Ayuda
Ir al contenido

Dialnet


Recuperación de compuestos fenólicos contenidos en la salmuera residual del proceso de fermentación de las aceitunas de mesa mediante procesos de membrana: combinación de la ultrafiltración y la nanofiltración.

  • Autores: Carlos Carbonell Alcaina
  • Directores de la Tesis: Amparo Bes Piá (dir. tes.), Silvia Álvarez Blanco (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Juan Carlos Jarque Fonfría (presid.), Beatriz Cuartas Uribe (secret.), Joao Paulo Goulao Crespo (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Las aguas residuales generadas en el proceso de elaboración de aceitunas de mesa destacan por su elevada salinidad y su elevada concentración de materia orgánica y de compuestos fenólicos, los cuales son difíciles de degradar. Estos compuestos tienen una característica dual, por un lado, tienen carácter fitotóxico para el suelo, pero por contra, tienen un fuerte carácter antioxidante, lo que resulta de gran interés para las industrias alimentaria, cosmética y farmacéutica. El objetivo principal de este proyecto es la recuperación de los compuestos fenólicos presentes en la salmuera residual del proceso de fermentación de las aceitunas de mesa, mediante la utilización de procesos de membrana, tanto ultrafiltración (UF) como nanofiltración (NF), y adsorción con resinas. El permeado obtenido en la UF fue utilizado como alimentación de la NF, y el permeado obtenido en la NF se sometió a una etapa de adsorción con resinas no iónicas.

      Los ensayos de UF (UP005 y UH030) y NF (NF245 y NF270) se realizaron a escala de laboratorio con membranas planas orgánicas de distinto corte molecular, variando en cada ensayo la velocidad tangencial (entre 2.2 y 3.7 m¿s-1, y 0.5 y 1.5 m¿s-1, respectivamente), la presión transmembranal (entre 1 y 3 bar, y 5 y 15 bar, respectivamente) y el factor de reducción de volumen. Se estudió cómo afectan estos parámetros a la densidad de flujo de permeado y a la recuperación de compuestos fenólicos. Así mismo, también se estudió el efecto que tienen estos parámetros sobre el ensuciamiento de las membranas y se seleccionaron los protocolos óptimos de limpieza de las mismas. Además, los resultados experimentales obtenidos en los ensayos con las membranas de ultrafiltración se ajustaron a modelos matemáticos para predecir la variación de la densidad de flujo de permeado con el tiempo. La adsorción se realizó con una resina no iónica, y la desorción se realizó utilizando etanol como disolvente.

      Los resultados obtenidos mostraron que las membranas de UF son capaces de eliminar casi totalmente la turbidez de la salmuera residual, logrando producir una corriente de permeado con un mayor grado de pureza de compuestos fenólicos. Las mejores condiciones de operación en la ultrafiltración, en términos de densidad de flujo de permeado, eliminación de demanda química de oxígeno y recuperación de compuestos fenólicos, se obtuvieron con la membrana UP005 a 3 bar y 2.2 m¿s-1. Las membranas de NF consiguieron reducir casi completamente el color de la salmuera residual y enriquecer más corriente de permeado en compuestos fenólicos. Las mejores condiciones de operación en la nanofiltración, en términos de densidad de flujo de permeado, eliminación de demanda química de oxígeno y recuperación de compuestos fenólicos, se obtuvieron con la membrana NF245 a 15 bar y 1.5 m¿s-1.

      Mediante la combinación de estos procesos de membranas se aumentó el ratio compuestos fenólicos/DQO un 60% respecto de la salmuera inicial. La adsorción mostró que es posible recuperar una elevada fracción de los compuestos fenólicos, 98%, (hidroxitirosol y tirosol) presentes en la corriente de permeado de la NF con una alta pureza (97%), obteniéndose por otro lado una corriente salina ácida con muy baja concentración de compuestos fenólicos.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno