Ir al contenido

Dialnet


Blood barriers for oncolytic adenovirus efficacy: study of binding to erythrocytes via CAR and albumin?mediated evasion of neutralizing antibodies

  • Autores: Luis Alfonso Rojas Expósito
  • Directores de la Tesis: Ramon Alemany Bonastre (dir. tes.), Francesc Vinyals Canals (tut. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2017
  • Idioma: español
  • Materias:
  • Enlaces
  • Resumen
    • Cancer virotherapy with oncolytic adenoviruses represents a promising therapeutic approach due to the capacity of these viruses to infect and selectively kill tumor cells without damaging normal tissues. Although the intravenous is the preferred route of administration in order to reach disseminated metastasis, several interactions with blood components cause the neutralization of the virus. Thus, improving the delivery of such adenoviruses to tumors by systemic injection is crucial for the success of the therapy. In this work we have studied the interaction of the adenovirus serotype 5 (Ad5) with human erythrocytes through the receptor CAR, which was described to sequester and inactivate the virus. Although erythrocyte binding was observed, it did not reduce viral transduction of tumor cells in vitro. Since mouse erythrocytes do not express CAR, human erythrocytes were transferred into nude mice to analyze the impact of erythrocyte binding after systemic administration. However, adenovirus extravasation and transduction of liver and tumors was not reduced, suggesting that this binding is reversible and does not neutralize the virus.

      On the other hand, the high prevalence of anti-Ad5 neutralizing antibodies (NAbs) is a major obstacle for the intravenous administration of adenoviruses. To protect adenovirus against NAbs we inserted an albumin-binding domain (ABD) in the main adenovirus capsid protein, the hexon. This domain binds serum albumin to shield the virus upon systemic administration. The ABD-modified adenoviruses bind human and mouse albumin, which allow them to maintain the infectivity and replication capacity in presence of NAbs. Non-modified adenoviruses are completely neutralized after systemic administration in pre-immune mice, whereas ABD-modified viruses preserve the ability to transduce target organs and induce oncolysis. The data presented in this thesis supports the use of this strategy to treat patients systemically with oncolytic adenoviruses.

      In summary, this thesis focused on improving the intravenous delivery of oncolytic adenoviruses, which is one of the main limitations of this therapy. The results presented in this work demonstrate that while erythrocyte binding via CAR does not inactivate the virus, NAbs represent a major obstacle for efficacy. In this regard, albumin coating of the virus capsid represents an effective approach to evade pre-existing NAbs. This strategy has translational relevance in the use of adenovirus by systemic injection not only for cancer virotherapy, but also for gene therapy and vaccination.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno