSens@0 bsoapSens@15
ReadBook 2
0 . 9 bookbSens@0 bedSens@10 blampSens@5
0 . 1 bookaSens@0 sofaSens@10

Figure 6.9: Sensor activation patterns for the defined activities as given to the synthetic
dataset generator.

The prepared ADL script reflects all those features and tries to be realistic in
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the definition of the activity and behaviour models. However, notice that at this
point, realism is not important (the following evaluation scenarios will address re-
alism properly). Figure 6.9 shows the defined seven activities of daily living with
all the sensor activation patterns and occurrence probabilities. As can be seen in
Figure 6.9, the defined activities are: MakeCoffee, MakeChocolate, MakePasta,
BrushTeeth, WatchTelevision, WashHands and ReadBook. Different probability
distributions can be found for different activities. For example, MakeCoffee has an
even occurrence probability for its two variations (50% - 50%). However, Read-
Book is very unbalanced (90% - 10%). Varied order of actions and time lapses can
also be seen in the sensor activation patterns of each activity. Finally, some activ-
ities contain a lot of sensor activations - six in the case of MakePasta - whereas
some others are very short - WashHands or ReadBook with only two -. In general,
activity models reflect all the desired features to test the performance of SA3, as
identified in the paragraph above.

Behaviour models defined for the first three evaluation scenarios are depicted in
Figure 6.10. Three typical days are defined with different occurrence probabilities.
The first one has three sequences and one alteration. Activity WashHands is very
close in time to activity BrushTeeth, for example. The second day type tries to
simulate a typical day where the inhabitant spends a short time in home, showing
a big time difference between both activity sequences. Finally, the third day type
contains two alterations and three new activity sequences where some activities are
again very close in time.

Prob 0 . 4 3 4
S 7:00−7:30 MakeChocolate@0 BrushTeeth@120 WashHands@30
S 13:00−13:30 MakePasta@0 MakeCoffee@60 BrushTeeth@1800
S 20:00−20:30 MakePasta@0 BrushTeeth@200 ReadBook@150
A 18:00−19:30 W a t c h T e l e v i s i o n 0 . 8
Prob 0 . 2 8 2
S 7:00−7:30 MakeChocolate@0 BrushTeeth@100 WashHands@30
S 20:30−21:00 BrushTeeth@0 ReadBook@50
Prob 0 . 2 9 5
S 9:00−10:00 MakeChocolate@0 WatchTelevis ion@30 BrushTeeth@1800
S 13:30−14:30 MakePasta@0 BrushTeeth@150
S 22:00−23:00 BrushTeeth@0 WashHands@10
A 15:00−16:00 W a t c h T e l e v i s i o n 0 . 7 5
A 18:00−20:00 ReadBook 0 . 5

Figure 6.10: Behaviour models for a given user as given to the synthetic dataset gen-
erator.

Another common element of the first three evaluation scenarios is the IAMs of
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the activities. All seven activities have the same IAMs alongside the three scenar-
ios. Figure 6.11 shows the IAMs used for the experiments. It is very important to
keep the same IAMs in all the experiments, since IAMs aim at describing incom-
plete but generic activity models for any user.

The fourth evaluation scenario is different from the other three scenarios. The
idea is to use some activities whose IAMs share the same actions. For that purpose,
and in order to keep the realism, the following seven activities have been defined:
MakeCoffee, MakeWhippedCream, MakeTiramisu, BrushTeeth, WatchTelevision,
WashHands and ReadBook. The first three activities’ IAMs are formed by the same
four actions. More concretely:

IAM( MakeCoffee ) = { h a s C o n t a i n e r , ha sCof fee , h a s F l a v o u r }
IAM( MakeWhippedCream ) = { h a s C o n t a i n e r , hasCream , h a s F l a v o u r }
IAM( MakeTiramisu ) = { h a s C o n t a i n e r , hasCream , h a s C o f f e e }

The other activities are defined as in the previous scenarios. So the aim of
this evaluation scenario is to see how SA3 behaves with challenging IAMs. To
focus only on the pattern recognition performance, no noise is added to this fourth
evaluation scenario.

For all four evaluation scenarios the same metrics have been used. The most
important aspect for SA3 to be evaluated is whether activities are well detected. So
labels given to sensor activations are not important. Rather, a comparison between
the start and end times of the activity detected by SA3 and the real activity has to
be done. Assume AR is the real activity and ASA3 the activity detected by SA3.
ASA3 is a correct activity detection if AR contains ASA3 and both activities have
the same label:

tstart(AR) ≤ tstart(ASA3) and tend(ASA3) ≤ tend(AR)

Label(AR) = Label(ASA3)
(6.1)

This evaluation criterion is called activity-based evaluation. Using activity-
based evaluation criterion, true positives, false positives and false negatives are
calculated for every activity, comparing the output of SA3 with the ground truth.
Notice that true negatives are ignored, since they are equivalent to computing the
true positives for the None activity, which is not interesting for evaluation purposes.

6.2.1.2 Results
Ideal scenario

To test the performance of SA3 and have a base reference, the ideal scenario has
been designed. The ADL script has already been described (Section 6.2.1.1) and it
contains varying order of sensor activations per activity, varied occurrence proba-
bility distributions and varied time lapses between sensor activations and activities.
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” MakeCoffee ” : {
” t y p e ” : [ ” Cooking ” ] ,
” l o c a t i o n ” : [ ” K i t c h e n ” ] ,
”IAM” : [ ” h a s C o n t a i n e r ” , ” h a s C o f f e e ” ] ,
” d u r a t i o n ” : 360

} ,
” MakeChocola te ” : {

” t y p e ” : [ ” Cooking ” ] ,
” l o c a t i o n ” : [ ” K i t c h e n ” ] ,
”IAM” : [ ” h a s C o n t a i n e r ” , ” h a s C h o c o l a t e ” ] ,
” d u r a t i o n ” : 500

} ,
” MakePasta ” : {

” t y p e ” : [ ” Cooking ” ] ,
” l o c a t i o n ” : [ ” K i t c h e n ” ] ,
”IAM” : [ ” h a s P a s t a ” , ” us e Co ok i ng Ap p l i an c e ” ,

” u s e C o o k i n g U t e n s i l ” ] ,
” d u r a t i o n ” : 1200

} ,
” BrushTee th ” : {

” t y p e ” : [ ” Hygiene ” ] ,
” l o c a t i o n ” : [ ” Bathroom ” ] ,
”IAM” : [ ” h a s B r u s h e r ” , ” h a s T o o t h p a s t e ” , ” turnOnTap ” ] ,
” d u r a t i o n ” : 130

} ,
” W a t c h T e l e v i s i o n ” : {

” t y p e ” : [ ” E n t e r t a i n m e n t ” ] ,
” l o c a t i o n ” : [ ” Lounge ” ] ,
”IAM” : [ ” hasRemoteCon t ro l ” , ” useTV ” ] ,
” d u r a t i o n ” : 40

} ,
” WashHands ” : {

” t y p e ” : [ ” Hygiene ” ] ,
” l o c a t i o n ” : [ ” Bathroom ” ] ,
”IAM” : [ ” turnOnTap ” , ” hasSoap ” ] ,
” d u r a t i o n ” : 90

} ,
” ReadBook ” : {

” t y p e ” : [ ” E n t e r t a i n m e n t ” ] ,
” l o c a t i o n ” : [ ” Bedroom ” , ” Lounge ” ] ,
”IAM” : [ ” hasBook ” , ” u s e F u r n i t u r e ” ] ,
” d u r a t i o n ” : 30

}

Figure 6.11: The IAMs of all seven defined activities for the first three evaluation
scenarios.
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The aim of the ideal scenario is to obtain a base reference of the performance of
SA3 in noiseless conditions. Activity-based evaluation is used and true positives,
false positives and false negatives are measured.

With the objective of getting reliable results, 130 days have been simulated.
More concretely, the sensor activation dataset contains 4093 sensor activations de-
scribing a total number of 1027 activity instances. The results are shown in Table
6.2. For each activity, the number of instances and the percentages of true positives,
false positives and false negatives are given.

Activity Instances True Positives (%) False Positives (%) False Negatives (%)
MakeChocolate 130 100 0 0
WatchTelevision 103 100 0 0

BrushTeeth 350 100 0 0
WashHands 130 100 0 0
MakePasta 146 100 0 0
ReadBook 112 100 0 0

MakeCoffee 56 100 0 0

Table 6.2: Results of the SA3 algorithm for the ideal scenario.

Table 6.2 shows that the 100% of all activities are properly captured by SA3

under ideal conditions. There are neither false positives nor false negatives. Re-
member that the activity-based evaluation does not check for the labels of every
sensor activation. The fact that a 100% of all activities are properly captured indi-
cates that SA3 gets activity time locations robustly.

Sensor missing noise scenario

For the next experiments, assessing the performance of SA3 under sensor missing
error noise is the objective. In principle, the completion criterion of the activity
sequence finding step of SA3 suggests that if a sensor activation which is mapped
to one of the IAMs fails, SA3 will fail to detect that activity (see Section 4.1.2 for
a detailed explanation). In order to test that suggestion, two of the seven activities
have been chosen. Sensor activations which are mapped to the IAMs of those
activities are given an increasing missing probability, to see how this missing noise
affects the detection of those activities. The rest of the activities are kept noiseless,
to measure the effect of missing noise in other activities. Table 6.3 shows the results
for the sensor missing noise scenario. The activities which suffer missing noise are
marked with an asterisk (MakeChocolate and BrushTeeth). Five experiments are
run, each of them simulating 130 days. Sensor missing probabilities are 0.01, 0.02,
0.05, 0.07 and 0.1. For each experiment, true positives, false positives and false
negatives are measured, using the activity-based evaluation criterion.

As can be seen in Table 6.3, the performance of SA3 for the rest of activities
does not vary. It keeps on producing 100% of true positives, while false positives
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Activity Sensor missing probability
0.01 0.02 0.05 0.07 0.1

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
MakeChocolate* 99.2 0 0.8 99.2 0 0.8 94.6 0 5.4 92.3 0 7.7 89.2 0 10.8
WatchTelevision 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0

BrushTeeth* 98.9 0 1.1 98.6 0 1.4 96 0 4 93.8 0 6.2 89.4 0 10.6
WashHands 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
MakePasta 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
ReadBook 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0

MakeCoffee 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0

Table 6.3: Results of SA3 for the sensor missing noise scenario, where TP: true pos-
itives, FP: false positives and FN: false negatives. The activities affected by the noise
have an asterisk.

and negatives are null. However, true positive rate of activities MakeChocolate and
BrushTeeth seems to be linearly reducing with sensor missing noise probability.
The reduction of true positives generates the appearance of false negatives, since
those activities that are not detected, are labelled as None. Thus, they are con-
sidered false negatives. There is no effect in false positives, but the effect on true
positives is clear, as expected. To make the linearity more clear, Figure 6.12 plots
true positive rates for both activities for measured sensor missing noise probabili-
ties.

Figure 6.12: The true positive percentages of SA3 for activities MakeChocolate and
BrushTeeth in presence of increasing sensor missing noise.

Taking into account that noise generation is probabilistically accomplished in
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the synthetic dataset generator, Figure 6.12 is a confirmation of the inverse lin-
ear relation between sensor missing noise and SA3 activity detection performance.
When missing error increases, activity detection decreases.

Sensor positive noise scenario

To test the sensor positive noise scenario, five experiments have been run. For
each of the experiments, six sensors are picked up randomly and they are assigned
increasing sensor positive noise probabilities. This strategy allows measuring the
performance of SA3 in presence of positive noise. For each of the experiments
130 days are simulated again. To have a reference of the level of noise, sensor
activations in each dataset scale from 5054 to 8850. The noiseless scenario pre-
sented 4093 sensor activations, so the noisiest dataset contains around 46% more
sensor activations. Table 6.4 shows the results for the sensor positive noise sce-
nario. Each experiment is identified by its noise level, where 0.05 means that all
randomly selected sensors have a positive noise probability of 0.05 per hour. For
each experiment, true positives, false positives and false negatives are depicted.

Activity Sensor positive probability
0.05 0.1 0.15 0.2 0.25

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
MakeChocolate 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
WatchTelevision 100 0 0 100 0 0 99.1 0.9 0 100 0 0 100 0 0

BrushTeeth 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
WashHands 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
MakePasta 100 0 0 100 0 0 100 0 0 100 0 0 99.3 0.7 0
ReadBook 100 0 0 100 0 0 97.5 2.5 0 100 0 0 98.1 1.9 0

MakeCoffee 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0

Table 6.4: Results of SA3 for positive sensor noise scenario; TP: true positives; FP:
false positives; FN: false negatives

Table 6.4 shows that sensor positive noise affects true positives and false pos-
itives. For the first one, a slight reduction for some activities can be seen. For the
second one, some activities show rates that even being greater than zero, are still
very low, 2.5% being the highest for those experiments. Exploring the obtained
data deeper, it was found that in some cases, the false positives are generated over-
lapped with the real activity, i.e. a false sensor activation appears close to the real
activity and changes the real time assignments for that activity. This happens when
a sensor activation which is mapped to an action in the IAM of a given activity is
generated by chance very close in time from a real execution of that activity. The
effect is that the SA3 fails at annotating all real occurrences of a given activity and
produces false positive annotations. This can be seen in activities WatchTelevision
and MakePasta in Table 6.4, for example. To understand the problem better, Fig-
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ure 6.13 shows a representation of the situation. Assuming that dashes represent
time lapses without sensor activations, circles represent real sensor activations and
crosses those sensor activations generated due to positive noise, the problem can
be seen clearly. A false sensor activation which is mapped to the IAM of the real
activity AR is generated by chance just before the beginning of the activity. SA3

detects it as part of the activity and thus, the start time of the activity is not detected
correctly. The consequence is that a real activity is not detected and a false positive
activity is generated.

- - x - - x - o o - - o - -

AR

ASA3

Figure 6.13: A representative situation encountered in positive sensor noise scenarios.
Dashes represent time intervals without sensor activations, circles represent real sensor
activations and crosses represent false sensor activations. While AR stands for real
activity, ASA3 stands for the activity detected by SA3.

In some other cases, false positives do not affect the annotation of correct ac-
tivities (look at ReadBook for 0.15 and 0.25 noise levels, where all instances of
the activity were perfectly annotated). In those cases, the problem is that the IAM
of activity ReadBook is composed by two actions: hasBook and useFurniture. As
sensor activations for two sensors monitoring furniture and books were chosen ran-
domly for noise generation, it turned out that both activations were given in such
circumstances that they were detected as activities. However, they do not affect
any other activity detection. This situation is represented in Figure 6.14. The real
activity is correctly detected by SA3, but another false activity is also detected due
to the false generation of two sensor activations that are mapped to actions in an
IAM.

- - x - x - - - - - o - o - - o o - -

AR

ASA3ASA3

Figure 6.14: Another representative situation encountered in positive sensor noise
scenarios. Dashes represent time intervals without sensor activations, circles represent
real sensor activations and crosses represent false sensor activations. While AR stands
for real activity, ASA3 stands for the activity detected by SA3.
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Demanding activities scenario

The final scenario aims at testing SA3 under demanding activities. As it has been
explained in Section 6.2.1.1, demanding activities are those which share many com-
mon actions in their IAMs. It can be thought that as SA3 uses a pattern recogni-
tion algorithm where some specific domain-based criteria are applied, its perfor-
mance could be affected by very similar IAMs. Those conditions are simulated us-
ing seven activities, where MakeCoffee, MakeTiramisu and MakeWhippedCream
share the same four actions in their IAMs. Remember that even being very similar,
they are still different and unique. For this special scenario, a total number of 1262
activity instances have been produced. No sensor noise has been produced for the
experiment, since the objective is to see the effect of demanding activities. The
obtained results can be seen in Table 6.5.

Activity Instances True positives (%) False positives (%) False negatives (%)
MakeCoffee 222 100 0 0

MakeTiramisu 120 100 0 0
MakeWhippedCream 72 100 0 0

WashHands 150 100 0 0
BrushTeeth 420 100 0 0
ReadBook 127 100 0 0

WatchTelevision 151 100 0 0

Table 6.5: Results of SA3 for demanding activity models scenario.

Results show that SA3 is not affected by the similarity of IAMs, as long as they
are unique. True positives are 100% for all activities, whereas false positives and
negatives are zero. The situation is exactly the same as in the ideal scenario. Notice
that assuming unique IAMs for each activity is very reasonable, since if there are
two equal IAMs for two activities, those two activities should actually be one.

6.2.1.3 Discussion about SA3

The results depicted in Section 6.2.1.2 show that SA3 can handle varying order
of actions in activity performance without any problem. All four set-ups contain
different activation patterns, where actions are executed in different orders. This
can be seen in Figure 6.9: every activity has different sensor activation sequences
with varying orders. As the ideal scenario shows (Table 6.2), the true positive rate
of the algorithm for every activity is 100% and neither false positives nor negatives
are observed. Notice that sensor activation sequences used for each activity contain
many actions which are not used to define any of the IAMs, but the algorithm still
performs perfectly when detecting activities. Hence, SA3 can also handle non-
considered actions.
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As far as noisy scenarios regard, results suggest that missing sensor activations
cannot be properly handled by the algorithm, when those activations are linked to
actions that are used to define IAMs, i.e. if a sensor activation which is mapped to
one of the actions used to define the IAM of a concrete activity fails, that activity
cannot be detected by SA3. The non-captured activities are proportional to the
missing activation probability of those actions, as shown in Figure 6.12. This is
due to the completeness criterion used in the second step of SA3, as explained in
Section 4.1, which demands the presence of all actions in the IAM of an activity
to consider an action sequence a valid activity. However, missing sensor noise
only affects true positive and false negative rates of the activities which are faultily
registered by sensors. False positive rates keep behaving as the ideal scenario.
Moreover, a non-detection of an activity does not have any other effect on the other
activities. Following this reasoning, a good way to minimise the impact of sensor
missing noise is to monitor key objects for IAMs using robust sensors such as
contact sensors.

Independently from such robust monitoring strategies, it is reasonable to think
whether algorithmic solutions to mitigate sensor missing noise can be adopted. The
completion criterion is very restrictive in that sense, but it is also very reasonable,
since if not, distinguishing real activity executions from those ones generated by
positive noise would be very difficult, specially considering the low number of ac-
tions used in the IAMs (see Table 6.22). Further approaches have not been analysed
in this dissertation, because the low level of missing sensor noise in real environ-
ments makes the detection rates very good. However, some ideas are suggested in
Chapter 7 for their future development.

For sensor positive noise, the scenario is different. SA3 has shown to perform
reliably even with high levels of noise. For example, even having certain sensors
with faulty activation probabilities of 0.25 per hour, average true positive rate over
all activities is 99.9%. Simultaneously, false positive rates are still very low, con-
cretely 0.3% in average, while false negative rates are 0. False positive activity
detections are due to random occurrences of actions in time instants which make
them compatible with the duration criterion of an activity. The probability of hav-
ing such false positives increases as the noise level increases and the number of
actions in IAMs decreases. However, the results obtained with the highest level of
noise of the experiments show how robust SA3 is in such scenarios.

Finally, a test involving challenging activity models has shown that as far as
activity models are unique, SA3 does not have any problem detecting them. Aver-
age true positive rate for all activities is 100% and false positive and negative rates
are 0, as can be seen in Table 6.5. Remember that the experiments for challenging
or demanding activity models were performed without any noise. So the obtained
results suggest that the performance is exactly the same as for the ideal scenario.

In conclusion, SA3 has been tested for all the desired requirements listed in Sec-
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tion 6.2.1.1. From the activity models point of view: (i) several variations for every
activity, (ii) different probability distributions between activity variations, (iii) var-
ied order of actions in activities and (iv) varied time lapses between consecutive
sensor activations. From the behaviour model perspective: (i) different day types,
(ii) activities which are very close in time and (iii) combinations of sequences and
alterations. All those features were present in all four evaluation scenarios, where
ideal conditions, noisy scenarios and demanding activity models were also tested.
The obtained results suggest that SA3 is a very reliable tool to detect activity execu-
tions. It does not correctly label all the sensor activations, but it accurately captures
activity time locations. Thus, it can be concluded that SA3 serves as a initialisation
step for an activity clustering process.

6.2.2 Activity clustering performance
6.2.2.1 Evaluation scenarios and metrics
Testing the activity clustering algorithm, i.e. SA3 + AA, requires the usage of the
hybrid evaluation methodology. The activity clustering algorithm can be seen as an
activity annotator algorithm which labels each sensor activation with an activity la-
bel. Notice that activity annotation and recognition are not the same thing. Activity
recognition is performed online, while sensor activations are being generated. But
activity annotation happens offline, once all sensor activations have already been
produced. So annotating is typically easier than recognising, since it does not have
time restrictions.

Contrary to the evaluation of SA3, realism is a key issue when testing activity
clustering. That is why the hybrid evaluation methodology is used to set up two
evaluation scenarios: the ideal and the complete scenario. The first one does not
contain any sensor noise, which makes easier the annotation process. The com-
plete scenario is closer to reality since it has sensor noise, which makes annotat-
ing more demanding. Sensor missing noise errors are obtained from the statistics
given in (Chen et al., 2012b) and shown in Table 6.1. Noise error models have been
specified depending on sensor type. For example, pressure sensors have a missing
probability of around 10%. This means that whenever the activity script contains
a pressure sensor activation, the synthetic dataset generator will perform it with a
90% of probability. On the other hand, to model sensor positive noise, the strategy
introduced in Section 6.1.3 has been followed, i.e. to introduce high levels of ran-
dom positive noise to compensate the lack of appropriate models for user erratic
behaviour. For all experiments, 6 sensors are randomly chosen to assign them a
positive noise probability of 0.05 per hour. And other five sensors are also chosen
randomly to assign them a 0.1 probability.

ADL surveys have been circulated among people from DeustoTech - Univer-
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sity of Deusto. The target users are researchers, students and professors, with ages
ranging from 20 to 60 years old. The circulated ADL survey can be found in the
web1. A total number of 12 answers have been received, but 4 of them were dis-
carded because they provided too vague information to model properly the activity
and behaviour models. Thus, 8 real users are finally used for the experiments.

It is worth to remember that the AA algorithm has three different time metrics
(see Section 4.2). To test which of them is better, all the generated datasets are
treated three times, using a different time metric for each experiment.

So the experimental set-up designed consists of:

1. 8 real users.

2. 7 activities of daily living labelled as MakeCoffee, MakeChocolate,
MakePasta, BrushTeeth, WatchTelevision, WashHands and ReadBook.

3. 2 scenarios: the ideal scenario and the complete scenario.

4. 3 executions of the activity clustering process, using the three different time
metrics.

The datasets used for the experiments carried out to evaluate activity clustering
are available in the web2. As a summary, 16 different datasets can be found there, 2
per user: the datasets for the ideal and the complete scenarios. All datasets simulate
60 days according to the behaviour models provided by each user.

The evaluation criterion in this case, is the so called action-based evaluation:
compare the labels given by the clustering process to every sensor activation/action
with the ground truth produced by the synthetic dataset generator tool by means of
true positives, false positives and false negatives (true negatives are ignored again,
because they represent actions which have been correctly labelled as None). This
evaluation criterion assesses the performance of the clustering process as an activity
annotator.

6.2.2.2 Results
Ideal scenario

The 8 datasets generated from the ADL surveys for the ideal scenario contain 2128
sensor activations in average. For each of the experiments, the average true posi-
tives, false positives and false negatives are depicted per activity. The averages are
calculated over the 8 users. A comparison between the actions labelled by SA3 and
AA is depicted in the results. Remember that those results cannot be compared to

1http://goo.gl/etCNyi
2http://www.morelab.deusto.es/pub/synthetic adl datasets/
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the results shown for SA3 evaluation (Section 6.2.1.2), since the evaluation crite-
ria are different. Table 6.6 shows the results when simple time distance is used in
AA (Equation 4.8). Similarly, Table 6.7 depicts the results when normalised time
distance is applied (see Equation 4.9). Finally, Table 6.8 shows how the clustering
process performs when the dynamic centre normalised time distance is used for the
previous activity (see Equation 4.10) and the normalised time distance for the next
activity.

Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 55.05 98.67 0 0 44.95 1.33
WatchTelevision 75.12 100 0 0 24.88 0

BrushTeeth 90.91 96.8 0 0 9.1 3.2
WashHands 74.88 92.93 0.07 6.94 25.05 0.13
MakePasta 55.74 99.73 0 0 44.26 0.27
ReadBook 89.08 100 0 0 10.91 0

MakeCoffee 62.63 99.06 0 0.1 37.37 0.84

Table 6.6: Average results for 8 users of the clustering process for the ideal scenario
using simple time distance.

Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 55.05 98.67 0 0 44.95 1.33
WatchTelevision 75.12 100 0 0 24.88 0

BrushTeeth 90.91 96.57 0 0 9.1 3.43
WashHands 74.88 92.32 0.07 7.55 25.05 0.13
MakePasta 55.74 99.8 0 0 44.26 0.2
ReadBook 89.08 100 0 0 10.91 0

MakeCoffee 62.63 99.16 0 0 37.37 0.84

Table 6.7: Average results for 8 users of the clustering process for the ideal scenario
using normalised time distance.

To get a clearer comparison between three time metrics, Table 6.9 shows the
average precision and recall for each time metric. The average is calculated over all
activities. As it can be seen, both precision and recall are very high for all three time
metrics. However, the combination of dynamic centre normalised and normalised
time distances yields the best results, specially for precision. The difference for
recall is not very significant.

Complete scenario

The 8 datasets for the complete scenario are obtained from the same ADL surveys
and scripts. But for these datasets, sensor error models are applied. As a result,
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Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 55.05 98.67 0 0 44.95 1.33
WatchTelevision 75.12 100 0 0 24.88 0

BrushTeeth 90.91 98.27 0 0 9.1 1.73
WashHands 74.88 96.69 0.07 3.03 25.05 0.27
MakePasta 55.74 99.78 0 0.02 44.26 0.2
ReadBook 89.08 100 0 0 10.91 0

MakeCoffee 62.63 99.09 0 0 37.37 0.91

Table 6.8: Average results for 8 users of the clustering process for the ideal scenario
using dynamic normalised time distance for previous and normalised time distance for
next activity.

Avg. Precision Avg. Recall
t1 98.98% 99.17%
t2 98.91% 99.14%
t3 99.56% 99.36%

Table 6.9: Comparative between the usage of the three time metrics for the clustering
process in the ideal scenario. t1 refers to simple time distance, t2 to normalised time
distance and t3 to using dynamic centre normalised time distance for previous activity
and normalised time distance for next activity.

datasets have an average of 2942 sensor activations. Compared to the ideal sce-
nario, those datasets have 38.25% more sensor activations in average, which gives
a clear idea of the high level of sensor positive noise. Notice that this increment
comes even having missing errors, which are applied to every sensor activation.
The combination of missing and positive noise gives datasets containing 38.25%
more sensor activations, thus sensor positive noise is very high.

Results are shown in the same manner as for the ideal scenario. As such, Table
6.10 shows the results when using simple time distance, Table 6.11 when using
normalised time distance and finally, Table 6.12 when combining dynamic centre
normalised and normalised time distances. Once again, a summary of the perfor-
mance of the three variants is depicted in Table 6.13, where average precision and
recall are shown.

6.2.2.3 Discussion about the clustering process
The first discussion point for the clustering process is the difference in performance
of the three time metrics. Tables 6.9 and 6.13 show a clear comparative, both
in the ideal and complete scenario. It can be seen that the difference between
simple time distance and normalised time distance is not significant. But using
dynamic centre normalised time distance for previous activity and normalised time
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Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 54.47 96.6 0.52 1.2 45.01 2.2
WatchTelevision 71.13 100 0 0 28.87 0

BrushTeeth 90.95 96.64 0.25 0.35 8.8 3.01
WashHands 75.74 91.96 0.51 6.66 24.75 1.38
MakePasta 53.48 97.07 0.73 2.64 45.79 0.29
ReadBook 82.56 94.37 0.39 0.29 17.05 5.33

MakeCoffee 58.53 97.91 0.9 1.91 40.57 0.17

Table 6.10: Average results for 8 users of the clustering process for the complete
scenario using simple time distance.

Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 54.47 96.6 0.52 1.18 45.01 2.22
WatchTelevision 71.13 100 0 0 28.87 0

BrushTeeth 90.95 96.37 0.25 0.35 8.8 3.28
WashHands 75.74 91.27 0.51 7.33 24.75 1.39
MakePasta 53.48 97.19 0.73 2.64 45.79 0.17
ReadBook 82.56 94.37 0.39 0.29 17.05 5.33

MakeCoffee 58.53 98.07 0.9 1.76 40.57 0.17

Table 6.11: Average results for 8 users of the clustering process for the complete
scenario using normalised time distance.

Activity Clustering Results
True Positive (%) False Positive (%) False Negative (%)
SA3 AA SA3 AA SA3 AA

MakeChocolate 54.47 96.69 0.52 1.09 45.01 2.22
WatchTelevision 71.13 100 0 0 28.87 0

BrushTeeth 90.95 98.08 0.25 0.35 8.8 1.57
WashHands 75.74 95.6 0.51 2.81 24.75 1.59
MakePasta 53.48 96.58 0.73 2.83 45.79 0.59
ReadBook 82.56 94.37 0.39 0.29 17.05 5.33

MakeCoffee 58.53 97.65 0.9 1.59 40.57 0.75

Table 6.12: Average results for 8 users of the clustering process for the complete
scenario using dynamic normalised time distance for previous and normalised time
distance for next activity.
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Avg. Precision Avg. Recall
t1 98.1% 98.19%
t2 98.03% 98.17%
t3 98.7% 98.25%

Table 6.13: Comparative between the usage of the three time metrics for the clustering
process in the complete scenario. t1 refers to simple time distance, t2 to normalised
time distance and t3 to using dynamic center normalised time distance for previous
activity and normalised time distance for next activity.

distance for next activity, yields better results. Notice that even though differences
are not very big, the higher precision of the third approach is due to lower false
positive rates. For some activities, the first two approaches produce even higher
true positives, but at the expense of generating more false positives. Recall values
are very similar for all three time metrics in both scenarios. So results suggest
that as far as sensor activation labelling regards, combining the dynamic centre
normalised time distance and normalised time distance is the best option.

The small differences between three time approaches shown in Tables 6.9 and
6.13 mean that for outsider actions, the candidate function solves the vast majority
of the cases (Equation 4.6). For those outsiders that cannot be classified by the
candidate function, the three time metrics play a role. But their effect is minimised
because of the low number of such outsiders.

For the rest of the discussion about the clustering process, the third time ap-
proach will be considered, since it seems to be the best approach. Tables 6.7 and
6.11 show the good performance of the activity clustering process using the con-
text knowledge. True positive rate is very high for all activities. The lowest rate
is found for activity ReadBook in the complete scenario: 94.37%. This is due to
two factors: (i) the missing sensor probability for pressure sensors is around 10%
and (ii) the IAM for ReadBook has the action useFurniture (IAM(ReadBook) =
{hasBook, useFurniture}); all the objects that are mapped to action useFurni-
ture are monitored by pressure sensors, for example, sofa, chair or bed. When
pressure sensors fail, SA3 cannot detect the activity and hence, true positive rate
decreases. Notice that this happens only because the missing action is part of the
IAM of the activity. All other activities, even in the complete scenario, show true
positive rates higher than 95%, reaching in some cases 100% rates. Those high
rates are accompanied with very low rates of false positives and negatives. For ex-
ample, the highest false positive rate has been found for activity MakePasta in the
complete scenario with 2.83%.

It is worth to point out the behaviour of the clustering process, divided into
two steps. Tables 6.7 and 6.11 show how SA3 labels correctly varying number of
sensor activations. This number depends on the relation between the number of
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sensor activations performed by a user and the number of actions in the IAMs. For
instance, if the IAM of activity A has two actions and a concrete user performs in
average 9 actions for that activity, SA3 will only label correctly those actions that
lie inside the two actions of the IAM. It can be seen that for low action number
activities like BrushTeeth and ReadBook, SA3 shows quite a high true positive rate
and low false negative rate. However, activities like MakeChocolate or MakePasta
have a true positive rate below 60% and high false negative rates. In any case, in
the second step run byAA, true positives rise, false negatives get very low and false
positives slightly increase, giving similar results for all activities. This means that
SA3 discovers activities’ time locations very accurately and AA treats insider and
outsider actions properly to achieve very good rates building on the results of SA3.

As a conclusion, the clustering process depends on the results of SA3, its ini-
tialisation step. As such, the clustering process is sensitive to sensor missing noise
which affects to actions used in IAMs. However, the complete scenario shows sen-
sor missing noise levels extracted from real deployments and results are very good.
Notice that experiments are carried out for eight real users, each of them executing
activities in many different ways. The high true positive rates and low false positive
and negative rates obtained in such realistic set-ups suggest that the activity clus-
tering process annotates very accurately each sensor activation and thus, action,
giving as a result robust action clusters, even in noisy scenarios. Remember that
while sensor missing noise models have been extracted from real deployments,
sensor positive noise has been exaggerated in order to provide very challenging
conditions. Even in those conditions, many of the built action clusters will corre-
spond to real activity models, and some others will contain spurious actions, due to
false positive annotations. But looking at the low rate of false positives, it can be
concluded that correct action clusters will be dominant.

6.2.3 EAM learning performance
6.2.3.1 Evaluation scenarios and metrics
For the evaluation of the EAM learning system, the same datasets used and de-
scribed for the evaluation of the activity clustering system have been used (see
Section 6.2.2.1). The idea is to run the AML algorithm on the clusters extracted
by the activity clustering process, using the same activity datasets for the same 8
real users. In consequence, the evaluation scenarios are exactly the same, but they
are summarised for convenience:

1. 8 real users.

2. 7 activities of daily living labelled as MakeCoffee, MakeChocolate,
MakePasta, BrushTeeth, WatchTelevision, WashHands and ReadBook.

135



6. Evaluation

3. 2 scenarios: the ideal scenario and the complete scenario.

4. 3 executions of the activity clustering process, using the three different time
metrics. AML is subsequently executed on all three clustering processes
independently.

The chosen evaluation criterion to assess the performance of the EAM learning
system is named model-based evaluation. It compares the learnt activity models
with the models provided by users in their answers to the survey. Activity models
are compared action-wise, i.e. if a user states that activity A is performed by action
sequences S1 and S2, those sequences constitute the ground truth. The sequences
resulting from the learning process (clustering process + AML) are compared with
this ground truth. In this example, it should be checked whether the learning pro-
cess learns S1 and S2 for activity A. The indicators used to show the performance
of the EAM learning system are: learnt correct action sequences, learnt spurious
action sequences and learnt total action sequences.

Using the described evaluation scenarios and the model-based evaluation crite-
rion, the EAM learning system’s capability of learning activity models is measured.
For all experiments, IAMs have been defined previously and they are always the
same. Indeed, the IAMs defined in Figure 6.11 are the ones used for those experi-
ments. This is important, since IAMs aim at being generic and incomplete activity
models for every user. Using those IAMs, the EAM learning system should be
able to learn extended activity models for the defined activities, and those models
should be the same as the models provided by the users in their surveys. Such re-
sults would prove the main claim of this dissertation, i.e. complete and specialised
activity models can be learnt from user generated data for previously defined in-
complete activity models.

6.2.3.2 Results
Ideal scenario

The datasets used for those experiments have already been described in Section
6.2.2.1. Remember that the ideal scenario does not contain any sensor noise. AML
is run, taking as inputs the results of the clustering process generated in Section
6.2.2.2. As a reference, using a laptop computer equipped with an Intel i5 pro-
cessor with 4 cores running at 1.6 GHz and 8 GB of RAM memory, the complete
EAM learning system needs around 30 seconds to process such datasets. The ob-
tained results are summarised in the following tables: Table 6.14 shows the results
for the ideal scenario using the simple time distance in the clustering process; anal-
ogously, Tables 6.15 and 6.16 show the results in the same scenario, but applying
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Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 0 1 1
WatchTelevision 1.14 0 1.14 1.14

BrushTeeth 1.25 0.31 1.56 1.25
WashHands 1 0.37 1.37 1
MakePasta 2 0 2 2
ReadBook 1.12 0 1.12 1.12

MakeCoffee 1.71 0.24 1.71 1.71

Table 6.14: Average results for 8 users of the EAM learning process for the ideal
scenario, using the simple time distance in the clustering process.

Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 0 1 1
WatchTelevision 1.14 0 1.14 1.14

BrushTeeth 1.25 0.31 1.56 1.25
WashHands 1 0.37 1.37 1
MakePasta 2 0 2 2
ReadBook 1.12 0 1.12 1.12

MakeCoffee 1.71 0 1.71 1.71

Table 6.15: Average results for 8 users of the EAM learning process for the ideal
scenario, using the normalised time distance in the clustering process.

Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 0 1 1
WatchTelevision 1.14 0 1.14 1.14

BrushTeeth 1.25 0.47 1.72 1.25
WashHands 1 0.25 1.25 1
MakePasta 2 0 2 2
ReadBook 1.12 0 1.12 1.12

MakeCoffee 1.71 0 1.71 1.71

Table 6.16: Average results for 8 users of the EAM learning process for the ideal
scenario, using dynamic centre normalised time distance for the previous activity and
normalised time distance for the next activity.
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the normalised time distance in the first and the combination of the dynamic centre
normalised distance and normalised distance in the second.

All the tables contain the same information. Tables are divided in two main
columns: (i) Learning Results, where the results of the EAM learning system are
depicted using the indicators of correct, spurious and total models, and (ii) Average
Number of Patterns, which shows the average number of different ways to perform
the activity by all users. For instance, if a user executes two different action se-
quences for an activity, and another user executes only one action sequence for the
same activity, the average number of patterns for that activity is (2 + 1)/2 = 1.5.
Average number of patterns is obtained from the surveys to users and constitutes
the ground truth for the learning system. On the other hand, learning results are
depicted in the first three columns, providing three average values per activity: the
correct models learnt by the system, the spurious models learnt and the total num-
ber of learnt models, which is the sum of the previous two values. Remember that
those values are average values for all 8 users.

Finally, a comparative table is shown in Table 6.17. Average precision and
recall are calculated for all activities, using different time distances in the clustering
process.

Avg. Precision Avg. Recall
t1 91.46% 100%
t2 93.25% 100%
t3 93.25% 100%

Table 6.17: Comparative of applying AML to the clustering process with the three
time metrics in the ideal scenario. t1 refers to simple time distance, t2 to normalised
time distance and t3 to using dynamic centre normalised time distance for previous
activity and normalised time distance for next activity.

Complete scenario

In the following experiments, AML has been run in the complete scenario, where
sensor missing and positive noise are applied. Table 6.18 shows the results using
simple time distance in the clustering process. Table 6.19 does the same using the
normalised time distance. Finally, Table 6.20 presents the obtained numbers using
dynamic centre normalised time distance for the previous activity and normalised
time distance for the next activity. All three tables show the correct, spurious and
total models, alongside the average number of patterns per each activity.

As for the ideal scenario, Table 6.21 provides a summary of the performance of
each time distance by means of average precision and recall.
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Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 1.2 2.2 1
WatchTelevision 1.14 0.89 2.03 1.14

BrushTeeth 1.25 1.17 2.42 1.25
WashHands 1 0.75 1.75 1
MakePasta 2 1.12 2.12 2
ReadBook 1.12 0.14 1.26 1.12

MakeCoffee 1.71 1.34 3.05 1.71

Table 6.18: Average results for 8 users of the EAM learning process for the complete
scenario, using simple time distance in the clustering process.

Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 1.2 2.2 1
WatchTelevision 1.14 0.89 2.03 1.14

BrushTeeth 1.25 1.17 2.42 1.25
WashHands 1 0.75 1.75 1
MakePasta 2 1.12 3.12 2
ReadBook 1.12 0.14 1.26 1.12

MakeCoffee 1.71 1.59 3.3 1.71

Table 6.19: Average results for 8 users of the EAM learning process for the complete
scenario, using normalised time distance in the clustering process.

Activity Learning Results Average Number of Patterns
Correct Models Spurious Models Total Models

MakeChocolate 1 1.2 2.2 1
WatchTelevision 1.14 0.89 2.03 1.14

BrushTeeth 1.25 1.17 2.42 1.25
WashHands 1 0.75 1.75 1
MakePasta 2 1.12 3.12 2
ReadBook 1.12 0.14 1.26 1.12

MakeCoffee 1.71 1.71 3.42 1.71

Table 6.20: Average results for 8 users of the EAM learning process for the complete
scenario, using dynamic centre normalised time distance for the previous activity and
normalised time distance for the next activity.

Avg. Precision Avg. Recall
t1 59.87% 100%
t2 59.28% 100%
t3 59.02% 100%

Table 6.21: Comparative of applying AML to the clustering process with the three
time metrics in the complete scenario. t1 refers to simple time distance, t2 to nor-
malised time distance and t3 to using dynamic centre normalised time distance for
previous activity and normalised time distance for next activity.
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As the complete scenario is the most realistic one, yet another table is shown
to see how many actions are learnt by the EAM learning system compared to the
number of actions in the IAMs of each activity. Table 6.22 shows such results using
the combination of dynamic centre normalised and normalised time distance, since
results for all three time distances are very similar. Once again, average numbers
over 8 users are provided. This table is useful to see how far are the IAMs of some
activities from real executions by users.

Activity Actions in IAM Average Number of Learnt Actions
MakeChocolate 2 5.6
WatchTelevision 2 2.55

BrushTeeth 3 3.5
WashHands 2 2.79
MakePasta 3 6.63
ReadBook 2 2.37

MakeCoffee 2 6.36

Table 6.22: Average number of learnt actions compared to the number of actions in the
IAMs of defined activities. Results are obtained for 8 users in the complete scenario,
using dynamic centre normalised distance for the previous activity and normalised
time distance for the next activity.

6.2.3.3 Discussion about the EAM learning system
The most important objective of this dissertation is to evaluate the performance of
the complete EAM learning system, which is composed by the activity clustering
process (SA3 + AA) and the AML algorithm. For that purpose, AML is run
using as inputs the clusters obtained in the clustering process. It has to be seen
whether extended activity models for every user are properly learnt by the system.
To answer this question, the results obtained in Section 6.2.3.2 are analysed.

First of all, it is important to remember that the objective of the EAM learning
system is to learn properly all activity models really executed by a user. To check
whether the learning system accomplishes this objective, the learnt correct models
should be equal to the average number of patterns per activity, i.e. if a user has
executed one single action sequence to perform an activity, the learning system
should learn correctly one action sequence (remember that the results provided in
the tables show the average values). The equality between correctly learnt models
and the average number of patterns is obtained in all the experiments, regardless
of the applied noise and used time metrics for the clustering process. Hence, the
EAM learning system is shown to correctly learn the 100% of the varying ways of
performing an activity by all users.

Having three time approaches for the clustering process places the question of
what the effect of those time approaches is in the EAM learning system. Table 6.17
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shows a comparison for the ideal scenario and Table 6.21 for the complete one.
While the third time approach is better for the ideal scenario, the same does not
happen in the complete one. However, the difference in average precision for the
complete scenario is not significant, ranging from 59.87% to 59.02%. Notice that
as performed different activity models per activity are not high - the highest value
is two for MakePasta -, learning an additional activity model for a user makes quite
a big difference in the calculated rates. That is why the slight differences in average
precision between three time approaches cannot be considered significant.

The obtained results suggest that AML behaves very robustly regardless the
time approach used. Even though the initial number of clusters for time approaches
one and two are more than for time approach three, AML is able to detect outliers
and fuse them to get always very similar results. So from the point of view of
the EAM learning system, it is not easy to say which time approach is the best
one. Nevertheless, taking into account that time approach three behaves better for
clustering and for EAM learning in the ideal scenario, it seems natural to choose it
as the reference time approach. From now on, the discussion will be focused thus
on the third time approach.

The desired results for correctly learnt activity models come with the learning
of some spurious models, specially in the complete scenario. Learning some spu-
rious or false models was expected, since the objective of the learning algorithm is
to avoid removing any activity pattern that has been actually performed by the user.
It is preferable to get false action sequences than removing any activity pattern that
has been really performed. For that purpose, the learning process is conservative
when removing and fusing activity patterns. Even with this conservative approach,
it has been observed during experiments that the learning process can reduce clus-
ters provided by the clustering process from 17 to 3 in some cases, thus removing
many false action sequences and keeping the 100% of correct action patterns.

In addition to the low number of spurious activity models learnt, it has to be
said that those false models are usually easy to discard for an expert for two rea-
sons: (i) they have very low occurrence frequencies and (ii) they usually contain
actions that are not generally executed for those activities. For example, for activity
MakeChocolate, actions like hasBacon have been seen. Notice that those actions
cannot be discarded by AA during the clustering process, since they are type and
location compatible with MakeChocolate. Such an action is produced by sensor
positive noise, which can be observed in the slight false positive increments from
ideal scenario to complete scenario in Tables 6.7 and 6.11. Either those actions are
insiders that are not properly aggregated by the compatibility function (Equation
4.5), or outsiders that fulfil the candidate function (Equation 4.6).

Adding more knowledge to the context knowledge would allow discarding such
actions in AA. For example, if object types state that meat (bacon or sausages) is
only used to prepare meals, the algorithm could infer that bacon cannot be used
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for activity MakeChocolate, which is a sub-class of activity MakeDrink and dis-
junct of activity MakeMeal. But this brings the initial knowledge balance problem:
how much knowledge should be initially provided to such a learning system? The
answer depends a lot on the domain. If obtaining and modelling knowledge for a
concrete domain is easy, adding knowledge is a good idea. However, obtaining and
modelling knowledge can be very expensive in certain domains. The approach pre-
sented in this dissertation follows the philosophy of minimising initial knowledge
as much as possible, presenting the worst case scenario. We believe that the results
shown in Section 6.2.3.2 support this decision.

Concluding, the EAM learning system is able to learn complete and specialised
activity models for different users in realistic scenarios. As demanded in Chapter
1, all the activity variations executed by a user are learnt. But this is achieved
by means of conservative approaches that also generate false activity models. It
has been observed that such spurious models are not generally a problem for an
expert. It has to be said though, that there are some other spurious models that are
very difficult to discard even by an expert. For those cases, adding some spurious
models to the knowledge base should not be a big problem, since if the user does
not perform that activity model, the recognition system will not detect it.

The EAM learning system is a solid step towards dynamic and personalised
knowledge-based activity models. If the learning approach was applied periodi-
cally, the learnt activity models would be dynamic. Whenever a user performs an
activity differently, the learning system will be able to capture that variation and
provide the corresponding activity model. The experiments shown in this disserta-
tion are based on batch learning, but adapting the learning system for incremental
learning is only an implementation issue. On the other hand, the EAM learning
system also supports personalised activity models. It has been shown that eight
real users’ personalised ways of performing activities are properly modelled using
the same IAMs. Using previous incomplete knowledge about activities, complete
and specialised activity models in terms of executed actions are shown to be learnt
with user generated data.

6.3 Summary and Conclusions
After analysing the most used evaluation methodology in the community of activ-
ity recognition (Section 6.1), it has been concluded that using such methodology to
properly assess the performance of the EAM learning system is not feasible. In con-
sequence a novel evaluation methodology has been described in this chapter (Sec-
tion 6.1.2), following the trend of several researchers who have already analysed
the benefits of using simulated environments for activity recognition. Combining
a synthetic dataset generator tool with surveys to real users, realistic experimental
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set-ups can be prepared, introducing varying time lapses and sensor noise. One of
the most important novelties of the presented evaluation methodology is to provide
a tool to model human behaviour reliably using specially designed surveys.

To test all the relevant parts of the EAM learning system, several experiments
or evaluation scenarios have been prepared in Section 6.2. Those experiments have
been prepared using the hybrid evaluation methodology. The performance of every
algorithm has been measured based on well defined metrics.

The results obtained for all the experiments for SA3, the complete clustering
process and for the EAM learning system can be considered very good, even having
high levels of sensor noise - remember that the complete scenario contains more
than 38% more sensor activations due to sensor noise than the ideal scenario -
. For instance, experiments for SA3 show how accurate is the algorithm when
detecting time locations of performed activities. It cannot label correctly every
action of a dataset, but it can very accurately distinguish between action sequences
describing different activities. This initialisation, which is specially robust to sensor
positive noise, is the key step to make sure that all action sequences will be properly
captured in the end of the clustering process. The obtained results show that theAA
algorithm analyses every action suitably after the initialisation step, using all the
knowledge represented in the context knowledge file. Even though false positives
can be generated at this step, the vast majority of actions are properly tagged, taking
advantage of action type, location and the defined three time metrics. This can be
seen in the high precision and recall values obtained in both scenarios. For example,
precision is above 97% in the complete scenario using the third time approach,
whereas recall is above 98% (see Table 6.13).

The combined results of both algorithms, SA3 and AA, allow capturing effec-
tively all the action sequences which have been executed by a user for a concrete ac-
tivity. At this stage, the most important thing is that the action clusters obtained for
each activity, actually contain the real action sequences executed by users. How-
ever, there are also spurious variations of those real sequences due to sensor noise
and clustering errors. Based on those action clustersAML implements a similarity-
based outlier detection algorithm. Such algorithm encodes action sequence infor-
mation using the Jaccard coefficient and limits the problem of finding spurious
models to detect outliers in the similarity space. Using conservative approaches to
avoid removing any real action sequence, a statistical outlier detection approach is
run. The approach works well because spurious action sequences are very similar
to real action sequences. More concretely, as spurious action sequences are slight
variations of real action sequences, their similarity values are higher than expected
for the similarity distribution of a given activity. AML establishes a threshold us-
ing statistics that are robust to outliers. This threshold separates those similarity
values that can be considered normal from anomalous or outlier similarity values.
The result is that all real activity models are correctly learned, while the number of
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spurious or false models is acceptable.
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Alea jacta est.
Gaius Julius Caesar

CHAPTER

7
Conclusions and Future

Work

A general description of the main results and contributions presented in
this dissertation is given in this chapter. To finalise the dissertation, the
objectives posed in Chapter 1 are reviewed to see at what extent they
have been achieved. Furthermore, a summary of all contributions done

during the research work is provided, alongside a list of publications which prove
how this work has been validated with the research community. The chapter ends
with some ideas for future research in the area of activity modelling and some final
remarks.

The rest of this chapter is divided in the following sections: Section 7.1 presents
a summary of work and the conclusions obtained from the research work and re-
sults. Section 7.2 lists all the contributions done through the dissertation. Section
7.3 shows how the objectives and goal of the dissertation are achieved, thus val-
idating the hypothesis with the obtained results. Section 7.4 reviews all relevant
scientific publications related to the development of the dissertation. Section 7.5
provides some ideas for future research, extracted from the limitations and weak-
nesses of the EAM learning system. Section 7.6 makes some final remarks.

7.1 Summary of Work and Conclusions
Activity modelling is a very important step for activity recognition. It provides the
models which will be used in the recognition step and thus encode the exact way
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an activity is performed. There are several desirable features for activity modelling
approaches, including:

1. Provide generic activity models which can be applied to any user.

2. Provide personalised activity models which capture the special way an activ-
ity is performed by a concrete user.

3. Provide tools to make activity models evolve in time as users vary their be-
haviour.

4. Provide human-understandable models, to make the usage of such models
easy for the development of other applications for intelligent systems.

With the objective of achieving an activity modelling process which fulfils all
the listed requirements, a general framework was presented in Chapter 1, repre-
sented in Figure 1.1. As a summary, the process starts with an expert who provides
generic activity models. Those models are used in the learning system to identify
activities in sensor datasets and learn personalised models. The expert reviews the
obtained personalised models and includes them in the knowledge base. Expert
intervention is convenient because the activity model learning approach will often
lead to errors. Repeating those steps continuously in time, dynamic activity models
are obtained.

One of the main gaps encountered to achieve the proposed activity modelling
process was to learn new actions for already known activities. So the objective of
the dissertation was to fill in that gap, combining knowledge-based activity models
with data-driven learning techniques. The models learnt would be personal activity
models with specific action sequences per user obtained from the sensor datasets
generated while performing activities.

This dissertation has introduced a novel approach to acquire complete and spe-
cialised knowledge-based activity models through data-driven learning techniques.
The approach makes possible using generic but incomplete knowledge-based activ-
ity models to learn specialised and complete models, which represent the personal
way an activity is performed by a concrete user. Central to the approach is the
two-step clustering process (Chapter 4), which has the singularity of using previ-
ous knowledge in order to find action clusters and label them with the appropriate
activity class. Those clusters are then treated by the learning algorithm in order to
acquire extended activity models for different users (Chapter 5).

The results as shown in Chapter 6 indicate that the approach works well in
realistic experimental set-ups, with real users’ inputs, realistic time intervals for
activity sequences and sensor noise. It has to be stressed that all the varying ways
of performing an activity by a user are correctly captured by the approach for all
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users and scenarios. Specialised and complete models for initial generic incom-
plete activity models can be properly learnt automatically with minimum previous
context knowledge. In consequence, the presented approach can be used to make
knowledge-based activity models evolve with user behavioural data, offering the
tools to solve two of the problems of knowledge-driven approaches: the generic
and static nature of activity models.

So it can be concluded that the extended activity model learning system de-
veloped in this dissertation has served to validate the hypothesis posed in Section
1.2. It has been shown that personalised activity models can be learnt accurately.
Accuracy, in this case, refers to the ability to learn all the actions executed by a
user to perform a concrete activity. The 100% of correct activities achieved in the
experiments backs the statement.

It is convenient though to remember the scope of the presented learning system.
First of all, it works only for the single user - single activity scenario, so interwoven
activities are not addressed. The problem of learning new activities is not addressed
in this dissertation either. Finally, the approach has been designed for the dense
sensing activity monitoring paradigm. In principle, the learning system should be
able to work on top of any monitoring approach as far as concrete actions can be
obtained.

The evaluation methodology used relies on simulation tools and user surveys
(Chapter 6). There are some limitations, since users might omit some details in
their answers and the synthetic dataset generator cannot accurately simulate all the
possible situations. For example, simulating user erratic behaviour is a challenge.
That is why the level of noise introduced in the experiments is so high (around 38%
in average). The idea is to introduce high levels of positive sensor noise, much
higher than those seen in real pervasive environments (see (Chen et al., 2012a)).
The results obtained using this evaluation methodology can be deemed as rele-
vant because it combines: (i) real users’ inputs regarding activities, objects, time
lapses and locations, (ii) realistic sensor error models obtained from real environ-
ments and (iii) high levels of positive sensor noise to properly cover the effects
of user erratic behaviour. The most important thing is to be able to capture what
users describe in their surveys, showing that new actions can be learnt and different
ways of performing the same activity can be identified and properly modelled. The
evaluation methodology designed and described in Section 6.1.2 guarantees this.
Nevertheless, a final validation on real data would be desirable. Despite the tech-
nical difficulties of running such experiments, we are currently working on it. The
first idea is to run some experiments with actors and pre-defined scripts in order to
obtain some variations for a given list of activities. Afterwards, contacting research
groups that own pervasive environments has to be considered, with the objective of
running large scale experiments.
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In conclusion, the EAM learning system designed and developed throughout
this dissertation, is composed by the activity clustering process (Chapter 4) and
the Activity Model Learner (AML, Chapter 5). The activity clustering process is
divided into two steps: the initialisation of the clustering, provided by the Seman-
tic Activity Annotation Algorithm (SA3, Section 4.1) and the Action Aggregator
algorithm (AA, Section 4.2). This learning system has been designed to cope with
the problem of learning personalised activity models in terms of actions, using
generic but incomplete activity models provided by a domain expert. Such a prob-
lem has been identified in the literature as one of the gaps to achieve an activity
modelling process to obtain dynamic and personalised models. Once results are
carefully analysed, it can be claimed that the EAM learning system accomplishes
its objectives, being able to learn extended activity models for several users. So
the EAM learning system is an important step towards a dynamic and personalised
knowledge-driven activity modelling process.

7.2 Contributions
A summary of the contributions explained in this dissertation is presented in this
section:

• The design architecture for learning extended activity models was described
in Chapter 3. This contribution addresses objective 2 and the design part of
objective 3 (Section 1.2).

– It offers a convenient modular architecture which separates key con-
cepts and allows the implementation of different approaches.

– Communication between different modules is carried out by means
of files which follow standard formats, such as JavaScript Notation
(JSON) and Comma Separated Values (CSV).

– It uses a light-weight knowledge representation and processing frame-
work based on JavaScript Object Notation (JSON) technology, present-
ing compact and easy-to-extend structures for activities, objects, loca-
tions and sensors, to achieve environment independence.

• A novel two-step activity clustering process which uses previous knowledge
in unlabelled sensor datasets is explained in Chapter 4. This contribution
tackles part of objective 3, defined in Section 1.2.

– The clustering algorithms found in the literature allow including prior
knowledge in form of constraints or some points’ memberships, lim-
iting substantially the kind of knowledge that can be provided to the
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algorithms. However, the approach presented in this dissertation spec-
ifies prior knowledge as incomplete models, allowing higher levels of
expressiveness.

– It allows grouping data in clusters and recognises each cluster’s label
using previously given incomplete models. Even though it is an un-
supervised approach, the activity clustering algorithm provides the se-
mantic labels of each cluster. No previous work shows clustering ap-
proaches with labelling capacities, due to the way prior knowledge is
represented and incorporated.

– It works on the activity space, which is composed by location, type and
time axes, providing a meaningful low-dimensional space for efficient
action clustering.

– Typical clustering algorithms define distance functions in the corre-
sponding space to group points that are close to each other. Defin-
ing continuous distance metrics in the activity space is not possible, so
heuristic functions which exploit domain knowledge and time distance
metrics are used to process actions. Heuristic functions process the in-
formation provided by discontinuous location and type axes, whereas
time distance metrics work on the continuous axis of time. The ac-
tivity clustering approach is a good example of how clustering can be
performed in discontinuous spaces.

• An activity model learning algorithm was presented in Chapter 5, which uses
action clusters that define activities to extract activity models. With this con-
tribution, objective 3 is completed (Section 1.2)

– It has a flexible filtering step to pre-process the action clusters in form
of action sequences found by the activity clustering algorithm.

– It implements a model similarity-based outlier detection statistical al-
gorithm to detect spurious action sequences. The main novelty of the
approach is to interpret outliers as pairs of a valid action sequence
and its spurious variation. Hence, the algorithm fuses both action se-
quences, taking into account the occurrence frequencies of both action
sequences.

– It outputs complete and specialised activity models for a concrete user
alongside with their occurrence frequencies.

• A hybrid evaluation methodology was designed and implemented to properly
evaluate the learning system in Chapter 6. The methodology can also be used
for further activity modelling and recognition approaches. This contribution
addresses objective 4 (Section 1.2).
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– Following previous work on simulation for pervasive environments, the
hybrid evaluation methodology offers a realistic and cost-efficient way
to evaluate activity modelling and recognition approaches.

– It addresses one of the major problems of simulation-based approaches,
which is the problem of modelling human behaviour. Surveys to users
are designed in order to capture how activities are performed by them
and model effectively their behaviour.

– Using surveys, it allows obtaining the information of any number of
users minimising time-cost.

– It provides a special simulator to generate sensor datasets, namely the
synthetic dataset generator. Its usage allows generating on demand any
kind of dataset representing different activity executions. The synthetic
dataset generator allows modelling two kinds of sensor errors using
probabilistic models: sensor positive and missing errors. The reviewed
previous work does not address the simulation of sensor noise for dense
sensing monitoring scenarios.

– Combining surveys and simulation tools, any kind of experiment can
be prepared generating as much data as needed, in contrast with stan-
dard methodologies, where experiments are very expensive and testing
different situations is very difficult.

7.3 Hypothesis and Objective Validation
In the beginning of this dissertation, concretely in Section 1.2, a hypothesis was
posed, which stated the following:

Hypothesis. Using domain experts’ previous knowledge as generic but incomplete
activity models and data-driven learning techniques on user generated data, it is
possible to learn accurately new actions to obtain personalised activity models for
every user.

In order to be able to validate this hypothesis, a goal was also defined, which is
also shown below for convenience:
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Goal. To design and implement a learning system that uses generic but incomplete
activity models to analyse unlabelled activity sensor datasets and acquire person-
alised models which contain new actions.

To achieve such a goal, some specific and measurable objectives were identified
in Section 1.2. It is the moment now to go through all those objectives and see how
they have been addressed in this dissertation.

1. To study the current state of the art on knowledge- and data-driven activ-
ity modelling and recognition. Chapter 2 provides a deep and critical study
of the current state of the art, analysing activity monitoring, modelling and
recognition. Special attention has been paid to activity modelling, presenting
data-driven, knowledge-driven and even hybrid approaches and identifying
their advantages and disadvantages.

2. To choose a knowledge representation formalism and design proper struc-
tures to represent domain experts’ knowledge. This objective has been ad-
dressed in Chapter 3. A light-weight knowledge representation formalism
has been chosen, namely the JavaScript Object Notation framework (JSON).
Using JSON, the context knowledge file shows structures to represent activ-
ities, objects and sensors.

3. To design and implement a multiple step learning algorithm which uses previ-
ous knowledge and user generated data to obtain personalised activity mod-
els. The design of the learning system and its rationale have been presented
in Chapter 3. Moreover, implementation details of the system architecture
have been provided, showing samples of the used files. The modules iden-
tified in the architecture, which constitute the multiple step learning process
have been explained in the following chapters: Chapter 4 introduces the ac-
tivity clustering process and Chapter 5 describes in detail the activity model
learner algorithm. All the implementation work has been done using Python
2.7.

4. To identify the evaluation methodology for the learning system which better
addresses the requirements of the system. Chapter 6 analyses the so called
standard methodology for activity modelling and recognition. It is concluded
that using the standard methodology is not feasible to properly validate the
learning system. In consequence, a novel hybrid methodology is developed
and presented in Section 6.1.2, which combines real users’ inputs and a sim-
ulator.
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5. To validate the obtained results quantitatively, with the objective of capturing
the 100% of real activity models performed by a user. The results of several
experiments are presented in Chapter 6. It has been shown that the 100% of
action sequences executed by several users to perform the same seven activ-
ities are captured and modelled (Section 6.2.3.2). These results are obtained
in scenarios which contain high levels of sensor noise.

For the sake of clarity, Figure 7.1 provides a diagram where the objectives, the
contributions that are related to these objectives and their location in this disserta-
tion are shown.

1 Study state
of the art

2 Choose knowledge
representation

3 Design & 
implement

learning algorithm

4 Identify evaluation
methodology

5 Validate approach
with results

Architecture for
the learning system

Activity clustering
process

Activity model
learning algorithm

Hybrid evaluation
methdology

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Objective Contribution Location

Figure 7.1: The relation of the objectives defined in Section 1.2, the contributions
listed in Section 7.2 and their location in this dissertation.

It can be claimed that all the objectives set in Section 1.2 have been accom-
plished in this dissertation. As a consequence of this, the goal of the dissertation
has been achieved. The EAM learning system which is composed by the activity
clustering process (Chapter 4) and the activity model learner (Chapter 5) has been
implemented and tested. The learning system uses generic but incomplete activity
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models and unlabelled sensor datasets. As a result of the learning process, person-
alised activity models have been shown to be learnt, capturing personal ways of
performing activities in terms of actions.

Finally, through the accomplishment of the objectives and the goal, the hypoth-
esis of this dissertation has been validated. The results obtained in Chapter 6 prove
that it is possible to learn accurately new actions to obtain personalised activity
models for every user, combining generic but incomplete activity models and data-
driven learning techniques. Section 6.2.3.2 shows the results that prove that all the
actions executed by several users to perform different activities are accurately cap-
tured and modelled. Several spurious models are also learnt in the process, but the
number of such models is assumable as discussed in Section 6.2.3.3.

7.4 Relevant Publications
The contributions of this dissertation have been presented to the scientific commu-
nity in a series of international forums, such as journals and conferences.

7.4.1 International JCR journals
The current version of the EAM learning system was published in the following
journal:

• Gorka Azkune, Aitor Almeida, Diego López-de-Ipiña, Liming Chen. Ex-
tending Knowledge-Driven Activity Models through Data-Driven Learn-
ing Techniques. Expert Systems with Applications, vol. 42, no. 6,
pp. 3115-3128. Pergamon-Elsevier Science LTD. United States. DOI:
10.1016/j.eswa.2014.11.063, ISSN 0957-4174, JCR Impact Factor (2013):
1.965, Q1. April 2015.

The formalisation of the hybrid evaluation methodology and the synthetic
dataset generator was published in the following journal:

• Gorka Azkune, Aitor Almeida, Diego López-de-Ipiña, Liming Chen. Com-
bining Users’ Activity Survey and Simulators to Evaluate Human Activity
Recognition Systems. MDPI Sensors. vol. 14, no. 4, pp. 8192-8213, DOI:
10.3390/s150408192, ISSN 1424-8220, JCR Impact Factor (2013): 2.048,
Q1. Basel, Switzerland, April 2015.

An up-to-date survey of the state of the art in activity modelling can be found
in the following journal:
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• Gorka Azkune, Aitor Almeida, Diego López-de-Ipiña, Liming Chen. Latest
Trends in Human Activity Modelling. Dyna. JCR Impact Factor (2013):
0.200, Q4. Accepted, to be published.

The preliminary work that led to the research developed in this dissertation was
published in the following journal:

• Gorka Azkune, Pablo Orduña, Xabier Laiseca, Eduardo Castillejo, Diego
López-de-Ipiña, Miguel Loitxate and Jon Azpiazu. Semantic Framework
for Social Robot Self-Configuration. MDPI Sensors. vol. 13, no. 6, pp.
7004-7020, DOI: 10.3390/s130607004, ISSN 1424-8220, JCR Impact Factor
(2013): 2.048, Q1. Basel, Switzerland, May 2013.

7.4.2 International conferences
The Semantic Activity Annotation Algorithm (SA3) was presented in the following
conference:

• Gorka Azkune, Aitor Almeida, Diego López-de-Ipiña, Liming Chen. A
Knowledge-Driven Tool for Automatic Activity Dataset Annotation. Pro-
ceedings of the 7th International Conference Intelligent Systems IEEE
IS’2014, September 24-26, 2014, Warsaw, Poland, Volume 1: Mathematical
Foundations, Theory, Analyses. ISBN: 978-3-319-11312-8, pp. 593-604.

The hybrid evaluation methodology was presented in the following conference:

• Gorka Azkune, Aitor Almeida, Diego López-de-Ipiña, Liming Chen. A Hy-
brid Evaluation Methodology for Human Activity Recognition Systems. In
Proceedings of 8th International Conference on Ubiquitous Computing &
Ambient Intelligence, UCAmI 2014, December 2-4, 2014, Belfast, United
Kingdom. ISBN: 978-2-319-13101-6, pp. 92-99.

Preliminary work which led to the research done in this dissertation was pre-
sented in the following conferences:

• Gorka Azkune, Pablo Orduña, Xabier Laiseca, Diego López-de-Ipiña,
Miguel Loitxate. Semantic Based Self-configuration Approach for Social
Robots in Health Care Environments. Ambient Assisted Living and Home
Care. Proceedings of 4th International Workconference on Ambient Assisted
Living, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. ISBN:
978-3-642-35394-9, pp. 354-361.
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• Gorka Azkune, Mikel Astiz, Urko Esnaola, Unai Antero, José Vicente So-
gorb, Antonio Alonso. A Navigation System for a High-Speed Professional
Cleaning Robot. Towards Autonomous Robotic Systems. Proceedings of
12th Annual Conference, TAROS 2011, Sheffield, UK, August 31 - Septem-
ber 2, 2011. ISBN: 978-3-642-23231-2, pp. 24-35.

7.5 Future Work
Inspired by the weaknesses and limitations of the research presented in this disser-
tation, the following further research lines have been identified:

7.5.1 Integrate the EAM learning system in a complete activity
modelling process
As has been said in Section 7.1, the EAM learning system is a solid step towards
a dynamic and personalised activity modelling system. However, there are some
other pieces to complete the jigsaw puzzle. For example, Chen et al. developed a
learning approach to learn descriptive properties of knowledge-based activity mod-
els in (Chen et al., 2014). They also presented a mechanism to discover new activ-
ities.

Combining action and descriptive properties learning schemes with new activ-
ity discovery mechanisms in the same activity modelling system is still a challenge.
The building blocks are already there, but their integration is not straightforward
and it is beyond a technical issue.

Some of the posed challenges are:

1. Defining forgetting strategies for activity models that are not being executed
any more by a concrete user. As a user changes her way to perform activities,
models which populate the knowledge base but are not being observed should
be given a special treatment.

2. Integrating the approaches to learn action and descriptive properties. Both
aspects, actions and descriptive properties, are tightly coupled in an activ-
ity model. However, there might be the case where the same activity model
in terms of actions, produces different patterns of descriptive properties. A
proper modelling design has to be set up in order to attain the complex rela-
tions between actions and descriptive properties.

3. Obtaining generic models from discovered activities. As the most natural
way to discover new activities is observing personal data, discovered activi-
ties will be by definition personalised models. The question of how generic
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models can be extracted from those discovered personalised models is very
important.

7.5.2 Discard meaningless user-object interactions
The monitoring and modelling approach relies on user-object interactions moni-
tored by simple sensors. However, not all the interactions registered by the sensors
are meaningful, in the sense that they are not always directed to the execution of a
concrete activity. This phenomenon has been identified in the dissertation as being
mainly caused by user erratic behaviour. The consequence of meaningless user-
object interactions is the appearance of false positive actions within activity models
in the learning process. Thus, research on sensor-action mapping steps to distin-
guish between meaningful and meaningless user-object interactions is needed.

A possible approach could be to add a sensor-action mapping step, where only
those sensor activations that last for a concrete amount of time are mapped to ac-
tions. Such a processing step would require monitoring sensor state changes from
interaction state to no-interaction state and measuring state changes time lapses.
Another criterion which can be used for sensor-action mapping step is to monitor
how many times a user interacts with an object in a time interval, even though those
interactions are short. Combining both criteria, only meaningful object interactions
could be identified. Such an approach would allow applying the same EAM learn-
ing algorithm to probably obtain better results, reducing the false positive rate of
learnt activity models.

7.5.3 Single user - concurrent activities
Another promising future research direction is to extend the learning approach to
the single user - concurrent activities scenario. People do not usually perform ac-
tivities sequentially, but they tend to interleave activities, such as washing dishes
while preparing pasta. This will have an impact in the clustering process, demand-
ing more complex pattern recognition and time management. For instance, SA3

uses the single user - single activity constraint for its pattern recognition algorithm,
and AA defines insider and outsider actions based on the same constraint. If con-
current activities are considered, the clustering process should be changed. How-
ever, some key ideas could be maintained.

A first idea to tackle such scenarios is to invert the sequence of the clustering
process. In the single user - single activity scenario, activities are sequentially
ordered in the time axis, which makes the usage of SA3 as the initialisation step
convenient. But if activities are not sequentially arranged in time, initialisation
is more complicated. It seems that defining more generic metrics in the activity
space, considering time, location and type information, would generate some initial
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clusters formed by several activities per cluster. Once those clusters are obtained,
initial activity models could be used to try to analyse each cluster and see how
many activity combinations in terms of initial activity models can be found. This
way, several action sequences per activity could be found, to afterwards apply the
Activity Model Learner as described in this dissertation.

7.5.4 Perception for complex actions
Dense sensing monitoring cannot capture all the actions performed by a user with
an object. For example, it is not the same to grab a bottle or to open a bottle. But
to distinguish between those two actions with the same object is very complicated
- if not impossible - following the dense sensing monitoring approach.

However, activity models would greatly benefit from the usage of more com-
plex actions, because descriptions would be more accurate. Being able to use ac-
tions such as opensBottle, poursBottleContent, closesBottle and so on would be a
big step forward. It seems that vision-based monitoring is the best option for this
perception level. Looking at the recent expectation around head mounted devices
with cameras like Google Glass1, making research on their benefits for activity
monitoring would be very interesting. Head mounted devices allow receiving in-
formation about the concrete actions a user is executing, because people tend to
look to objects which are being manipulated. Besides, privacy problems are mit-
igated, because head mounted devices do not record the user externally and they
do not have to be necessarily working continuously. Another advantage of such
devices is the interaction capabilities they offer. In the case of Google Glass, voice
interaction, gestures and a small screen are available, which can help developing
many applications around activity recognition systems.

Taking into account the recent progress made in artificial vision and the ex-
pected proliferation of head mounted devices, vision-based activity monitoring
may become a very good option for activity recognition systems.

7.5.5 Learn temporal relations between actions
Activity models, as defined and used in this dissertation, do not provide any de-
pendency information between actions. They are simple sequences of actions.
Nevertheless, when performing an activity, actions have usually some temporal
dependencies which can offer new information for recognition. For example, when
preparing fish, fish should not be introduced in the oven until the oven has been
switched on. There are some constraints and dependencies between actions that
are not currently modelled.

1https://www.google.com/glass/start/
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Thus, the first step is to design modelling approaches to properly address the
dependencies and constraints between actions. The second step is to learn those
dependencies from user generated data. A learning solution might be the follow-
ing: once action clusters defining activities have been extracted, the order in which
actions have been executed can be analysed. Using frequency analysis and some
other learning techniques, it may be feasible to discover and learn temporal rela-
tions between actions.

A final research question regarding action dependencies is how this informa-
tion can be used for activity recognition. It has to be analysed whether modelling
dependencies offers any advantage in the recognition step.

7.6 Final Remarks
With this dissertation we have tried to make significant contributions in the area of
activity modelling and recognition, which is deemed to play an important role in
human-centred intelligent systems. We hope that the presented contributions and
identified future research lines will serve to other researchers as a guide to deliver
further contributions and thus keep advancing in such an important research area.
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