Universidad
Rey Juan Carlos

TESIS DOCTORAL

Graph layout problems:
a metaheuristic approach

Autor:

Jests Sdnchez-Oro Calvo
Directores:

Abraham Duarte Munoz
Rafael Marti Cunquero

2016

Esta tesis doctoral ha sido desarrollada bajo la financiacion de los fondos
asociados al proyecto TIN2012-35632-C02-02 a través de la beca de formacién de
profesorado con referencia BES-2013-062658 del Ministerio de Economia y
Competitividad.

Abraham Duarte Munoz, Profesor Titular de Universidad del Departamento
de Ciencias de la Computacion, Arquitectura de la Computacién, Lenguajes y
Sistemas Informaticos y Estadistica e Investigacién Operativa de la Universidad
Rey Juan Carlos, y Rafael Marti Cunquero, Profesor Catedréatico del
Departamento de Estadistica e Investigacién Operativa de la Universitat de
Valencia, directores de la Tesis Doctoral Graph layout problems: a metaheuristic
approach, realizada por el doctorando Jesus Sanchez-Oro Calvo, hacen constar
que esta Tesis Doctoral retine los requisitos necesarios para su defensa y
aprobacion.

En Mostoles, a 3 de noviembre de 2016

Fdo: Abraham Duarte Munoz Fdo: Rafael Marti Cunquero

Agradecimientos

Esta tesis es el resultado de cuatro largos anos de trabajo, en el que han participado
una gran cantidad de personas. Todas ellas, de una u otra manera, me han marcado
y me han hecho evolucionar, tanto en lo profesional como en lo personal, por lo
que no puedo dejar de agradecer cada una de sus aportaciones en las diferentes
etapas que me han llevado a finalizar este trabajo.

Gracias a Leti, mi persona, la que consigue que cada dia sea mejor que el
anterior, que siempre esta ahi pase lo que pase. Si he llegado hasta aqui, es gracias
a ti, a que siempre me has apoyado para hacer aquello que me gusta. Llevas media
vida conmigo, y nunca me has fallado desde que te conoci en el colegio. Una cosa
que poca gente puede decir es que el momento mas feliz de su vida se produjo
durante la tesis, aunque en mi caso, gracias a ti, es totalmente cierto. Siempre
encuentras las palabras justas que me hacen falta para seguir adelante y olvidarme
de todo lo malo, incluso cuando ti misma no te encuentras bien. Sin duda puedo
decir que he encontrado el 6ptimo global en el problema de optimizacion de mi
vida.

Gracias a mis padres, por haberme educado y ensenado el camino correcto,
y por los esfuerzos realizados para que siempre, pasase lo que pasase, tuviera la
oportunidad de dedicarme a lo que mas me gusta. Gracias también a mi hermana,
porque nunca ha asumido el rol de hermana pequena, sino que se ha mostrado
fuerte para ayudarnos siempre que ha hecho falta. Gracias a Dani, que en vez
de cunado ha sido siempre mi hermano mayor. Gracias también a mi segunda
familia: Belén, Luis, Angel, Carmen, Arturo (padre), Bea, Irene, Victor, Peter,
Arturo (hijo), ... Os conozco desde los 14 anos y ya no puedo hablar de “segunda”
familia, porque es como si sélo tuviera una muy grande.

Gracias también a Juan Carlos. Aunque la guerra te llevé demasiado pronto,
los pocos anos que te conoci fueron mas que suficientes para saber que eres de los
mejores amigos que he tenido. Espero que, estés donde estés, veas que, por fin,
termino aquello que empecé cuando te conocimos.

Por supuesto, gracias a mis tutores, Abraham y Rafa, sin ellos esta Tesis
Doctoral habria sido imposible. Tal y como dice Borges, todo encuentro casual es
una cita, y aunque el primer trabajo que comencé con vosotros fue de casualidad,

resulto en el descubrimiento de un area de trabajo hasta entonces inexistente
para mi, pero que se ha convertido en una aficién més que en un trabajo.
Gracias por la confianza depositada para ese primer trabajo, y también gracias
por darme la oportunidad de formarme con vosotros y por seguir ensenandome
dia a dia, y mas teniendo en cuenta la cantidad de estudiantes que daria lo que
fuera por tener mi suerte. Ademas del campo profesional, también agradeceros la
cercania en el trato recibido desde el principio, lo que os ha convertido no solo en
mis directores de tesis, sino también en mis amigos. Nunca olvidaré los viajes a
congresos y las estancias, donde hemos pasado lo mejor y lo peor, pero que
siempre han merecido la pena, no solo en lo profesional sino en las experiencias
personales que de otra manera seria imposible tener. Creo que pocos estudiantes
de doctorado pueden agradecer a sus directores que le hayan ensenado el
maravilloso mundo de la cerveza.

Gracias a Eduardo, mi tutor en la sombra, te conoci en el tltimo ano de carrera
y desde entonces no he parado de aprender de ti. Creo que ninguna otra persona
habria sido capaz de poner un poco de orden en el “Chiringuito” del laboratorio
132, y de recuperar trabajos en principio perdidos gracias a tu constancia. Espero
que algun dia se den cuenta del profesional que han dejado escapar.

Gracias a Antonio y Juanjo, que me recogisteis recién salido de la carrera, sin
tener nada claro ni mi futuro ni mis posibilidades, y me descubristeis el campo
de la investigacién, ensenandome a qué me queria dedicar y luchando por obtener
financiacién que me permitiera dedicarme a aquello que méas me gustaba.

Gracias a Rulo, Mica y Patxi, por aceptarme como alumno de Proyecto Fin
de Carrera. Con vosotros aprendi mas durante el desarrollo del proyecto que en
varios anos de carrera. Puedo decir que soy muy afortunado habiendo trabajado
con los mejores en sus respectivos campos, en aquel binding de Java para OpenCL
que tanto trabajo costd, pero que tan buenos resultados produjo.

Gracias a David, por haber pasado de ser mi profesor de OpenCV a uno de mis
mejores amigos, espero que esas cenas en VIPS se sigan repitiendo cada vez con
mas frecuencia. Gracias también a Noelia, porque sé que ella ha sido tu principal
apoyo en convertirte en lo que eres y, por transitividad, también me ha ayudado
a mi mientras te apoyaba a ti. Los cuatro hemos pasado juntos algunos de los
momentos mas importantes de nuestra vida, incluyendo dos bodas, y estoy seguro
de que lo mejor esté por llegar.

Gracias a Concha, porque ya van mas de cinco anos trabajando codo con codo,
sin que pase ningun dia en el que aprenda un nuevo dato de la Conchapedia. Aun
no entiendo (y creo que nunca lo haré) como es posible que te quepan tantos datos
y tan inverosimiles en la cabeza. Gracias también por esas tardes de Bloodborne,
Dark Souls y derivados en los que todos los problemas se reducen a adivinar cémo
conseguimos matar al jefe de la zona que nos toca jugar.

Gracias a Colli y Zenko, que completan el grupo de los becarios originales, que
me acogieron primero en el laboratorio de GAVAB y luego en el despacho 130,
batiendo récords de ocupacién con cinco personas en el mismo despacho. Siempre
recordaré los ratos muertos viendo videos en la “pantalla cara”. En esos anos
quedé claro que cinco cabezas piensan mejor que una cuando nos enfrentdbamos
a problemas que al principio parecian imposibles de resolver.

No puedo olvidarme del equipo que me encontré en el segundo viaje en
Colorado. Cuando llegué, asumia que estaria, como dirfa Abraham, solo como
una rata durante toda la estancia. Sin embargo, a los tres dias de estar alli
volvéis de uno de vuestros viajes Ana y Laura, llenando de esa gracia andaluza
los cubiculos en los que trabajabamos, y dando un giro de 180 grados a mi
estancia. Pocos dias después aparece Anna recién llegada de Valencia, y nos
descubre aspectos que nunca habria imaginado (la escena de baile en el License
No 1 se me ha quedado grabada a fuego). En el breve periodo que pasamos alli
me habéis demostrado mucho més que algunas personas que conozco desde hace
anos. Nunca podré olvidar la ruta happy hour por Pearl Street, ni mi variado
nimero de roles dependiendo de la situacion. El grupo se completé con
Cristébal, Raquel, y Rocio, dejando la marca de nuestra tierra por todo Boulder.

Gracias al grupo de investigaciéon GRAFO (Abraham, Alf, Eduardo, Patxi,
Chema y Mica), por hacerme sentir uno mds del grupo, incluso cuando llegué
nuevo y sin experiencia. Gracias al antiguo GAVAB, por apoyarme desde el
principio y ayudarme en todo lo que ha hecho falta y mas: Abraham, Alf, Angel,
Antonio, Belén, César, José Miguel, Juanjo, Mica, Patxi, Soto y Vélez. Gracias
también al nuevo departamento CALE, porque ain habiéndose formado por
grupos muy heterogéneos, hemos sabido actuar como un tnico grupo siempre que
ha sido necesario.

Gracias a Manuel Laguna, no solo por permitirme realizar la estancia con él
en Colorado y por el aprendizaje profesional, sino por la experiencia personal de
haberme hecho sentir como uno mas de la familia las veces que he estado alli y
las que (seguro) estaré. Gracias también a Marc Sevaux y a André Rossi, por
permitirme realizar con ellos una estancia muy productiva en Lorient. Aunque
fue una estancia de una tnica semana, pude aprender mucho de vosotros gracias
a vuestra total disponibilidad y paciencia.

Contents

I PhD dissertation
1 Introduction

2 Graph layout problems

2.1 Vertex Separation
2.2 Profile Minimization 0L
2.3 Cutwidth Minimization
2.4 Bandpass

3 Metaheuristics

3.1 Variable Neighborhood Search
3.2 Scatter Search
3.3 Path Relinking o
3.4 Parallel Metaheuristics o0

4 Justification and objectives
4.1 Justification
4.2 Objectives

4.3 Main contributions

5 Joint discussion of results 43

6 Conclusions 55
II Publications 61
7 VNS for the VSP 63
8 SS for the PMP 73
9 Combining intensification and diversification in VNS 87
10 Parallel VNS strategies for the CMP 99
11 SS for the BP 119

III Resumen y conclusiones 151

Part 1

PhD dissertation

Chapter 1. Introduction 3

Chapter 1

Introduction

The word optimization, when used in informal language, is considered as a
synonym of improvement. However, in the scientific context, it is defined as the
process of searching the best solution for a particular problem, among all possible
solutions. It can be said that an optimization problem always presents two
different features: there are several solutions (usually a huge number of them)
and there is a clear method for comparing them [38]. The quality of each solution
is computed with the objective function of the problem.

4 Graph layout problems: a metaheuristic approach

Let us define an optimization problem (OP) as the minimization (or
maximization) of the value of an objective function f(p), being ¢ a solution of
the problem, and subject to a set of constraints [109]. In mathematical terms,

| Minimize f(yp)
P = { subject to ¢ € ® (1.1)

where @ is the set of feasible solutions (those which satisfy every problem
constraint). A feasible solution is optimum if and only if its objective function
value is the smallest (in minimization problems) or the largest (in maximization
problems) among all feasible solutions.

The relevance of optimization problems in several areas of the industry and
science has lead the scientific community to put considerable effort in the design
of new algorithms and methodologies in order to be able to solve this kind of
problems. These new algorithms have been designed with the goal of solving real-
world problems emerging in different areas, such as vehicle routing, storage or
communication antennas location, selection of the best distribution for electronic
components of an integrated circuit, or the prediction of energy demand in different
countries, among others.

Solving an optimization problem basically consists on finding the best values
of a set of decision variables in terms of an objective function, while satisfying
some given constraints. Optimization has been studied within differents areas of
knowledge, being Mathematical Programming and Computer Science two of the
most prominent. A classical clasification of the different optimization problems
according to their type of variables and mathematical expression of the objective
and constraints, breaks down Mathematical Programming into three well
established fields: Linear Programming, in which the variables take real
(continuous) numbers and both the objetive and constraint are linear; Integer
Linear Programming, in which additionally the variables are integer, and
Non-linear Programming also known as Global Optimization, in which the
variables take real numbers and there is no limitation in the expression of
objective and constraints. This classification assumes that the mathematical
expression of the objective and constraints is known, which is not always the
case. As a matter of fact, we can find many real problems in industry and
business that are very difficult to formulate in mathematical terms and are
difficult to solve due to their combinatorial nature. In this doctoral thesis we
consider combinatorial optimization problems (COP), with solutions taking
integer numbers [7, 109]. Without loss of generality, a solution ¢ is represented as
a vector ¢ = (x1,9,...,T,), being n the dimensionality of the problem. Then,
each variable z; of the COP receives a value v; belonging to the domain D; (with
i=1...n), so that solution ¢ fulfills all the problem constraints. More formally,

Chapter 1. Introduction 5

o=A{x1,..., 20}
Dy,...,D,
f:DixDyx...xD,—R

Y = {{(xlvvl)v R (xn,vn)}|v,- S Dl}

Optimization problems can also be classified according to their computational
complexity (how hard it is to be solved by a computer). This taxonomy establishes
complexity classes, where each class contains a family of problems that shares
a certain attribute related to its complexity. Some problems can be solved in
polynomial time, which means that the time taken to solve the problem in terms
of the steps or operations performed by the algorithm, can be expressed, or upper
bounded, as a polynomial function of the input size of the problem. We denote
this time as O(n?) where p is the maximum exponent in the polynomial function,
and all the problems that share this characteristic belong to P. Examples of this
kind of problems are the Minimum Spanning Tree (solved with either the Kruskal
[83] or Prim [115] algorithms), the Shortest Path Problem (solved with either the
Dijsktra [34] or Bellman-Ford [10] algorithms), and the Network Flow Problem
(solved with the Ford-Fulkerson [49] algorithm).

Unfortunately, we can find many problems for which a polynomial algorithm
is not known. There are some problems in this group however, for which it is
possible to determine (in polynomial time) if a given value is a solution for the
problem. These problems belong to the NP class. It is important to remark that
all the problems belonging to P also belong to NP, because it can be determined
in polynomial time if a given solution is a solution for the problem. Although the
theory of the complexity is a subtle field in which there are not only optimization
but also decision problems and reductions from a problem into another, it is well
accepted that the term NP-hard is used to refer to difficult problems that are
worth to investigate and constitute a challenge to optimization algorithms.

coP = (1.2)

Most of the real-world problems belong to this set, and the need for solving
them has motivated the development of efficient methods for finding high quality
solutions for the problem, although without any guarantee of optimality. These
methods for solving hard problems that consider that the speed of the search
process is as important as its quality are called heuristic methods. The work
heuristic comes from the Greek word heuriskein, which means to find or to discover.
On the contrary of exact methods, those which find the optimum solution for the
considered problem [109, 106], heuristic methods provide good solutions, but not
necessarily the optimum ones. It is worth mentioning that the time needed by an
exact method to find the optimum solution is usually orders of magnitude higher
than the time needed by a heuristic method.

In addition to the computing time, there exist more reasons for using a

6 Graph layout problems: a metaheuristic approach

heuristic method instead an exact one. For instance, there is no exact method
known for some problems (i.e., when considering optimization of simulations [4]).
Furthermore, heuristic methods are more flexible than exact ones, so that it is
easier to add new conditions which are rather difficult to model in exact
methods.

Metaheuristics belong to a new and more complex class of algorithms that
emerged with the objective of improving the results obtained by traditional
heuristic methods. Conceptually, metaheuristic algorithms have been designed to
guide the search of heuristic methods. The term “metaheuristic” was originally
introduced by Glover in 1986 [56], with the following definition:

A metaheuristic refers to a master strategy that guides and modifies
other heuristics to produce solutions beyond those that are mormally
generated in a quest for local optimality. The heuristics guided by
such a meta-strateqy may be high level procedures or may embody
nothing more than a description of available moves for transforming
one solution into another, together with an associated evaluation rule.

Therefore, metaheuristics are considered as a family of approximated
algorithms that leads the search of a traditional heuristic procedure combining
intelligently both exploitation (intensification) and exploration (diversification)
of the search space of the problem considered to be solved. On the one hand, the
exploitation consists of intensively exploring a limited but promising region of
the search space looking for improvements in the incumbent solution, and it is
traditionally related to local search methods. On the other hand, exploration
consists of exploring a large portion of the search space in order to increase
diversification. These algorithms have been successfully used in several
optimization problems, providing high quality solutions (without guaranteeing
optimality) in a reasonable computational time. Although there exists a large
number of metaheuristic strategies, some of them have become renowned due to
their high success rate when applied to optimization problems. It is worth
mentioning, among others, Greedy Randomized Adaptive Search Procedure,
GRASP [45]; Iterated Local Search, ILS [96]; Scatter Search, SS [88]; Simulated
Annealing, SA [139]; Tabu Search, TS [61]; and Variable Neighborhood Search,
VNS [103] .

This PhD dissertation is intended to develop algorithms based on some of these
metaheuristics in order to provide high quality solutions for optimization problems
with real-world applications. This manuscript summarizes the research performed
and it is structured as follows:

e Part I contains the summary about the developed research, including the

Chapter 1. Introduction 7

problems considered, the metaheuristics used, and the results obtained for
each of the problems, as well as the conclusions derived from them.

— Chapter 1 introduces the dissertation and describes its main
contributions.

— Chapter 2 presents graph layout problems, which are the type of
problems considered in this dissertation. Furthermore, it thoroughly
defines each of the considered problems, supported with graphical
examples, and introduces the best previous works found in the state of
the art. Finally, the practical application of each problem is also
introduced, in order to contextualize them.

— Chapter 3 describes the methodologies successfully applied to the
collection of problems described in the previous chapter. The origin of
each metaheuristic is described, as well as the basic principle of
operation. Additional details like extensions or applications are also
included.

— Chapter 5 discusses the results obtained by the proposed algorithms
for each considered problem. This chapter also includes a summary of
the experimental comparison in which the performance of each proposed
algorithm can be analyzed. Furthermore, the main contributions made
are also highlighted in each section of the chapter.

— Chapter 6 ends the dissertation with the conclusions derived from the
research, presenting possible future lines of work.

e Part IT contains the publications associated with this dissertation, with
additional information about the journal in which it was published.
Furthermore, additional publications derived from the research are also
included.

e Part III presents the abstract and conclusions of the dissertation in Spanish
language.

8 Graph layout problems: a metaheuristic approach

Chapter 2. Graph layout problems 9

Chapter 2

Graph layout problems

In recent years graph layout problems are becoming more interesting for the
scientific community. The term layout problem comes from an original
application to the optimal layout of circuilts in the context of Very Large Scale
Integration (VLSI) design. In this context, an electronic circuit is modeled as a
graph, where the edges represent the wires and the vertices represent each module
of the circuit. The objective in VLSI design is to place the modules on a board
without overlapping, and wiring together the terminals of the different modules.

10 Graph layout problems: a metaheuristic approach

From a theoretical point of view, graph layout problems consist of projecting
an original graph G = (Vg, E¢) into a host graph H = (Vig, Ey). The projection
is performed by defining a function that maps the vertices of G into the vertices
of H, associating a path in H for each edge of G. The quality of this projection
depends on the dilation (length of the largest path in H), the congestion (the
largest number of paths that share an edge of H), and the load (the maximum
number of vertices of G that are mapped to a vertex of H) [33].

Let G = (V, E) be a finite and undirected graph where V' and E represent the
set of vertices and edges, respectively (|V| =n and |E| = m). Figure 2.1 depicts
an example graph G = (V, E) with vertex set V' = {A,B,C,D,E,F,G} and edge set
E = {(A,B),(A,C),(A,D), (4,G6),(B,F),(B,G),(C,D),(C,E),(CF),(D,E),(EF)}, with
n=7and m=11.

odl !e

%

Figure 2.1: Graph G with seven vertices and eleven edges.

Problems considered in this work refers to the case in which a graph with n
vertices is projected over a path graph with a load equals to 1. More formally,
it consists of defining a bijective function, ¢, where each vertex v € V and edge
(v,u) € E has a unique correspondence in H. This function ¢ : V- — {1,...,n}
assigns a different integer number in the range [1, n] to each vertex v € V. The path
graph H is usually represented by aligning its vertices in an horizontal line, where
each vertex v is located at position ¢(v). This graphical representation is known
as linear layout, but it can be found with different names in the literature: linear
ordering [1], linear arrangement [134], numbering [23], embedding in the line [111],
or labeling [78]. Figure 2.2 presents an example of a layout for graph G depicted
in Figure 2.1. In this layout, vertex D occupies the first position (¢(D) = 1), vertex
B the second one (p(B) = 2), and so on. For the sake of simplicity, the linear
layout is usually represented as an array ¢ = {D,B,F,E, A, G, C}, where the position
of each vertex v € V' in this array corresponds to ¢(v).

Several problems belonging to the family of graph layout problems, with
practical applications in different areas, have been proven to be NP-hard. In
this dissertation we have considered four different graph layout problems.
Specifically, Vertex Separation Problem (Section 2.1), Profile Minimization
Problem (Section 2.2), Cutwidth Minimization Problem (Section 2.3), and

Chapter 2. Graph layout problems 11

-\

® © 6 O 0w O ¢

% 1 2 3 4 5 6 7

Figure 2.2: A possible linear layout of graph G.

Bandpass Problem (Section 2.4). The remaining of this chapter is devoted to
introduce and define each one of the considered problems.

2.1 Vertex Separation

Before formally defining the Vertex Separation Problem, we need to introduce
some additional definitions. Let L(G, p,p) be the set of vertices with a position
lower than or equal than p in the layout ¢ of the graph G (i.e., the set of left
vertices with respect to position p). Symmetrically, we define R(G, ¢, p) as the set
of vertices with a position larger than p in layout ¢ (i.e., the set of right vertices
with respect to position p). These two sets are formally described in Equation 2.1.

L(Ga 90,]?) = {U eV: @(U) < p} (2 1)
R(G,p,p) = {veV:p()>p} '

We define the separation value at position p of layout ¢, Sep(G, ¢, p), as the
number of vertices in L(G, ¢, p) with one or more adjacent vertices in R(G, ¢, p).
Equation 2.2 contains the mathematical definition of the separation value of a
particular position.

Sep(G,p,p) = |{u € L(G,p,p) : Fv € R(G,0,p) A (u,v) € E} (2.2)

Finally, the vertex separation value (VS) of layout ¢ is defined as the maximum
of all the separation values among all positions 1 < p < n in ¢, as defined in
Equation 2.3.

VS(G,p) = max Sep(G.,p) (2.3)

1<p<n
The Vertex Separation Problem (VSP) consists of finding a layout ¢* with
the minimum vertex separation value among all possible layouts @ in the graph
G. Equation 2.4 formally define the layout with the minimum vertex separation

12 Graph layout problems: a metaheuristic approach

value.

©* = argmin VS(G,) (2.4)
ped

Figure 2.3 shows the evaluation of the vertex separation value of the layout ¢
depicted in Figure 2.2. The Sep-value of each position is highlighted with a dashed
line. As it can be seen in the figure, the first position of the layout does not have
an associated Sep-value, since it is equal to 0 in all cases (no adjacent vertex to the
first one can be placed in a lower position in any layout). Therefore, the Sep-value

starts being evaluated in the second position.

Figure 2.3: Evaluation of the vertex separation value in each position of the
layout depicted in Figure 2.2.

The Sep-value of second position is equal to one, since L(G, ¢,2) = {D}, R(G,
¢,2) ={C,B,G, A, F,E}, and there is only one vertex in L(G, ¢, 2), vertex D, having,
at least, one adjacent vertex in R(G, ¢,2). Similarly, the Sep-value of the third
position, where L(G,¢,3) = {D,C} and R(G,¢,3) = {B,G,AF,E}, is 2, since
there are two vertices in L(G, ¢, 3) with at least one adjacent vertex in R(G, ¢,
3). The same evaluation is performed for each position, obtaining a maximum
vertex separation value of 4 in the fifth position of the ordering . Therefore, the
objective function value of the example considered is VS(G, ¢) = 4.

The VSP appears in the context of finding “good separators” for graphs [95]
where a separator is a set of vertices or edges whose removal divides the graph
into disconnected subgraphs. This optimization problem has several applications
in Very Large Scale Integration (VLSI) design for partitioning circuits into smaller
subsystems, with a small number of components on the boundary between the
subsystems [89]. The decisional version of the VSP consists of finding a Vertex
Separation value larger than a given threshold. It has applications on computer
language compiler design, where the code to be compiled can be represented as a
directed acyclic graph (DAG), with vertices representing the input values to the
code as well as the values computed by the operations within the code. An edge
from vertex u to vertex v in this DAG represents the fact that value w is one

Chapter 2. Graph layout problems 13

of the inputs to operation v. A topological ordering of the vertices of this DAG
represents a valid reordering of the code, and the number of registers needed to
evaluate the code in a given ordering is precisely the Vertex Separation number
of the ordering [15]. The decisional version of VSP has also applications in graph
theory [48]. Specifically, if a graph has a Vertex Separation value, say w, then
it is possible to find the maximum independent set of G in time O(2*n). Other
practical applications include Graph Drawing and Natural Language Processing.
See [41] and [125] for further details.

VSP has been widely studied from both, exact and heuristic perspectives.
Although the optimal value for trees can be obtained by using a linear algorithm,
a O(nlogn) algorithm must be considered in order to depict the optimal layout
[43]. Later, this algorithm was improved in order to find the optimal layout in
linear time [135]. A different algorithm for computing the optimal VS-value of
trees was also proposed [112]. A O(nlogn) algorithm for solving the VSP in
unicyclic graphs (i.e., trees with an extra edge) was proposed in [42]. Authors in
[14] proposed a polynomial-time algorithm for solving the Path Width problem,
which is equivalent to the VSP. However, this algorithm cannot be considered
from a practical point of view, since the bound on its time complexity is Q(n)
[42]. The VSP for n-dimensional grids, co-graphs and permutational graphs can
be optimally solved in polynomial time using the algorithms proposed in
[17, 14, 18], respectively. The VSP has been also studied with approximation
algorithms (i.e., those that guarantee a proximity to the optimum). Specifically,
a O(log? n)-approximation algorithm for general graphs and
O(log n)-approximation algorithm for planar graphs were proposed in [16].
Similar results were presented for binomial random graphs in [33].

2.2 Profile Minimization

Given a linear ordering ¢ for a graph G = (V, E), the profile value of a vertex
v € V located at position p is defined as §, = p —w(v), where w(v) is the smallest
position g < p, with p(u) = ¢ such that u is adjacent to v. It is worth mentioning
that if w(v) does not exists, then w(v) = p (i.e., if there is no adjacent vertex in
a position smaller than p, then the profile must be 0). Then, the profile value of
an ordering ¢, denoted as P(G, @) for the graph G, is evaluated as the sum of the
profile values of all its vertices. More formally,

veV
The Profile Minimization Problem (PMP) then consists of finding an ordering

* over the set ® of all possible permutations with the minimum profile value.

2

14 Graph layout problems: a metaheuristic approach

Equation 2.6 mathematically defines the best solution for PMP given a graph G.

©* = argmin P(G, ¢) (2.6)

ped

Figure 2.4: Evaluation of the profile value in each position of the layout depicted
in Figure 2.2.

Figure 2.4 depicts the evaluation of the profile value in each position of the
layout introduced in Figure 2.2. Regarding the first position with vertex D, its
profile value is 0 since w(D) = 1, because there is no vertex adjacent to D with a
smaller position than D. The value w(C) for vertex C is equal to 1 since the adjacent
vertex to C located in a previous position, which is also smaller than the position
of C, is vertex D, located at position 1. Therefore, o =2 — 1 = 1. The evaluation
is performed for each vertex in the layout, until reaching the last vertex, E, where
w(E) = 1 since the adjacent vertex to E that presents the smallest position is D,
located at position 1. Then, dg = 7 — 1 = 6. Finally, the profile value of the
considered layout is evaluated as the sum of the profile values of each position,
resulting in the evaluation presented in Equation 2.7.

P(G,p) = & + 0c + 0 + & + 6 + & + O
= 0 + 1 + 0 + 1 + 4 + 4 + 6 (2.7)
— 16

The PMP was originally proposed as an approach to reduce the space
requirements for storing sparse matrices [137]. In this context, the PMP is
equivalent to the SumCut problem [118]. Omne of the main applications of the
PMP is the reduction of the space requirements to store systems of equations.
Additionally, the PMP enhances the performance of operations on systems of
non-linear equations, such as the Cholesky factorization [125]. Another
interesting application of the PMP is described by Karp [81] in the context of the

Chapter 2. Graph layout problems 15

Human Genome Project. The main goals of that project are to identify all genes
in human DNA (between 20 and 25 thousand, approximately) and determine the
sequences of the approximately 3 billion chemical base pairs associated with
human DNA.

The PMP is also useful in archeology [82], where it has been used in connection
with the problem of organizing items such as fossils, tools, and jewels according to a
specific order. This process is known as “seriation”, and consists of placing several
items from the same culture in a chronological order determined by a method of
establishing dates that are relative to each other. This results in an optimization
problem for which the reordering of the rows and columns of a matrix is required,
which is equivalent to the projection of a graph in a line. Other applications of
the PMP can be found in information retrieval [19] and fingerprinting [81].

Lin and Yuan [94] proved that the PMP for an arbitrary graph is equivalent to
the interval graph completion problem, which was shown to be N'P-complete [51].
However, special classes of graphs can be optimally solved in polynomial time. For
example, Lin and Yuan [94] proposed several polynomial-time algorithms to find
the optimal solution of the PMP for paths, wheels, complete bipartite graphs and
D4-trees (trees with diameter 4). Likewise, Guan and Williams [69] developed an
algorithm to find the optimal solution of the PMP for triangulated graphs.

The SumCut problem [31, 32, 33| and the PMP are equivalent in the sense
that a solution to one problem provides a solution to the other problem by
reversing the corresponding permutation. Consequently, the optimum of one
problem corresponds to the optimum of the other [118]. The PMP is also related
to the bandwidth minimization problem (BMP), which consists of finding a
permutation of the rows and the columns in a matrix, such that all the nonzero
elements are confined to a band that is the closest to the main diagonal.

Algorithmically, the PMP has been tackled from the late sixties. To the best
of our knowledge, the first heuristic in the literature consisted of a constructive
procedure proposed by Cuthill and McKee [29] known as the Reverse
Cuthill-McKee algorithm (RCM). The procedure is based on constructing a level
structure of the vertices. Poole et al. [54] improved the RCM algorithm by
changing the selection of the root node within a more general level structure.
The method is known in the literature as GPS. Gibbs [53] developed an
algorithm called GK, which uses a pseudodiameter to produce a new level
structure. GK outperforms GPS in solution quality but it requires more
computational time. Lewis [90] introduced new implementations that improve
the performance of both GK and GPS. His experimental results confirm the
superiority of GK over GPS in terms of solution quality.

The best heuristic for the PMP in the literature belongs to Lewis [91]. It uses
the simulated annealing (SA) methodology in combination with existing

16 Graph layout problems: a metaheuristic approach

constructive procedures. The SA search starts from a solution constructed with
RCM or GK, whichever is better according to the objective function value. In
typical SA fashion, neighborhood exploration is performed with moves that are
randomly generated. Improving moves are always executed and non-improving
moves are only executed with a probability that depends on the current
temperature. A so-called cooling schedule controls the systematic reductions of
the temperature and the search ends when the temperature reaches a predefined
minimum level.

2.3 Cutwidth Minimization

The Cutwidth Minimization Problem (CMP) is an N'P-hard [52] layout problem.
CMP consists of finding an ordering of the vertices of a graph on a line that
minimizes the maximum number of edges between each pair of consecutive vertices.
This problem has been formulated in both, combinatorial [113] and mathematical
programming [97] ways, but this work is only focused on the former.

Given a graph G = (V, E) and an ordering for the vertices of the graph ¢, the
cutwidth value of a vertex v with respect to the ordering ¢, denoted as CW (G, p,
v) is calculated as the number of edges (u,w) satisfying p(u) < ¢(v) < p(w) (see
Equation 2.8).

CW(G, ¢, v) = {(u,w) € B p(u) < p(v) < p(w)} (2.8)

The cutwidth of a given ordering ¢ over a graph G, denoted as CW (G, ¢) is
computed by using the cutwidth of a vertex. Specifically, it is evaluated as the
maximum of all cutwidth values among its vertices, as can be seen in Equation 2.9

CW(G,p) = max CW (G, p,v) (2.9)

The CMP then consists of finding a labeling ¢* with the minimum cutwidth
value among the set of all possible layouts ® for a given graph G. This definition
is formally described in Equation 2.10.

¢* = argmin CMP(G, ¢) (2.10)
ped

Figure 2.5 shows the evaluation of the cutwidth value in each position of the
layout presented in Figure 2.2. Each cutwidth value is represented with a number
below the dashed line that separates each pair of vertices. Starting with position
1, the obtained cutwidth is equal to 3, since there are three edges with an endpoint
in a position lower then or equal to 1 (the position under evaluation) and with the
other endpoint in a position larger than 1. Specifically, those edges are (D, C), (D,

Chapter 2. Graph layout problems 17

A), and (D,E). The same evaluation is performed for each position until reaching
the last position, where the edges involved in the cutwidth evaluation are (D,E),
(C,E), and (F,E), resulting in a cutwidth value of 3. Finally, the cutwidth value
of this solution is the maximum of all cutwidth values, which corresponds to 8
(cutwidth value in positions three and four).

Figure 2.5: Evaluation of the cutwidth value in each position of the layout
depicted in Figure 2.2.

Several names have been used for referring the CMP in the literature, such
as Minimum Cut Linear Arrangement [30, 136] or Network Migration Scheduling
[5, 6]. The Board Permutation Problem was proposed as a generalization of the
CMP for hypergraphs [25, 26]. Solving the CMP is relevant for several areas,
including circuit design [1, 26, 98], network reliability [80], information retrieval
[19], automatic graph drawing [105, 133] or protein engineering [13]. There is also
an industrial patent where the CMP is applied to networks migration [119].

The CMP has been the spotlight of the scientific community since the
eighties, in order to produce approximate and exact solutions for the problem.
Cohoon and Sahni [26] were the first authors proposing heuristic algorithms for
the generalized version of the problem. These authors proposed several
constructive and local search procedures, embedding them in a Simulated
Annealing metaheuristic. Twenty years later [5, 6] a GRASP procedure
hybridized with a Path Relinking method was proposed. The most recent
approach is based on the Scatter Search metaheuristic [108] which outperformed
previous results in the state of the art.

As far as the exact approaches are concerned, most of them are centered in
particular types of graphs, like hypercubes [75], special cases of trees [24, 140, 138],
and grids [124]. All these algorithms present polynomial-time complexity.

Additionally, some exact methods for general graphs have been also proposed.
It is worth mentioning an Integer Linear Programming formulation for the CMP
[97], and a Branch & Bound algorithm to find exact solutions to general graphs
[100]. However, these approaches can only solve relatively small instances.

18 Graph layout problems: a metaheuristic approach

2.4 Bandpass

The bandpass problem (BP) emerged in the context of early-generation DWDM
(Dense Wavelength Division Multiplexing) systems in fiber optic networks
[45, 68, 117]. The transmission of several wavelengths in a single fiber-optic cable
is supported by the band concept used in this technology. OADMs (Optical
Add/Drop Multiplexers) are devices designed to act as an entrance/exit for
wavelengths in the fiber-optic cables [68, 79]. This behavior is controlled by
special electronic cards inside the OADMs which manage the wavelengths,
identifying which ones should be allowed to continue or not through the device.
Several wavelengths are able to pass through the same OADM in most networks,
and they may be handled as a block (if they are consecutive). Each considered
block is known as a bandpass.

Without considering this wavelength grouping in blocks, each wavelength would
need a card. However, a single card can handle the entire block of wavelengths
embedded in a bandpass. The bandpass number, B, is defined as the number
of wavelengths contained in the block of the bandpass. Then, the creation of a
block results in a reduction of the number of cards needed and, as a consequence,
a cost reduction not only in the design but also in the maintenance of the fiber-
optic network. In this context, it is interesting to assign wavelengths in order to
maximize the number of bandpasses with a predefined bandpass number B.

The BP basically consists of creating blocks of wavelengths that need to be sent
from a set of origins to a set of destinations. The goal of the problem is to reduce
the number of devices needed for the transmission of the wavelengths, resulting
in a decrease of both, installation and maintenance costs. The telecommunication
network is modeled as a m xn binary matrix A, where a;; is equal to 1 if wavelength
¢ must be delivered to destination j.

The bandpass number B is given when considering the basic version of the
problem. A bandpass is formed when there are B consecutive 1s in the same
column of the telecommunication matrix. Each value of 1 can only belong to one
bandpass and therefore two distinct bandpasses in the same column cannot have
a common element.

Figure 2.6.a shows a network with a set W of 7 wavelengths (A,B,C,D,E,F,
and G) and a set T of 5 destinations (1,2,3,4, and 5). The network shows that, for
instance, wavelength 1 must be delivered to all but the third destination. Assuming
that B = 3, the matrix in Fig. 2.6.a contains 4 bandpasses, as indicated by the
highlighted blocks.

The bandpass for column 1 in Fig. 2.6.a, is shown as rows A, B, and C.
However, the bandpass for that column could also be formed by rows B,C,D or
C,D,E. Regardless of which one is chosen, there can only be one bandpass in

Chapter 2. Graph layout problems 19

A 1 G
B 0 B
C 0 C
D 1(0 E
E 01 D
F 1(1 F
G 0fo0 A
a) b)

Figure 2.6: Two possible assignments of wavelengths to rows of the
telecommunication matrix. Bandpasses are highlighted in light blue.

column 1, because no row can be shared in two different bandpasses. In order to
increase the number of bandpasses, the assignment of wavelengths to rows could
be changed. This assignment could also be thought as a reordering of the rows in
the matrix. For instance, Figure 2.6.b shows the matrix that results by assigning
the following wavelength: G to row 1, A to row 7, E to row 4, and D to row 5. In
other words, wavelengths A , G, and D, E have exchanged positions from the
original lexicographical order shown in Figure 2.6.a. The reassignment results in
an increase of bandpasses from 4 to 5.

The reassignment of rows allows us to consider the BP as a layout problem,
where each element of the layout refers to a wavelength and the position of each
element in the layout represents the row in which that wavelength is assigned.
For example, for Figure 2.6.a, the resulting layout is ¢, = (A,B,C,D,E, F,G), since
wavelength A is assigned to row 1, wavelength B is assigned to row 2, and so on.
On the other hand, the layout for Figure 2.6.b is ¢, = (G, B, C,E,D, F, A), following
the description given above.

The literature on the bandpass problem is limited to seven articles
8, 12, 70, 84, 92, 93, 107]. Mathematical models for the original problem and a
variant are presented in [8] along with a ANP-hard proof. Two solution
procedures were proposed: an exact polynomial algorithm with |T'| = 2 and a
heuristic for the general case [8]. The authors also report optimal solutions for
the original problem instances with |[W| < 32 and |7T'| < 8, found by solving a
mathematical programming model. A description of a generator of problem
instances is provided and used to produce 90 instances with m = 64 and 96 and
n = 8,12,16, and 25. These instances are divided into two groups of 45 instances
each, one for which the optimal solutions are known (OS instances) and one for
which the optimal solutions are not known (BKS instances). Collectively, these

20 Graph layout problems: a metaheuristic approach

problems are referred to as the Library of Bandpass Problems (BPLIB) !. No
experiments are performed for the variant in [8]. Additional mathematical proofs
for special cases of the original version are provided in [92, 93].

Berberler and Giirsoy [12] developed four variants of a genetic algorithm and
applied them to the 45 OS instances in BPLIB. Optimality gaps are reported for
all variants in all problem instances. Several GA variants are also developed and
tested in [84]. This article introduces a new set of problems for a new variant
of the problem, called Multi Bandpass Problem (MBP). The data include both
the B; values and the binary A matrix 2. Finally, some of the same authors in
[8, 84] are co-authors of [107] where mathematical models are presented. Some
of these models already appeared in [8, 84] and some are new. No additional
experimentation or results are included in [107].

!The Library of Bandpass Problems can be found here http://sci.ege.edu.tr/~math/
BandpassProblemsLibrary

2Problem instances introduced in [84] are found here http://fen.ege.edu.tr/arifgursoy/
mopt

Chapter 3. Metaheuristics 21

Chapter 3

Metaheuristics

Metaheuristics (MHs) are among the most prominent and successful techniques
to solve a large amount of complexr and computationally hard combinatorial and
numerical optimization problems arising in human activities, such as economics
(e.g., portfolio selection), industry (e.g., scheduling or logistics), or engineering
(e.g., routing), among many others. MHs can be seen as general algorithmic
frameworks that require relatively few modifications to be adapted to tackle a
specific problem. They constitute a very diverse family of optimization algorithms
including methods such as Simulated Annealing, Tabu Search, Multi-start
Methods, Iterated Local Search, Variable Neighbourhood Search, GRASP,
Memetic Algorithms, Scatter Search, Fvolutionary Algorithms, or Ant Colony
Optimization.

22 Graph layout problems: a metaheuristic approach

Nowadays, MHs have become an interdisciplinary research area intertwining
disciplines such as Computer Science, Operations Research, Engineering, etc.
They have received enormous attention, as witnessed by thousands of journal
and conference papers, hundreds of authored and edited books, and dedicated
conference series like the Metaheuristics International Conference (MIC), the
IEEE Conference on Evolutionary Computation (CEC), or the Genetic and
Evolutionary Computation Conference (GECCO).

This Chapter is devoted to describe the MHs considered in this thesis for
solving the N'P-hard problems described in Chapter 2. Specifically, we present
algorithms based on Variable Neighborhood Search (Section 3.1), Scatter Search
(Section 3.2), and Path Relinking (Section 3.3). Finally, Section 3.4 describes
the parallel strategies and technologies used for improving the performance of the
classical sequential metaheuristics.

3.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic [103],
also considered a framework for building metaheuristics, which tries to avoid
getting stuck in local optima by means of systematic changes of neighborhoods
both in descent phase (searching for a local optima), and in perturbation phase
to escape from the corresponding local optimum. Contrary to other
trajectory-based metaheuristic algorithms, VNS not only follows a trajectory, but
also explores distant neighborhoods of the incumbent solution, updating it in
case of improvement.

VNS was originally proposed by Hansen and Mladenovié¢ [102, 103], where the
three main variants (Basic VNS, Variable Neighborhood Descent and Reduced
VNS) were originally presented. A more complete survey on VNS was later
introduced [72], including different extensions and a detailed review of several
areas of application. Finally, the principles and applications of the metaheuristic
were gathered in a new volume [73].

Most of the metaheuristics based on local search procedures that can be found
in the literature are usually based on a single neighborhood structure although,
in some cases (like Tabu Search), the neighborhood structure can be dynamic
[56, 61, 67]. VNS metaheuristic introduces the management of a certain set of
neighborhood structures as a novel idea. Therefore, for each solution ¢ belonging
to the solution search space @, a set of neighborhoods N' = Ni(¢), Na(p), ...,
Ni(p) is defined, where 1 < k < kyay. Each neighborhood can be generated using
one or more metrics that are usually problem dependent.

The VNS metaheuristic is based in the following ideas [72]:

Chapter 3. Metaheuristics 23

1. A local optimum with respect to a neighborhood N;(¢) does not need to be
optimum with respect to another neighborhood N, (), with i # j.

2. A global optimum is a local optimum with respect to all possible
neighborhood structures.

3. For many problems, local optima with respect to one or several neighborhood
structures are relatively closed to each other.

The last idea is based on empirical results but it implies that in some situations
a local optimum can provide some information about the global optimum. For
instance, a local optimum can contain several components of the global optimum,
although in most cases it is not possible to know which are those components [61].

For a certain optimization problem, it is only possible to say that a solution is
a local optimum exclusively with respect to a considered neighborhood structure.
However, this statement does not need to be valid with respect to other
neighborhood structures. Therefore, the neighborhood structure determines the
landscape of the search space. These concepts can be summed up in the
expression One operator, one landscape [77].

Figure 3.1 shows a typical behavior of a VNS algorithm when considering
three neighborhoods of the incumbent solution ¢. Figure 3.1.a presents the
exploration of the first neighborhood Nj(¢p), selecting the best solution ¢’ found
in it to continue the search. The search continues in Figure 3.1.b, where no
improvement is found after exploring the first neighborhood again. Therefore,
the next neighborhood to be explored is Na(y), selecting the best solution (that
outperforms the incumbent one). After finding an improvement, the search starts
again from the first neighborhood of the new incumbent solution, as can be seen
in Figure 3.1. However, since no improvement is found neither in N;(y) nor in
Ns(¢), VNS resorts to the third and last neighborhood, N3(p), finding a better
solution. The search continues after no improvement can be found in none of the
considered neighborhoods.

VNS has evolved in recent years, resulting in a large variety of strategies. The
first work on VNS [103] originally proposed three different variants: Reduced VNS
(RVNS), Variable Neighborhood Descent (VND) and Basic VNS (BVNS). The
main difference among them is the relevance of the randomness during the search.

In the first variant, RVNS, the exploration of the search space is performed
in a stochastic manner. Given a certain neighborhood, RVNS randomly selects a
solution belonging to it, without performing any local optimization (i.e., no local
search procedure is applied). This implementation is particularly useful when the
computational effort to perform the local optimization is relatively large. RVNS is
related to Monte-Carlo method, although RVNS is more systematic [72]. Several
implementations of this variant can be found in the literature [72, 74, 104].

24 Graph layout problems: a metaheuristic approach

5 5 5
s = =
< < <
2 2 2
= S S
S S S

Search Space ! Search Space ! Search Space !

a) b) c)

Figure 3.1: Landscape of the search space for two different neighborhood
structures.

On the other hand, VND considers a totally deterministic exploration. This
variant explores different neighborhoods in a detterministic and exhaustive way. In
other words, when the search reaches a local optimum, the neighborhood is changed
with the objective of escaping from the local optimum. It is worth mentioning
that the solution obtained using this variant is a local optimum with respect to all
considered neighborhoods. This variant has been successfully applied in several
occasions [20, 71].

Finally, the third strategy, BVNS, combines deterministic and stochastic
aspects. In this strategy, a random solution in the neighborhood is selected, as in
RVNS, but instead of continuing the search with the next neighborhood, the
incumbent solution is improved using a local search strategy. See
[20, 71, 121, 122] for some successful results using BVNS.

The successful application of VNS to several NP-hard problems has resulted
in new strategies that consider new types of combinations between stochastic and
deterministic changes of neighborhood. General Variable Neighborhood Search
(GVNS) [72] emerges as a combination of BVNS and VND. Specifically, GVNS
follows the same scheme than BVNS, but replacing the local search procedure with
a complete VND algorithm. Therefore, the GVNS locally optimizes each random
solution selected in a given neighborhood not only with a single neighborhood as
in BVNS, but also with a set of different neighborhoods, which eventually leads to
better solutions. This implementation has been recently used in several problems
with successful results [130, 101, 132].

There exist more complex implementations, like Variable Neighborhood
Decomposition Search (VNDS) [72, 71]. This variant is based on the extension of
the methodology to two levels. The main difference with respect to BVNS lies
largely on the application of the local search procedure. VNDS locally optimizes
only a part of the solution, instead of optimizing the complete solution as in
BVNS. Other well-known implementations are, for example: Skewed VNS

Chapter 3. Metaheuristics 25

(SVNS) [72], which provides more flexible and powerful acceptation criteria or
the Parallel VNS (PVNS) [72], which will be thoroughly explained in Section 3.4.

3.2 Scatter Search

Scatter Search (SS) is a metaheuristic procedure based on strategies and
formulations introduced in the seventies. The basis of SS relies on the
combination of high quality solutions, focusing on obtaining better solutions than
the original ones. Therefore, SS can be considered as an evolutionary algorithm,
since it always maintains a population of solutions [99]. However, unlike
evolutionary algorithms, SS is not based on the randomization of a large set of
solutions, but on systematic and strategic decisions performed over a small set of
solutions.

The basic concepts and principles were proposed at the beginning of the last
decade, based on combination strategies for decision rules [99]. The first original
description of the metaheuristic [66] establishes the basis of SS, and in 1998 the
methodology was formally described [58]. The methods that inspired the ideas
of SS were initially used for scheduling problems [55], where several strategies for
combining decision rules and constraints were introduced [66]. These methods were
able to obtain new rules by means of the lineal combination of other previously
used rules [55]. Experimental results showed that this combination produced better
results than the original application of the initial rules isolated.

SS is designed to work with a set of small solutions called reference set (RefSet),
whose main feature is that it contains good solutions. It is worth mentioning that
good solutions in the context of SS refers to both high quality solutions (in terms
of the value of objective function) or high diversity solutions (which means that
solutions are considerable different among them). Notice that finding the subset of
most diverse solutions is an NP-hard problem itself, so the most diverse solutions
are usually selected in a heuristic way.

A linear combination refers to an expression constructed from a set of two or
more vectors where each one can be multiplied by an scalar value. In the context
of SS, solution combinations are a more generalized version of linear combination
in the euclidean space. However, for most of combinatorial problems it is not easy
to apply the linear combination of solutions. Specifically, in the context of graph
layout problems (those considered in this dissertation) two solutions cannot be
linearly combined. Therefore, in order to use SS in the considered problems, it is
necessary to extend the concept of linear combination, introducing new strategies
like crossing or voting based combinations [88].

26 Graph layout problems: a metaheuristic approach

One of the most important features of SS is the inclusion of both
improvement and combination methods. The former are usually simple
algorithms like local search methods, but there is no limitation for using more
complex improving methods like Tabu Search [56], while the latter considers
different methods to combine two or more solutions that have been previously
improved. The application of the improvement stage ensures that the considered
solutions always present a high quality, at least in the given neighborhood.

Algorithmically, the SS metaheuristic basically consists of five different
procedures: diversification generation method, improvement method, RefSet
update method, subset generation method, and solution combination method.
Starting with the diversification generation method, its main objective is to
generate a set P (with |P| = n) of diverse solutions. Once the solutions have
been generated, they are improved using the considered improvement method
and, finally, a small subset of b good solutions is selected (the so-called RefSet).

The goal of the improvement method is basically find a local optimum for each
solution with respect to a certain neighborhood. Typically, a local search method
is considered, but any trajectory-based metaheuristic can be used. Notice that
the method must be able to obtain a feasible solution even when the original one
is unfeasible and, then, improve its quality. If the method is not able to find an
improvement, then the original solution is considered as the resulting one.

The RefSet update method is devoted to construct and maintain the
reference set, RefSet, which consist of the best b (with b << n) solutions found
iduring the search. The initial RefSet is obtained from the initial population of
solutions provided by the diversification generation method, balancing the
quality and diversity of the selected solutions. Finally, the solutions in the RefSet
are usually sorted by quality. Typically, the RefSet is created with the best b/2
solutions. Then, the remaining b/2 solutions are selected maximizing the
distance with the solutions already in the RefSet (the distance function will
depend on the problem).

The new solutions that outperforms those in the RefSet must be included in it,
removing one solution for each new one included. Therefore, the size of the RefSet
remains constant, while improving the quality of the solutions in it. There exist
two classical strategies for performing the RefSet update: static and dynamic.
The former stores all the new solutions generated during a combination and, then,
it decides if any of the generated solutions is able to enter in the RefSet. The
latter updates the RefSet every time a new solution (better that at least one in
the RefSet) is generated.

The subset generation method specifies how to construct all the subsets of
solutions that will be later considered for combination. The most frequent
implementation is based on limiting the subsets to pairs of solutions. The

Chapter 3. Metaheuristics 27

combination method is then applied to each pair generated.

4 N\
P
@ e ©
® @
Diversification generation O Improvement - @— ® (@) © “
method method . '
@
(OINQ)
® o
N J

|P|=N?
no
yes

Improvement RefSet update
O CI) O method . ’ ’ method

Combination
method

Subset generation
—
method

Figure 3.2: Scatter Search methodology scheme.

END

Figure 3.2 depicts the classical Scatter Search scheme. The algorithm starts by
creating solutions with the diversification generation method and improving them
with the local optimization procedure. These steps are repeated until generating
an initial population P with n different solutions. Then, the RefSet update method
creates the RefSet with the b/2 best solutions found in P. Then, the remaining
b/2 solutions are those from P that present the maximum distance with respect
to the solutions already in RefSet. The method iterates until no new solutions
are included in the RefSet as follows. The subset generation method creates the
pairs of solutions to be combined with the combination method. The output of the
combination method for each pair of solutions combined is the best solution found
during the combination, which is improved with the local optimization method.
Finally, the RefSet update method decides whether the new solution should enter
or not in the RefSet. Specifically, a new solution is able to enter in the RefSet if and
only if it outperforms the solution with the lowest quality (in terms of objective
function) currently in the RefSet.

The flexibility and modularity of the SS methodology allow us to introduce
different extensions for the procedures that conform the metaheuristic. Several
modifications for the SS methods have been proposed [88, 99, 62, 63, 64, 65|,
resulting in an increment in the performance of the metaheuristic. The last part
of the section is devoted to describe the most promising modifications.

28 Graph layout problems: a metaheuristic approach

The first considered modification is based on reconstructing the RefSet, when
the method is not able to generate new solutions that outperforms those already
included in the RefSet. When reaching this situation, the RefSet is partially
reconstructed introducing new solutions adding diversity, replacing (typically)
b/2 solutions for more diverse ones.

Another well-known modification is the inclusion of memory in the search.
Frequency based memory usually increment the performance of the
metaheuristic, basically due to assuring diversification. This strategy avoid
solutions with repeated components or that previously led to low quality
solutions.

The Scatter Search metaheuristic has been successfully applied to a large
number of problems. See [129, 128, 76, 86] for some successful results using SS.

3.3 Path Relinking

Path Relinking (PR) is a metaheuristic which usually acts as an intensification
phase based on the exploration of trajectories or paths that connect two or more
high quality solutions which have been obtained by other heuristic or metaheuristic
algorithms [57]. It is usually included in the context of Scatter Search, as an
extension of its combination method. In this case, PR creates a path between the
two solutions selected for combination instead of directly generating a new solution
which results from the combination of the two original ones.

PR was originally proposed by Glover [57] as an intensification strategy to
generate paths that connect elite solutions provided by a Tabu Search or Scatter
Search algorithm [59, 61, 62]. PR was later adapted by Laguna and Marti [87]
as a form of intensification in the context of GRASP, by finding a path between
a solution found with GRASP and a chosen elite solution. PR is usually applied
to two different solutions: the initial solution, and the guiding solution. The
algorithm explores one or more paths connecting these solutions looking for better
ones. It is worth mentioning that the best solution found in each path does not
guarantee local optimality with respect to any neighborhood, so a local search
procedure is usually applied to it, in order to find a local optimum.

Let ¢; be the initial solution and ¢, be the guiding one. The exploration of the
path that connects ¢; to ¢, is restricted to those solutions in the neighborhood
of ¢; that are more similar to ¢, than ¢; itself (i.e., the path generates solutions
further from ¢; and closer to ¢, in each step). This is performed by including in
¢; attributes that are already present in ¢,. In this respect, the objective of PR
may be viewed as incorporating attributes of the guiding solution in the solution
under exploration of the path. In order to select an attribute to be included in the

Chapter 3. Metaheuristics 29

path, the most common strategy consists of selecting the attribute that results in
the best-quality solution.

Figure 3.3 depicts an example of the application of the PR algorithm to a pair
of solutions for any graph layout problem. For the sake of simplicity, let f(y)
the objective function that evaluates a layout ¢. Considering that the strategy is
being used for a minimization problem, the initial solution, ¢; = (A,C,E,B,D) is
better than the guiding one, ¢, = (4,E,B,D,C) since f(v;) < f(p,).

[alcfele]p

flpi) =10

Figure 3.3: Example of Path Relinking between an initial (¢;) and a guiding (¢y)
solution.

The inclusion of an attribute of the guiding solution into the current one in
the context of graph layout problems usually refers to locating a vertex of the
current solution in the position that it holds in the guiding solution. This can
be accomplished by performing different types of movements. In this example,
we have considered the interchange movement, in which given two vertices, they
exchange their position in the layout.

Starting from the initial solution ¢;, the strategy can generate four solutions
in this neighborhood to start the path to the guiding solution ¢,. Specifically, ¢,
results from the interchange of vertices D and C in order to locate C in the
position that it holds in ¢4, which is 5; @9 results from the interchange of vertices
C and E, which reallocates E in the correct position, and so on. It is worth
mentioning that vertex A is already located in the same position as in ¢4 so it is
not considered for the path. Assuming that the corresponding layout problem
looks for the minimization of the objective function, the intermediate solution
selected in this first step is (9, since it presents the minimum objective function
among the generated solutions, although it is still larger than the objective

30 Graph layout problems: a metaheuristic approach

function of ¢;. In the next step, solutions s, pg, and p; are explored. In this
step, the solution with the minimum objective function value is g, which is the
one considered for continuing the path. Finally, from solution ¢g we can directly
obtain the guiding solution with only one interchange, which closes the path
between ¢; and ¢,. The algorithm returns the best solution found during the
path exploration (i.e., @g).

There exists a large number of alternatives for PR that have been proposed in
recent works. Given two solutions ¢; and ¢, the forward implementation considers
that the initial solution ¢; = ¢ and the guiding solution ¢, = . On the contrary,
when considering the backward implementation, ¢; = 2 and ¢, = 1. The back-
and-forward strategy emerges as a combination of the previous implementations,
by performing first backward Path Relinking and, then, the forward variant. In
PR, the neighborhood of the initial solution is more thoroughly explored than
the neighborhood of the guiding one. As a consequence, backward Path Relinking
usually performs better than forward Path Relinking. Moreover, back-and-forward
Path Relinking obtains, at least, the same results as forward or backward PR
isolated, but requiring twice of the computing time approximately.

Mixed PR [65, 123] follows an implementation in which given the initial and
guiding solutions ¢; and ¢,, two paths are started simultaneously, one starting at
¢; and the other at ¢,. The method relies on the idea that both paths will meet
at some point in an intermediate solution ¢;. The mixed variant explores the
neighborhoods of ¢; and ¢, like back-and-forward implementation, but it usually
requires less computing effort.

Resende et al. [120] performed an experimentation to check whether the best
solutions found when applying PR are close to the initial and guiding solutions
or not. The initial hypothesis (best solutions are close to the extremes of the
path) was confirmed empirically by using a back-and-forward implementation for
the max-min diversity problem [114]. The obtained results confirm that exploring
subpaths near the extremities produces solutions about as good as those found
in the complete path, because the concentration of good solutions is higher when
moving close to the initial or guiding solutions. Following this idea, it is easy to
adapt PR to explore only the path closest to the extremes. This can be done by
using a parameter which defines the size of the path explored.

Regarding the path generation, it is important to study the minimum distance
between two solutions required for successfully applying PR. If the number of
components in which the initial and guiding solutions differs, A(y;, ¢,) is equal to
one , then there is a path that directly connects both solutions without generating
any intermediate solution.

Assuming that both solutions are locally optimal, any solution found in their
corresponding neighborhoods will present lower quality. Therefore, when A(¢y;,

Chapter 3. Metaheuristics 31

©,) = 2, any possible generated path will consist in only one intermediate solution
which is neighbor of both ¢; and ¢,. Then, considering the local optimality of both
¢; and ¢, the intermediate solution of any path generated under this assumption
will be worse than both ¢; and ¢,. This can be also applied when considering
A(gi, pg) = 3, since there will be two intermediate solutions: a neighbor of ¢,
called ¢ and a neighbor of ¢,, 2, generating a path ¢; — ¢ — @2 — ¢,. Being
¢; and ¢4 locally optimal, it is not possible neither that ¢ is better than ¢; nor ¢,
is better than ¢,. As a result, it is possible to conclude that it is only interesting
to apply PR when A(p;, ¢,) > 4.

PR can also be randomized in order to increase the portion of the search space
explored during the path generation. This can be done by selecting, at each step
of the path, a random solution, instead of selecting the best solution among all.
This greedy randomized adaptive PR [44] is not constrained to explore a single
path, so it can be applied more than once to the same pair of initial and guiding
solutions.

Despite the widespread application of PR in combinatorial optimization,
almost all PR implementations only consider the between form of PR (Interior
Path Relinking). Glover [60] introduced the beyond form of PR, called Exterior
Path Relinking (EPR). This new strategy, instead of introducing in the guiding
solution attributes of the initial one, is based on introducing in the guiding
solutions some attributes that are not present in the initial one. This strategy
then obtains intermediate solutions that are further away from both the initial
and the guiding solutions.

The relevance of those paths that go beyond the initial and guiding solutions
was studied by Glover [57]. The scope of strategies made available by PR is
significantly affected by the fact that the term neighborhood has a broader meaning
in tabu search than it typically receives in the popular literature on search methods.
Often, the neighborhood terminology refers solely to methods that progressively
transform one solution into another. Such neighborhoods are called transition
neighborhoods in tabu search, and are considered as merely one component of a
collection of neighborhoods that also include those operating in regions beyond
solutions previously visited. The EPR strategy has been successfully applied in a
recent work [40] for solving the differential dispersion minimization problem.

3.4 Parallel Metaheuristics

The application of parallelism to a metaheuristic must be designed in order to
reduce the computational time or to increase the exploration of the search space. It
is important to remark that the parallelization of a metaheuristic usually involves

32 Graph layout problems: a metaheuristic approach

a complete redesign of the algorithm in order to leverage the resources of the
computer. For this reason, several parallel designs have been proposed for the
most used metaheuristics [2]. This dissertation is only focused on the parallel
versions of Variable Neighborhood Search.

Parallel computing is an ever-evolving discipline which involves both hardware
and software. Although this work is focused on software, it is necessary to know
the hardware in which the parallel algorithm is being executed in order to make
the most of it. Several classification schemes for parallel computer have been
proposed, but the most used taxonomy is the one introduced by Flynn in 1972
[47]. Notwithstanding, this taxonomy is not able to describe all possible parallel
architecture currently in use, so it is necessary to present some extensions that are
able to spread the number of architectures covered by the taxonomy.

The model of Flynn is based on the concept of instruction and data streams,
resulting in four different combinations: Single Instruction Single Data stream
(SISD), which refers to a traditional sequential computer; Single Instruction
Multiple Data stream (SIMD), in which the same instruction is executed by
several processors over different data; Multiple Instruction Single Data stream
(MISD), where multiple instructions are executed over the same data; and,
finally, Multiple Instruction Multiple Data stream (MIMD) which loads different
data and programs in each processor.

Most of the parallel computers of nowadays belongs to the MIMD class.
However, it does not difference between a single address space shared or a
distributed one among modules. The extension of this taxonomy divides MIMD
systems into two classes: multiprocessors and multicomputers (distributed
systems). In the former, all the processors have direct access to the complete
memory, while in the latter each processor has its own local memory and
accessing remote memory modules require from additional mechanisms like
messaging-passing. Furthermore, multiprocessors can present uniform memory
access (if the access time to memory is always constant) or or not. Likewise,
distributed systems consists of several computers interconnected, each one with
its own processor and local memory. Depending of the type of connection
between computers we can difference between cluster of workstations, which is
composed of common computers connected through a communication network
(that limits the number of processors) or massively parallel processors, which are
composed of thousand of processors.

All the algorithms proposed in this dissertation have been developed in a
multiprocessor, so the tools considered are all designed for a shared memory
model. See [3] for a thoroughly review on parallel tools for multicomputers using
distributed memory.

There are three main parallel tools in the context of multiprocessors for

Chapter 3. Metaheuristics 33

developing parallel algorithms, which are Pthreads, Java threads and OpenMP.
A thread is defined as the minimum processing unit that can be scheduled by an
operating system. Threads have been used by most operating systems since the
1990s, resulting in the multithreading programming model. Although it has been
always possible to develop parallel programs using different operating system
resources, the use of threads clearly provide some advantages like fast context
switching, lower use of resources, and concurrent programming, among others.

Several operating systems of the last decade (most based on Unix) provided
their own libraries for multithreading programming, resulting in code that
cannot be shared among different computers. Pthreads (POSIX threads) is a
standardized library for multithreading programming that emerged as a solution
for this problem, providing a set of routines for C programming language in order
to increase portability of parallel programs. The Pthreads library contains the
necessary routines for performing thread management and synchronization and it
is available for most Unix systems.

The advantages of multithreading programming have been reflected not only
in the modification of the operating system code but also in the functionality
provided by some modern languages. The Java language supplies a multithreading
programming library with the same features previously described in Pthreads.
However, it offers the advantages of Java code portability, becoming independent
of the operating system, and a new programming model adapted to the object-
oriented features of Java language.

OpenMP is a set of compiler directives used for expressing shared-memory
parallelism. Its programming interface was developed by the major vendors of high
performance computing hardware and software, in order to ease the parallelization
of algorithms. This parallelization is achieved by adding some compiler directives
to sequential programs, indicating the compiler which parts of the program can be
executed in parallel, allowing the programmer to establish synchronization points.

All the parallel algorithms presented in this dissertation have been developed
using Java threads, since all the sequential code is written in Java and it offers
more flexibility than OpenMP for producing new parallel designs for the traditional
sequential metaheuristics. Furthermore, the algorithms presented are all parallel
versions of Variable Neighborhood Search methodology, previously introduced in
Section 3.1.

The parallelization of VNS metaheuristic is done by distributing some steps
of the algorithm among all available processors. On the one hand, the efficiency
can be increased by performing the same steps than the sequential algorithm by
requiring less computing time. On the other hand, the search space can be
widely explored by performing more steps than the sequential algorithm in, at
most, the same computing time [50]. In particular, four parallel VNS strategies

34 Graph layout problems: a metaheuristic approach

Reduce computing time s Synchronous Parallel VNS e Parallehze;;rgﬁogcal search

Multistart VNS: An independent
sequential VNS is executed in
each thread.

Increase the exploration of the IR A : Parallel perturbation and local
Replicated Shaking VNS search optimization methods.

Central memory mechanism,

Cooperative Neighboorhood with several independent VNS

algorithms cooperating among
them.

— Replicated Parallel VNS

Paralell il
VNS

Figure 3.4: Taxonomy of the proposed parallel algorithms depending on its main
objective.

have been considered, classified in Figure 3.4. The first one, called Synchronous
Parallel VNS (SPVNS) [50], is focused on parallelizing the local search method,
which is usually the most time consuming part. The second variant, named
Replicated Parallel VNS (RPVNS) [50] increases the portion of the search space
explored by using a multistart approach that runs a complete sequential VNS
procedure in each available processor. The third variant, called Replicated
Shaking VNS (RSVNS) [50], also performs a wider exploration of the search
space by parallelizing the perturbation and local optimization methods. Finally,
Cooperative Neighborhood Search (CNVNS) [28] considers a central memory
mechanism, with several independent VNS algorithms cooperating among them
by exchanging information about the best solution found in the search.

It is worth mentioning that the parallelization of a VNS search which is
focused on increasing the portion of the search space explored may obtain
different (or even worse) results than the sequential version. This is mainly
because the increment in the search space explored can guide the search for
different paths and, therefore, resulting in different final solutions whose quality
is not guaranteed. Furthermore, the creation and management of processes in a
parallel algorithm involves additional (but small) computing time. Therefore, a
parallel algorithm for reducing the computing time may only be considered when
the time required by the sequential version is considerably large, compared with

Chapter 3. Metaheuristics 35

the time needed to manage the processes.

36 Graph layout problems: a metaheuristic approach

Chapter 4. Justification and objectives 37

Chapter 4

Justification and objectives

Solving hard optimization problems has become an area of interest for the
scientific community, since they are wusually a challenge derived from the
technological advance of several human activities. The problems usually model
real-life situations, which implies a high number of decision variables and
constraints. Therefore, it is necessary to propose efficient and effective algorithms
in order to solve these problems. Metaheuristics have become one of the most
extended strategies for dealing with hard optimization problems, becoming the
state-of-the-art methods for a large number of problems that cannot be optimally
solve in reasonable computing time.

38 Graph layout problems: a metaheuristic approach

4.1 Justification

The relevance of an optimization problem can be estimated by considering two
criteria. On the one hand, the interest expressed by the scientific community (in
terms of previous publications). On the other hand, the problem must have some
theoretical or practical applications that justify its study.

The Vertex Separation Problem [36, 131] has several applications in very
large scale integration design, computer language compiler design, exponential
algorithms, graph theory, graph drawing, and natural language processing, as it
was previously described in Section 2.1. The problem has been studied from both
exact and heuristic points of view but considering only approximation algorithms
for the heuristic approach.

The Profile Minimization Problem was originally proposed for reducing the
space requirements for storing sparse matrices, but it presents several
applications in difference scientific areas. Specifically, it can be used to enhance
the performance of operations on non-linear equations systems, for helping in
identifying all genes in human DNA (in the context of Human Genome Project)
or for indexing artifacts found in archeology. The best methods found in the
state of the art for this problem are traditional heuristic methods and a basic
Simulated Annealing algorithm presented in the early '90s.

The applications of the Cutwidth Minimization Problem vary from circuit
design, or network reliability to protein engineering. The large number of
applications is one of the reason for which the problem has been so extensively
studied in recent years. This intensive study makes more and more difficult to
find new improvements in terms of quality. Therefore, we propose a different
approach for improving the results on the problem. In this case, the main goal is
to propose a parallelization of the best previous method that is able to either
reduce the computational time required for finding good solutions or to increase
the quality of the solutions found.

Finally, the Bandpass problem emerges in the context of telecommunication
networks, where the information must be conducted through several nodes
minimizing the cost of deploying and maintaining the network. The difficult of
this problem makes it suitable for testing the quality of a new Path Relinking
approach, called Exterior Path Relinking, which is a novel strategy in the context
of solution combination. Furthermore, it is also interesting to include exact and
heuristic commercial solvers, such as Gurobi and LocalSolver, in the comparison,
in order to empirically analyze the differences between generic and specific
algorithms, and elucidate when the effort of developing a specific algorithm is
necessary.

Chapter 4. Justification and objectives 39

There exists a large variety of metaheuristics, as well as different taxonomies
to classify them. The most extended taxonomy classifies MHs according to the
number of solutions used to scan the search space. Specifically, population based
metaheuristics, illustrated in this dissertation by the Scatter Search framework,
maintains a set of solutions during the search, while the trajectory-based
metaheuristics, illustrated in this dissertation by the Variable Neighborhood
Search methodology, maintains a single solution during the search. Finally, it is
also interesting to analyze how the inclusion of a combination mechanism affects
to the metaheuristic performance, in terms of both solution quality and
computing time. For this purpose, different Path Relinking strategies are
considered in this research, hybridized with the aforementioned metaheuristic
algorithms.

4.2 Objectives

The main goal of this thesis is the development of metaheuristic algorihtms that
are able to provide high quality solutions for a certain set of hard combinatorial
optimization problems. Specifically, the problems considered are Vertex
Separation Problem (Section 2.1), Profile Minimization Problem (Section 2.2),
Cutwidth Minimization Problem (Section 2.3), and Bandpass Problem (Section
2.4). The algorithms proposed are based on two different methodologies: Scatter
Search and Variable Neighborhood Search. Furthermore, the effect of algorithm
parallelization in terms of both quality and computing time is also analyzed.
This main objective can be divided into the following milestones:

e Study the literature related to the considered problems. It is
necessary to review thoroughly those works focused on the studied
problems in order to analyze the current best algorithm for each problem,
as well as the main contributions of each work. Furthermore, it is necessary
to perform a deep analysis on the current scene in metaheuristic research,
gathering different techniques for solving hard optimization problems.

e Design and develop metaheuristic algorithms for the problems. In
this stage, one or more algorithms are developed for each problem, using the
studied metaheuristic techniques, and leveraging previous ideas that has led
to high quality solutions.

e Validation of the algorithms. FEach proposed algorithm must be
validated, in order to check the feasibility of the proposed solutions.
Moreover, a deep analysis on the algorithm will highlight the relevance of

40 Graph layout problems: a metaheuristic approach

each of the included components, as well as their contribution to the final
results.

e Experimental comparison. The results obtained must be compared
with the ones provided by previous algorithms for the same problems, with
generic algorithms for combinatorial optimization problems, or with exact
or heuristic commercial solvers. This comparison will highlight the
strengths and weaknesses of each proposed algorithm.

e Submit the obtained results to well reputed international journals.
The results derived from the research will be sent to journals and conferences
of renowned prestige for their possible publication. Additionally, presenting
these results in conferences will allow us to start joint works with recognized
researchers in this area.

4.3 Main contributions

This section is intended to present the relation between each publication with the
current dissertation. The publications are sorted in ascending order with respect
to the publication date, and divided into two parts. Firstly, the publications that
resulted from the research in the Combinatorial Optimization problems are
presented. Then, those articles that, although they do not tackle the considered
problems, were conducted as a consequence of the studies presented in this
document are described. During the research, 13 articles indexed in the Journal
of Citation Reports (JCR) were published, 6 of them in journals of the first
quartile, 3 in the second quartile, 3 in the third quartile and, finally, 1 in the
fourth quartile. Additionally, 2 more articles not indexed in the JCR and 4 book
chapters were published. Finally, the scientific results obtained were presented in
15 national and international conferences. We now present only those articles
indexed in the JCR.

The results of the research performed in the Vertex Separation Problem
(Section 2.1 of Chapter 2) have been presented in two different articles: Variable
neighborhood search for the Vertex Separation Problem (Chapter 7) and
Combining intensification and diversification strategies in VNS. An application to
the Vertex Separation Problem (Chapter 9). The Profile Minimization Problem
research resulted in the article Scatter Search for the profile minimization
problem (Chapter 8), and the results on the parallelization of the Cutwidth
Minimization Problem were described in the article Parallel VNS strategies for
the Cutwidth Minimization Problem (Chapter 10). Finally, the research on the

Chapter 4. Justification and objectives 41

Bandpass Problem is described in the article Scatter search for the bandpass
problem (Chapter 11).

Additional publications

e Radar-based road-traffic monitoring in urban environments [127]: This
paper is devoted to solve a problem related with the road traffic detection
and tracking in the field of computer vision. The algorithm proposed is
based on Particle Filter, which is a methodology closely related to the
Variable Neighborhood Search. Specifically, in both methodologies the
random perturbation of the incumbent solution (shake method in VNS and
dispersion stage in Particle Filter) are one of the most important parts of
the search, increasing the diversification of the method. Therefore, the
ideas and results obtained in the previous article were rather relevant for
the development of the algorithm presented in this work.

e Optimization Procedures for the Bipartite Unconstrained 0-1 Quadratic
Programming Problem [37]: The problem considered in this work is not a
graph layout problem, since it consists of selecting a subset of vertices of a
complete bipartite graph in order to maximize the sum of the weights
associated to the edges that connect them. In this work an Iterated Local
Search algorithm was proposed, which considers an adaptation of the
neighborhoods introduced in [36]. Therefore, although this work does not
propose any algorithm based on the metaheuristics considered in this
dissertation, it leverages the low-level detail aspects of the constructive and
local search methods proposed in the previous work.

e GRASP with Path Relinking for the Orienteering Problem [21]: The problem
tackled in this work is closely related to graph layout problems. However, in
this case, a subset of vertices is selected, instead of considering the complete
set of vertices. The algorithm proposed is based on the GRASP methodology,
but the solutions generated are combined by means of a Path Relinking
algorithm, based on the ideas presented in the Section 3.3 of this dissertation.

o GRASP with FEaxterior Path Relinking for differential dispersion
minimization [35]: This work is focused on solving the differential
dispersion minimization problem, which consists of selecting the most
diverse subset of vertices following a given distance measure. In this work
the idea of Exterior Path Relinking was firstly applied, which was
afterwards used for solving the Profile Minimization Problem, embedded in
the Scatter Search framework.

42

Graph layout problems: a metaheuristic approach

Robust total energy demand estimation with a hybrid Variable Neighborhood
Search — Extreme Learning Machine algorithm [126]: This work was proposed
for solving a problem that emerges in the energy field. Specifically, the
problem consists of estimating the energy demand of a given country for
the next year by using a set of macroeconomic variables obtained in the
previous years. The problem was previously tackled by using a Harmony
Search algorithm coupled with a neural network. However, in this work
we propose to use the ideas of VNS proposed in the works for the Vertex
Separation Problem in order to improve the obtained results. Specifically, the
macroeconomic variable selection is performed using a novel VNS algorithm,
while the neural network uses those selected variables to estimate the energy
demand. This work shows the easy adaptation of VNS to problems which
are not related to the operations research area.

General Variable Neighborhood Search for computing graph separators [130]:
The problem tackled in this work can be seen in the context of the Vertex
Separation Problem, since both problems share the objective of selecting
good graph separators. However, the problem considered in this work is
oriented to select a subset of vertices that separates the remaining ones in
two subsets, minimizing the vertices included in this subset. Although this
is not an equivalent problem to the VSP, the ideas used in the papers related
to the VSP were adapted, proposing a General Variable Search algorithm for
solving the vertex separator problem.

Parallel wvariable neighborhood search for the min-max order batching
problem [101]: This paper is intended to solve a problem that emerges in
the context of the picking process in large storages, where the order of the
product selection drastically affects to the time needed to accomplish the
complete order. The ideas of parallel VNS proposed in the work for the
Cutwidth Minimization Problem included in this dissertation were adapted
to the considered problem, resulting in an effective and efficient algorithm
for solving the min-max order batching problem.

Efficient Greedy Randomized Adaptive Search Procedure for the Generalized
Regenerator Location Problem [116]: The Generalized Regenerator
Location problem consists of selecting a set of relevant vertices in a given
random graph that minimizes an objective function based on the edge
weights that connects the selected vertices. The similarities of this problem
with respect to the Vertex Separation Problem lead us to adapt some of the
successful ideas previously presented in the works for the VSP included in
this dissertation. Specifically, the same notion of neighborhood was used,
but this time embedded in a GRASP algorithm.

Chapter 5. Joint discussion of results 43

Chapter 5

Joint discussion of results

This chapter is intended to present a summary of the different proposals described
in this dissertation, as well as a brief discussion of the results obtained in each one
of them. It is worth mentioning that, in order to ease the comparison, all tables
report the same metrics. Specifically, the average objective function value, Avg.;
the average deviation with respect to the best solution found in the experiment,
Dev (%); the computing time required to execute the algorithm in seconds, Time
(s); and the number of times that the algorithm matches the best solution in the
experiment.

44 Graph layout problems: a metaheuristic approach

Results on Vertex Separation

In the first work related to the Vertex Separation Problem [36], included in Chapter
7 of Part II, we proposed both a pure 0-1 optimization model and an algorithm
based on the Variable Neighborhood Search metaheuristic that can be applied in
general graphs. The proposed mathematical model has O(mn?) binary variables
and O(mn?) constraints, which makes it impractical for relatively large instances.

We also propose a metaheuristic algorithm following a Basic VNS (BVNS)
scheme, which is executed for a maximum predefined time, which is controlled by
a parameter of the algorithm, ¢,,... Specifically, when the BVNS algorithm reaches
the largest neighborhood, instead of stopping the search, it starts again from the
first neighborhood using the best solution found as the initial one.

The initial solution is constructed by using one of the proposed constructive
procedures. The first one is a greedy procedure which starts with an empty
solution. The vertices are added to the solution following a greedy function that
prioritizes the vertices with many vertices labeled and a small number of vertices
unlabeled. The second constructive procedure is based on the creation of level
structures, which divides the set of vertices into different sets called levels. Each
level contains the vertices adjacent to the ones in the previous level that are not
present in any of them. The solution is then constructed by exploring the level
structure following a breadth-first search approach.

Additionally, an incremental updating of the objective function is proposed,
which drastically reduces the complexity of evaluating an solution. Specifically,
the vertex separation value of a given position can be evaluated with respect to the
previous one, excepting the first position, whose vertex separation value is always
equal to one.

The neighborhood structure proposed leverages the incremental objective
function computation to reduce its exploration. In particular, the first
neighborhood contains all feasible solutions that can be reached by performing
an exchange of two vertices in the incumbent solution.

The VSP is a min-max problem where the value that corresponds to the
objective function appears in several positions of the solution. These kind of
problems presents a flat landscape which is usually a real challenge for classical
local search methods, since most of the performed moves do not result in any
improvement. Therefore, a new extended objective function is proposed, where
two different solutions with the same vertex separation value can be compared.

The local search strategy traverses all vertices in the solution in descending
order with respect to its vertex separation value (worst positions first). Each
vertex is exchanged with the remaining vertices in the solution, performing the

Chapter 5. Joint discussion of results 45

move that obtains the best solution (only improving moves are considered). The
local search ends when no improvement is found.

A second paper on the Vertex Separation Problem [131], included in Chapter 9
of Part II was published intended to review how the balance between intensification
and diversification affects to the results of the algorithm proposed. In this work,
a new neighborhood, based on the insertion of a vertex in a given position is
introduced, additionally to the previous one based on interchanges of two vertices.

Four shake procedures are also proposed. The first one focuses on the
diversification, where a set of k randomly selected vertices (being k the current
neighborhood) are inserted in random positions of the solution. The second
shake procedure is focused on the intensification of the search. Specifically, it
selects the k vertices with the highest vertex separation value, inserting them in
the best position that generates the best solution. Finally, the third and fourth
shake methods are designed as a compromise between intensification and
diversification. Specifically, the former selects k vertices at random, inserting
them in the best position, while the latter selects the k vertices with the highest
vertex separation value, inserting them in random positions.

The algorithm uses the same extended objective function proposed in [36].
Furthermore, the neighborhood based on insertions is implemented in a more
efficient way by using these extended objective function, reducing the complexity
of the evaluation after performing a move.

Three different algorithms are proposed, namely: a multi-start VND, MS-
VND (intensification); a Reduced VNS (diversification), RVNS; and a General
VNS, GVNS (balanced). All of them are compared with the BVNS previously
proposed in order to analyze the influence of the diversification / intensification in
the search.

The computational experiments were performed over a set of 173 instances
extracted from three different types of graphs: Harwell-Boeing (which are general
graphs), grids, and trees. For the last two set of instances the optimum value is
known by construction. The preliminary experimentation examines the
performance of the local search when considering the incremental objective
function computation, as well as selects the best combination of neighborhood
structures for the final VNS algorithm. Table 5.1 shows the results obtained by
each variant in the Harwell-Boing challenging instances.

The main conclusion obtained from these results is that the balance between
diversification and intensification is a key feature when designing a metaheuristic.
In this case, the GVNS, which focuses in this balance, is the one obtaining the
best results, over the MS-VND method focused in the intensification and the
RVNS mainly centered in diversification. Furthermore, GVNS obtains better
results than the previous best method found in the state of the art, which was a

46 Graph layout problems: a metaheuristic approach

Avg. Dev. (%) Time (s) # Best
RVNS 27.00 10.85 700.03 28
MS-VND 26.77 11.91 702.89 27
GVNS 24.60 2.07 482.08 53
BestPrev 26.11 6.90 705.60 34

Table 5.1: Comparison of the intensification and diversification balance through
different VNS approaches with the best previous method, BestPrev.

BVNS algorithm.

All the results were supported by the non-parametric Friedman test, which
ranked the algorithms as follows: GVNS (1.88), BestPrev (2.61), MS-VND (2.75),
and RVNS (2.76). The resulting p-value lower than 0.0001 indicates that these
results are statistically significant. A pairwise Wilcoxon test was also performed
in order to check the differences between the two best algorithms, GVNS and
BestPrev. The resulting p-value, lower than 0.0001, confirms the superiority of
the proposed GVNS algorithm.

Results on Profile Minimization

We study of the Profile Minimization Problem (PMP) throughout the Scatter
Search methodology [128]. The proposed algorithm exploits the network structure
of the PMP, including strategies that produce computationally efficient and agile
search.

The diversification generation method uses a greedy constructive procedure
to construct each solution from scratch, by adding new vertices to it in each
iteration. Specifically, the first vertex is the one with the smallest degree and,
then, the remaining ones are added following a greedy function that prioritizes
the vertices with the highest number of labeled adjacent vertices and the lowest
number of adjacent vertices unlabeled. In order to favor diversification, the
vertices are added following the Greedy Randomized Adaptive Search Procedure
methodology [46], where the next labeled vertex is selected at random among
those with the highest greedy function value, instead of greedily selecting the
best one. The second constructive procedure proposed inverts the greedy and
random stages of the previous one. In particular, the procedure selects, at
random, a set of candidate vertices, selecting the one that presents the highest
greedy function value among them. An alternative greedy function that takes
into account the distance to the labeled adjacent vertices is proposed, resulting in

Chapter 5. Joint discussion of results 47

two additional constructive methods.

The local search methods proposed involves the use of two different
neighborhoods: one based on swap moves and the other based on interchanges.
The evaluation of the objective function after performing a swap move is
efficiently calculated by considering only the positions involved in the move. This
optimization drastically reduces the computing time needed to execute the
algorithm, which lead us to implement the insertions based on a sequence of
swap moves.

The combination method included in the Scatter Search methodology is based
on Path Relinking. Specifically, two different combination methods are proposed.
The first one consists of creating a path between two solutions, the initial and the
guiding one. The path is created by locating the vertices of the guiding solution
in the position that they occupies in the initial one, throughout insertion moves
and selecting, in each step, the best intermediate solution to continue the path.
The second path relinking variant introduces the randomization concept, selecting
the intermediate solutions at random instead of in a greedy manner. This variant
reduces the computing time of creating a path, since it is not necessary to explore
the complete set of intermediate solutions at a given step to select the best one.

The computational results have been performed over a set of 73 general graphs
derived from the Harwell-Boeing sparse matrix collection, 98 K-graphs (bipartite
graphs), and 91 D4-Trees (trees with diameter 4).

The experimentation performed is intended to select the best neighborhood
structure as well as the best combination method. This selection is performed
in a full-factorial manner, comparing each possible combination of constructive
procedure, local search method and combination procedure. The rationale behind
this experiment is to confirm the hypothesis that the iterative selection of the
best constructive method first, the best local search method, and finally the best
combination procedure obtains similar results than performing a computational
exhaustive full factorial experiment.

The best Scatter Search variant is then compared with the best heuristic
algorithms found in the state of the art, named RCM (heuristic method) and SA
(Simulated Annealing). Additionally, we have included the results obtained by
LocalSolver [11] and OptQuest [85], two general purpose algorithms, and
TS-BMP, an adaptation of the Tabu Search algorithm by Campos et al. [22] for
the Bandwidth Problem, which is related to the PMP when considering a matrix
representation of the solutions. Table 5.2 shows the comparison among all the
aforementioned methods divided in three parts, depending on the instances size.
The results only reflect the results over the Harwell-Boeing instances, which are
the most challenging instances.

The first conclusion that emerges from the results is that the proposed SS

48 Graph layout problems: a metaheuristic approach

Experiments with 26 HB instances with n < 200
Avg. Dev. (%) Time (s) 4 Best

OptQuest 1466.54 46.7 36.9 2
LocalSolver 1030.04 2.4 60.0 23
TS-BMP 1596.83 42.7 30.8 1
RCM 1109.58 20.4 97.3 2
SA 1110.92 14.5 4.0 4

SS 1007.58 1.1 2.8 15

Experiments with 27 HB instances with 200 < n < 500
Avg. Dev. (%) Time (s) # Best

OptQuest 8923.07 61.1 211.9 0
LocalSolver 7492.30 25.5 220.0 8
TS-BMP 10204.82 73.4 212.1 0
RCM 7491.85 34.0 335.6 4
SA 7542.48 33.01 39.5 1

SS 5701.48 2.2 78.5 17

Experiments with 20 HB instances with n > 500
Avg. Dev. (%) Time (s) # Best

OptQuest 27156.00 105.4 1518.4 1
LocalSolver 26078.30 90.0 1575.0 1
TS-BMP 25226.29 61.4 714.7 0
RCM 19256.05 28.5 744.1 1
SA 19246.65 29.2 1367.3 0

SS 15629.05 1.0 674.8 17

Table 5.2: Results obtained by the compared methods divided with respect to
the instances size.

Chapter 5. Joint discussion of results 49

algorithm outperforms the remaining ones in terms of quality and computing time.
These results are supported by non-parametric statistical test. Specifically, both
Friedman test and pairwise Wilcoxon test results in a p-value lower than 0.0001,
confirming the superiority of the proposal.

Notwithstanding, it is worth mentioning the performance of the LocalSolver
method even being a general purpose algorithm, outperforming the previous
problem-specific heuristics in small and medium size instances. Finally, the
results obtained by the TS-BMP confirms that, although the representation of
both problems may be similar, a specific algorithm for the Bandwidth Problem
does not need to be appropriate for the PMP.

Results on Cutwidth Minimization

We tackle the Cutwdith Minimization Problem (CMP) following a parallel
perspective [39]. In particular, several parallel designs based on the Variable
Neighborhood Search methodology have been tested, comparing them with the
best previous algorithm, which consists of a new sequential VNS variant called
Variable Formulation Search [110].

The proposed algorithms are based on the parallel designs originally proposed
by Garcia et al. [50] and Crainic et al. [28]. Specifically, six variants of parallel
VNS algorithms are presented, differing on the stages that are actually parallelized.
The corresponding six variants are grouped into three different templates.

The first one is focused on the parallelization of the complete VNS algorithm
following a multi-start parallel design. The second one parallelizes the shake
method as well as the local search procedures. The last template consists of the
parallel exploration of the considered neighborhoods. All the variants are parallel
versions of the Variable Formulation Search strategy proposed by Pardo et al.
[110], with the aim of testing the efficiency of the parallel schemes versus the
sequential one. All the proposed parallel algorithms belong to the multiple search
class of parallelization[27].

We propose two variants of the Replicated Parallel VNS, differing in if there
exists cooperation among the different VNS procedures. We also present two
variants for the Replicated Shaking VNS, where the difference lies in the selection
of the best solution for each iteration: while the first algorithm considers a best
improvement strategy (it selects the best solution among all threads), the second
one considers a first improvement strategy (it selects the first solution obtained in a
thread that outperforms the incumbent one). Finally, we propose two Cooperative
Neighborhood VNS, where the first one randomly explores the neighborhoods, and

50 Graph layout problems: a metaheuristic approach

the second one explores a given sub-range of neighborhoods in order (from the first
to the last one).

The instances used in the computational experiments are the same previously
used in [110], which facilitates the comparison among different methods. The set
of instances comprise a total of 101 graphs derived from the Harwell-Boeing sparse
matrix collection, with vertices ranging from 30 to 3025 and edges ranging from
103 to 8904.

According to Craininc and Toulouse [27], the classical performance measure
named speedup [9] is not adequate for comparing parallel metaheuristics since
the asynchronous interactions among processes produce different behavior for each
execution. Therefore, parallel and sequential metaheuristic should be considered as
different algorithms. Furthermore, it is worth mentioning that the parallelization
of a methodology does not need to be focused only in reducing the computing time,
but also in producing better results by means of a wider exploration of the search
space. Notice that each algorihtm has been executed for the same computing time
as the best previous algorithm, VFS, in order to have an illustrative comparison.

The preliminary experimentation performed compares each pair of variants
for each strategy, selecting the best one for each comparison. It is worth
mentioning that different number of processes are considered, selecting the best
one for each variant. In particular, 2, 4, 8 and 16 simultaneous processes have
been tested. Furthermore, a throughout analysis of the waiting time for each
thread is performed, in order to observe the time that each thread needs to wait
for the completion of the remaining ones before continuing the search. The
results show that CN-VNS is the algorithm that spends the minimum computing
time waiting for synchronization, while RP-VNS uses about a 10% of the time in
the synchronization stage.

Finally, the best variant of each parallel design is compared with the VFS
algorithm. The results of this comparison are presented in Table 5.3. Notice that
the processors used for each variant (those with the best results in the preliminary
experimentation) are indicated in parenthesis. In this case, the computing time
has been removed from the table, since all the algorithms has been executed for
the same computing time.

The results clearly shows the superiority of the Replicated Shaking VNS
variant (RS-VNS1) over the other competitors, with a deviation and number of
best solutions found that compares favorably with respect to the other
algorithms. It is important to remark that although CN-VNS2 obtains the worst
deviation, it only finds one less better solution than the state-of-the-art method.
Even more, considering the average objective function value, CN-VNS2 ranks
second, improving RP-VNS1 and VFS.

Non-parametric test have been performed in order to confirm these results.

Chapter 5. Joint discussion of results 51

Avg. Dev. (%) # Best

VFS 28546 0.89 84
RP-VNSI1(4) 285.01 0.64 86
RS-VNS1 (4) 284.64 0.28 92

CN-VNS2 (16) 284.87 1.52 83

Table 5.3: Comparison among parallel algorithms and sequential VFS. The
number of processes used in each variant is indicated in parenthesis for each
parallel version.

Specifically, the Friedman test resulted in a p-value equal to 0.028, indicating that
there are statistical differences among algorithms. The associated rankings for the
considered algorithms are: 2.20 (RS-VNS1), 2.45 (RP-VNS1), 2.47 (VFS), and
2.88 (CN-VNS2). Finally, the pairwise Wilcoxon test was performed comparing
the best method, RS-VNS1, with the best previous method in the state of the art,
VFS. The resulting p-value of 0.024 confirms the superiority of the parallel version.

Results on Bandpass

We use the Scatter Search framework for proposing a metaheuristic algorithm for
the Bandpass Problem, combining the solutions with Path Relinking [129].

The diversification generation method follows a semi-greedy strategy that starts
with an empty solution. In each step, a vertex is selected at random and, then,
inserted in the best position among the ones already located in the solution. In
particular, in the first iteration, the selected vertex is assigned to the first position.
Then, in the i-th iteration, there are i — 1 wavelengths (vertices) already added to
the solution, and the selection of the best position for the next vertex consists of
inserting it in the ¢ — 1 available positions, starting at position 1. The constructive
method ends when all the vertices have been assigned. The random selection of the
vertex in each step enables the generation of a diverse population for the Scatter
Search framework.

The second diversification method uses a greedy function that evaluates the
number of potential bandpasses that can be composed when adding a certain
vertex. A potential bandpass is defined as the number of previous consecutive
vertices in the permutation that can be grouped in the same wavelength as the
considered vertex. The first vertex is selected at random, in order to increase the
diversity of the method, while the following vertices are selected following a greedy
randomized adaptive search strategy. Specifically, the next vertex is selected at

52 Graph layout problems: a metaheuristic approach

random among the most promising vertex with respect to the greedy function (i.e.,
the one with the largest number of potential bandpasses).

The search in an improvement method in Scatter Search is local, meaning
that it stops as soon as no improved solution is found in the neighborhood of the
current solution. Four improvement methods have been proposed for the
Bandpass Problem. The first two improvement methods are based on an
exhaustive exploration of the neighborhoods generated by insertion and swap
moves, respectively. The third local search method is named block merging, and
it is based on shifting sets of consecutive vertices in order to form new
bandpasses. The last local search method proposed combines the neighborhood
based on swaps and the block merging procedure into a Variable Neighborhood
Descent algorithm.

Two combination methods for the Bandpass Problem have been proposed: a
traditional Interior Path Relinking (IPR) and a novel Exterior Path Relinking
(EPR). The IPR algorithm starts by considering two solutions: an initial solution
and a guiding one. Then, the vertices of the initial solution are located in the
position occupied in the guiding solution, one at each step.

The second combination method, EPR, follows a recently proposed
methodology focused on the diversification. EPR searches for intermediate
solutions of the path that move away from the guiding solution, instead of
moving the initiating solution toward the guiding solution. In the context of the
Bandpass Problem, the method inserts each vertex of the initial solution in a
random position that must be different than the one held in the guiding position.
The combination ends when all the vertices of the initial solution are located in a
position different than in the guiding solution.

Regarding the large number of components that must be selected in order to
conform a Scatter Search metaheuristic for the Bandpass Problem, a two-factor
factorial design is employed, fixing the population size to 100 and the RefSet size
to 10. The ANOVA associated with the experiment (p-value smaller than 107%)
revealed that both main effects are significant. However, there is no significant
integration between the combination method and the improvement method, as
indicated with a p-value of 0.881.

The results of the proposed SS algorithm for the Bandpass Problem are
compared with the best previous method, named Different Start Rows (DSR) [§]
and four genetic algorithms (GA1 to GA4) [12]. Since there is no information
about the computing time required for the previous methods, the results are
presented without including the computing time. Notwithstanding, for the sake
of completeness, the proposed algorithms have been executed for an average time
of 875 seconds per instance. An additional column has been added in the results,
called GAP, which indicates the average optimality gap. Notice that the optimal

Chapter 5. Joint discussion of results

value of the instances is known by construction and, then, the # Best column is
replaced by the # Opt column, which indicates the number of optimal values

found for each algorithm.

Table 5.4 presents the results obtained for each aforementioned algorithm over
the set of instances where the optimum value is known. The results indicate that
there is little difference in performance among the genetic algorithm variants. DSR
produces the lowest quality results, while SS1 dominate all competitors. In order
to support this conclusion, a Friedman test was performed, resulting in a p-value

lower than 0.001.

Avg. GAP # Opt
DSR 37.00 0.3407 0
GAl 4053 02516 3
GA2 4053 02550 3
GA3 40.24 02613 2
GA4 4029 02575 3
SS1 46.07 0.1027 16

Table 5.4: Results obtained by each algorithm for the Bandpass Problem.

54 Graph layout problems: a metaheuristic approach

Chapter 6. Conclusions 55

Chapter 6

Conclusions

This Chapter is devoted to present the conclusions derived during the research
performed in this dissertation. FEach section provides the conclusions for each one
of the considered problems. The chapter is finished with a section describing future
lines of research.

56 Graph layout problems: a metaheuristic approach

Conclusions on the Vertex Separation

The Vertex Separation Problem has been studied following the Variable
Neighborhood Search methodology. Firstly, a mathematical model, together with
a Basic VNS algorithm for solving the VSP were presented, becoming the first
heuristic procedure for the VSP.

The second work on the VSP was intended to study the influence of the balance
between diversification and intensification in the context of VNS, supported by
an extensive experimental section. A constructive procedure, four perturbation
methods, two neighborhood structures and an extended version of the objective
function were proposed. The latter allows the comparison of two solutions that
present the same original objective function value.

The proposed methods are embedded in a Reduced VNS, representing
diversification; a Variable Neighborhood Descent, representing intensification;
and a General VNS, which balances both diversification and intensification. The
experimental results show that the proposed algorithms outperforms the best
algorithms found in the literature, emerging GVNS as the best algorithm for the
Vertex Separation Problem.

Of particular interest in this work has been testing the combination of
diversification and intensification strategies in the context of VNS. Through
extensive experimentation, we have been able to determine the benefits of this
combination. We purposefully added these mechanisms in order to measure their
effects and studied the combinations that resulted in effective solution procedures
with improved outcomes. We believe that our findings can be translated to other
combinatorial problems and it will help in the development of more elaborated
VNS methods.

Two papers derived from the research on the VSP have been published:
Variable neighborhood search for the Vertex Separation Problem [36], and
Combining intensification and diversification strategies in VNS. An application to
the Vertex Separation Problem [131], included in Chapters 7 and 9 of Part II,
respectively.

Conclusions on the Profile Separation

The goal of this work was to develop an algorithm that becomes the state-of-the-
art solution for the Profile Minimization Problem. This goal was accomplished by
proposing a Scatter Search procedure that emerges as the best algorithm in the

Chapter 6. Conclusions 57

literature, as confirmed by the throughout experimentation.

The proposed mechanisms for the PMP can be also useful in similar problem
settings. Specifically, the efficient move evaluation in the improvement method
can be adapted to other problems with similar characteristics, mainly in graph
layout problems.

Furthermore, the preliminary experimentation devoted to select the best
Scatter Search variant shows that the sequential selection of the best components
of the algorithms obtains similar results than a full-factorial design. This idea
can be considered when the factorial design is computationally intractable.

The research on the PMP is presented in the paper Scatter Search for the profile
minimization problem [128], included in Chapter 8 of Part II.

Conclusions on the Cutwidth Minimization

In this work six parallel strategies embedded in the Variable Neighborhood
Search scheme for solving the Cutwidth Minimization Problem were proposed.
The strategies can be classified in three different templates. The first one is
oriented to parallelize the complete method, the second one parallelizes the shake
and local search procedures and, finally, the third template simultaneously
explores the set of proposed neighborhoods.

These strategies were used to parallelize a recent new VNS strategy, called
Variable Formulation Search. The experimental computation performs a
comparison among all the variants when applied to the Cutwidth Minimization
Problem. A preliminary experimentation was designed in order to select the best
variant for each template. Then, the selected three algorithms are compared with
the sequential version of the method.

Experimental results show that two of the proposed parallel methods,
Replicated Shaking VNS and Replicated Parallel VNS are able to outperform the
previous best method in term of quality. The results are supported by statistical
tests that confirm the superiority of the proposal, emerging Replicated Shaking
VNS as the best algorithm for the CMP.

More details of the parallelization of VNS for the CMP are presented in the
paper Parallel VNS strategies for the Cutwidth Minimization Problem [39],
included in Chapter 10 of Part II.

58 Graph layout problems: a metaheuristic approach

Conclusions on the Bandpass

The bandpass problem is somewhat new to the OR literature in the sense that,
although it was originally introduced at a conference more than 10 years ago, the
first publication did not appear until 2009. This problem has derived in different
variants in subsequent publications along with additional test data. One of our
goals in this project was to gain understanding of the current state of knowledge
associated with the bandpass problem and to identify avenues for advancing this
area. Through our investigation, we identified two problem classes and a total of
three problem variants within those classes. We then designed a common Scatter
Search solution framework and developed the individual strategies for each problem
class.

The meticulous scientific testing performed provided some interesting insights
on the behavior and interaction of the search components. These experiments
produced new benchmarks that will help future researchers test solution methods
that could prove even more effective than those described here. We were also
able to show that although the first variant and the Multi-Bandpass one belong
to the same problem class, the effectiveness of the search strategies designed for
the former diminish when applied to the latter. Nonetheless, competitive testing
showed that the proposed method applied (without customization) to both variants
produces results that are significantly better than those produced by the existing
procedures. Finally, our experiments show that the adaptation of the algorithm
to the second variant exhibits a robust behavior when compared to commercial
software.

The research on the BP is presented in the paper Scatter search for the bandpass
problem [129], included in Chapter 11 of Part II.

Future work

This dissertation has been focused on heuristically solving graph layout
problems. Future lines of research includes the development of more exact
methods that can be compared with the heuristic ones, leveraging the advances
in technology. Another line of research comprises the hybridization of the
heuristic methods with commercial solvers, in order to obtain better solutions,
which is known as “matheuristics”, an area which is increasing in operations
research in the recent years.

Finally, the similarity between some of the conclusions obtained in the

Chapter 6. Conclusions 59

developed works have lead us to study the development of a general purpose
framework for solving graph layout problems. The main idea behind this
algorithm is to provide high quality solutions without including any specific
information of the problem.

The study of the considered problems has also derived in the research of
problems not belonging to the graph layout class, but that are also interesting
due to its practical applications in different areas of knowledge.

60 Graph layout problems: a metaheuristic approach

61

Part 11

Publications

Chapter 7. VNS for the VSP 63

Chapter 7

Variable neighborhood search for

the Vertex Separation Problem

e A. Duarte, L.F. Escudero, R. Marti, N. Mladenovi¢, J.J. Pantrigo, and
J.Sdnchez-Oro. Variable neighborhood search for the Vertex Separation
Problem. Computers & Operations Research, 39(12):3247 — 3255, 2012.

— DOI: https://doi.org/10.1016/j.cor.2012.04.017
— Impact Factor (JCR 2012): 1.909

Subject Category Ranking Quartile
Operations Research and Management Science 10 / 79 Q1
Engineering, industrial 6/ 44 Q1

Computer Science, interdisciplinary applications 33 / 102 Q2

Computers & Operations Research 39 (2012) 3247-3255

Contents lists available at SciVerse ScienceDirect

compute
& operations

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Variable neighborhood search for the Vertex Separation Problem

Abraham Duarte ®*, Laureano F. Escudero®, Rafael Marti €, Nenad Mladenovic 9, Juan José Pantrigo?,
Jestis Sanchez-Oro®

2 Dpto. de Ciencias de la Computacién, Universidad Rey Juan Carlos, Méstoles, Madrid, Spain

b Dpto. de Estadistica e Investigacién Operativa, Universidad Rey Juan Carlos, Méstoles, Madrid, Spain
€ Dpto. de Estadistica e Investigacion Operativa, Universidad de Valencia, Valencia, Spain

d Department of Mathematics, SISCM, London, United Kingdom

ARTICLE INFO ABSTRACT

Available online 19 April 2012 The Vertex Separation Problem belongs to a family of optimization problems in which the objective is
to find the best separator of vertices or edges in a generic graph. This optimization problem is strongly
related to other well-known graph problems; such as the Path-Width, the Node Search Number or the
Interval Thickness, among others. All of these optimization problems are NP-hard and have practical
applications in VLSI (Very Large Scale Integration), computer language compiler design or graph
drawing. Up to know, they have been generally tackled with exact approaches, presenting polynomial-
time algorithms to obtain the optimal solution for specific types of graphs. However, in spite of their
practical applications, these problems have been ignored from a heuristic perspective, as far as we
know. In this paper we propose a pure 0-1 optimization model and a metaheuristic algorithm based on
the variable neighborhood search methodology for the Vertex Separation Problem on general graphs.
Computational results show that small instances can be optimally solved with this optimization model
and the proposed metaheuristic is able to find high-quality solutions with a moderate computing time

Keywords:

Combinatorial optimization
Metaheuristics

Variable neigborhood search
Layout problems

for large-scale instances.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let G(V,E) be an undirected graph where V (n=|V|) and
E (m=|E|) are the sets of vertices and edges, respectively.
A linear layout ¢ of the vertices of G is a bijection or mapping
@ :V—{1,2,...,n} in which each vertex receives a unique and
different integer between 1 and n. For vertex u, let ¢(u) denote its
position or label in layout ¢. Let L(p,p,G) be the set of vertices in
V with a position in the layout ¢ lower than or equal to position p.
Symmetrically, let R(p,,G) be the set of vertices with a position in
the layout ¢ larger than position p. In mathematical terms,

Lp,p,G)={veV:pw)<p} and Rp,p,G)={veV: @{)>p}.

Since layouts are usually represented in a straight line, where
the vertex in position 1 comes first, L(p,®,G) can be simply called
the set of left vertices with respect to position p and, R(p,®,G) the
set of right vertices w.r.t. p.

The Cut-value at position p of layout ¢, Cut(p,p,G), is defined
as the number of vertices in L(p,¢,G) with one or more adjacent
vertices in R(p,®,G), then,

Cut(p,,G) = |{u e L(p,®,G) : v e R(p,p,G) N N(u)}

* Corresponding author.
E-mail address: abraham.duarte@urjc.es (A. Duarte).

0305-0548/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2012.04.017

where N(u)={v eV : (u,v) e E}. The Vertex Separation value (VS)
of layout ¢ is the maximum of the Cut-value among all positions
in layout ¢ : VS(¢,G) = max, Cut(p,®,G).

The Vertex Separation Problem (VSP) consists of finding a layout,
say ¢* minimizing the VS in graph G. Despite of its practical
applications, there is no previous heuristic or metaheuristic algorithm
to find good solutions in short computing times. We propose a
variable neighborhood search (VNS) [18] approach whose perfor-
mance is assessed by a broad testbed of instances.

The remainder of this paper is organized as follows. Section 2
presents the Vertex Separation Problem, including its application
domain. Section 3 formalizes the mathematical optimization model.
Section 4 presents our algorithmic approach based on the VNS
metaheuristic framework. Section 5 reports on an extensive com-
putational experience to validate the proposed algorithm by
(1) comparing its performance and computing time versus the
optimization of the mathematical model for small instances and (2)
analyzing its performance for large instances. Finally, Section 6
summarizes the main conclusions of our research.

2. Description, related problems and applications

The Vertex Separation Problem (VSP) in graph G consists of
finding a layout, say ¢*, that minimizes VS(G, @), where VS(G,) is

3248 A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255

the maximum Cut-value in graph G for layout ¢, i.e., VS(G,p) =
max, Cut(p,,G). For the sake of simplicity, we denote the
optimum value VS(G,p*) as VS*.

Fig. 1(a) shows an illustrative example of an undirected graph
G with seven vertices and nine edges. Fig. 1(b) depicts a solution
(layout) ¢ of this graph and the Cut-value of each position p,
Cut(p,®,G). For example, Cut(1,¢,G) = 1 because L(1,¢,G) = {D} and
R(1,¢,G)={A,F,G,E,B,C} and there is one vertex in L having an
adjacent vertex in R. Similarly, Cut(3,¢,G) =2 where L(3,¢,G) =
{D,a,F} and R@3,9,G)={G,E,B,c}. The objective function value,
computed as the maximum of these cut values, is VS(G,¢)=3
whose related position is p=4.

The decisional version of the VSP was proved to be NP-complete
for general graphs [26]. It is also known that the problem remains
NP-complete for planar graphs with maximum degree of three
[31], as well as for chordal graphs [15], bipartite graphs [16], grid
graphs and unit disk graphs [6].

We can find many different graph problems that, although
stated in different terms, are equivalent to the VSP in the sense
that a solution to one problem provides a solution to the other
one. Some of them are the Path-Width problem [20], the Interval
Thickness problem [22], the Node Search Number [23] and the
Gate Matrix Layout [21]. The equivalence between these pro-
blems is a consequence of the results presented in [13,20,23]. For
any graph G let VS(G), PW(G), IT(G), SN(G) and GML(G) be the
objective function value of the optimal solution for the Vertex
Separation, Path-Width, Interval Thickness, Node Search Number
and Gate Matrix Layout problems, respectively. These values
verify the following relations:

VS(G) = PW(G) = IT(G) = SN(G)—1 = GML(G) +1.

The VSP appears in the context of finding “good separators” for
graphs [28] where a separator is a set of vertices or edges whose
removal separates the graph into disconnected subgraphs. This
optimization problem has applications in VLSI design for parti-
tioning circuits into smaller subsystems, with a small number of
components on the boundary between the subsystems [25]. The
decisional version of the VSP consists of finding a Vertex Separa-
tion value larger than a given threshold. It has applications on
computer language compiler design and exponential algorithms.
In compiler design, the code to be compiled can be represented as
a directed acyclic graph (DAG) where the vertices represent the
input values to the code as well as the values computed by the
operations within the code. An edge from node u to node v in this
DAG represents the fact that value u is one of the inputs to
operation v. A topological ordering of the vertices of this DAG
represents a valid reordering of the code, and the number of
registers needed to evaluate the code in a given ordering is
precisely the Vertex Separation number of the ordering [4]. The
decisional version of VSP has also applications in graph theory
[14]. Specifically, if a graph has a Vertex Separation value, say w,
then it is possible to find the maximum independent set of G in
time O(2"'n). Other practical applications include Graph Drawing
and Natural Language Processing [9,29].

Fig. 1. (a) Graph illustrative example. (b) A layout ¢ for its VSP.

3. Pure 0-1 optimization model

Before presenting the model, let us define the 0-1 variables
that are required:

e xb, whose value is 1 if vertex u is placed in position p in a given
feasible layout, i.e. p = ¢(u) and 0, otherwise (i.e., p # @(u)), for
up=1,2,...,n

e ybl, whose value is 1 if p=¢@(u) and q=@(v) in the given
layout ¢ and 0, otherwise. The inconvenience of this type of
variable is that the number of y variables is mn? and, then, the
cardinality of the set of vertices in graph G must be small in
order to obtain the optimal solution of the model by an exact
0-1 solver. On the other hand, y}{ avoids the quadratic
expression xbx3.

® 7,., whose value is 1 if the vertex in position p (i.e., p=@(u)
and, then, xf, = 1) is connected with the vertex in any position,
say q (i.e., g=¢(@) and, then, x} =1) (what implies that
yi3 =1) that is larger than position ¢ and 0, otherwise.

We propose the following integer programming formulation
for the Vertex Separation Problem:

VS* = min VS, M
subject to

dooxh=1 vu=1,....n, 2)
pefl,..,n}

Yo oxh=1 vp=1,....n 3)
ue{l,..,n}
yed<xh vuupq=1,....n “4)
yed<xi vuvpq=1,....n, (5)
X+xI<yRi+1 vuupq=1,....n, (6)

n n n
Zes Y. YD yRI<Mze Vpe=1,...n-1,p<c (7)
g=c+lu=1v=1

C
> zpe<VS ve=1,...,n-1, ®
p=1
X0y zpc €{0,1} vuv,pq=1,...,n 9)

The assignment constraints (2) and (3) ensure that each vertex
is only assigned to one position, and each position is only
assigned to one vertex, respectively. Subsystems (4)-(6) define
the variable y5:} as the product of the variables x§, and xJ in the
traditional way. So, notice that for a position p, >>g_.,;Yi?
computes the number of edges from the vertex in position p,
say p= ¢(u), to any vertex in a position g, say q= ¢@(v) (since
x} =1 for yi:} =1) that is bigger than ¢, for c=q+1,...,n for a
given layout ¢.

Constraints (7) compute the 0-1 value of the z,. variable from
the yl7 variables (since x§ =1 for y}J=1), where M is the
standard big-M parameter that should be computationally small
enough to allow any feasible layout ¢, in our case M =n-—1.

The left hand side (lhs) of constraints (8) gives the number of
vertices in positions {p} that, on the one hand, are lower than or
equal to position ¢, in any feasible layout ¢ or equal to c and, on
the other hand, they are connected with vertices whose positions
are larger than position c. So, there is a position c in layout ¢ that
has the greatest lhs in the constraints (8), which is VS* The
objective function of the model (1) minimizes that value, being
VS* the optimal value.

A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255 3249

We can observe that this model has O(mn?) 0-1 variables and
O(mn?) constraints, what makes it impractical for relatively large
instances.

4. Algorithmic approach: variable neighborhood search

In spite of the difficulty of the model presented above we can
find efficient exact approaches to solve the VSP on special classes
of graphs. A linear algorithm to compute the optimal Vertex
Separation of a tree is proposed in [10] as well as an O(n log n)
algorithm for finding the corresponding optimal layout. The
algorithm was improved in [36] with a linear time procedure to
find the optimal layout. In [33] an alternative method to compute
the Vertex Separation of trees was proposed. Ref. [12] proposes an
O(n log n) algorithm to compute the Vertex Separation of uni-
cyclic graphs (i.e., trees with an extra edge). A polynomial-time
algorithm to compute the Path-Width (what is identical to VSP) is
proposed in [2]. However, the algorithm cannot be considered
from a practical point of view, since the bound on its time
complexity is Q(n), see [12]. Ref. [5] proposes a polynomial time
algorithm for optimally solving the VSP for n-dimensional grids.
Co-graphs and permutational graphs can also be optimally solved
as it was proposed in [1,2], respectively.

Approximation algorithms have been also proposed for the VSP.
Specifically, [3] proposes a polynomial time O(log? n)-approximation
algorithm for general graphs and a O(log n)-approximation algo-
rithm for planar graphs. Similar results for binomial random graphs
are presented in [7].

VNS is a metaheuristic for solving optimization problems based
on a systematic change of neighborhood structures, without
guaranteeing the solution’s optimality. In recent years, a large
variety of VNS strategies have been proposed. We can highlight the
Variable Neighborhood Descent (VND), Reduced VNS (RVNS), Basic
VNS (BVNS), Skewed VNS (SVNS), General VNS (GVNS), Variable
Neighborhood Decomposition Search (VNDS) and Reactive VNS,
among others. We refer the reader to [18] for a complete review of
this methodology and its different variants. In this paper, we focus
on the Basic VNS variant, see [30] for the details, which combines
deterministic and stochastic changes of neighborhood as shown in
the BVNS pseudo-code depicted in Algorithm 1.

Algorithm 1. BasicVNS (Kmax, tmax)-

@ < Construct()
repeat
k<1
repeat
@' < Shake(q,k)
@" « LocalSearch(¢p’)
NeighborhoodChange(p,®” k)
until (k = kpnax)
t «Time()
0. until (t = tnex)

SO RN A WD =

The method starts by constructing a feasible solution (step 1),
using one of the constructive procedures described in Section 4.1.
The BVNS implementation is executed for a predefined computing
time, tmax (Steps 2-10). The search process starts with the first
neighborhood of the constructed solution, N;(¢) (step 3). Then,
BVNS performs stochastic changes of neighborhood structures until
reaching the largest predefined neighborhood kp.x (steps 4-8). VNS
has three main strategies within the main loop, namely, shaking
(step 5), improvement (step 6) and neighborhood change (step 7).
In the shaking stage a solution, say ¢’, is generated within Ny(¢),

where k=1, ...,knmax identifies a neighborhood structure within a
set of predefined neighborhoods (see Section 4.3 for additional
details). Then, the improvement method (Section 4.5) is applied to
¢’ in order to find a local optimum, say ¢”, in the corresponding
neighborhood. Finally, the neighborhood change stage (Section 4.4),
analyzes if ¢” is better than ¢ (see in Section 4.5 the extended
definition of the concept of improvement move). If so, ¢ is replaced
with ¢” and k is set to one. Otherwise, k is incremented by one unit.
And, in any case, we repeat the procedure.

We now describe with more detail the main strategies of our
BVNS approach for solving the Vertex Separation Problem.

4.1. Constructive procedures

We have designed two greedy constructive algorithms, say C1
and C2, for the VSP. The constructive procedure, C1, starts by
creating a set of unlabeled vertices U (initially U=V), and a set of
labeled vertices L = V\U. The vertex with the minimum degree is
selected as the first node u (ties are broken at random). The vertex
u is labeled with 1. Then, sets U and L are properly updated
(i.e.,, U=U\{u} and L=L U {u}). Once the first label is assigned to
vertex u, C1 evaluates the greedy function as follows:

&)= |NL(v)|—|Nuy(v)|

where Ni(v) is the set of vertices adjacent to v that has been
already labeled, and Ny(v) is the set of vertices adjacent to v not
labeled yet. The constructive procedure selects the vertex with
the maximum g-value and assigns the next label to it. The
procedure ends when all the vertices of the graph have a label
(i.e., U=0).

The second constructive procedure, C2, is based on the creation
of the so-called level structures [27] which means that the set of
vertices V is partitioned into different sets Lq,Ls, ...,L; called levels.
The first level, L, contains only one vertex. The rest of levels L, with
[=2,3,...,4 (where 1 indicates the number of levels) contains all
the vertices adjacent to some vertex in L,_; that are not present in
any L with 1 <j < I. The number of levels 4 exclusively depends on
the graph and the vertex placed in L;.

The level structure created in this way guarantees that the
vertices in alternative levels are not adjacent. In order to con-
struct this level structure we use a breadth first search approach,
performing the search once for each vertex of the graph. There-
fore, if the graph has n vertices, we construct n different level
structures. In the context of the VSP, it is desirable to obtain a
level structure with A as large as possible (i.e., a structure with the
largest number of levels). Once we have identified the most
suitable level structure, C2 explores it performing a breadth-first
search and assigning levels in an incremental way, thus obtaining
a solution for the VSP.

vveU,

4.2. Updating the objective function

Let ¢, be a partial solution where p vertices have been placed
in positions from 1 to p. For the sake of simplicity, we denote v, as
the vertex placed in position p, i.e., p= ¢(vp). We maintain this
notation for the rest of the paper. Given a graph G and a partial
solution ¢, the Cut-value of a position p, Cut(p,p,G) can be
computed from the Cut-value of the previous position p—1
(except for p=1 where, obviously, the Cut-value is always 1) as
follows,

Cut(p,@,,G) = Cut(p—1,9,,6)+3 ™" ()~ (p),

where 67 (p) € {0, 1} has the value 1 if vertex v, has, at least, one
adjacent vertex in Ny(vp), and O, otherwise; and 6~ (p) = [Ny (vp)|.

This strategy can be extended to the incremental computation
in complete solutions (i.e., solutions ¢ = ¢, with r=n). Specifically,

3250 A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255

for any position p the set Ny(vp) is replaced with the set of vertices
placed in a position g with 1 < q < p. Symmetrically, the set Ny (v,)
is replaced with the set of vertices placed in a position g with
p<q<n. Fig. 2 shows an example of the incremental objective
function computation. Let us consider the third position in ¢ (i.e.,
vertex c). The Cut-value of this position can be computed using the
Cut-value of the previous position, Cut(2,p,G)=2. The value of
5%(3) is 1 because vertex ¢ has one adjacent at least (specifically,
three adjacents) placed in a position greater than ¢(c) = 3 (vertices
B, F and E, with ¢@(B) =4, ¢(F) =5 and ¢(E) = 6, respectively). On
the other hand, the value of 67 (3) is 2 because cC is the adjacent
vertex with the largest label of vertices A and D, placed in positions
@(®)=1 and ¢(D)=2, respectively. The same reasoning can be
applied to compute the rest of the Cut-values.

4.3. Shake

In this section we propose a shake function for the VSP, called
shake(¢,k). This procedure initially selects the vertices to be
moved, based on their Cut-value. Specifically, shake(¢p,k) selects
the k vertices in V with the largest Cut-value in ¢. Then, each
selected vertex is exchanged with another vertex determined at
random, obtaining a new ordering ¢’. The rationale behind this
procedure is that the k selected vertices have Cut-values close or
equal to the maximum Cut-value for ¢ in G and, therefore, the aim
is to reduce their Cut-value improving the objective function of ¢’'.
Additionally, it is expected that the shaking step will contribute to
the diversification of the search process. In other words, shaking
will produce a solution “far away” from the current one, allowing
the search to explore different regions of the solution space.

4.4. Neighborhood structures

A solution to the VSP can be represented as an ordering, where
each vertex is located in the position given by its label. For
example, the labeling of the graph depicted in Fig. 1 can be
expressed by the ordering ¢ = (D,A,F,G,E,B,C), where the first
vertex, D, in the ordering receives label 1, the second vertex, a,

Cutlp-1, 0, G): *

1 2 1 2

5(p): */1/1/1/0
S): =/ 0/ 2/ 0/ 0
17 27 7 2 2

Cut(p, p, G):

Fig. 2. Incremental objective function computation. The symbol * means that the
corresponding value is not defined for the first position.

Cut(p, 9,G):

receives label 2, and so on. We define neighborhood structures
based on the exchange of vertices in a given ordering. Given a
solution @ = (v1,...,Vp,...,Vq,...,Vs), We define Move(p,p,q) as
exchanging in ¢ the vertex in position p (i.e., vp) with the vertex
in position q (i.e., vq) and, thus, producing a new solution
@ =(,.. ., Un).

In a direct implementation, the complexity of evaluating ¢’ is
0O(n?) in the worst case since it requires to visit, for each position p
in ¢, all the vertices with labels p < q. However, the Cut-value of
some vertices does not change when we perform a move. There-
fore, it is not required to compute them again. Specifically, if we
perform Move(p,p,q), all vertices with label r for 1<r<p or
g <r<n do not change their Cut-values. As a consequence, we
only need to update vertices whose label s is such that p<s<gq.
For example, Fig. 3(a) shows a layout and Fig. 3(b) represents the
layout resulting from performing Move(¢,2,5). This move only
affects the Cut-value of positions 2 <s<5 (represented as a
highlighted band in those figures).

Additionally, to compute the Cut-value of the vertices involved
(i.e., the set of vertices {D,c,B} in Fig. 3(b)) we can use the
incremental objective function computation described above,
but restricted to vertices in positions from p to g—1. In the
example shown in Fig. 3(b) we can observe that the update of the
Cut-values is only needed for the vertices in positions ¢(D) =2,
@()=3 and pB)=4.

Given a layout ¢, its neighborhood N;(¢) is defined as all
possible exchanges between each pair of vertices. In other words,
a solution ¢’ belongs to N1(¢) if and only if ¢ and ¢’ only differ in
two labels. In general, we may say that a solution ¢’ belongs to
the kth neighborhood of solution ¢ (i.e., ¢’ € Ny(9)) if ¢ and ¢’
differ in k+1 labels.

Vs Up, .

4.5. Local search

VSP is a min-max problem [8,32,35] where the value of the
objective function is usually reached in several positions of the
permutation ¢. This kind of problems present a “flat landscape”,
which turns out in a challenge for classical local search procedures
as well as for 0-1 solvers to obtain the optimal layout. Typically,
local search strategies do not perform well from a computational
point of view, since most of the moves have associated a null value.
Then, given a graph G, changing the label p of a particular vertex
vp in ¢ (i.e., obtaining a new solution ¢’) such that its Cut-value is
decreased, does not necessarily imply that VS(G,¢’) < VS(G,).
However, it can be considered as an interesting move if the number
of vertices with a relative large Cut-value is reduced, regardless
whether the objective function improves or not. Considering this
extended definition of “improving” we overcome the lack of
information provided by the objective function. Specifically, we
implement a candidate list strategy classifying the vertices of
the graph according to its Cut-value. For example, given the
graph depicted in Fig. 1 and the labeling ¢, we obtain three
different sets: S3(¢) = {G}, containing vertices with Cut-value equal

b prl 2 3 4 5 6

Cut(p-1, 9',G): *

1 2 1
5(p): x / 1 / 1 / 1
5 (p): =/ 0/ 2/0
Cut(p, ¢',G): 1 2 1 2 2

Fig. 3. Illustrative example of an interchange move: (a) layout before the move and (b) layout after the move.

A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255 3251

to 3; S;(p)={a,FE}, with Cut-value equal to 2; and finally
S1(¢) = {D,B} with Cut-value equal to 1.

Given the definition of S;(¢) that has been introduced in the
previous paragraph, we consider that a move improves the
current solution if any node involved in the move is removed
from Sj(¢) and included in S;(¢) with j <i without increasing the
cardinality of any set S;(¢) for | > i. According to this definition of
improving, a move which removes a vertex from S,(¢) (for
example, vertex a) including it in S;(¢) is considered an improv-
ing move if the cardinality of S3(¢) remains unaltered. We have
empirically found that this criterion allows the local search
procedure to explore a larger number of solutions than a typical
implementation that only performs moves when the objective
function is improved. Fig. 4(a) shows an improving move for the
labeling of Fig. 3(a). The move consists of exchanging the labels of
vertices ¢ and 2 and, thus, obtaining a new solution ¢’. In the new
labeling, vertex F is removed from set S;(¢) and included in set
S1(¢"). It means that the Cut-value of vertex r is decreased by
1 unit. This move does not reduce the VS value of the graph, but it
reduces the number of vertices with large Cut-value. Observe that
this move does not improve the incumbent solution, but it can
allow further moves that, at the end, improves it. On the other
hand, if we now exchange the labels of vertices B and ¢ obtaining
a new solution ¢” (see Fig. 4(b)) then vertex c is removed from
set S;(¢) and included in set S3(¢”) (i.e., its Cut-value is increased
by one unit). Therefore, although this move does not affect the VS
value, it is not accepted. Algorithm 2 shows a pseudocode of the
procedure, where the acceptance criterion has been implemented.
This procedure starts by comparing the objective function of the
previous ordering (¢) and the related function of the ordering
after the corresponding movement (¢’). If the associated move
reduces the value of the objective function, then Isimprovement-
Move returns true (step 2). On the other hand, if the move
deteriorates the objective function value then this procedure
returns false (step 4). In case that the corresponding move does
not affect the value of the objective function (steps 6-13)
IsimprovementMove considers the extended definition of improve-
ment move defined above.

Algorithm 2. IsimprovementMove(®,’).

1. if VS(G,¢’) < VS(G,p) then
2. return true
3. else if VS(G,¢’) > VS(G,p) then
4. return false
5. else [«VS(G,p) = VS(G,¢")%]
6. for i — VS(G,¢) downto 1 do
7. if [Si(@)| > |Si(¢)| then
8. return true
9. else if |S;(p)| < [Si(¢")| then
10. return false
11. endif
12. end for
13. return false
14. end if
a

Cutp,9’G): 1 1. 2 3 2

Cutlp, ",G):

The proposed local search strategy is presented in Algorithm 3.
This method receives a layout ¢ and perform moves while an
improve is produced (i.e., while-loop in step 2). Specifically, the
procedure starts by arranging the vertices in descending order of
the Cut-value, obtaining the set posSet which contains the posi-
tion of such vertices (step 4). Then, the algorithm traverses this
set (for-loop in step 5) trying to interchange each vertex in posSet
with the remaining vertices in ¢ (for-loop in step 6). In each
iteration, the method proves to interchange the position of the
two considered vertices (step 8) accepting the move if the new
layout ¢’ outperforms ¢ (steps 9-12). This procedure is repeated
until no improvement in the move is found.

Algorithm 3. LocalSearch(gp).

1. improvement « true

2. while improvement do

3. improvement « false

4. posSet — OrderByCutValue(¢)
5. for all p € posSet do

6. for g1 to |p| do

7. if p # q then

8. @' < Interchange(o,p,q)
9. if IsimprovementMove(¢,¢’) then
10. Q¢

11. improvement « true
12. end if

13. end if

14. end for

15. end for

16. end while

17. return ¢

5. Computational experience

This section reports the computational experiments that we
have performed for testing the efficiency of our VNS procedure, so-
called BVNS, for solving the VSP. The algorithm has been imple-
mented in Java SE 6 and all the experiments were conducted on
an Intel Core i7 2600 CPU (3.4 GHz) and 2 Gb RAM. We have
experimented with three sets of instances, totalizing 173 instances
(all of the instances are available at http://www.optsicom.es/vsp/).

5.1. Testbed description

e HB: We derived 73 instances from the Harwell-Boeing Sparse
Matrix Collection. This collection consists of a set of standard
test matrices M = M,,, arising from problems in linear systems,
least squares, and eigenvalue calculations from a wide variety
of scientific and engineering disciplines. The graphs are
derived from these matrices by considering an edge (u,v) for
every element My, = 0. From the original set we have selected
the 73 graphs with n < 1000. The number of vertices and edges
range from 24 to 960 and from 34 to 3721, respectively.

e Grids: This set consists of 50 matrices constructed as the
Cartesian product of two paths [34]. They are also called two

1 2 3 3 2

Fig. 4. (a) Improving move and (b) non-improving move over the layout depicted in Fig. 3(a).

3252 A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255

dimensional meshes and the optimal solution of the VSP for
squared grids is known by construction, see [7]. Specifically,
the Vertex Separation value of a square grid of size A x 4 is A.
For this set, the vertices are arranged on a square grid with a
dimension 4 x 4 for 5 <1 <54. The number of vertices and
edges ranges from 5 x 5=25 to 54 x 54=2916 and from 40 to
5724, respectively.

e® Trees: Let T(/) be set of trees with minimum number of nodes
and Vertex Separation equal to /. As it is stated in [11], there is
just one tree in T(1), namely the tree with a single edge, and
another one in T(2), the tree constructed with a new node
acting as root of three subtrees that belong to T(1). In general,
to construct a tree with Vertex Separation /+1 it is necessary
to select any three members from T(4) and link any one node
from each of these to a new node acting as the root of the new
tree. The number of nodes, n(i), of a tree in T(1) can be
obtained using the recurrence relation n(l)=3n(A-1)+1
where and n(1)=2 (see [11] for additional details). We consider
50 different trees: 15 trees in T(3), 15 trees in T(4) and 20 trees
in T(5). The number of vertices and edges ranges from 22 to 202
and from 21 to 201, respectively.

Eight experiments are performed for assessing the validation
of the proposed procedure BVNS. We have selected 32 HB
representative instances, with different sizes and densities, to
perform the experiments 1-5 oriented to establish the best
configuration of the BVNS procedure. Let us name this set of
instances the HB subset. Specifically, we consider the instances
ASH85, BCSPWR01, BCSPWR02, BCSPWR03, BCSSTK01, BCSSTK02,
BCSSTKO03, BCSSTK04, BCSSTK05, BCSSTK22, CAN_144, CAN_161,
CAN_187, CAN_229, CAN_24, CAN_61, CAN_62, CAN_73, CAN_96,
DWT_162, DWT_193, DWT_198, DWT_209, DWT_221, DWT_234,
DWT_245, DWT_59, DWT_66, DWT_72, DWT_87, NOS1 and NOS4.
Experiment 6 evaluates the performance of the optimization
model (1)-(9). Experiment 7 evaluates the performance of BVNS
on instances whose optimum is known and, finally, the perfor-
mance of the best configuration of the procedure BVNS is
analyzed using the full testbed of 173 instances (experiment 8).

5.2. Experiment 1: constructive procedures performance

In our first experiment we compare the performance of the
two proposed constructive procedures for the VSP, namely C1 and
C2, described in Section 4.1. We have conducted the experiment
over the HB subset of 32 instances presented above. We generate
one solution with each constructive procedure. The statistics of
Table 1 are as follows: # best, number of best solutions found in
the experiment; avg., average quality over all instances; dev (%),
average percent deviation with respect to the best solution found
in the experiment; time, average computing time in seconds
required by the procedure.

Table 1 shows that C1 obtains better results than C2 in all
headings and using similar computing time. Specifically, C1 reaches
a smaller deviation (11.24%) than C2 (15.66%) and a larger number of
best solutions (19 versus 18) in the set of instances experimented
with.

5.3. Experiment 2: local search performance

We compare the two constructive procedures for the VSP
(C1 and C2) coupled with the improvement procedure (LS)
presented in Section 4.5. Table 2 reports the results using the
same headings as above. We can observe that the method C2
coupled with LS gets more best solutions than C1+LS (22 versus
19), smaller deviation (9.48% versus 9.86%) and requires 7%
smaller computing time (26.25 s versus 24.42 s) than the method

Table 1
Constructive procedures.

C1 C2
best 19 18
Avg. 17.50 17.65
Dev (%) 11.24 15.66
Time 0.010 0.018

Table 2
Constructive procedures coupled with the improvement procedure.

C1 + LS C2 + LS
best 19 22
Avg. 14.88 14.88
Dev (%) 9.86 9.48
Time 26.25 24.42

C1 + LS. Despite C1 alone has better performance than C2 (see
Table 1), when coupling the improvement strategy to the con-
structive procedures the behavior completely changes and C2 +
LS clearly outperforms C1 + LS. This behavior may be partially
explained by the fact that C2 is able to construct layouts with
broader diversity than C1.

5.4. Experiment 3: objective function computation

We study the computing time of C2 + LS when (1) using a
direct objective function computation (DOFC) and (2) using the
incremental objective function computation (IOFC) presented in
Section 4.2. Fig. 5 depicts a bar diagram where the X -axis
represents the ten largest instances of the HB subset and the
Y -axis gives the computing time required to obtain a local
optimum for both methods, respectively, (DOFC and IOFC) in
the corresponding instance. The figure clearly shows that the
saving in computing time is significant for IOFC. Specifically, for
these ten instances DOFC needs 69 s on average to obtain a local
optimum, while IOFC requires 3.85s on average to obtain the
same optimum value, i.e., almost 18 times faster.

5.5. Experiment 4: number of neighborhoods

This experiment consists of evaluating the impact of the k.
parameter on the performance of BVNS. It is expected that the
larger the value of k;,.x, the larger the computing time and,
hopefully, the lower the objective function value. Table 3 shows
the number of best solutions, the average objective function, the
average deviation and the computing time for the four different
values of kmax ={0.08n,0.1n,0.3n,0.5n}, where n indicates the
number of vertices. The table shows that k,.x = 0.5n obtains the
best results in terms of quality but using the highest computing
time. On the other hand, kmax = 0.08n is the fastest BVNS variant
but it has a poor quality results. Then, we select knax =0.3n as a
trade-off between quality and computing time.

5.6. Experiment 5: one-start versus multi-start strategy

In general, the shake strategy allows VNS to escape from local
optima. Additionally, this procedure also diversifies the incum-
bent solution by incorporating/removing elements in the shaken
one. In other words, the shake algorithm produces a solution
which moves away from the current incumbent solution. How-
ever, it could be possible that the shake strategy is not powerful
enough to be used alone (i.e., deep local optimum). Consequently,

A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255 3253

C2+LS

180
®OFC”

160 'DOFC"

140
120

100

ijjljllljjl

DWT 162 CAN 187 DWT 193 DWT 198DWT 209 DWT 221 CAN 229 DWT 234 NOS1 DWT 245
Instance

Time (s)

Fig. 5. Computing time comparison for direct (DOFC) and incremental (IOFC)
objective function computation.

Table 3
Comparison of different kp,.x values.

kmax

0.08n 0.1n 0.3n 0.5n
best 27 28 31 32
Avg. 13.34 13.31 12.91 12.87
Dev (%) 3.71 2.92 0.78 0.00
Time 69.70 79.54 214.32 341.74

in order to analyze the potential improvement of diversification,
we consider a multi-start strategy which construct solutions in
different positions of the search space and, then, execute the VNS.
In this experiment we compare the performance of the best
identified variant of BVNS (which includes C2, exchange-based
LS and the parameter knax set to 0.3n) with a multi-start BVNS. In
order to have a fair comparison, both methods use the same
constructive and search strategies. The multi-start BVNS is exe-
cuted starting from 10 different solutions. So, it is expected that
its computing time is about 10 times slower, and the Kkmpax
parameter is set to 0.03n, so it is 10 times lower than the ky.x
value in BVNS. Table 4 shows that the best variant of BVNS while
using the one-start approach has better performance than the
multi-start strategy in the same environment. Specifically, the
former has more best solutions (30 versus 25) and it reaches
smaller average deviation (0.40%) than the latter (4.46%) in the set
of 32 instances of the HB subset considered in the experimenta-
tion. Furthermore, the computing time for the one-start BVNS
(214.32 s) is a 93% less than the time required by the multi-start
strategy (3170.09 s) for BVNS. It is important to remark that in
both variants, the BVNS algorithm is exactly the same.

5.7. Experiment 6: pure 0-1 optimization model

This experiment consists of evaluating the optimization of the
mathematical model introduced in Section 3, using the state-of-
the-art optimization engine CPLEX v12.1 [19].

The main results of the experiment are shown in Table 5, whose
headings indicate the name of the instance (Instance), number of
vertices (n), number of constraints (n.), number of 0-1 variables
(no1), number of constraint matrix non-zero elements (1), number
of CPLEX branch-and-cut required for obtaining the incumbent
Vertex Separation (nn), optimal Vertex Separation value for the
corresponding instance G (VS*=VS(G)), LP lower bound of the

optimal Vertex Separation value provided by CPLEX (VS ..),

Table 4
One-start versus multi-start BVNS.

BVNS Multi-start BVNS
best 30 25
Avg. 12.91 13.41
Dev (%) 0.40 4.46
Time 214.32 3170.09

optimality gap in percentage (GAP = (VS*—VS ,)/VS) Ver-
tex Separation value related to the incumbent Vertex Separation
provided by CPLEX, computing time (s) required by CPLEX (Time-
cpiex), Vertex Separation value provided by our metaheuristic
procedure BVNS (VSgyns), and computing time (s) required by the
procedure (Timegyns).

Table 5 reports the main results of the following small
instances: two instances from the grid set and the 21 instances
from the set that have 22 nodes. In total 23 out of 173 instances in
the sets that we have experimented with. We selected those
instances where CPLEX could be used for its optimization. It is
important to remark that CPLEX could not execute the model for
the rest of instances since there was not enough memory (in our
computer) to allocate the model, due to its large dimensions.
Notice that the optimal Vertex Separation of the subset of
instances in Table 5 is known by construction.

We can observe in Table 5 that the LP lower bound VS, . is
so small that is useless, in fact is 1, i.e., the minimum possible
value for connected graphs. Additionally, we can observe that
CPLEX only obtains the optimal Vertex Separation for the smallest
instance, grid_3. On the other hand, the difference between the
CPLEX incumbent solution and the optimum (VS*) is one or two
units. Attending to the optimality gap, we can observe the
weakness of the 0-1 model. Finally, it is worth to mention that,
although CPLEX obtains the optimal value VS* =3 for instance
Tree_22_3_rot4, it can not guarantee its optimality in the com-
puting time limit, 5400 s (taking into account the value of the
lower bound VS ., =1 <VS*=3).

Finally, we can observe in Table 5 that the procedure BVNS
obtains the optimal Vertex Separation value in all instances that
we have used in the experiment, being impressive its computing
time (much less than 0.15 s for each instance). On the other hand,
since our BVNS is heuristic in nature, it does not guarantee the
optimality of these solutions by itself.

5.8. Experiment 7: BVNS on instances with known optimum value

We evaluate in this experiment the performance of our best
identified variant of BVNS on a larger set of instances than the set
used in the previous experiment. In this other set the optimal
Vertex Separation is known by construction. Specifically, we use
the 50 instances of the set Grids and 50 instances of the set
Trees and test whether the BVNS is able to match the optimum
or not. Table 6 has the same headings as the other tables plus the
computing time, say, Time_to_opt, required by BVNS to reach the
optimal solution on average.

Observe that BVNS is able to find the optimum solution in all
the instances of the set Grids, subset Trees_22 and subset
Trees_67. Therefore, BVNS is able to find the optimum in the
instances where CPLEX could not due to running out of memory
while solving the model presented in Section 3. Indeed, BVNS finds
the optimum in subsets Trees_22 and Trees_67 in short comput-
ing time. It is worth to remark that although the BVNS method
requires a relative large computing time (1422.76 s) for the whole
procedure, it obtains the optimal solution in only 0.36 s on average.

3254

Table 5

A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255

CPLEX results. Model dimensions, optimal solution, CPLEX incumbent solution, BVNS solution and computing times (s).

Instance n ne No1 Ney nn vs* VS cpiex GAP (%) VScpLex Timecprex VSguns Timegyns
grid_3 9 5938 2062 19,690 12,636 3 3 0.00 3 2528 3 0.054
grid_4 16 37,166 12,665 152,318 902 4 1 300.00 5 5400 4 0.126
Tree_22_3_rot0_3 22 61,532 21,044 2,922,994 533 3 1 200.00 4 5400 3 0.029
Tree_22_3_rot1_3 22 61,532 21,044 2,922,994 543 3 1 200.00 5 5400 3 0.022
Tree_22_3_rot2_3 22 61,532 21,044 2,922,994 604 3 1 200.00 4 5400 3 0.024
Tree_22_3_rot3_3 22 61,532 21,044 2,922,994 557 3 1 200.00 4 5400 3 0.037
Tree_22_3_rot4_3 22 61,532 21,044 2,922,994 553 3 1 200.00 3 5400 3 0.019
Tree_22_3_rot5_3 22 61,532 21,044 2,922,994 572 3 1 200.00 4 5400 3 0.018
Tree_22_3_rot6_3 22 61,532 21,044 2,922,994 593 3 1 200.00 4 5400 3 0.015
Tree_22_3_rot0_1 22 61,532 21,044 2,922,994 595 3 1 200.00 4 5400 3 0.04
Tree_22_3_rot1_1 22 61,532 21,044 2,922,994 597 3 1 200.00 4 5400 3 0.02
Tree_22_3_rot2_1 22 61,532 21,044 2,922,994 572 3 1 200.00 4 5400 3 0.018
Tree_22_3_rot3_1 22 61,532 21,044 2,922,994 577 3 1 200.00 4 5400 3 0.025
Tree_22_3_rot4_1 22 61,532 21,044 2,922,994 590 3 1 200.00 4 5400 3 0.016
Tree_22_3_rot5_1 22 61,532 21,044 2,922,994 566 3 1 200.00 4 5400 3 0.019
Tree_22_3_rot6_1 22 61,532 21,044 2,922,994 646 3 1 200.00 5 5400 3 0.022
Tree_22_3_rot0_2 22 61,532 21,044 2,922,994 625 3 1 200.00 5 5400 3 0.029
Tree_22_3_rot1_2 22 61,532 21,044 2,922,994 590 3 1 200.00 5 5400 3 0.022
Tree_22_3_rot2_2 22 61,532 21,044 2,922,994 547 3 1 200.00 4 5400 3 0.024
Tree_22_3_rot3_2 22 61,532 21,044 2,922,994 588 3 1 200.00 4 5400 3 0.037
Tree_22_3_rot4_2 22 61,532 21,044 2,922,994 591 3 1 200.00 4 5400 3 0.019
Tree_22_3_rot5_2 22 61,532 21,044 2,922,994 543 3 1 200.00 4 5400 3 0.018
Tree_22_3_rot6_2 22 61,532 21,044 2,922,994 636 3 1 200.00 4 5400 3 0.015

Note: CPLEX computing time limit: 5400 s.

Table 6 Table 7

Grids and trees. Constructive versus constructive plus local search versus BVNS.

Grids Trees_22 Trees_67 Trees_202 2 C2+LS BVNS

opt 50 15 15 1 # best 16 38 73
Avg. 29.5 3.00 4.00 6.35 Avg. 30.70 26.68 24.25
Dev (%) 0.00 0.00 0.00 27.00 Dev (%) 35.97 11.73 0.00
Time_to_opt 0.36 0.002 0.58 * Time 1417.05 1204.38 749.77
Time 1422.76 0.02 3.37 314.28

In sight of these results we can conclude that grids instances are
easily solved by our procedure. Regarding the instances of the set
Trees the algorithm is able to find the optimal solution for the
small and medium instances (i.e., Trees_22 and Trees_67) in very
small computing time, 0.002 s for finding the solution and 0.02 s
for proving it for trees with 22 nodes, and 0.58 s and 3.37,
respectively, for trees with 67 nodes. Specifically, BVNS only finds
the optimal solution in one out of 20 large instances included in
the set Trees_202 and the average deviation is 27.0%. But,
although the computing time, 314.28 s, is large as compared to
the other sets of instances, it is not too much effort considering
that the instances have 202 vertices. Moreover, although it is not
reported in Table 6, we can observe analyzing each instance that,
besides guaranteeing optimally in one instance, BVNS obtains in 11
instances a quasi-optimal solution (the solution value is 6, i.e., one
unit from the optimal one), and for the remaining 8 instances it
obtains a solution value of 7 (i.e., two units from the optimal one).
Notice that, since BVNS does not match the optimal value in 19
instances, the corresponding Time_to_opt value is not reported
(represented by an asterisk in the table).

5.9. Experiment 8: BVNS procedure versus C2 and C2 + LS

The VSP has been computationally observed to be optimally
solved for particular graphs (trees, grids, co-graphs, etc.). Addi-
tionally, as it was presented in Section 2, VSP has relevant
practical applications. However, as far as we know, there are no

previous heuristic procedures to obtain high-quality solutions on
general graphs. In order to provide a final comparison, our
experiment consists of evaluating the performance of BVNS
versus the constructive approach C2, and the constructive C2
plus the local search procedure, C2 + LS, executed as stand-alone
procedures. To provide a fair comparison, the three procedures
are executed during a similar computing time. Specifically, C2 is
run for 23,000 independent iterations while C2 + LS is executed
for 150 independent iterations. The target of this computational
comparison is to experimentally show how a systematic change
of neighborhood (VNS) is able to outperform more direct
approaches (say C2 and C2 + LS).

Finally, the results of the last experiment are shown in Table 7,
where the performance of the procedures C2, C2 + LS and BVNS
are compared by executing them over the whole set of 73 B
instances, where the optimum is not known. Taking into account
that we are considering large instances (up to 1000 vertices), the
computing time could not be eventually affordable. Therefore, the
time limit for stopping the heuristic methods was set to 1000 s.
We can observe that the inclusion of the local search procedure
LS described in Section 4.5 improves the solution obtained by
the constructive approach C2 alone. Furthermore, BVNS clearly
outperforms C2 and C2 + LS in all headings. Specifically, BVNS is
able to find the best solution in the 73 instances under considera-
tion (in 749.77 s), while C2 + LS finds it in only 38 instances
(requiring 1204.38 s) and C2 only finds it in 16 instances (requiring
1417.05 s).

A. Duarte et al. /| Computers & Operations Research 39 (2012) 3247-3255 3255

6. Conclusions

In this paper we have proposed a pure 0-1 optimization model
for the Vertex Separation Problem (VSP). This model has O(mn?)
variables and O(mn®) constraints, which makes it impractical for
relatively large instances, as we have reported in our experimenta-
tion. We therefore have also presented an approximation algorithm.
As far as we know, it is the first heuristic procedure for general
graphs for the VSP. Specifically, we have introduced two constructive
procedures based on different greedy strategies, so-called C1 and
C2. Experimental results show that C1 marginally improves the
performance of C2. Additionally, we introduce a novel scheme for
calculating the objective function which substantially reduces the
computing time (by a factor of 18) as compared with the direct
implementation. We also propose a local search strategy, LS, based on
exchanges that incorporates a new definition of the improvement
move. It allows the procedure to search in flat landscapes. Experi-
mental results revealed that coupling constructives procedures
with the local search strategy, improves the results of constructive
methods by themselves in terms of quality although consuming more
computing time. We can observe in our extensive experimentation
that the best combination is C2 + LS which means that although as a
constructive procedure C1 obtains better results than C2, when
combined with the local search C2 becomes the best alternative.
We also introduce a shake procedure which selects vertices according
to their contribution, performing an interchange in a stochastic way
(in order to favor diversification). Finally, we incorporate C2, LS and
the shake procedure in a BVNS algorithm. The proposed metaheur-
istic has been tested on a large benchmark consisting of 173 well-
known instances in the existing literature. Specifically, the BVNS has
been able to find the optimal Vertex Separation in 81 out of 100
instances (whose optimal solution is known by construction). In the
rest of instances, where the optimum value is unknown, the BVNS
procedure clearly outperforms C2 and C2 + LS when executing all
the procedures with the same running time proving experimentally
the superiority of the BVNS metaheuristic.

Acknowledgments

This research has been partially supported by the Spanish
Ministry of Science and Innovation, grants TIN2009-07516 and
TIN2011-28151, and the Government of the Community of Madrid,
grant S2009/TIC-1542.

References

[1] Bodlaender HL, Mohring RH. The pathwidth and treewidth of cographs. In:
Proceedings of the second Scandinavian workshop on algorithm theory,
SWAT’90; 1990. p. 301-9.

[2] Bodlaender HL, Kloks T, Kratsch D. Treewidth and pathwidth of permutation
graphs. SIAM Journal of Discrete Mathematics 1995;8(4):606-616.

[3] Bodlaender HL, Gilbert JR, Hafsteinsson H, Kloks T. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms
1995;18(2):238-255.

[4] Bodlaender HL, Gustedt], Telle JA. Linear-time register allocation for a fixed
number of registers. In: Proceedings of the symposium on discrete algo-
rithms; 1998. p. 574-3.

[5] Bollobas B, Leader I. Edge-isoperimetric inequalities in the grid. Combinator-
ica 1991;11:299-314.

[6] Diaz], Penrose MD, Petit], Serna M. Approximating layout problems on
random geometric graphs. Algorithms 2001;39(1):78-116.

[7] Diaz], Petit], Serna M. A survey of graph layout problems. ACM Computing
Survey 2002;34(3):313-356.

[8] Duarte A, Marti R, Resende MGC, Silva RMA. GRASP with path relinking
heuristics for the antibandwidth problem. Networks 2011;58(3):171-189.

[9] Dujmovic V, Fellows MR, Kitching M, Liotta G, Mccartin K, Nishimura N, et al.
On the parameterized complexity of layered graph drawing. Algorithmica
2008;52(2):267-292.

[10] Ellis JA, Sudborough IH, Turner JS. The vertex separation and search number
of a graph. Information and Computation 1978;113:50-79.

[11] Ellis JA, Sudborough IH, Turner JS. The vertex separation and search number
of a graph. Journal of Information and Computation 1994;113:50-79.

[12] Ellis JA, Markov M. Computing the vertex separation of unicyclic graphs.
Information Computing 2004;192(2):123-161.

[13] Fellows MR, Langston MA. On search, decision and the efficiency of poly-
nomial-time algorithms. Journal of Computing Systems Sciences 1994;49(3):
769-779.

[14] Fomin FV, Hie K. Pathwidth of cubic graphs and exact algorithms. Informa-
tion Processing Letters 2006;97:191-196.

[15] Gustedt J. On the pathwidth of chordal graphs. Discrete Applied Mathematics
1993;45(3):233-248.

[16] Goldberg PW, Golumbic MC, Kaplan H, Shamir R. Four strikes against physical
mapping of DNA. Journal of Computing Biology 1995;12(1):139-152.

[18] Hansen P, Mladenovic N, Moreno JA. Variable neighbourhood search: methods
and applications. Annals of Operations Research 2010;175(1):367-407.

[19] IBM ILOG CPLEX, User manual; 2009.

[20] Kinnersley NG. The vertex separation number of a graph equals its path-
width. Information Processing Letters 1992;42(6):345-350.

[21] Kinnersley NG, Langston MA. Obstruction set isolation for the gate matrix
layout problem. Discrete Applied Mathematics 1994;54(2-3):169-213.

[22] Kirousis M, Papadimitriou CH. Interval graphs and searching. Discrete
Mathematics 1985;55(2):181-184.

[23] Kirousis M, Papadimitriou CH. Searching and pebbling. Theory of Computa-
tion Sciences 1986;47(2):205-218.

[25] Leiserson CE. Area-efficient graph layouts (for VLSI). In: Proceedings of IEEE
symposium on foundations of computer science; 1980. p. 270-1.

[26] Lengauer T. Black-white pebbles and graph separation. Acta Informatica
1981;16:465-475.

[27] Lewis JG. The Gibbs-Poole-Stockmeyer and Gibbs-King algorithms for
reordering sparse matrices. ACM Transactions on Mathematical Software
1982;8:190-194.

[28] Lipton R], Tarjan RE. A separator theorem for planar graphs. SIAM Journal of
Applied Mathematics 1979;36:177-189.

[29] Miller GA. The magical number seven, plus or minus two. SIAM Journal of
Applied Mathematics 1956;13:81-97.

[30] Mladenovi¢ N, Hansen P. Variable neighborhood search. Computers and
Operations Research 1997;24:1097-1100.

[31] Monien B, Sudborough IH. Min cut is NP-complete for edge weighted trees.
Theory of Computation Sciences 1988;58:209-229.

[32] Pantrigo JJ, Marti R, Duarte A, Pardo EG. Scatter search for the cutwidth
minimization problem. Annals of Operations Research, doi:10.1007/s10479-
011-0907-2.

[33] Peng SL, Ho C-W, Hsu TS, Ko MT, Tang CY. A linear-time algorithm for
constructing an optimal node-search strategy of a tree. In: Proceedings of the
fourth annual international conference on computing and combinatorics,
COCOON'98; 1998. p. 279-8.

[34] Raspaud A, Schroder H, Sykora O, Tordk L, Vrt'o I. Antibandwidth and cyclic
antibandwidth of meshes and hypercubes. Discrete Mathematics 2009;309:
3541-3552.

[35] Resende MGC, Marti R, Gallego M. Duarte a GRASP and path relinking for the
max-min diversity problem. Computers and Operations Research 2010;37:
498-508.

[36] Skodinis K. Computing optimal strategies for trees in linear time. In: Proceed-
ings of the eighth annual European symposium on algorithms; 2000. pp. 403-4.

Chapter 8. SS for the PMP 73

Chapter 8

Scatter Search for the Profile

Minimization Problem

e J. Sanchez-Oro, M. Laguna, A. Duarte, and R. Marti. Scatter search for the
profile minimization problem. Networks, 65(1):10-21, 2015.

— DOI: https://doi.org/10.1002/net.21571
— Impact Factor (JCR 2015): 0.943

Subject Category Ranking Quartile
Computer Science, hardware & architecture 29 / 51 Q3
Operations Research & management science 54 / 82 Q3

Scatter Search for the Profile Minimization Problem

Jesus Sanchez-Oro

Departamento de Ciencias de la Computacion, Universidad Rey Juan Carlos, Madrid, Spain

Manuel Laguna

Leeds School of Business, University of Colorado at Boulder, Boulder, Colorado

Abraham Duarte

Departamento de Ciencias de la Computacion, Universidad Rey Juan Carlos, Madrid, Spain

Rafael Marti

Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Valencia, Spain

We study the problem of minimizing the profile of a
graph and develop a solution method by following the
tenets of scatter search. Our procedure exploits the net-
work structure of the problem and includes strategies
that produce a computationally efficient and agile search.
Among several mechanisms, our search includes path
relinking as the basis for combining solutions to gener-
ate new ones. The profile minimization problem (PMP) is
NP-Hard and has relevant applications in numerical anal-
ysis techniques that rely on manipulating large sparse
matrices. The problem was proposed in the early 1970s
but the state-of-the-art does not include a method that
could be considered powerful by today’s computing stan-
dards. Extensive computational experiments show that
we have accomplished our goal of pushing the envelope
and establishing a new standard in the solution of the
PMP. © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 65(1),
10-21 2015

Keywords: profile minimization; SumCut problem; metaheuris-
tics; scatter search; OptQuest; LocalSolver; sparse matrices

1. INTRODUCTION

Given a graph G(V, E)—where V is a set of n vertices and
E is a set of edges—an ordering (or permutation) ¢ of the ver-
tices is a one-to-one mapping between the set {1,2, .. .,n} and
V. An ordering in a graph can be conceptualized as locating

Received May 2012; accepted September 2014

Correspondence to: M. Laguna; e-mail: laguna@colorado.edu

Contract grant sponsor: Ministerio de Educacién y Ciencia of Spain;
Contract grant number: TIN2012-35632-C02

DOI 10.1002/net.21571

Published online 23 December 2014 in Wiley Online Library
(wileyonlinelibrary.com).

© 2014 Wiley Periodicals, Inc.

NETWORKS—2015—DOI 10.1002/net

its vertices in a line, as shown in Figure 1. For a given order-
ing ¢, the profile §,(;) of vertex ¢(i)—that is, the vertex in
position i—is given by 8,y = i — f,), Where fy(;) is the
smallestj < i such that ¢(j) is adjacent to ¢ (i) (if none exists
then fy;) = i). The profile P(G, ¢) of G with the ordering
@, is the sum of the profiles of all its vertices. The profile
minimization problem (PMP) consists of finding an ordering
@™ of V such that the profile is minimized. Mathematically,
the PMP seeks ¢*, over the set® of all possible permutations,
such that

n n
P(G,¢") =min Y S,0) =min Y (i — fii
(G, 9") glelg; o) glelgz;(l Jo))
= 1=

Figure 1 shows an example of a network with six vertices
ordered in a line, where the first one is labeled A, the second
one B, and so on. In this figure, fj = 1 because there is no
vertex ¢(j) for which j < 1. As a result, §; = 0. Similarly,
f2=2and §; = 0. Conversely,f3 = landé3 =3—1 =2, as
the smallest j is 1, corresponding to vertex A. All additional
calculations are shown in Figure 1, resulting in a profile value
of P(G,¢) =11.

It is possible to reduce the profile of the graph in Figure
1 by permuting its vertices. Figure 2 shows the same graph
with the ordering ¢* = (B, D, F, E, C,A), which results in an
optimal profile value of P(G, ¢*) = 8.

Another interpretation of the PMP on a graph is based on
the notion of labeling. Each vertex v in the graph is assigned
a label 7 (v) that is nothing else than the position that the
vertex would occupy if the vertices were arranged in a line
as in Figures 1 and 2. A solution is fully specified when all
vertices have been labeled. By definition, the relationship
between ¢ and 7 is such that if ¢(i) = vthen 7 (v) = i. Fora

f=1! fi=2 ' S=1 | f=2 I‘£=1 | 5=3

s71-1=0l 6:2-2=0! 623-1=2! 6242221 625-1=4! 576-3=3
I I I I I
PG@)=0+0+2+2+4+3=11

FIG. 1. Illustrative graph and profile calculation.

given 7, the profile of vertex v is calculated as §, = 7 (v) —f,,
where f, is the smallest label of a vertex adjacent to v, as long
as such label is smaller than 7 (v). Otherwise, f, = 7 (v) and
8, = 0. The objective of the PMP is to find a labeling 7* for
which the sum of all vertex profiles is minimized. To facilitate
the description of our work, we will use both interpretations.

The PMP was originally proposed as an approach to
reduce the space requirements for storing sparse matrices
[31]. In this context, the PMP was shown to be equivalent
to the SumCut problem [1]. One of the main applications of
the PMP continues to be the reduction of the space require-
ments to store systems of equations. Additionally, the PMP
enhances the performance of operations on systems of non-
linear equations, such as the Cholesky factorization [30].
Another interesting application of the PMP is described by
Karp [15] in the context of the Human Genome Project.
The main goals of this project are to identify all genes in
human DNA (between 20 and 25 thousand, approximately)
and determine the sequences of the approximately 3 billion
chemical base pairs associated with human DNA.

In archeology [16], the PMP has been used in connec-
tion with the problem of organizing items such as fossils,
tools, and jewels according to a specific order. This process
is known as “seriation” and consists of placing several items
from the same culture in a chronological order determined
by a method of establishing dates that are relative to each

=3V f=2 1 g=2 |

fi=1 !

5i=1-1:o| 5;2-1:1’ a,:s-a:a! 5‘=4-2=2| aszs-2=3| 6=6-4=2
1 I] I |

PG)=0+1+0+2+3+2=8

fi=1 f=4

FIG. 2. Illustrative graph reordered.

other. This results in a problem for which the reordering of
the rows and columns of a matrix is required, which is equiv-
alent to the reordering of a linear graph. Other applications
of the PMP can be found in information retrieval [2] and
fingerprinting [15].

Lin and Yuan [20] proved that the PMP for an arbitrary
graph is equivalent to the interval graph completion problem,
which was shown to be NP-complete by Garey and Johnson
[10]. However, special classes of graphs can be solved opti-
mally in polynomial time. For example, Lin and Yuan [20]
proposed several polynomial-time algorithms to find the opti-
mal solution of the PMP for paths, wheels, complete bipartite
graphs and D4-trees (trees with diameter 4). Likewise, Guan
and Williams [14] developed an algorithm to find the optimal
solution of the PMP for triangulated graphs.

The SumCut problem [11, 25, 26] and the PMP are equiv-
alent in the sense that a solution to one problem provides a
solution to the other problem by reversing the correspond-
ing permutation. Consequently, the optimum of one problem
corresponds to the optimum of the other [1]. The PMP is
also related to the bandwidth minimization problem (BMP),
which consists of finding a permutation of the rows and the
columns in a matrix, such that all the nonzero elements are
confined to a band that is the closest to the main diagonal.
The tabu search by Campos et al. [3] is the best BMP heuris-
tic in the literature and we adapt it to the PMP to show that
a specialized PMP search is justified to find solutions of the
highest quality.

Algorithmically, the PMP has been tackled as the late six-
ties. To the best of our knowledge, the first heuristic in the
literature consists of a constructive procedure proposed by
Cuthill and McKee [4] known as the Reverse Cuthill-McKee
algorithm (RCM). Their procedure is based on constructing
a level structure of the vertices. Poole et al. [27] improved the
RCM algorithm by changing the selection of the root node
within a more general level structure. The method is known in
the literature as GPS. Gibbs [12] developed GK, a procedure
that uses a pseudodiameter to produce a new level structure.
GK outperforms GPS in solution quality but it requires more
computational time. Lewis [18] introduced new implemen-
tations that improve the performance of both GK and GPS.
His experimental results confirm the superiority of GK over
GPS in terms of solution quality.

The best heuristic for the PMP in the literature belongs
to Lewis [19]. It uses the simulated annealing (SA) method-
ology in combination with existing constructive procedures.
The SA search starts from a solution constructed with RCM
or GK, whichever is better according to the objective func-
tion value. In typical SA fashion, neighborhood exploration is
performed with moves that are randomly generated. Improv-
ing moves are always executed and nonimproving moves are
only executed with a probability that depends on the current
temperature. A so-called cooling schedule controls the sys-
tematic reductions of the temperature and the search ends
when the temperature reaches a prespecified minimum level.

In contrast to all past efforts, we develop a specialized pro-
cedure that it is built within the scatter search (SS) framework.

NETWORKS—2015—DOI 10.1002/net 11

Our main contribution consists of designing SS methods that
are effective in finding high-quality solutions to the PMP. The
mechanisms that we develop exploit the network structure of
the problem and may be adapted to problems with similar
characteristics. For instance, our diversification generation
procedure creates diverse solutions by a strategy that is based
on labeling the vertices in the graph. Likewise, the strategies
embedded in the improvement method use label exchanges
to explore the neighborhood of the current solution. A care-
ful analysis of the neighborhood structure is performed to
design an efficient process for evaluating exchanges. Finally,
the combination method creates paths between solutions that
result in a series of relabeling steps from an initiating to a
target graph.

Our computational experiments and statistical tests show
that we have been able to establish new benchmarks for the
PMP. We compare not only against the best methods in the
literature but also against a state-of-the-art procedure for a
closely related problem (the BMP) and against two general-
purpose black-box commercial optimizers with embedded
metaheuristic search engines.

2. SCATTER SEARCH

Scatter search [17] is a metaheuristic whose framework
includes five methods that are designed to build, maintain,
and transform a population of solutions (see Fig. 3). Three of
these methods, the diversification generation, the improve-
ment, and the combination methods, are problem dependent
and therefore their strategies take advantage of information
that is context specific. Conversely, the Reference Set Update
and the Subset Generation Methods have standard implemen-
tations that are context independent. The SS literature is fairly
rich and includes multiple examples of successful applica-
tions, such as those documented in Gallego et al. [9], Marti
et al. [21], Duarte et al. [7], and Pantrigo et al. [24].

The procedure starts with the application of the diversi-
fication generation method (which we describe in section 3
in the context of the PMP) and the Improvement method
(described in section 4), obtaining as a result a population P
of solutions from which the initial reference set (RefSet) of
size b is constructed. The initial RefSet must balance solu-
tion quality and diversity and therefore the standard update
in step 3 (Fig. 3) selects the best b/2 solutions from P and

1. Diversification generation
2. Improvement

3. Reference set update

while (termination criteria not satisfied)
4. Subset generation

Combination

Improvement

-1 o W

Reference set update

FIG. 3. Scatter search framework.

12 NETWORKS—2015—DOI 10.1002/net

then the b/2 solutions in P \ RefSet that are most diverse
with respect to those solutions already in the reference set.
We point out that selecting the most diverse solutions from a
set is an NP-hard problem (see for instance Duarte and Mart{
[6]) and hence we perform this step heuristically. In particu-
lar, after selecting the b/2 best solutions (i.e., the ones with
the best objective function value), the remaining solutions are
added one at a time. The first one to be added is the solution
in P\ RefSet that is the most diverse with respect to the solu-
tions currently in RefSet. Diversity is typically measured with
a function that maximizes the minimum distance between the
solution under consideration and the set of solutions where
the solution will be added (in this case RefSet). As discussed
above, a solution s to the PMP is fully characterized by its
ordering ¢ and equivalently by the labeling 7 of the vertices
in G. The distance between s and RefSet is given by

d(s.RefSet) = min (; |775(v) — m(v)|>

The distance is the sum of the absolute differences of the
labels assigned to each vertex in the candidate solution s and
all the reference solutions r. As the labels represent positions,
the calculation is equivalent to the so-called positional dis-
tance [5]. Once a solution s is selected from P \ RefSet, the
solution is added to RefSet and the process is repeated b/2
times, choosing at each step the solution s* with the maxi-
mum distance to the solutions currently in the reference set,
that is:

s* =arg max d(s,RefSet
gseP\RefSet (fS)

In our implementation, step 4 in Figure 3 consists of gen-
erating all pairs of reference solutions that have not been
combined before. Details about the combination method
[based on the path relinking (PR) methodology] are presented
in section 5.

The reference set update in step 7 is different from the
updating performed in step 3. Assume that the reference solu-
tions r are ordered according to their objective function values
in such a way that the solution 7(!) in the first position in the
RefSet is the best and the solution) in the last position is
the worst. To maintain the diversity among the reference solu-
tions, a new solution s is admitted if either of the following
conditions is satisfied, where P(s) is the profile of solution s:

1. P(s) < P(r)
2. P(s) < P(r®) and d(s, RefSet) > dthresh

The first condition establishes that a new solution becomes
areference solution if it is better than the best solution found
so far. The second condition allows a new solution s into the
reference set if it is better than the worst reference solution
and its distance to the current reference set is larger than the
distance threshold parameter dthresh. If solution s is admitted
to the reference set, then s replaces the closest (according to d)
reference solution r from all those for which P(s) < P(r).

The process terminates when no new solutions become
part of the RefSet. That is, if at a given iteration, RefSet does
not change after step 7, then the search ends. We point out
that our step 7 update is significantly different from the one
typically used in SS implementations, where a new solution
s replaces r® as long as P(s) < P(r®).

3. DIVERSIFICATION GENERATION METHOD

We develop four diversification generation methods
(labeled C1-C4) to build a population P of solutions. These
methods are based on the GRASP methodology [8, 28, 29].
To describe these methods we define U as the set of ver-
tices that have not been labeled and L = V \ U as the set
of the vertices that have already been labeled. Initially, all
vertices are in U (i.e., U = V). C1 starts by selecting the
vertex w € U with the smallest degree (i.e., the vertex with
the least number of adjacent vertices). In this step, ties are
broken arbitrarily. The chosen vertex w is given the first label
and therefore 7 (w) = 1 and ¢(1) = w. Then U = U \ {w}
and L = LU {w} and a candidate list CL consisting of the set
of vertices adjacent to w is constructed:

CL={u:(w,u) € E}

A greedy function value is calculated for each vertex v in CL
as follows:

g1(v) = INL()| — [Ny ()|

where Ny(v) = {u e L: (v,u) € E}and Ny(v) ={u e U :
(v,u) € E}. The greedy function g(v) measures the level
of “urgency” of labeling vertex v next. The function consid-
ers that it is more urgent to label a vertex for which most
of its adjacent vertices have already been labeled. A greedy
procedure would choose, at each step, the vertex v with the
largest g1 (v) value. However, in the GRASP framework, con-
structions are semigreedy and the implementation includes a
so-called restricted candidate list (RCL). The RCL includes
top candidates that are equally preferred and hence equally
likely to be chosen:

RCL = {v € CL: g(v) < g™ + a1 (g™ — g™}
where g‘l"i“ (g1"™*) is the minimum (maximum) value of g; (v)
for all v in CL, and « is a parameter that controls random-
ness/greediness of the corresponding procedure. In particular,
if @y = 0, the constructive method would be deterministic
and completely greedy. Conversely, for «; = 1 the procedure
becomes totally random. A vertex v from RCL is chosen ran-
domly, the next available label is assigned to it, and the U and
L sets are updated. CL is also updated by adding the unla-
beled vertices that are neighbors of the selected vertex v (i.e.,
CL = CLUNy (v)). The construction ends when all vertices
have been labeled.

The second construction procedure (C2) is similar to C1
but implements the semigreedy selection in a different way.
Instead of calculating the greedy function value first and then

randomly selecting from a restricted candidate list, C2 first
takes from CL a random sample of vertices. Then, the vertex
with the largest g1(v) value in the sample is selected. The
size of the random sample is controlled by the parameter o5,
which represents a fraction of the size of the candidate list
(i.e., the random sample includes o» | CL| vertices). As before,
once the vertex is selected, the next available label is assigned
to it and the U and L sets are updated.

The g1 (v) greedy function does not take into consideration
the values of the labels assigned to the vertices adjacent to
v. For instance, if i is the next available label, g1 (v) does not
include in its calculation the labels that vertices in Ny (v) have
received (which may be any between 1 and i — 1). Clearly, the
“urgency” of vertex v is greater if its adjacent vertices have
received labels that are much smaller than i. The following
greedy function takes this into consideration:

220) = (INLO)| = INgMD) Y 17 () — 7@

ueN; (v)

This greedy function is used to formulate two additional
construction methods. C3 is the same as C1 but with g as
the greedy function. C4 is the same as C2 but with g as the
greedy function.

4. IMPROVEMENT METHOD

For our improvement method we tested both a search
neighborhood defined by swap moves and one defined by
insert moves. The representation of a solution as an ordering
of the vertices is useful to conceptualize these search neigh-
borhoods. A swap(i,) is the exchange of positions of vertices
v, u that are currently in positions i and j, respectively. That
is, (i) = v and ¢(j) = u. An insert(i,j) is the movement of
vertex v = @(i) to position j. After the move, v precedes u if
i > jandvfollows uifi < j. As both of these moves produce
a neighborhood of size O(n?), a fast calculation of the move
value is critical to search such a neighborhood efficiently and
identify the best move to make.

For instance, to evaluate the move insert(i,j) for j > i,
it is easy to see that only the profile of the vertices v for
which i < m(v) < n needs to be recalculated. Therefore, if
the profile values for all vertices in the current solutions are
stored, then the calculation of the move value may be done
by updating only those relevant profile values and adding
them to the values that the move does not affect. Additionally,
the updates to the profile values may be accumulated. For
instance if we first evaluate the insert (i, j), then n—i+1 values
must be recalculated, i.e., those corresponding to the vertices
with labels between i and n. If we then evaluate insert(i, j+ 1)
without storing any information from the previous evaluation,
we would need to recalculate once again n — i 4 1 values.
However, observing the change of the profile values from
one trial move to the other, it can be determined that the only
changes occur in the vertices with labels 7 (v) > j + 1.

Figure 4 illustrates two insertion moves applied to solution
¢ =1{A,B,C,D, E, F}, on the left side of the figure. The first

NETWORKS—2015—DOI 10.1002/net 13

P(G)=0+0+2+2+4+3=11

FIG. 4.

move inserts vertex B in position 4, obtaining the solution
go’ = {A,C,D,B,E,F} at the top right of Figure 4, where
vertices that changed their §; value are highlighted (i.e., ver-
tices C,D, B, E, and F). The insertion of B in position 5 that
yields a new solution ¢’ is depicted at the bottom right of
Figure 4. Considering that the improvement procedure eval-
uates insertions as a sequence of swap moves, evaluating the
insertion of B in position 5 after evaluating the insertion of B
in position 4 requires the updating of only vertices E, B, and
F. Calculation savings are achieved because there is no need
to update C and D again.

Therefore, an efficient way of searching the insert neigh-
borhood is to evaluate the insert(i, j) as a sequence of swaps
of the vertices in positions (i,i + 1), then (i + 1,7 + 2) and
so forth until (j — 1,j). These values are stored because the
sequence is the same for insert(i,j 4+ 1) with the addition of
the swap(j, j+ 1). We have implemented this strategy and the
corresponding one for the case whenj < i.

By implementing the search as a sequence of swaps of
vertices in adjacent positions, the only possible moves values
are —1, 0, and +1. Consider the swap(i, i + 1) that exchanges
the labels of vertex v from 7 (v) = i to i + 1 and vertex u
from 7 (u) = i + 1 to i. Then, the move value is given by

—1 iffy, >iandf, <i+1

0 if(f,>iandf, >i+1)
or (fy <iandf, <i+1)

+1 iff, <iandf, =i+ 1

value(i,i + 1) =

14 NETWORKS—2015—DOI 10.1002/net

Illustrative representation of a move.

This characteristic renders a first improving strategy
impractical. A first improving refers to the strategy of stop-
ping the neighborhood search after finding the first move that
improves the current solution. As our neighborhood search is
structured in such a way that complex moves [i.e., insert(i, j)
for j > i 4 1] are achieved by a sequence of simple moves
[i.e., swap(i,i + 1)], stopping after a finding any improve-
ment results in a process where improvements of more than
one unit are not possible in a single move. Therefore, our
implementation uses the best improving strategy in which
the entire neighborhood is searched and the move with the
best value is selected.

5. COMBINATION METHODS

We have developed one combination method (CM1) and a
variant (CM2). The combination method follows the strategy
known as PR [13]. The main idea behind PR is to construct a
path between two elite solutions where the guide is not lim-
ited to the value of the objective function of the problem. PR
was suggested in connection with tabu search because choice
mechanisms in neighborhood-based searches often use the
objective function as the only oracle to measure the quality
of amove (just as we do in the improvement method described
above). PR attempts to create search paths where the objec-
tive function is only one of the elements used to determine the
direction. PR also exploits the principle that the neighborhood
of an elite solution might contain other high-quality solutions
that could be found if the elite solution is approached from
a direction that is different from the one that was used to

Els|CIDJA]F]

Pl@,) =10

E[F]clofa]s]

|Alc|B[D[E|F] Pl@,) =10
X =1 EEREER
[A[8]c[o[e[FHEIB[AIBIELF] [P@w=10 c[F[A[o[8]E] Y<[FIBIo[AE]

P =11 Pg,) =12

P(g,,) =10 P(g,) =10

[Al8|clDfF[E]

P(p,) =9

NEDREE

P(g,) =10

AlF| c|D|E|B

P(p,) =9

il =11 | (ATETBID €]

P(g,,) =10

FIG. 5. Tllustration of the combination method CM1.

find the elite solution in the first place. PR is implemented by
choosing one or more elite solutions as the initiating solution
and one or more as the guiding solutions. Strategies are then
built around the notion of applying transformations to the ini-
tiating solution with the goal of moving it toward the guiding
solution(s). As all solutions that have been found during a
search are connected by the path that the search followed to
find them, building a new path between elite solutions may be
conceptualized as a relinking exercise, and hence the name
of the strategy.

Let s be the initiating (or starting) solution and ¢ the guid-
ing (or target) solution. CM1 starts by identifying the set
D of vertices that have different labels in s and ¢, that is,
D = {v:mw;(v) # m;(v)}. A set of solutions is generated by
swapping the labels of vertex v and vertex @;(;(v)) in the
initiating solution, for all v € D. Note that after these swaps,
75(v) equals 77, (v) and the initiating solution moves closer to
the guiding solution. This step generates |D| trial solutions
from which we select the best according to the objective func-
tion value. The chosen solution becomes the new initiating
solution and the process continues until D = @, that is, until
the labeling in s is the same as in . The procedure, referred
to as Greedy Path Relinking in [28], returns the best trial
solution found.

Figure 5 illustrates how CM1 operates on two solutions,
where s is the initiating solution and ¢ is the guiding solution.
The relinking requires 4 steps and generates 12 intermediate
solutions that are labeled with a digit and a letter, where the
digit is the step number and the letter a solution identifier.
Note that at each step, the best solution (according to the
objective function value) becomes the initiating solution for
the next step. Once the guiding solution is reached, the best
intermediate solution (in this case solution 3A with a profile
value of 8) is returned.

We created a variant of CM1 that we refer to as CM2
and that consists of replacing the selection criterion of the
trial solution generated during the relinking process. In par-
ticular, instead of selecting the best solution with respect to

the objective function value from the set D of trial solutions,
the next initiating solution is selected randomly. In this way,
CM2 favors diversification over intensification. As before,
CM2 returns the best solution encountered during the PR
process.

6. COMPUTATIONAL EXPERIMENTS

We now describe the computational experiments per-
formed to test the SS approach that we developed for the PMP
and then we discuss the resulting outcomes. The SS procedure
was implemented in Java SE 6 and was compared against the
best methods reported in the literature so far, namely, RCM
[4],and SA [19]. The RCM and SA results were obtained run-
ning the original C implementations shared by the authors.
We also compare against an adaptation of the best heuristic
for the BMP as well as two general-purpose optimizers. All
tests were performed on an Intel Core i7 2600 machine run-
ning at 3.4 GHz and with 2 GB of RAM. The test set consists
of 262 instances divided into three subsets. All instances are
available at www.optsicom.es/pmp/.

e HB—This set is derived from 73 instances in the Harwell-
Boeing Sparse Matrix Collection [22]. The data matrices in
this set correspond to problems in linear systems, least squares
and eigenvalue calculations in a wide variety of scientific and
engineering disciplines. We selected the 73 problems with
n < 1000 and therefore the number of vertices ranges from
24 to 960 and the number of edges ranges from 34 to 3721.

e K-Graphs—This set contains 98 bipartite graphs with number
of vertices ranging from 4 to 142 and number of edges ranging
from 3 to 5016. A complete bipartite graph is such that the set
of vertices V can be divided into two subsets V; and V, in such
a way there exists an edge between every pair of vertices, one
belonging to V) and the other belonging to V,. At the same
time, there is no edge for which its endpoint vertices are in
the same subset. Optimal objective function values are known
by construction [20] and are given by njn; + %nl (ny — 1) for
ny < np, where n; = V1] and np, = |V2l.

NETWORKS—2015—DOI 10.1002/net 15

08

0.7

0.6

05

0.4

Diversity

0.3

0.2

0.1

0.7

0.75

4 C1
e C2
c3

08 0.85 09

Quality

FIG. 6. Comparison of construction methods. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

e D4-Trees—This set consists of 91 instances that are based on
trees with a diameter of 4 and a number of vertices ranging
from 10 to 100 and a number of edges ranging from 9 to 99.
These trees are built by choosing a root vertex vo and adjacent
vertices v to vk, for k > 2. The vertices adjacent to vy form
a star with vg in the center. If y (v;) is the degree of vertex
v; then the v;-branch has y (v;) — 1 leaves, because the other
edge is the one connecting v; to the root vertex vo. The trees
in the D4 set are built in such a way that y(v;) > y(v2) >
-+« > y(vx) > 2 and with a diameter of 4. This means that the
tree consists of the root vertex, of all the adjacent vertices in a
star configuration and of all the vertices corresponding to the
leaves of the tree. The optimal objective function values are
known by construction and are given by |E|+ Zf:3 (y(vp)—1).

The experiments are divided into two main blocks. The
first block has the goal of studying the behavior of the com-
ponents of the solution procedure as well as determining the
best values for the search parameters. The second block of
experiments has the goal of comparing our procedure with
the best in the literature and two commercial optimizers. To
be able to test the effectiveness of our strategies in the entire
PMP class, the first set of experiments is performed on a sub-
set of all problem instances. In this way, we can test how well
our choices generalize to the entire set of problems. Specif-
ically, the tuning experiments are performed on the 30 HB
instances that have less than 250 vertices. We refer to these
instances as the training set and to all other instances as the
testing set.

A common practice in SS implementations is to arrive to
the best design by choosing the components of the solution
procedure sequentially. As we are using standard implemen-
tations for the reference set update and the subset generation
methods, our design process focuses on choosing a diversifi-
cation generator, an improvement method and a combination
method. As described in the previous sections, we have

16 NETWORKS—2015—DOI 10.1002/net

developed four diversification generation methods (C1-C4),
two improvement methods (one based on swaps and one
based on inserts), and two combination methods (CM1 and
CM2). This results in a full-factorial design with 16 combi-
nations. We start by contrasting the sequential process that
selects components one at a time and adds them to the solu-
tion procedure with the full-factorial approach that identifies
the best combination with a single experiment.

For the sequential design process, we begin by compar-
ing the four construction methods described in section 3. As
these methods are used for diversification purposes, the com-
parison metrics must include a measure of diversity as well
as a measure of solution quality. Each method (C1-C4) is
executed to generate 100 solutions. The value of «; for C1
and C3, and «» for C2 and C4 are chosen at random in each
construction. For validation purposes, we also generate 100
solutions at random and refer to this set of solutions as CO.
The objective function value of each solution is used to calcu-
late an average quality of each set, which is then normalized
to a value between 0 and 1. The average diversity of a set of
solutions is calculated using the distance measure described
in section 2. That is, for a particular set of solution, the dis-
tance between a solution and the rest in the set (i.e., the other
99 solutions) is computed and then the average of the 100
values obtained is used to represent the diversity of the set.
We also normalize this diversity measure to obtain a value
between 0 and 1. Figure 6 compares the diversity and quality
of the construction methods.

Not surprisingly, CO obtains the largest diversity of all the
sets, as well as the lowest quality, and hence it is not depicted
in the figure. However, this set of solutions is of minimum
quality when compared to the constructions based on GRASP.
The C2 set has the highest quality but the lowest diversity.
The sets generated by C3 and C4 are very similar, with C3
slightly more diverse and C4 with slightly higher quality. To

TABLE 1. Construction procedures coupled with improvement methods

TABLE 2. Performance of combination methods CM1 and CM2

Variant Obj Dev (%) #Best Time Variant dthresh Obj Dev (%) #Best Time
C2+Swap 1235.94 4.61 7 68.76 0.01* MD 1187.97 0.10 25 6.54
C3+Swap 1209.72 2.05 10 90.84 C3+Insert+CM1 0.05* MD 1187.38 0.08 25 6.37
C2+Insert 1209.34 1.30 17 2.56 0.10* MD 1187.63 0.09 24 6.71
C3+Insert 1194.78 0.67 18 3.90 0.30* MD 1188.16 0.12 24 6.73
0.01* MD 1191.69 0.43 21 6.08

C3+Insert+CM2 0.05* MD 1191.56 0.43 21 5.74

)) 0.10+MD 1191.78 0.45 21 5.90

test the effect of adding the improvement method to these 030*MD 1191.56 0.43 20 5.43

construction procedures, we select C2 and C3 to perform
additional experiments. Ignoring the purely random genera-
tor CO, the set generated by C2 and C3 are at the extremes
of the frontier in which C1 is dominated and C4 is the most
balanced nondominated point.

The second experiment couples the construction methods
C2 and C3 with the improvement methods based on swap and
insert neighborhoods, resulting in 4 different variants. Once
again, the o values associated with C2 and C3 are chosen ran-
domly in each construction. Table 1 shows results obtained
when applying these variants to the training set. For each
variant, the table reports the average objective function value
(Obj), the percent deviation of this value from the average
obtained with the best known solutions (Dev), the number of
best solutions found out of 30 (#Best) and the CPU time in
seconds.

The improvement method based on inserts seems to be
more effective than the one based on swaps according to the
results in Table 1. The table also shows that local search based
on swap moves is computationally more expensive than the
one based on insert moves. The best combination of con-
struction and improvement is given by C3+Insert, CPU time
notwithstanding. Therefore, in this sequential process, we
have determined, so far, that our final SS should have C3 as
the diversification generator and Insert as the improvement
method.

Finally, we must choose a combination method that works
well with the C3+Insert improvement method. For this exper-
iment, we also need to add the subset generation method and
the reference set improvement method. The subset generation
method is a standard implementation and has no parameters.
The behavior of the reference set update method depends on
the values of b and the drhresh parameters. Although we set
b to the standard value of 10 used in the SS literature, in this
experiment, we try 4 values for dthresh (0.01, 0.05, 0.10, and
0.30), which is given as a fraction of the maximum distance
MD between the labeling of two solutions. Considering the
distance function formulated in section 2, MD is computed
as follows:

MD =) "|i—(n—i+1)

i=1

As indicated at the end of section 2, the search terminates
when no solution generated by the application of the combi-
nation and improvement methods is admitted to the reference
set. Table 2 summarizes the results of this experiment, where

the column labels have the same meaning as in Table 1 with
the addition of the dthresh column containing the value of
the parameter that was used to produce the results.

According to the results shown in Table 2, the best SS con-
figuration should include CM1 as the combination method.
Within that, the best value for dthresh seems to be 0.05,
which results in the smallest deviation from the best known
solutions. The results indicate that while there is a signif-
icant difference in performance between using CM1 and
using CM2, the procedure is robust with respect to the value
of dthresh. In particular, there is no significant difference
between values in the range between 0.01 and 0.10 for CM1.

The final experiment of this block consists of choosing
the best SS configuration by running a single full-factorial
experiment. To perform this experiment, we set b = 10,
dthresh = 0.05 and « is chosen randomly in each construc-
tion. Table 3 summarizes the results obtained with the 16
variants on the training set.

The results of the full-factorial design that Table 3 summa-
rizes indicate that there are two configurations that dominate
all others when considering percent deviation and number of
best solutions: Cl+Insert+CM1 and C3+Insert+CM1. The
C3+Insert+CM1 configuration was the one identified as the
best by the sequential design process. It achieves the lowest

TABLE 3. Full-factorial experiment

Variant Obj Dev (%) #Best Time
Cl+Insert+CM1 1189.44 0.80 20 6.59
Cl+Insert+CM2 1195.38 0.96 18 5.30
C1+Swap+CM1 1195.94 1.35 13 92.68
Cl+Swap+CM2 1200.91 1.74 12 91.24
C2+Insert+CM1 1218.31 3.30 11 3.79
C2+Insert+CM2 1219.41 3.51 12 3.48
C2+Swap+CM1 1228.91 442 9 76.20
C2+Swap+CM2 1232.91 4.74 7 75.36
C3+Insert+CM1 1188.06 0.75 17 6.78
C3+Insert+CM2 1191.53 1.04 14 6.58
C3+Swap+CM1 1201.91 1.79 10 101.27
C3+Swap+CM2 1202.78 1.95 12 96.13
C4+Insert+CM1 1195.28 1.27 14 6.91
C4+Insert+CM2 1200.97 1.50 15 6.14
C4+Swap+CM1 1205.44 2.25 10 94.01
C4+Swap+CM2 1205.66 2.44 10 93.00

NETWORKS—2015—DOI 10.1002/net 17

TABLE 4. Experiments with 98 K-Graphs

Procedure Obj Dev #Opt Time
RCM 1165.64 0.00 98 1.02
SA 1167.06 0.02 97 5.87
SS 1165.64 0.00 98 0.66

deviation of 0.75% and the third largest number of best solu-
tions of 17. The Cl+Insert+CM1 configuration achieves the
largest number of best solutions of 20 and an average devia-
tion of 0.8% that is the second lowest. The configuration uses
a diversification generator that is different from the one that
we selected during the sequential design process. In fact, in
our analysis, C1 was dominated by the other three construc-
tion procedures in terms of both quality and diversity (see
Fig. 6). Hence, the full-factorial design is able to identify a
configuration that performs well when all elements are put
together at once but that does not seem attractive when the
merit of each element is assessed separately. Nonetheless, the
fact that the C3+Insert+CM1 configuration is in the nondom-
inated set seems to indicate that in situations where running
a full-factorial design is not practical, a sequential process is
an approach from which it is reasonable to expect an effective
combination of SS components. This analysis concludes the
first block of experiments.

In the second block of experiments, we start by com-
paring the performance of the SS procedure configured as
Cl+Insert+CM1 to the best methods in the literature. In par-
ticular, the comparison includes RCM [4] and SA [19]. Tables
4 and 5 show the results associated with the K-Graph and
D4-Tree data sets, respectively. The optimal solutions to these
problems are known by construction and therefore the devi-
ations are calculated using the optimal objective function
values. Also, the tables report the number of optimal solutions
found (#Opt) instead of the number of best solutions.

Clearly, the K-Graphs do not represent a challenge to any
of the procedures in our test. Only SA fails to find the optimal
solutions to one of the instances, even when using consider-
ably more time than its counterparts. The situation changes
when the methods are applied to the D4-Tree data set. The
results are shown in Table 5 where the difficulty of these prob-
lems becomes evident. The best performance is achieved by
SS, which is able to find the optimal solution to 97.8% (i.e.,
89 out of 91) of the problems. The solution time is negligible
for all procedures.

We perform nonparametric tests to provide additional sup-
port to our conclusions about the performance of the SS

TABLE 5. Experiments with 91 D4-Trees

Procedure Obj Dev(%) #Opt Time
RCM 282.75 173.57 2 1.01
SA 126.08 30.39 31 0.68
SS 86.12 0.01 89 0.28

18 NETWORKS—2015—DOI 10.1002/net

implementation. First, we apply the Friedman test for multi-
ple correlated samples to the best solutions obtained by each
of the three methods in Table 5. This test computes, for each
instance, the rank value of each method according to solu-
tion quality (where rank 1 is assigned to the best method
and rank 3 to the worst). Then, it calculates the average rank
values for each method across all instances. If the averages
differ greatly, the associated p-value or level of significance
is small. The resulting p-value obtained in this experiment
(smaller than 0.001) clearly indicates that there are statisti-
cally significant differences among the three methods. The
rank values produced by this test are 1.18 (SS), 1.85 (SA),
and 2.97 (RCM).

Next, we used the Wilcoxon test and Sign test to make
a pairwise comparison of SS and SA, which consistently
provide the best solutions reported in our experiments. The
results of the Wilcoxon test (with a p-value smaller than
0.001) determined that the solutions obtained by the two
methods indeed represent two different populations. The Sign
test (with a p-value smaller than 0.001) indicated that the
objective function values of the solutions obtained with SS
tend to be better (i.e., smaller) than those obtained with SA.

In the final experiment of this block, we add three pro-
cedures to our comparison set: (1) an adaptation of the tabu
search developed by Campos et al. [3] for the solution of
the BMP (TS-BMP), (2) OptQuest, and (3) LocalSolver.
The BMP is related to the PMP because they both have the
goal of finding a graph labeling such that the corresponding
sparse incidence matrix is transformed into one for which the
nonzero elements are close to the main diagonal. The PMP
achieves this goal with an additive objective function that
penalizes a distance measure from the main diagonal while
the BMP uses a criterion that minimizes the maximum devi-
ation. Specifically, in the BMP, the objective is to find an
ordering of the rows and columns of a matrix M in such a
way that the nonzero elements are in a band that is as close
as possible to the main diagonal. In terms of the graph rep-
resentation, the goal is to find a labeling 7 of the vertices
of the corresponding G(V, E) graph such that the bandwidth
B(G,) is minimized, where:

B(G, 7)) = max(B(v,m) :ve V) and
Bv,m) = max(|Jx(v) — w(u)| : (v,u) € E).

That is, B(v,) is the bandwidth of vertex v for labeling
7 and it is calculated as the maximum absolute difference
between the label of v and the labels of its adjacent vertices.
The bandwidth of the graph is the maximum vertex band-
width. Given these similarities, it is reasonable to believe
that a solution procedure designed for the BMP might find
high-quality solutions to the PMP. To test this, we applied
TS-BMP without any modifications to the HB instances. TS-
BMP operates with the objective of minimizing B(G, 7) and
on termination the procedure returns the solution 77 * with the
best value according to this objective function. We then calcu-
late P(G, ¢*) by applying the transformation ¢*(7r*(v)) = v
for all vertices in the graph.

TABLE 6. Experiments with 26 HB instances with n < 200 TABLE 7. Experiments with 27 HB instances with 200 < n < 500
Procedure Obj Dev (%) #Best Rank Time Procedure Obj Dev (%) #Best Rank Time
OptQuest 1466.54 46.7 2 43 36.9 OptQuest 8923.07 61.1 0 4.1 211.9
LocalSolver 1030.04 2.4 23 1.3 60.0 LocalSolver 7492.30 25.5 8 2.9 220.0
TS-BMP 1596.83 42.7 1 5.1 30.8 TS-BMP 10204.82 73.4 0 52 212.1
RCM 1109.58 20.4 2 3.9 97.3 RCM 7491.85 34.0 4 3.2 335.6
SA 1110.92 14.5 4 33 4.0 SA 7542.48 33.1 1 3.6 39.5
SS 1007.58 1.1 15 1.5 2.8 SS 5701.48 2.2 17 14 78.5

OptQuest (optquest.com) is a general-purpose black-box
optimizer built on a SS platform. The system includes sev-
eral variable types, including permutations. We used the latest
OptQuest version in C# and followed three simple steps: (1)
read data, (2) define optimization model by creating n permu-
tation variables, and (3) create Evaluate () to evaluate the
objective function. Each OptQuest iteration consists of the
evaluation of a trial solution that is generated by the search
mechanisms implemented within the system.

LocalSolver (localsolver.com) is also a black-box opti-
mizer for combinatorial problems. LocalSolver uses a hybrid
approach to optimization that ranges from neighborhood
search and metaheuristics to constraint propagation and
mathematical programming. The main elements of the search
are the so-called autonomous moves (complex moves, such
as ejection chains, that have the goal of preserving feasi-
bility) and incremental evaluation (a concept introduced by
Michel and van Hentenryck [23]). LocalSolver admits only
binary variables and therefore a transformation must be used
to apply it to an ordering problem such as the PMP. In partic-
ular, we created a LocalSolver model with binary variables
X, such that x[1] [j] =1 indicates that vertex i has label
j. Appendix A contains the LocalSolver Program (LSP) that
we used to perform the experiment.

The results associated with this experiment are in Tables
6-8. As the optimal solutions to the HB instances are not
known, the deviations are calculated against the best-known
solutions and #Best refers to the number of best-known solu-
tions found by each procedure. These tables also include
the average rank for each procedure. The tables divide the
instances into three different groups according to the number
of vertices in the graph: 26 instances with less than or equal to
200 vertices (Table 6), 27 instances with more than 200 and
no more than 500 vertices (Table 7), and 20 instances with
more than 500 vertices (Table 8). As TS-BMP is designed
to tackle connected graphs and 11 HB instances correspond
to graphs that are not connected, our experiments with this
code are limited to 62 instances (23, 22, and 17 instances for
Tables 67, and 8, respectively).

The procedures from the literature (TS-BMP, RCM, and
SA) were executed with the parameters values suggested by
their authors. As all three methods are heuristics, we impose
a maximum computing time of n seconds, where n, as before,
represents the number of vertices. To stop the execution of
OptQuest and LocalSolver, we also use a time limit that
depends on the size of the problem. However, we allow them

to run considerably longer on the larger instances because
these two procedures are not specialized to the PMP. The
stopping times (in seconds) are 60 (n < 200), 120 (200 <
n < 300), 300 (300 < n < 500), 600 (500 < n < 600),
900 (600 < n < 700), 1200 (700 < n < 800), 1800
(800 < n < 900), 3600 (n > 900). We configure OptQuest
to report the time when the incumbent solution is last updated
during the run and those are the average times that we report
in Tables 6—8. The time when the procedure stops is the same
as the time reported for the LocalSolver.

The results in Table 6 indicate that LocalSolver is a very
good alternative for problems with up to 200 vertices. This
procedure finds the largest number of best solutions and there-
fore has the best rank. Its average deviation is slightly larger
than SS due to a 42.58% deviation in problem CAN 198
(see Appendix B for the complete list of problems in the HB
dataset). In contrast, the largest deviation for SS in this subset
of problems is 16.06% (in the DWT 162 instance).

The merit of SS becomes evident as the problem size
increases. The results in Tables 7 and 8 support the posi-
tion that SS is the best procedure for the PMP when dealing
with medium to large instances.

We applied statistical tests to the results in Table 6-—8. The
Friedman test detects significant differences in all cases (p-
value smaller than 0.001). We used the Wilcoxon test and
Sign test to make a pairwise comparison between the best
two procedures in each set of instances. In particular, both
tests are inconclusive with regard of LocalSolver and SS for
the instances in Table 6. Conversely, considering SS and its
closest competitor, LocalSolver (Table 7) and SA (Table 8),
both tests indicate that the solutions obtained with SS are
consistently and significantly (p-value smaller than 0.001)
better, confirming the superiority of the proposed method.
Table 9 in Appendix B shows the details of the SS output for
the HB instances.

TABLE 8. Experiments with 20 HB instances with n > 500

Procedure Obj Dev (%) #Best Rank Time

OptQuest 27156.00 105.4 1 4.7 1518.4
LocalSolver 26078.30 90.0 1 44 1575.0
TS-BMP 25226.29 61.4 0 45 714.7
RCM 19256.05 28.5 1 2.7 744.1
SA 19246.65 29.2 0 32 1367.3
SS 15629.05 1.0 17 1.2 674.8

NETWORKS—2015—DOI 10.1002/net 19

TABLE 9. Best individual values on HB instances obtained with SS

Instance Size Best SS Time Instance Size Best SS Time
CAN 24 24 95 95 0.1 CAN 292 292 4673 4718 41.7
BCSPWRO1 39 82 82 0.1 DWT 307 307 6676 6676 46.4
BCSSTKO1 48 460 466 0.4 DWT 310 310 2630 2630 25.0
BCSPWRO02 49 113 113 0.3 DWT 346 346 6051 6051 54.1
DWT 59 59 214 223 0.4 DWT 361 361 4635 4635 64.8
CAN 61 61 338 338 0.4 PLAT362 362 9150 10620 105.8
CAN 62 62 172 172 0.5 LSHP 406 406 5964 5964 83.2
BCSSTKO02 66 2145 2145 0.4 DWT 419 419 6679 6679 107.3
DWT 66 66 127 127 0.2 BCSSTKO06 420 13239 13437 123.9
DWT 72 72 147 151 0.7 BCSSTKO7 420 13224 13437 123.9
CAN 73 73 520 520 0.9 BCSPWRO05 443 3076 3354 90.3
ASHS85 85 490 490 14 CAN 445 445 15494 15494 150.4
DWT 87 87 428 434 1.2 NOS5 468 20446 20446 209.0
CAN 96 96 1078 1080 2.1 BCSSTK20 485 3006 3006 195.8
NOS4 100 651 651 1.1 DWT 492 492 3361 3361 151.0
BCSSTKO03 112 272 272 0.3 494 BUS 494 3499 3499 237.5
BCSPWRO03 118 434 434 3.2 DWT 503 503 13152 13152 192.3
BCSSTKO04 132 3154 3159 4.9 DWT 512 512 3975 3975 144.6
BCSSTK22 138 628 641 2.2 LSHP 577 577 10035 10045 222.1
CAN 144 144 969 969 2.3 DWT 592 592 9498 9498 220.5
BCSSTKO05 153 2191 2192 43 DWT 607 607 13278 13278 419.3
CAN 161 161 2482 2482 6.6 CAN 634 634 28493 28493 499.9
DWT 162 162 1108 1286 5.8 662 BUS 662 8962 8962 318.5
CAN 187 187 2184 2195 9.7 NOS6 675 9095 9095 184.2
DWT 193 193 4355 4388 15.3 685 BUS 685 8528 8528 799.8
DWT 198 198 1092 1092 7.6 CAN 715 715 24414 24414 984.3
DWT 209 209 2494 2621 25.1 NOS7 729 34226 34675 338.7
DWT 221 221 1646 1646 20.1 DWT 758 758 6392 6392 371.3
CAN 229 229 3928 4141 27.9 LSHP 778 778 15719 15719 586.2
DWT 234 234 782 803 10.6 BCSSTK19 817 7638 7638 855.7
NOS1 237 467 467 2.1 DWT 869 869 13107 13107 1526.5
DWT 245 245 2053 2053 29.7 DWT 878 878 17259 17259 1104.6
CAN 256 256 5049 5049 40.8 GR 3030 900 24311 24311 1190.4
LSHP 265 265 3162 3162 25.7 DWT 918 918 16502 16502 1277.3
CAN 268 268 5215 5215 25.0 NOS2 957 1907 1907 36.0
BCSPWRO04 274 1808 1992 40.6 NOS3 960 38676 45631 2222.8
ASH292 292 2717 2784 61.8

7. CONCLUSIONS

Our goal was to develop a state-of-the-art solution method
for the PMP. We accomplished this goal with an implementa-
tion of a SS procedure that computational experiments show
to be superior to the solution methods reported in the litera-
ture. We developed a number of mechanisms that we believe
can be helpful in similar problem settings. For instance, the
ideas behind our efficient move evaluation in the improve-
ment method could be adapted to other problems with similar
characteristics (i.e., labeling vertices in a graph). Also, in
the process of choosing the best SS design, we discovered
that a sequential approach is capable of producing a highly
competitive design and thus allowing future SS implemen-
tations to avoid a full-factorial design when such a design is
computationally intractable.

APPENDIX A

This is the model () function used within the LSP
applied to the HB instances that can be found in
www.optsicom.es/pmp/. Note that vcount [1] contains the

20 NETWORKS—2015—DOI 10.1002/net

number of vertices adjacent to vertex i and viist [i] [j]
is the jth vertex adjacent to vertex i. Also, p is the profile
of each vertex that is being added to the value of obj.

function model ()
{
// x[i] [j] equal to 1 if vertex i is assigned
label j
x[1..nodes] [1..nodes] <- bool() ;

// one label per vertex i for [i in 1..nodes]
constraint sum[j in 1..nodes] (x[i] [j]) == 1;

// one vertex per label j for [j in 1..nodes]
constraint sum[i in 1..nodes] (x[i] [j]) == 1;

//label[i] is the label of vertex i
label[i in 1..nodes] <- sum[j in 1..nodes]
(F*x[11 [31);
obj <- 0; for [i in 1..nodes]
{
p <- 0;
for[j in 1..vcount[i]] p <- max(label[i]
- label[vlist[i] [j1], p);
obj <- obj + p;
}

minimize obj;

APPENDIX B

Table 9 shows the SS results for the 73 Harwell-Boeing
instances (ordered by size). The table compares the SS objec-
tive function value and the best known value (Best) and it also
shows the SS computing time (in seconds). Best solutions
found by the SS procedure are shown in bold.

Acknowledgment

The authors would like to thank Professor Robert R. Lewis
for sharing the source code of the RCM and SA methods.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

A. Agrawal, P. Klein, and R. Ravi, Ordering problems approx-
imated: Single-processor scheduling and interval graph com-
pletion, Automata Languages Programming 510 (1991),
751-762.

R.A. Botafogo, Cluster analysis for hypertext systems, Pro-
ceedings of the 16th Annual International ACM-SIGIR
Conference on Research and Development in Information
Retrieval, 1993, pp. 116-125.

V. Campos, E. Pifiana, and R. Marti, Adaptive memory pro-
gramming for matrix bandwidth minimization, Ann Oper Res
183 (2011), 7-23.

E. Cuthill and J. McKee, Reducing the bandwidth of sparse
symmetric matrices, Proc ACM 24th National Conf, 1969,
pp. 157-172.

A. Das and M. Roberts, Metric distances of permu-
tations, 2004, Available at: www.cra.org/Activities/craw_
archive/dmp/awards/2004/Das/paper.ps.

A. Duarte and R. Marti, Tabu search and grasp for the
maximum diversity problem, Eur J Oper Res 178 (2007),
71-84.

A. Duarte, F. Glover, R. Marti, and F. Gortdzar, Hybrid scatter
tabu search for unconstrained global optimization, Ann Oper
Res 183 (2011), 95-123.

T.A. Feo and M.G.C. Resende, A probabilistic heuristic for
a computationally difficult set covering problem, Oper Res
Lett 8 (1989), 67-71.

M. Gallego, A. Duarte, M. Laguna, and R. Marti, Hybrid
heuristics for the maximum diversity problem, Comput
Optim Appl 44 (2009), 411-426.

M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W. H. Freeman
and Co, 1979.

A. Gibbons, M. Paterson, J. Tordn, and J. Diaz, The minsum-
cut problem, Algorithms Data Struct 519 (1991), 65-79.
N.E. Gibbs, A hybrid profile reduction algorithm, ACM Trans
Math Softw 2 (1976), 378-387.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

F. Glover and M. Laguna, Tabu search, Kluwer Academic
Publishers, Boston, 1997.

G. Guan and K.L. Williams, Profile minimization of triangu-
lated triangles, Discrete Math 260 (2003), 69-76.

R. Karp, Mapping the genome: Some combinatorial problems
arising in molecular biology, STOC’93 Proc Twenty-Fifth
Ann ACM Symp Theory Comput, 1993, pp. 278-285.

D. Kendall, Incidence matrices, interval graphs and seriation
in archaeology, Pac J Math 28 (1969), 565-570.

M. Laguna and R. Marti, Scatter search: Methodology and
implementations in C, Kluwer Academic Publisher, Boston,
2003.

J. Lewis, The Gibbs-Poole-Stockmeyer and Gibbs-King
algorithms for reordering sparse matrices, ACM Transactions
on Mathematical Software 8 (1982), 190-194.

R. Lewis, Simulated annealing for profile and fill reduction,
Int J Numer Methods Eng 37 (1994), 905-925.

Y. Lin andJ. Yuan, Profile minimization problem for matrices
and graphs, Acta Math Appl Sinica, English-Series 10 (1994),
107-112.

R. Marti, A. Duarte, and M. Laguna, Advanced scatter search
for the max-cut problem, INFORMS J Comput 21 (2009),
26-38.

Matrix Market 2011, webpage. http://math.nist.gov/Matrix
Market/collections/hb.html

L. Michel and P. van Hentenryck, Localizer, Constraints 5
(2000), 43-84.

J.J. Pantrigo, R. Marti, A. Duarte, and E.G. Pardo, Scatter
search for the cut width minimization problem, Ann Oper
Res 199 (2012), 285-304.

M. Penrose, J. Petit, M. Serna, and J. Diaz, Convergence
theorems for some layout measures on random lattice and ran-
dom geometric graphs, J Combin Probab Comput 9 (2000),
489-511.

J. Petit, M. Serna, and J. Diaz, A survey of graph layout
problems, ACM Comput Surv 34 (2002), 313-356.

W. Poole, P. Stockmeyer, and N. Gibbs, An algorithm for
reducing the bandwidth and profile of a sparse matrix, SIAM
J Numer Anal 13 (1976), 236-250.

M.G.C. Resende, R. Marti, M. Gallego, and A. Duarte,
GRASP and path relinking for the max-min diversity prob-
lem, Comput Oper Res 37 (2010), 498-508.

M.G.C. Resende, S.H. Smith, and T.A. Feo, A greedy
randomized adaptive search procedure for maximum inde-
pendent set, Oper Res 42 (1994), 860-878.

Y. Saad, Iterative methods for sparse linear systems, Soci-
ety for Industrial and Applied Mathematics, San Francisco
(California), 2003.

R. Tewarson, Sparse matrices, Academic Press, New York,
1973.

NETWORKS—2015—DOI 10.1002/net 21

86 Graph layout problems: a metaheuristic approach

Chapter 9. Combining intensif. and diversif. in VNS 87

Chapter 9

Combining intensification and

diversification in VNS

e J. Sanchez Oro, J.J. Pantrigo, and A. Duarte. Combining intensification and
diversification strategies in VNS. An application to the Vertex Separation
problem. Computers & Operations Research, 52, Part B:209 — 219, 2014.
Recent advances in Variable neighborhood search.

— DOI: https://doi.org/10.1016/j.cor.2013.11.008
— Impact Factor (JCR 2015): 1.988

Subject Category Ranking Quartile
Operations Research and Management Science 19 / 82 Q1
Engineering, industrial 11 /44 Q1

Computer Science, interdisciplinary applications 32 / 104 Q2

Computers & Operations Research 52 (2014) 209-219

Contents lists available at ScienceDirect

puter:
& operations

research

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Combining intensification and diversification strategies in VNS.
An application to the Vertex Separation problem

@ CrossMark

Jestis Sanchez-Oro, Juan José Pantrigo, Abraham Duarte *

Dpto. de Ciencias de la Computacién, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain

ARTICLE INFO ABSTRACT

Available online 18 November 2013 The Vertex Separation problem (VSP) is an NP-hard problem with practical applications in VLSI design,
graph drawing and computer language compiler design. VSP belongs to a family of optimization
problems in which the objective is to find the best separator of vertices or edges in a generic graph. In
this paper, we propose different heuristic methods and embed them into a Variable Neighborhood
Search scheme to solve this problem. More precisely, we propose (i) a constructive algorithm, (ii) four
shake procedures, (iii) two neighborhood structures, (iv) efficient algorithmic strategies to explore them,
(v) an extended version of the objective function to facilitate the search process and finally, (vi) we
embed these strategies in a Reduced Variable Neighborhood Search (RVNS), a Variable Neighborhood
Descent (VND) and a General Variable Neighborhood Search (GVNS). Additionally, we provide an
extensive experimental comparison among them and with the best previous method of the literature.
We consider three different benchmarks, totalizing 162 representative instances. The experimentation
reveals that our best procedure (GVNS) improves the state of the art in both quality and computing time.
This fact is confirmed by non-parametric statistical tests. In addition, when considering only the largest
instances, the other two proposed variants (RVNS and VND) also obtain statistically significant
differences with respect to the best previous method identified in the state of the art.

© 2013 Elsevier Ltd. All rights reserved.

Keywords:

Combinatorial optimization
Intensification

Diversification

Variable Neighborhood Search
Layout problems

Vertex separation problem

1. Introduction definitions. Let L(p, ¢, G) be the set of vertices in V with a position
in the layout ¢ lower than or equal to position p. Symmetrically,
let R(p, @, G) be the set of vertices with a position in the layout ¢

larger than position p. In mathematical terms,

Lp,p,G)={veV:@v)<p},

Graph layout problems are a class of combinatorial optimiza-
tion problems where the objective consists of finding a linear
labeling of the vertices of a graph in such a way that a specific
objective function is maximized or minimized. Given an undir-
ected and unweighted graph G(V,E) where V (with |V|=n) and E
(with |E| =m) are the sets of vertices and edges, respectively, a
linear labeling ¢ of the vertices of G is a bijection ¢:V—
{1,2,...,n} which assigns a unique and different integer between
1 and n to each vertex ue V. A labeling has also been named as
linear ordering, linear arrangement layout, numbering or simply,
ordering. A common way to represent a layout problem is to dispose
the vertices of a graph in a straight line, where each vertex u is

R(p,p,G)={veV: @) >p}

In general, L(p, ¢, G) can be simply referred to as the set of left
vertices with respect to position p in ¢. Symmetrically, R(p, ¢, G) is
the set of the right vertices with respect to p in ¢. We define the
separation value at position p of layout ¢, Sep(p,@,G), as the
number of vertices in L(p, ¢, G) with one or more adjacent vertices

allocated in position ¢(u). Fig. 1a shows an example of a graph, G,
with 7 vertices and 11 edges, and Fig. 1b an example of a layout ¢.

The Linear Arrangement [27], Bandwidth [25], Cutwidth [23] or
Antibandwidth [7] fall into this class of optimization problems. In
this paper, we tackle the Vertex Separation problem (VSP). Before
defining mathematically the VSP, we need to introduce some

* Corresponding author. Tel.: +34 914888116.
E-mail address: abraham.duarte@urjc.es (A. Duarte).

0305-0548/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.11.008

in R(p, @, G). More formally
Sep(p, @, G) = [{ue L(p,p,G) : IVeRP,p,G) A (u,v) e E}|.

The Vertex Separation value (VS) of layout ¢ is the maximum of
the Sep-value among all positions in ¢:

VS(p.G) = max_Sep(p..G).

The Vertex Separation problem (VSP) then consists of finding a
layout, ¢*, minimizing the VS-value of the graph G. In mathematical

210 J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

terms

@* = arg min VS(p, G),
ped

where @ represents the set of all possible layouts of G.

Fig. 2a—f depicts the Sep-value of each position p of layout ¢,
Sep(p, ¢, G). For instance, Sep(1,p,G)=1 (see Fig. 2a) because
L(1,¢,G)={c} and R(1,¢,G)={A,D,E,B,F,G} and there is only one
vertex in L having an adjacent vertex in R. Similarly, Sep(5, ¢,G) = 4
(2e) because L(5, ¢, G) = {C, A, D, E, B} and R(3, ¢, G) = {F, G} and there
are four vertices {C,A,D,B} in L that has an adjacent vertex
in R. Notice that vertex E is not highlighted in Fig. 2e, since it
has no adjacent vertices in R. Therefore, it does not contribute to
the Sep-value. The objective function is then computed as the
maximum of these Sep-values. In particular, for the example
depicted in Fig. 2, this value is VS(G, ¢) = 4, associated to position
p=>5.

The VSP is strongly related to other well-known graph pro-
blems, such as the Path-width [17], the Node Search Number [19]
or the Interval Thickness [18], among others. The description of the
equivalences among these problems can be found in [12,17,19]. All
these optimization problems are NP-hard and have practical
applications in VLSI design [20], computer language compiler
design [4] or graph drawing [9].

We can find efficient exact approaches to solve the VSP on special
classes of graphs. A linear algorithm to compute the optimal Vertex
Separation of a tree is proposed in [10] as well as a O(nlog n)
algorithm for finding the corresponding optimal layout. The algorithm
was improved in [28] with a linear time procedure to find the optimal
layout. In [24] an alternative method to compute the Vertex Separation
of trees was proposed. In [11] a O(n log n) algorithm to compute the
Vertex Separation of unicyclic graphs (i.e., trees with an extra edge) is
proposed. A polynomial-time algorithm to compute the Path-Width

:
'
~

Sep(l,9,6)=1

c

Sep(3.0.6)=3

Sep(5.0.G) =4

(which is identical to VSP) is proposed in [2]. However, the algorithm
cannot be considered from a practical point of view, since the bound
on its time complexity is €2(n), see [11]. In [5] it is proposed
a polynomial time algorithm for optimally solving the VSP for
n-dimensional grids. Co-graphs and permutational graphs can also
be optimally solved as it was proposed in [1,2], respectively. Approx-
imation algorithms have also been proposed for the VSP. Specifically,
[3] proposes a polynomial time O(log2 n)—approximation algorithm
for general graphs and a O(log n)—approximation algorithm for
planar graphs. Similar results for binomial random graphs are pre-
sented in [6]. Finally, [8] proposed a Basic VNS for the VSP. In
particular, the authors presented two constructive procedures and
one local search based on interchange moves. As far as we know, this
algorithm obtains the best results in this problem, so we use it to test
the performance of our proposals.

The main objective of this paper is to provide experimental
evidences that, in the context of VNS, the compromise between
intensification and diversification usually obtains the best results.
In order to do so, we propose three VNS algorithms (RVNS, VND,
and GVNS), where RVNS mainly focuses on the diversification,
VND mainly focuses on the intensification, and GVNS balances
intensification and diversification. In this line, we also propose
new strategies to combine intensification and diversification
within shake procedures. Computational experiments reveal that
our best procedure (GVNS) improves the state of the art in both
quality and computing time. This fact is confirmed with non-
parametric statistical tests. In addition, when considering only the
largest instances, the other two proposed variants (RVNS and
VND) also obtain statistically significant differences with respect
to the best previous method identified in the state of the art.

The rest of the paper is organized as follows. Section 2 introduces
the VNS variants studied in this paper. We propose a new con-
structive procedure for the VSP (see Section 3.1). We provide a formal
definition of two new neighborhood structures for the VSP based on
insert moves (see Section 3.2). We then introduce four different
shake procedures with different balance between diversification and
intensification (see Section 3.3). In Section 3.4 we propose an
extended version of the objective function which provides a more
convenient view about the quality of the solutions. Additionally, we
include an efficient strategy to perform insert moves (see Section 3.5)
and algorithmic methods to explore the neighborhood structures
(Section 3.6). The paper finishes with the comparison of the
proposed algorithms with the state of the art (see Section 4) and
the associated conclusions (Section 5).

b

Sep(2,9.G) =2

Sep(6,0.G) =2

Fig. 2. (a)-(f) the computation of Sep(p,¢,G) (p =1, ...,6) for the layout ¢ = {C,A,D,E, B, F,G}.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 211

2. Variable Neighborhood Search

The Variable Neighborhood Search (VNS) is a metaheuristic
proposed by Mladenovic and Hansen [22] as a general framework
to solve hard optimization problems. It is based on the idea of
performing systematic changes of neighborhood structures within
the search procedure. The original metaheuristic has been widely
evolved with many extensions, highlighting Variable Neighbor-
hood Descent (VND), Reduced VNS (RVNS), Basic VNS (BVNS),
Skewed VNS (SVNS), General VNS (GVNS), Variable Neighborhood
Decomposition Search (VNDS) and Reactive VNS. See [14,15] for
recent thorough reviews.

Let N, with 1 < k < kngx be a finite set of pre-selected neighbor-
hood structures, where Ny(x) is the set of neighbor solutions of x in
the k-th neighborhood. When solving an optimization problem by
using different neighborhood structures (N;), VNS methodology
proposes to explore them in three different ways: (i) random,
(ii) deterministic, or (iii) mixed, which hybridizes both, determi-
nistic and random.

2.1. Random exploration of neighborhoods

The Reduced Variable Neighborhood Search (RVNS) consists of
exploring (generating) solutions at random in each Nj neighbor-
hood. This variant does not consider the application of a local
search procedure. In fact, the values of these random solutions are
directly compared with the value of the incumbent solution,
updating the best solution in case of improvement. The stopping
criterion in this variant is usually the CPU time allowed (tax)-

The pseudo-code of RVNS is shown in Algorithm 1. It has three
input arguments: an initial solution (x), the largest predefined
neighborhood (k;,qx) and the maximum computing time (tpax)-
The procedure starts by performing a perturbation to the current
solution using the function Shake, in step 5, and obtaining a new
solution x'. In step 6, it is decided whether the RVNS needs to
explore a larger neighborhood by increasing k (if x’ is worse than x)
or not, which implies to set k=1 (if x’ is better than x). Steps 5 and
6 are repeated until k4 is reached. This parameter determines the
maximum number of different neighborhoods to be explored in the
current iteration when there is no improvement in the solution.
Steps 3-8 are repeated until t,. is reached, starting in each
iteration from the incumbent solution.

Algorithm 1. Pseudocode of RVNS.

—

procedure RVNS (X, Kmax, tmax)
repeat
k1
repeat
X'« Shake(x, k)
(X, k) < NeighborhoodChange(x, X, k)
until k = kpngyx
t«<—CPUTime()
until t >t
end RVNS

QURwN

S9N

e

2.2. Deterministic exploration of neighborhoods

In Variable Neighborhood Descent (VND), several different
neighborhoods are explored in order, typically from the smallest
and fastest to evaluate, to the largest and slowest one. The process
iterates over each neighborhood while improvements are found,
performing local search until a local optimum is found at each
neighborhood. Only strictly better solutions are accepted after each
neighborhood search. Notice that most local search procedures are

based on only one neighborhood which means that the local
optimum is obtained with respect to that neighborhood. In VND,
the returned solution is alocal optimum in each Ny with 1 < k < kpgx.
Therefore, the global optimum is more likely to be found.

The pseudo-code of VND is shown in Algorithm 2 where a
nested strategy is considered. It has only two input arguments: an
initial solution (x) and the number of neighborhoods (k;qx). The
procedure starts by obtaining a local optimum x’ with respect to
the first neighborhood. Then, instead of abandoning the search (as
a local search procedure), VND resorts to the following neighbor-
hood searching for an improvement. If so, the search starts again
by considering the first neighborhood (which implies to set k=1).
Otherwise, VND explores the next neighborhood by increasing k
(until kg is reached). This search strategy is condensed in steps
4 and 5 of Algorithm 2.

Algorithm 2. Pseudocode of VND.

1 procedure VND(X, Kinax)

2: k<1

3: repeat

4: X' —arg min f(y) {* Find the best neighbor in N(x)*}
yeN(x)

5: NeighborhoodChange(x, X', k)

6: until k = k;0x

7: end VND

2.3. Mixed exploration of neighborhoods

In general terms, the RVNS strategy favors the diversification of
the search, while the VND focuses on the intensification. Basic VNS
(BVNS) and its generalization, known as General VNS (GVNS) are a
compromise between these two strategies. The BVNS and the GVNS
methods combine deterministic and random changes of neighbor-
hoods, where the deterministic component is given by an improve-
ment procedure and the random component is given by the shake
procedure. The main difference between BVNS and GVNS is that the
improvement strategy in BVNS is typically a local search, while in
GVNS it is replaced by a VND algorithm. This approach has led to
some of the most successful applications reported in the literature
[16]. Therefore, we consider GVNS instead of BVNS.

Algorithm 3 shows the pseudo-code of GVNS. It starts by
considering an initial solution x, which is an input argument
together with K,qx and tq. This solution is then perturbed using
the function shake (step 5), obtaining a new solution x’. Then, a local
optimum, x”, is reached by using the VND procedure (step 6). In step
7, it is decided whether the GVNS needs to explore a larger
neighborhood (since x” is worse than x) or not, which implies to
set k=1.Steps 5-7 are repeated until k.« is reached. This parameter
determines the maximum number of different neighborhoods to be
explored in the current iteration. Steps 3-9 are repeated until t,,,4x iS
reached, starting in each iteration from the incumbent solution.

Algorithm 3. Pseudocode of GVNS.

—_

procedure GVNS (X, Kmax, tmax)
repeat
k<1
repeat
X'« Shake(x, k)
X"« VND(X)
NeighborhoodChange(x, X", k)
until k = kyqx
t—CPUTime()
until t > tyg
end GVNS

SR NU AW

— O

212 J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

3. Algorithm approach

From an algorithmic perspective, VNS variants mainly differ in
how they implement three basic strategies: shake (Section 3.3),
neighborhood change (Section 3.4), and improvement (Section
3.6). We also consider a constructive procedure to create the initial
solution needed for all VNS variants (Section 3.1). Finally, we
propose different neighborhood structures (Section 3.2) and an
efficient strategy to traverse them (Section 3.5).

3.1. Constructive procedure

We propose a new greedy procedure for constructing the initial
solution for each VNS procedure in the context of the Vertex
Separation problem. Given a graph G, this procedure is based on
the creation of a tree T, where the nodes are organized in levels
[21]. In this tree, two nodes belong to the same level if both have
the same depth; otherwise, they belong to different levels. Let us
denote T = {Ly, Ly, ..., L;}, where the first one, L;, contains only one
vertex (i.e., the root of the tree). L, contains only the adjacent
vertices to the one in L;. In general, a level Ly with 1<s<lI
contains all the vertices adjacent to some vertex in L;_ that are
not present in any previous level.

The constructed tree guarantees that the vertices in alternative
levels are not adjacent. Therefore, we use a breadth-first search
approach to construct the corresponding tree. The number of
levels I (depth of the tree) exclusively depends on the vertex in L,
and the graph G. In the context of the Vertex Separation problem,
the larger the depth, the better the tree [8].

Algorithm 4 shows the pseudo-code of this procedure. The
algorithm starts by constructing the set 7 with n different spanning
trees of G. In particular, each Te7 is constructed by using a
breadth-first search procedure (BFS), starting the search from a
different vertex v e V. Then, the algorithm finds the deepest tree T*
in the set 7 (see step 2). In the next step, we identify the set of
levels in T* and initialize the solution to the empty set (steps 3 and
4). The constructive procedure scans the levels L; in ascending order
(steps 5-10) and, for each element u in set L; (see steps 6-9), the
procedure inserts it in the best position of the partial solution under

a

Original solution ¢

construction (steps 7 and 8). The constructive method ends when
all the vertices of the tree have been inserted in the solution.

Algorithm 4. Pseudocode of the constructive procedure.

1: procedure Constructive (G)

2: T* < arg max Depth(BFS(G, T))
TeT

3: {L1,Ly, ..., L} < Levels(T*)

4: P

5: for ;e T* do

6: foruel; do

7. j < argmin VS(nsert(¢, u,j))

1 <j < ssize(p)

8: @« Insert(¢p, u,j*)

9: end for

10: end for

11: return ¢

12: end Constructive

The proposed constructive procedure has two different stages.
The algorithm first constructs a spanning tree of the graph, which
places the vertices belonging to a given level in consecutive positions
of the layout. This strategy tries to place adjacent vertices as close as
possible in the corresponding layout. In general, when a vertex has its
adjacents in close positions, it is expected that the involved vertices
present low Sep-values. However, this first stage does not provide any
information about the relative ordering among the adjacent vertices.
Therefore, we refine the solution under construction in the second
stage. Specifically, the constructive procedure searches, for each vertex,
the best position to be placed in the partial solution.

3.2. Neighborhood structures

Solutions to graph arrangement problems are typically repre-
sented as permutations, where the first vertex in the permutation
receives the label 1, the second vertex receives the label 2, and so
on. In this section, we define two neighborhood structures for

b

Insert(e,C.5)

Fig. 3. (a) A given layout ¢ and (b)-(f) different solutions obtained inserting vertex C in positions i=1, 2, 5, 6 and 7.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 213

permutation-based solutions. They are based on insert moves,
which are typically defined as follows: given a solution ¢ =
V1, Vis 1, VisVie 1, - V21, Vi, Ve 1, ..., V), Insert(g, vy, j) consists
of removing the vertex v; from its current position i= ¢(v;), and
inserting it in position j, producing a new solution ¢’ =
(V1. Vi1, Vig1s - Vj—1, V), Vi, Vg 1, ..., Vo). For the sake of simpli-
city we denote ¢’ = Insert(g, v;,Jj).

Considering the insert move defined above, we introduce the
first neighborhood of ¢ as the set of solutions reachable by
inserting the vertex v in each position of the permutation. This
neighborhood is referred as Ni(¢, v) and it is formally defined as

Ni(p,v) = (@' = Insert(p,v.j) : 1 <j<n}.

The second neighborhood is based on the idea that we can
identify “good” positions for a given vertex. Specifically, let S(v)
be the set of adjacent vertices to v. In mathematical terms, S(v) =
{ueV:(u,v)eE}. Let (uj,uy,....,usy) be the elements of S(v)
sorted in ascending order with respect to their label in the
solution ¢ (i.e., @(u1) < @(uz) < -+ < @(Usw))). If we only consider
moves of vertex v, we would obtain the maximum reduction of
the Sep-value by inserting v in a position j such that
Pur) <j < @u).

Let us consider that vertex v has a label j=¢(v) such that
@(uq) <j < @(uy). We then expect that if we now insert v in a
position 1 <j < ¢(u;) the value of the objective function can only
remain equal or even get worse. Fig. 3 illustrates this behavior
with the layout depicted in Fig. 3a. Consider the vertex ¢ whose
set of adjacent vertices is S(¢)={a,D,E,F}, which satisfies the
property described above (i.e., p(2) < @(C) < @(D) < @(E) < ¢(F)) in
@ =1{G,A,B,C,D,E,F}. Fig. 3b and c shows the resulting solutions
after the insertion of C in positions 1 and 2, respectively. The
associated values of each solution produce a null improvement of
the objective function.

If we alternatively insert the vertex v in a position j such that
@(uy) <j <n, we observe again the same behavior (i.e., it obtains a
null improvement or deteriorates the value of the objective
function). Fig. 3d-f illustrates that the obtained solutions are equal
or worse than the original ¢ in terms of quality.

Notice that this property is a heuristic rule, which means that
positions ¢(uq) <j < @(uy) are not always the best option to
insert a vertex in terms of the value of VS(¢, G). Fig. 4 illustrates
an example where the described heuristic rule does not find the
best position for the insertion of a vertex. Specifically, Fig. 4a
shows an example of layout obtained from the graph depicted in
Fig. 1a, with a VS-value of 4. If we consider the heuristic rule
described above, and focusing on vertex E, the best position to
insert it is in j such that ¢(C) <j < ¢(B). Then, j=3 since ¢(c) =2
and ¢(B) = 3. Fig. 4b shows the layout obtained after performing
the aforementioned insert move, whose VS-value is 4. Therefore,
there is no improvement in the move. However, considering
again the layout depicted in Fig. 4a, if we insert the vertex E in
the last position of the layout (position 7), we obtain the layout
depicted in Fig. 4c with a VS-value of 3, which improves the
original one and the layout obtained when applying the
heuristic rule.

This neighborhood is mathematically defined as follows:

No(@,v) = {@’ = Insert(p,v.j) : @(u1) <j < @(uy)}.

In order to further reduce the size of this neighborhood we
only consider to perform the insertion of v in only one position
@(u1) <j < @(uy) selected at random. Therefore, considering this
reduction, the neighborhood N;(¢,v) finally contains only one
solution.

1
1
1
2 3 3 3 3

1
1
1 1 T 1 1
1

Fig. 4. (a) A given layout ¢, (b) insertion of vertex E in the last position (7) starting
from (a), and (c) insertion of vertex E in the most promising position (2) starting
from (a).

3.3. Shake

In this section we propose 4 different shake functions for the
vertex separation problem. These variants differ in how each one
balances the intensification and the diversification. For each shake
function we need to identify the set of vertices which will be
perturbed and the associated positions for that vertices. In
particular, Shake—1(¢, k) selects k vertices at random and then
those vertices are inserted again in positions selected at random.
This method clearly favors the diversification of the search.

Shake—2(¢p, k) focuses on the intensification of the search.
Specifically, this method selects the k vertices in V with the largest
Sep-value in ¢. Then, the procedure finds the best position to
insert each vertex.

Shake—3(¢,k) and Shake—4(@,k) try to find a compromise
between the intensification and diversification. In particular,
Shake—3(@, k) selects k vertices at random, but instead of inserting
them in random positions, as Shake—1(¢g, k), they are inserted in
the best position. Finally, Shake—4(¢p, k) selects the k vertices with
the largest Sep-value in ¢, and then the procedure inserts the
vertices in random positions.

3.4. Neighborhood change

VSP is a min-max problem [8] where the value of the objective
function is usually reached in several positions of the solution ¢.
This kind of problems presents a “flat landscape”, which turns out
in a challenge for classical local search procedures. Typically, local
search strategies do not perform well from a computational point
of view, since most of the moves have associated a null value.
Then, given a graph G, changing the label i of a particular vertex v;
in ¢ (i.e.,, obtaining a new solution ¢’) such that its Sep-value is
decreased, does not necessarily imply that VS(G, @) < VS(G, @).

214 J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

However, it can be considered as an interesting move if the
number of vertices with a relative large Sep-value is reduced,
regardless whether the objective function improves or not.

Given a solution ¢, let us define C(¢,i) as the set of vertices
whose Sep-value is equal to i. For instance, the C sets for the layout
depicted in Fig. 3a are: C(@, 1) ={G}, C(¢,2) ={a,B}, and C(¢,3) =
{C,D,E}.

Let cqx be the index associated to the set which contains the
vertices with the largest Sep-value. Obviously, VS(@, G) = cnax. We
propose an alternative formulation (i.e., a new objective function)
for the vertex separation problem. This extended formulation,
denoted as EVS(¢, G) overcomes the lack of information provided
by the original objective function. Specifically, this new objective
function is defined as follows:

Cmax .
EVS(g,G) = _Zl n'|C(g, 1)
i=

With this new formulation, we could compare any pair of
solutions beyond the value of ¢4y In particular, we consider that a
move improves the current solution (using the new objective
function) if any vertex involved in the move is removed from
C(¢, 1) and included in C(¢g,j) with j < i, and without increasing the
cardinality of any set C(¢,]) for [>i.

It is important to remark that if we have two solutions ¢ and
@' such that VS(¢,G)<VS(¢',G) (ie, ¢ is better than ¢’) then
EVS(¢,G) <EVS(¢',G). A formal proof of this property is provided
as follows.

Proof. Let Cpax =VS(@,G) and ¢, =VS(¢’,G) be the indexes
associated to the set which contains the vertices with the largest
Sep-value in ¢ and ¢/, respectively. By definition, the extended
version of the objective function for a solution ¢ and a graph
Gis

Cmax . .
EVS(p.G) = '21 n'|C(e, 1)|.
1=

Let us separate the last term of the summation from the rest of
elements

Cmax—1
EVS(¢, G) = n™ |C(¢p, Cmax)| + AZ] n'|C(e,).
1=

By construction, the n vertices of the graph are distributed
among the C(¢,i) sets, where 1 <i < cmqex. Obviously, if all vertices
are in set C(¢,Cmax), EVS presents its maximum value. In this
situation C(@, Cmax) =1 and C(@,i) =0 for 1 <i < cipax. Then,

EVS(@, G) < nmex x = pmoxt 1,

Our hypotheses establish that cney < €y Then, considering that
both cpmgy and c,,,, are integer values, it trivially holds that cinex+
1<c, . Therefore

max-*

EVS(¢, G) < nmax.

The extended version of the objective function for a solution ¢’
and a graph G is

Cmax .
EVS(p',G)= X n'|C(g', D).
i=1

If we again separate the last term of the summation from the
rest of elements, we have

, , =1)
EVS(¢',G) =nmex|C(', Crg)|+ X 1'IC(¢p", D).
i=1

We can affirm that |C(¢’, ¢,,)| > 1 since at least one vertex must
be in C(¢’,C)- Additionally, Zf'gxlfln”|C((p’,i)| >0 since the
summation is performed over non-negative terms. Considering
that the n vertices of the graph are distributed among the C(¢’,)
sets, where 1 <i < cmgx, We analyze all the possible situations:

® There is only one vertex in C(¢’, C,,,)- Then, the remaining n—1
vertices are distributed among the C(¢’,i) sets where
1 <i< g Therefore,

T ,
EVS(¢’,G) =nr ¥ n'|C(@’,1)| > nm = EVS(e, G),
i=1

which implies that EVS(¢’, G) > EVS(¢, G)
® All the vertices are in C(¢’,C,q,). Then, |C(¢’,i)|=0, where
1 <i< Cpoy- Therefore,

EVS(¢', G) = nmx x n > nmex > EVS(¢p, G),

which implies that EVS(¢’, G) > EVS(¢, G)
® 1 <k<n vertices are in C(¢’, C;,)- Then,

. e ,
EVS(¢',G)=nmx x k+ Y. n'|C(g’,i)| > n‘m > EVS(¢, G),
i=1
which implies that EVS(¢’, G) > EVS(¢, G)

Then, independent of the distribution of the n vertices in the C-sets,
we have proved thatif VS(¢, G) < VS(¢’, G) thenEVS(¢, G) < EVS(¢’, G).

We then propose a neighborhood change procedure that
considers the aforementioned extended objective function. In
particular, Algorithm 5 compares the incumbent solution ¢ with
other solution ¢’ obtained from the k-th neighborhood using the
EVS. If ¢’ is better than ¢, the procedure updates the incumbent
solution (step 3) and the search method resorts to the first
neighborhood structure (step 4). Otherwise, the method considers
the next neighborhood by increasing the value of k (step 6).

Algorithm 5. Pseudocode of the neighborhood change function.

1: procedure NeighborhoodChange (¢, @', k)
if EVS(¢’, G) < EVS(¢, G) then
Q@
k<1
else
k—k+1
end if
end NeighborhoodChange

NI AN

3.5. Efficient implementation of insert moves

Given a graph G and a layout ¢, the computation of VS(¢,G)
requires to scan all the edges in the graph. Therefore, in a direct
and straightforward implementation, the update of the objective
function after performing a move is extremely time-consuming.
However, it is clear that the Sep-values of some vertices does not
change when we perform a move and therefore we do not need to
re-compute it again. This idea was originally proposed in [8]. In
particular, the authors proposed a move based on the interchange
of two vertices in the layout. Considering the way in which the
Sep-value is computed (difference between the label of incumbent
vertex and the label of its adjacent with the largest label), if the
move interchanges two vertices with labels i and j, it is only
required to update the Sep-values from 1 to max({i,j}.

We use in this paper an alternative definition of the Sep-value
(see Section 1), which allows us to reduce the number of vertices
that must be update. Specifically, after performing the move
Insert(¢, v;,j), it is only required to update the Sep-values in

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 215

b

1 2 3 4 4 2

Fig. 5. Update of the objective function after a swap move.

positions k such that i < k <j. As it will be shown in Section 4, this
observation saves a considerable amount of computing time. We
propose an additional improvement in the way that the Insert
move is implemented. In particular, the move is decomposed as a
sequence of swaps, where each swap is defined as the interchange
of vertices in consecutive positions in the corresponding permuta-
tion. This move is referred to us ¢’ =Swap(g,v;,v;,1) in such a
way that ¢'(vi) = @(viy 1) and ¢'(Vi 1) = p(vy).

Let us consider, without loss of generality, that (i < j). Then, the
move Insert(¢,v;,j) can be computed as the sequence of swaps
of vertices in positions (i,i+1), (i+1,i+2) and so forth until
(G—1,j). If we store these values, the computation of the move
Insert(¢, v;,j+ 1) is equivalent to compute the swap move between
positions (j,j+1) after performing Insert(g,v;,j). The situation
when i > j is completely equivalent.

The computation of the objective function after a swap move
between the vertex v; in position ¢(v;)=1i and the vertex v;,; in
position ¢(v;, 1) =i+ 1 only involves the update of the Sep-value in
position i. Fig. 5 shows an example of a swap move between
vertices B and E, in positions 4 and 5, respectively. It is easy to see
that the only Sep-value that needs to be updated is the one in
position 4 (highlighted in Fig. 5b). In particular, Sep(4,p,G) =3
and, after performing the swap, Sep(4, ¢’, G) =4, while the other
Sep-values remain unaltered.

In addition, the value of Sep(i,’,G) can be incrementally
computed by considering the value of Sep(i— 1, ¢, G). In particular,
Sep(i,',G) =Sep(i—1,¢,G)+6" —5~, where §* determines if the
vertex in position i (previously in position i+ 1) has, at least, one
adjacent in the set R(i, ¢, G). If so, the Sep-value is incremented by
one unit. Otherwise, it holds the same value. On the other hand,
O~ refers to those vertices in L(i, ¢, G) whose adjacent vertex with
the largest label is the one in position i. In mathematical terms

5 _ { 1 if IRG,,G) N S(v)| > 0,
~ 1 0 otherwise

s

5 = HVEL(i,q), G) N Sw): max ¢(u)=i}

where S(v) represents the set of adjacent vertices to v. This
strategy saves a considerable CPU time since it only updates one
position and the computation of the Sep-value in that position is
incrementally performed.

Considering again the example shown in Fig. 5, 6" = 1 because the
vertex B in position 4 has one or more adjacent vertices (F and G)
placed in a position larger than 4. On the other hand, 6~ =0 since
there are not vertices in the solution whose adjacent vertex with the
largest label is B.

3.6. Local search methods

In this paper we propose two local search strategies, LS; and LS,,
that scan the neighborhoods N; and N, respectively. Algorithm 6
represents the pseudocode for both methods, where LS;=
LocalSearch(¢,1) and LS, = LocalSearch(¢,2). The pseudocode
starts by sorting the vertices in descending order of their Sep-
value, constructing the ordered set A (step 7). Then, LocalSearch

finds the best solution for each node of A in their corresponding
neighborhood (step 9). Next, the new solution ¢’ is compared with
the best solution so far ¢* considering the alternative objective
function (i.e., EVS) in step 10, updating it if needed (step 11). The
LocalSearch procedure performs moves while an improvement is
produced (steps 4-15). Finally, the method returns the best
solution found in the corresponding neighborhood.

Algorithm 6. Pseudocode of the local search procedure.

1: procedure LocalSearch(@,k)
2: improvement « true
3: §0* —Q
4: while improvement do
5: improvement « false
6: @Q—q@*
7: A« OrderBySepValue(¢p)
8: for all ve A do
9: @' < arg min EVS(¢, G)
@ € N(v)
10: if EVS(¢’, G) < EVS(¢*, G) then
11: (p* «— (p’
12: improvement « true
13: end if
14: end for

15: end while
16: return ¢~
17: end LocalSearch

4. Computational experience

This section reports the computational experiments that we
have performed for testing the efficiency of the proposed three
VNS variants (RVNS, VND, and GVNS) for solving the VSP. All the
algorithms were implemented in Java SE 6 and the experiments
were conducted on an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB
RAM. We have considered three sets of instances previously used
in this problem. All instances are available at http://www.optsi
com.es/vsp/. A detailed description of each type of instances
follows:

® 1B: We derived 62 instances from the Harwell-Boeing Sparse
Matrix Collection. This collection consists of a set of standard
test matrices M = M,,, arising from problems in linear systems,
least squares, and eigenvalue calculations from a wide variety
of scientific and engineering disciplines. The graphs are derived
from these matrices by considering an edge (u,v) for every
element My, # 0. From the original set we have selected the 62
graphs with n < 1000. The number of vertices and edges ranges
from 24 to 960 and from 34 to 3721, respectively.

® Grids: This set consists of 50 matrices constructed as the
Cartesian product of two paths [26]. They are also called two-
dimensional meshes and the optimal solution of the VSP for
squared grids is known by construction, see [6]. Specifically,
the vertex separation value of a square grid of size 1 x 4 is A.
For this set, the vertices are arranged on a square grid with a

216 J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

dimension A x A for 5 <4 <54. The number of vertices and
edges range from 5 x 5=25 to 54 x 54=2916 and from 40 to
5724, respectively.

® Trees: Let T(1) be set of trees with minimum number of nodes
and vertex separation equal to A. As it is stated in [10], there is
just one tree in T(1), namely the tree with a single edge, and
another one in T(2), the tree constructed with a new node
acting as root of three subtrees that belong to T(1). In general,
to construct a tree with vertex separation A1+1 it is necessary to
select any three members from T(4) and link any one node from
each of these to a new node acting as the root of the new tree.
The number of nodes, n(4), of a tree in T(4) can be obtained
using the recurrence relation n(d)=3n(A-1)+1 where and
n(1)=2 (see [10] for additional details). We consider 50
different trees: 15 trees in T(3), 15 trees in T(4) and 20 trees
in T(5). The number of vertices and edges range from 22 to 202
and from 21 to 201, respectively.

We have divided our experimentation into two different parts:
preliminary experimentation and final experimentation. The pre-
liminary experiments were performed to set the values of the key
search parameters of each VNS variant as well as to show the merit
of the proposed search strategies. We consider a representative
subset of 23 HB instances, with different sizes and densities.
Specifically, we consider: 494_BUS, 662_BUS, 685_BUS, BCSPWR04,
CAN_292, CAN_445, CAN_634, CAN_715, DWT_245, DWT_307,
DWT_310, DWT_361, DWT_419, DWT_503, DWT_592, DWT_758,
LHSP_778, NOS3, NOS4, NOS5, NOS6, NOS7, and PLAT362.

In our first experiment we compare the performance of the
proposed constructive procedure (named as Cgreeqy and described
in Section 3.1) with the best previous constructive approach
(named as C2 in [8]). We generate one solution for each instance
with each constructive procedure. Table 1 reports #Best, number

of best solutions found in the experiment; Avg., average quality
over all instances; Dev. (%), average percent deviation with respect
to the best solution found in the experiment; and Time, average
computing time in seconds required by the procedure. We report
these statistics in the remaining experiments.

Table 1 shows that Cgpreqy clearly outperforms C2 in terms of
both, number of best (23 versus 8) and average percentage
deviation (0.00% versus 11.88%). Our constructive procedure needs
more CPU time (0.53 versus 0.18). However, this time is negligible
when considering the computing time of the whole algorithm
(constructive procedure plus the corresponding VNS variant).
Therefore, we consider Cgreeqy as the best constructive procedure
and it will be used for the remaining experiments.

In the next experiment, we study the performance of the
incremental computation of the objective function described in
Section 3.5 over the instances used in the preliminary experi-
mentation. In particular, we test whether the use of swap moves
(as a way of implementing insert moves) reduces the CPU time or
not. We construct a solution with Cgeq, and then we improve it
with the local search based on insert moves. In order to have a
clear idea about the saving in the computing time, we compare
our proposal with the one proposed in [8], and with a direct
computation of the objective function. Fig. 6 depicts a diagram
where the X-axis represents the set of instances considered for this
experiment (ordered according to the number of vertices) and the
Y-axis gives the computing time required to obtain a local optimum
for the three considered methods (Insert Moves, Interchange Moves,
and Direct) in the corresponding instance. The Y-axis uses a
logarithmic scale to reduce the ranges to a more manageable size.
The figure clearly shows that the saving in computing time is
significant for the introduced method. Specifically, for these instances
the proposed method is about 40 times faster than the incremental
computation described in [8] and it is about 1000 times faster than
the direct computation of the objective function. Notice that the

Table 1 Table 2
Comparison of different constructive procedures. Comparison of different shake procedures.
Careedy 2 RVNS-1 RVNS-2 RVNS-3 RVNS-4
#Best 23 8 #Best 15 7 19 7
Avg. 42.26 46.43 Avg. 37.74 42.09 37.48 42.04
Dev. (%) 0.00 11.88 Dev. (%) 2.33 16.24 1.27 16.06
Time 0.53 0.18 Time 101.96 102.00 101.99 101.96
10000
== |nsert move Interchange move =@= Direct impl.
1000 -
100 4
10 o N\ e\
1] -
0.1 [
0ot] ﬁ-—iM
T/ W
0.001 +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 6. Incremental computation of the objective function.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 217

Table 3
Comparison of different neighborhoods.

LS, LS, VND
#Best 17 6 23
Avg. 37.35 4113 36.65
Dev. (%) 2.59 15.01 0.00
Time 3.93 0.78 6.94

incremental computation described in [8] is about 25 times faster
than the direct computation.

In the next experiment, we compare the performance of 4 RVNS
variants (RVNS-1, RVNS-2, RVNS-3, and RVNS-4). The only differ-
ence among them is the shake procedure (see Section 3.3) used in
each one. In particular, RVNS-x considers the Shake—x function,
where x € {1,2,3,4}. As it is pointed out in [15], the best outcomes
in RVNS are obtained when the value of k. is 2 or 3. Then, we
select knax =3 since we obtained slightly better results. Table 2
shows the results of the 4 RVNS variants when t,,,4x is set to 100 s.
In this time horizon, RVNS-3 emerges as the best procedure,
where the shake procedure selects vertices at random that are
then placed in their best position (maximum decreasing of the
objective function). This strategy seems to be the most promising
one since it balances diversification (random selection of vertices)
with intensification (greedy selection of the best position). In fact,
selecting vertices at random (RVNS-1 and RVNS-3) produces better
outcomes than selecting them in a greedy fashion (RVNS-2 and
RVNS-4).

In the fourth preliminary experiment, we compare the perfor-
mance of the VND with the local search procedures in isolation
(i.e., LSy and LS;). Typically, VND explores the neighborhoods from
the smallest and fastest to evaluate, to the slowest and largest one.
Consequently, our VND first considers N, and then N;. Notice that
the neighborhoods are explored in a nested strategy. Results in
Table 3 confirm that the VND procedure compares favorably with
simple local search methods. Specifically, VND achieves the lowest
deviation (0.00%) compared with the two local search methods
tested (2.59% and 15.01% for LS1 and LS2, respectively). It is worth
to mention that the results of LS2 seem to be quite bad. However,
when coupling LS1 and LS2 in a VND strategy, the resulting
algorithm obtains the best outcomes.

The next experiment consists of selecting the best GVNS variant
by running a single full-factorial experiment. In particular, we
consider the 4 shake functions described in Section 3.3 and
Kmax = {0.05n,0.10n,0.15n,0.20n}, n being the number of vertices
of the instance. For the sake of simplicity we do not show this
experiment in a table and we only report that the best results are
obtained using the Shake—1 procedure. This result is in line with
the ones shown in Table 2. Specifically, the best strategy consists of
selecting the vertices at random. However, in the GVNS context,
the positions (where those vertices are placed) are selected at
random. This result can be partially explained when considering
that the shake procedure in GVNS mainly diversify the search and
the intensification is performed by the improvement strategy
(i.e., VND algorithm). As expected, the higher the value of kpnax,
the better the results are. Unfortunately, the computing time also
increases with the value of k, so we set k=0.15n as a compromise
between computing time and quality.

We compare in the next experiment the best of each VNS
variant (RVNS, VND, and GVNS) with the best previous method
identified in the state of the art [8], which is also a VNS algorithm.
Consequently, in order to avoid a misunderstanding with the VNS
variants that we are proposing in this paper, we refer to this
method as BestPrev. To provide a fair comparison, GVNS has the
same stopping criterion than BestPrev (either k reaches k;qx Or the

Table 4
Final comparison over the sets Grids (50 instances), Trees (50 instances), and HB
(62 instances).

GVNS RVNS MS_VND BestPrev
Grids #0pt. 50 50 50 50
Avg. 29.5 295 295 295
Dev. (%) 0.00 0.00 0.00 0.00
Time 93.32 215.30 101.08 1422.76
Trees #Opt 40 34 35 31
Avg. 430 4.46 4.40 4.64
Dev. (%) 4.00 7.00 6.00 11.00
Time 9.07 21.10 298 126.73
HB #Best 53 28 27 34
Avg. 24.60 27.00 26.77 26.11
Dev. (%) 2.07 10.85 11.91 6.90
Time 482.08 700.03 702.89 705.60

CPU time exceeds tmgx = 1000s). RVNS has t;,. as input para-
meter, which is set to the same CPU time than BestPrev. Finally, in
the case of VND, tyq is not an input parameter. Therefore, to be able
to execute VND for the same CPU time than the other variants, we
consider a multi-start scheme, where each iteration consists of a
construction (with the procedure described in Section 4) and then a
VND execution. Table 4 reports the results of this experiment. This
table is structured into three main rows. Each row represents the
results associated to each set of instances. In particular, the first row
reports the results of the four algorithms over the set Grids. In
sight of these results we can conclude that grids instances are easily
solved by the four procedures. Although the computing time seems
to be relatively large, it is important to note that all the procedures
find the optimum value in less than a second. Therefore, we do
believe that this set of instances does not worth to be included in
future comparisons. Regarding the instances of the set Trees
(second main row), the four algorithms are able to find the optimal
solution for the small and medium instances (i.e., Trees with 22 and
67 vertices). Considering the largest tree instances (with 202
vertices), the BestPrev only obtains one optimum solution, while
the three proposed methods obtain, 4 (RVNS), 5 (MS_VND) and 10
(GVNS) out of 20, respectively. Although the CPU time of the four
procedures is relatively small, our three methods need much less
time to produce better results.

The third main row reports the results over the most challen-
ging set of instances (i.e., HB). As it was aforementioned, the
optimum of these instances is not known. Moreover, the proper-
ties of each instance (density, max and min degree, etc.) enor-
mously vary from one to another. Table 4 shows that GVNS clearly
outperforms the other three methods (including the best method
found in the state of the art) in average percentage deviation and
number of best solutions found. Moreover, it only needs a half of
the computing time used by the other three methods to produce
much better results. Therefore, results reported in this table
suggest the superiority of GVNS over the other three methods.
Regarding RVNS and MS_VND, BestPrev apparently obtains better
results. In order to confirm these hypothesis, we applied the non-
parametric Friedman test [13] for multiple correlated samples to
the best solutions obtained by GVNS, RVNS, MS_VND, and Best-
Prev. This test computes, for each instance, the rank value of each
method according to solution quality (where rank 1 is assigned to
the best method and rank 4 to the worst one). Then, it calculates
the average rank values of each method across all the instances
solved. If the averages differ greatly, the associated p-value or
significance will be small. We only consider in this experiment the
instances in the HB set, and the largest instances of the Tree set
(trees with 202 vertices), since grids and small and medium trees
are optimally solved by all the algorithms.

218

The resulting p-value of 0.00001 (considering a level of
significance of 0.05) obtained in this experiment clearly indicates
that there are statistically significant differences among the four
methods tested. Specifically, the rank values produced by this test
are 1.88 (GVNS), 2.61 (BestPrev), 2.75 (MS_VND), and 2.76 (RVNS).
To detect the differences among BestPrev and the three proposed
methods in this paper and considering the proximity in the rank
between BestPrev, RVNS and MS_VND, we conduct a Wilcoxon's
test. Let R+ be the sum of ranks for the functions on which the
first algorithm outperforms the second one, and R— be the sum of
ranks for the opposite. Ranks corresponding to zero differences are
split evenly among the sums. If min{R+,R—} is less than or equal
to the critical value, the Wilcoxon's test detects significant differ-
ences between the algorithms, which means that an algorithm
outperforms its opponent.

Table 5 summarizes the results of this statistical test with a
level of significance 0.05, where the values of R+ (associated to
one of our methods) and R— (associated to BestPrev) of the test
are specified. The third column reports the p-value associate to
each experiment and the last column indicates whether Wilcox-
on's test found statistical differences between these algorithms or
not. In particular, if min{R+, R—} is less than or equal to the critical
value [29] in this experiment, this test detects that an algorithm
outperforms its opponent. In particular, if this fact occurs and,
simultaneously, R— = min{R+,R—}, then our method is better
than BestPrev. However, the confidence of the test is always
determined by the p-value.

These results complement the ones reported in Table 4. Speci-
fically, the Wilcoxon's test again confirm the superiority of GVNS
over BestPrev. Additionally, this test shows that there is no
significant statistical differences between RVNS versus BestPrev
and MS_VND versus BestPrev. Therefore, even considering the
results reported in Tables 4 and 5, it is not possible to say that
BestPrev is statistically better than either RVNS or MS_VND.

Table 5
Wilcoxon's test results.

R— R+ p-value Significant
GVNS versus BestPrev 134.5 900.5 0.00 Yes
RVNS versus BestPrev 520.5 299.5 0.14 No
MS_VND versus BestPrev 684.5 491.5 0.32 No

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

In the final experiment we explore the behavior of these
methods over a long-term time horizon, we run GVNS, RVNS,
MS_VND and BestPrev for 30 min, reporting every 30 s the average
deviation of the best solution found. We select the ten largest
instances in HB to illustrate the performance of the four proce-
dures over the hardest instances. Fig. 7 shows the corresponding
average time profile, where it is represented with a dash line the
best results found in the state of the art. We can observe that GVNS
consistently produces the best results, from the very beginning to
the end of the experiment. It is important to remark that GVNS
produces high quality solutions in the short-term horizon (out-
performing the state of the art in the first 30 s) and in the long-
term horizon (producing considerable improvements about
15005s). This fact shows that the intensification stage (VND
procedure) produces good solutions in short CPU time, but also
the diversification stage (shake procedure) is able to find promis-
ing regions in the search space.

MS_VND presents competitive results only in the short-time
horizon. This fact can be partially explained by considering that
the constructive procedure is not designed to perform multiple
constructions. Consequently, it produces high quality but not
diverse solutions. The improvement of the RVNS algorithm is
constant during the 30 min. As it was pointed out above, the
shake procedure embedded in this algorithm presents a balance
between diversification (selecting vertices at random) and inten-
sification (inserting them in the best possible position). This
strategy seems to be successful over the whole experiment. In
fact, it is expected that the RVNS would outperform MS_VND in
larger computing times. It is worth to mention that the superiority
of GVNS over the remaining methods comes from the fact that
GVNS behaves like MS_VND in short CPU times, while it behaves
like RVNS in larger computing times.

Table 6
Friedman's test results over the ten largest instances.

GVNS RVNS MS_VND BestPrev p-value
1 min 1.90 315 1.90 3.05 0.034
10 min 1.80 290 210 3.20 0.049
20 min 1.75 2.80 220 3.25 0.048
30 min 1.50 2.60 245 345 0.009

25%

e$= GVNS =ill= RVNS

P

MS_VND =@= BestPrev

20%

15%

10%

R R N R R R SRR
R A A PP E A AP S G F

e 4 N P s N R N A N 2 i g n ;
- AR R R TR ERTEE R EEETA

O © O NV O O O O 0V O O O
» QO A7 Y LD O 7 O (P AW O
ISR N RN NN

s

Fig. 7. Search profile for a 30 min run on the largest instances.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 219

Analyzing the results obtained by BestPrev, we can determine
that this procedure is not suitable when facing large instances. The
algorithm starts improving at the very beginning (60 s). After that
the method gets stuck until reaching 1000 s, mainly because the
local search method is slower than the ones proposed in this
paper. As a consequence, this method presents the worst perfor-
mance (at least in these instances).

Finally, we analyze the results of this experiment by consider-
ing the Friedman's test. Specifically, we apply a Friedman's test in
four different time stamps: 1 min, 10 min, 20 min, and 30 min.
Table 6 shows the rankings when considering the 10 largest (and
hardest) instances of the HB set. The resulting p -value in all the
considered time stamps indicates that the differences are statisti-
cally significant. Specifically, for 1 min GVNS and MS_VND emerge
as the best methods (with a ranking 1.90), followed by BestPrev
(3.05) and RVNS (3.15). When considering the results after 10 and
20 min, the GVNS improves its ranking as well as RVNS. It is
interesting to mention that MS_VND and BestPrev seem to be
stuck so their ranking get worse. Finally, after 30 min, the GVNS
even increases more the difference with respect to the other
algorithms (1.50). MS_VND holds the second position according
to the ranking value (2.45), but closely followed by the RVNS (third
method with ranking 2.60). Finally, BestPrev systematically pro-
duces the worst results, which led it to the last position of the
ranking with a value of 3.45.

5. Conclusions

In this paper, we propose different methods based on the
Variable Neighborhood Search methodology to deal with the
Vertex Separation problem. We provide an extensive experimental
comparison among them and with best previous method in
the state of the art. In more detail, we propose a constructive
procedure, four shake methods (with different balance between
intensification and diversification), two new neighborhood struc-
tures (and efficient strategies to explore them), and an extended
version of the objective function for the considered problem which
allows the comparison of solutions beyond the original objective
function. We embed these strategies in a Reduced Variable
Neighborhood Search (RVNS), a Variable Neighborhood Descent
(VND) and a General Variable Neighborhood Search (GVNS). We
performed an extensive computational testing over a set of 162
instances, considering different time horizons. Experimental
results show that the proposed algorithms outperform the best
method identified in the state of the art. We also proved statistical
tests to confirm the significance of the obtained results, and GVNS
emerges as the best algorithm in terms of quality in any set of
instances and time horizon.

According to our experimentation, the Grids and Trees
instances can be considered “easy to solve”. In our opinion,
these instances should no longer be considered for future studies
since they do not allow us to evaluate the actual performance of
the compared methods. On the contrary, the Harwell-Boeing
instances are actually a real challenge for modern heuristic
methods. Therefore, we recommend this set of instances to be
used as the benchmark for further experimental studies.

Of particular interest in our work has been testing the combi-
nation of diversification and intensification strategies in the
context of VNS. Through extensive experimentation, we have been
able to determine the benefits of this combination. We purpose-
fully added these mechanisms in order to measure their effects
and studied the combinations that resulted in effective solution
procedures with improved outcomes. We believe that our findings

can be translated to other combinatorial problems and it will help
in the development of more elaborated VNS methods.

Acknowledgments

This research has been partially supported by the Spanish
Ministry of “Economia y Competitividad”, Grants ref. TIN2011-
28151, TIN2012-35632-C02, and the Government of the Community
of Madrid, Grant ref. S2009/TIC-1542.

References

[1] Bodlaender HL, Mohring RH. The pathwidth and treewidth of cographs. In:
Proceedings of the second Scandinavian workshop on algorithm theory.
SWAT'90; 1990. p. 301-9.

[2] Bodlaender HL, Kloks T, Kratsch D. Treewidth and pathwidth of permutation
graphs. SIAM] Discrete Math 1995;8(4):606-16.

[3] Bodlaender HL, Gilbert JR, Hafsteinsson H, Kloks T. Approximating treewidth, path-
width, frontsize, and shortest elimination tree.] Algorithms 1995;18(2):238-55.

[4] Bodlaender HL, Gustedt], Telle JA. Linear-time register allocation for a fixed
number of registers. In: Proceedings of the symposium on discrete algorithms;
1998. p. 574-83.

[5] Bollobés B, Leader I. Edge-isoperimetric inequalities in the grid. Combinatorica
1991;11:299-314.

[6] Diaz], Petit], Serna M. A survey of graph layout problems. ACM Comput Surv
2002;34(3):313-56.

[7] Duarte A, Marti R, Resende MGC, Silva RMA. GRASP with path relinking
heuristics for the antibandwidth problem. Networks 2011;58(3):171-89.

[8] Duarte A, Escudero LF, Mart R, Mladenovic N, Pantrigo JJ, Snchez-Oro].
Variable neighborhood search for the vertex separation problem. Comput
Oper Res 2012;39:3247-55.

[9] Dujmovi¢ V, Fellows MR, Kitching M, Liotta G, Mccartin K, Nishimura N, et al.
On the parameterized complexity of layered graph drawing. Algorithmica
2008;52(2):267-92.

[10] Ellis JA, Sudborough IH, Turner JS. The vertex separation and search number of
a graph. J Inf Comput 1994;113:50-79.

[11] Ellis JA, Markov M. Computing the vertex separation of unicyclic graphs. Inf
Comput 2004;192(2):123-61.

[12] Fellows MR, Langston MA. On search, decision and the efficiency of
polynomial-time algorithms.] Comput Syst Sci 1994;49(3):769-79.

[13] Friedman M. A comparison of alternative tests of significance for the problem
of m rankings. Ann Math Stat 1940;11:86-92.

[14] Hansen P, Mladenovic N, Moreno JA. Variable neighbourhood search: methods
and applications. Ann Oper Res 2010;175(1):367-407.

[15] Hansen P, Mladenovic N, Brimberg], Moreno-Pérez JA. Variable neighbour-
hood search. Handbook of Metaheuristics 2010;146:61-86.

[16] Aleksandar Ili¢, Dragan Urosevic', Jack Brimberg, Nenad Mladenovic. A general
variable neighborhood search for solving the uncapacitated single allocation
p-hub median problem. Eur J Oper Res 2010;206(2):289-300.

[17] Kinnersley NG. The vertex separation number of a graph equals its path-width.
Inf Process Lett 1992;42(6):345-50.

[18] Kirousis M, Papadimitriou CH. Interval graphs and searching. Discrete Math
1985;55(2):181-4.

[19] Kirousis M, Papadimitriou CH. Searching and pebbling. Theory Comput Sci
1986;47(2):205-18.

[20] Leiserson CE. Area-efficient graph layouts (for VLSI). In: Proceedings of the
IEEE symposium on foundations of computer science; 1980. p. 270-81.

[21] Lewis]JG. The Gibbs-Poole-Stockmeyer and Gibbs-King algorithms for reor-
dering sparse matrices. ACM Trans Math Software 1982;8:190-4.

[22] Mladenovi¢ N, Hansen P. Variable neighborhood search. Comput Oper Res
1997;24:1097-100.

[23] Pantrigo]JJ, Marti R, Duarte A, Pardo EG. Scatter search for the cutwidth
minimization problem. Ann Oper Res 2012;199:285-304.

[24] Peng SL, Ho C-W, Hsu TS, Ko MT, Tang CY. A linear-time algorithm for
constructing an optimal node-search strategy of a tree. In: Proceedings of
the 4th annual international conference on computing and combinatorics,
COCOON '98; 1998. p. 279-88.

[25] PinanaE, Plana I, Campos V, Marti R. GRASP and Path relinking for the matrix
bandwidth minimization.] Oper Res 2004;153:200-10.

[26] Raspaud A, Schroder H, Sykora O, Torok L, Vrt'o I. Antibandwidth and cyclic
antibandwidth of meshes and hypercubes. Discrete Math 2009;309:3541-52.

[27] Rodriguez-Tello E, Jin-Kao H, Torres-Jimenez J. An effective two-stage simu-
lated annealing algorithm for the minimum linear arrangement problem.
Comput Oper Res 2008;35(10):3331-46.

[28] Skodinis K. Computing optimal strategies for trees in linear time. In: Proceedings
of the 8th annual European symposium on algorithms; 2000. p. 403-14.

[29] Wilcoxon F. Individual comparisons by ranking methods. Biometrics
1945;1:571-95.

Chapter 10. PVNS strategies for the CMP 99

Chapter 10

Parallel VNS strategies for the

Cutwidth Minimization Problem

e A. Duarte, J.J. Pantrigo, E.G. Pardo, and J. Sdnchez-Oro. Parallel variable
neighbourhood search strategies for the cutwidth minimization problem.
IMA Journal of Management Mathematics, 27(1):55-73, 2016.

— DOI: https://doi.org/10.1093/imaman/dpt026
— Impact Factor (JCR 2015): 0.878

Subject Category Ranking Quartile
Operations Research and Management Science 59 / 82 Q3
Mathematics, interdisciplinary applications 65 / 101 Q3

IMA Journal of Management Mathematics Advance Access published December 11, 2013

IMA Journal of Management Mathematics (2013) Page 1 of 19
doi:10.1093/imaman/dpt026

Parallel variable neighbourhood search strategies for the cutwidth
minimization problem

ABRAHAM DUARTE*, JUAN J. PANTRIGO, EDUARDO G. PARDO AND JESUS SANCHEZ-ORO

Dept. Ciencias de la Computacion, Universidad Rey Juan Carlos, Mostoles, Spain
*Corresponding author: abraham.duarte@urjc.es juanjose.pantrigo @urjc.es
eduardo.pardo@urjc.es jesus.sanchezoro@urjc.es

[Received on 31 January 2013; accepted on 17 November 2013]

Variable neighbourhood search (VNS) and all its variants have been successfully proved in hard combi-
natorial optimization problems. However, there are only few works concerning parallel VNS algorithms,
compared with the amount of works devoted to sequential VNS design. In this paper, we propose dif-
ferent parallel designs for the VNS schema. We illustrate the performance of these general strategies
by parallelizing a new VNS variant called variable formulation search (VES). Specifically, we propose
six different variants which differ in the VNS stages to be parallelized as well as in the communication
mechanisms among processes. We group these variants into three different templates. The first one is
oriented to parallelize the whole VNS method. The second one parallelizes the shake and the local search
procedures. Finally, the third one explores in parallel the set of predefined neighbourhoods. We test the
resulting designs on the cutwidth minimization problem (CMP). Experimental results show that the par-
allel implementation of the VFS outperforms previous methods in the state of the art for the CMP. This
fact is also confirmed by non-parametric statistical tests.

Keywords: variable neighbourhood search; variable formulation search; parallel designs; cutwidth
minimization problem.

1. Introduction

Metaheuristics (MHs) are among the most prominent and successful techniques to solve a large amount
of complex and computationally hard combinatorial and numerical optimization problems arising in
human activities, such as economics (e.g. portfolio selection), industry (e.g. scheduling or logistics) or
engineering (e.g. routing), among many others (Gendreau & Potvin, 2010). MHs can be seen as gen-
eral algorithmic frameworks that require relatively few modifications to be adapted to tackle a specific
problem. They constitute a very diverse family of optimization algorithms including methods such as
simulated annealing, tabu search, multi-start methods, iterated local search, variable neighbourhood
search (VNS), greedy randomized adaptive search procedure (GRASP), memetic algorithms, scatter
search, evolutionary algorithms or ant colony optimization.

The VNS and all its variants have proved to be very successful in hard optimization problems.
This MH was originally proposed by Mladenovi¢ & Hansen (1997). It is based on the exploration of
a dynamic neighbourhood model. Contrary to other trajectory-based MHs, VNS allows changes of the
neighbourhood structure along the search. In particular, VNS explores increasingly neighbourhoods of
the current best found solution. The basic idea of the VNS is to change the neighbourhood structure
when the local search is trapped on a local optimum.

Considering that VNS is a relatively new MH, it has not yet been investigated much from a paral-
lelization point of view. As per the authors’ knowledge, there are only two relevant papers reported in

(© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

20of 19 A.DUARTE ET AL.

the literature on the parallelization of VNS. Specifically, Garcia-Lopez et al. (2002) proposed three
new parallel VNS procedures to deal with the p-median problem: synchronous parallel VNS (SP-
VNS), replicated parallel VNS (RP-VNS) and replicated shaking VNS (RS-VNS). The main goal of
the first method, SP-VNS, is to parallelize the local search strategy since, in general, it is the most time-
consuming part. In SP-VNS, the neighbourhood is divided into n subsets, where n indicates the number
of processors. Each subset is assigned to a different processor. Then, each processor returns an improved
neighbour solution in its partition. Finally, the best neighbour is selected as the current solution to con-
tinue the search. The second approach, called RP-VNS, is directly a parallel independent multi-start
method, which executes several independent VNS procedures. Specifically, RP-VNS is a multi-start
procedure where each local search is replaced by a VNS. Each available processor, then, performs a
sequential VNS. The parallel algorithm returns the best solution obtained by the processors. Finally,
in the third parallel algorithm, RS-VNS, the shake and local search procedures are replicated as many
times as the number of available processors. If the best local optimum found by the processors improves
the previous solution (before executing the shake and improve methods), the RS-VNS procedure resorts
to the first neighbourhood and continues the search. Otherwise, RS-VNS explores a larger neighbour-
hood. These three methods were tested on large instances derived from the travelling salesman problem
library (TSPLIB) (Reinelt, 1991). In particular, the authors considered the instance RL.1400 (with 1400
points) and derived nine different instances for the p-median problem where p ranges from 20 to 100.
Reported results showed that the multi-start scheme (RP-VINS) obtained the best results.

Crainic et al. (2004) presented a different variant of parallel VNS, called cooperative neighbour-
hood VNS (CN-VNS). In this strategy, each individual VNS process (executed in a different processor)
communicates exclusively with a central process called central memory or master. Therefore, there
are no communications among individual VNS processes. The master is responsible for maintaining,
updating and communicating the current overall best solution. The master also initiates and terminates
the algorithm. Crainic ef al. (2004) applied the CN-VNS method to the p-median problem, where each
process (processor) implements the same VNS variant. The local search follows the first improvement
strategy, implements fast interchange and considers kpn,x = p, where kp,x represents the maximum num-
ber of neighbourhoods that will be explored. Each processor, then, executes a ‘normal’ VNS exploration
(shake, improve and neighbourhood change) while improving the current solution. When that solution
is not improved, the corresponding processor communicates it to the master, requesting the best solu-
tion so far. The search is continued starting from the best overall solution in the current neighbourhood.
The authors tested the CN-VNS method over a benchmark of problem instances from TSPLIB, where
the number of customers ranges from 1400 to 11948 and the number of locations ranges from 10 to
1000. Reported results showed that the CN-VNS method reduces the CPU time without deteriorating
the quality (when compared with the sequential VNS version). In addition, when both methods (parallel
and sequential) are executed for the same CPU time, the parallel version finds better solutions.

Moreno et al. (2004) surveyed the aforementioned parallel VNS strategies. The authors analysed
and tested them by considering large instances of the p-median problem. The paper concluded that
cooperative mechanisms obtain, in general, better outcomes.

We propose in this paper six different variants of VNS which differ in how each one parallelizes
the VNS stages. We group them into three different templates. The first one is oriented to parallelize
the whole VNS method. The second one parallelizes the shake and the local search procedures. Finally,
the third one explores in parallel the set of predefined neighbourhoods. We illustrate the performance of
these strategies by considering a specific VNS variant, called variable formulation search (VES) (Pardo
et al., 2013), applied to the cutwidth minimization problem (CMP). It is important to remark that the

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 30f 19

proposed methods are general parallelization strategies in the context of VNS, since they do not consider
either the optimization problem or the VNS variant.

The rest of the paper is organized as follows. Section 2 describes the CMP and presents a brief survey
of the main contributions to this problem. The sequential VNS method is briefly described in Section 3.
Section 4 recalls the main parallel technologies, mainly focusing on Java threads. Section 5 presents
the adaptation of the previous parallel VNS strategies as well as the new proposed methods. Section 6
presents and analyses the results of the computational experiments. Conclusions and perspectives are
the subject of Section 7.

2. Cutwidth minimization problem

The CMP is an NP-Hard (Gavril, 1977) min—max layout problem. It consists of finding an ordering of
the vertices of a graph on a line, in such a way that the maximum number of edges between each pair of
consecutive vertices is minimized. The CMP has been formulated in both, combinatorial (Petit, 2003)
and mathematical programming (Luttamaguzi et al., 1977) ways. In this work, we consider the first of
them. Given a graph G = (V, E) with |V| = n, the CMP can be defined as follows. Let s be a labelling
s:V —{1,2,...,n} of G that assigns the integers {1, 2,...,n} to the vertices in V, in such a way that
each vertex receives a different label. The cutwidth of a vertex v with respect to s, denoted as CW;(v),
is the number of edges (u, w) € E satistying s(u) < s(v) < s(w), i.e.

CW;(v) = {(u,w) € E: s(u) < s(v) <s(w)}l.

The cutwidth of G with respect to s is defined as the maximum value of CW,(v) for all ve V. In
mathematical terms, the objective function of the CMP is defined as

fls)= mavx CW,(v).

The optimum cutwidth of G is then defined as the minimum f (s) value over all possible labellings of G.

The CMP has also been referred to in the literature using alternative names such as Minimum Cut
Linear Arrangement (Diaz et al., 1997; Takagi & Takagi, 1999) or Network Migration Scheduling
(Andrade & Resende, 2007a,b). There can be also found a generalization of the CMP for hypergraphs
named Board Permutation Problem (Cohoon & Sahni, 1983, 1987). Several practical applications of
this problem in different areas of Engineering and Computer Science, such as: Circuit Design (Adolph-
son & Hu, 1973; Cohoon & Sahni, 1987; Makedon & Sudborough, 1989), Network Reliability (Karger,
1999), Information Retrieval (Botafogo, 1993), Automatic Graph Drawing (Mutzel, 1995; Shahrokhi
et al., 2001), Protein Engineering or Networks Migration (Resende & Andrade, 2009) have also been
reported. This last application refers to the problem where inter-nodal traffic from an obsolete telecom-
munications network needs to be migrated to a new network. This problem is now happening in phone
traffic, where a migration between 4ESS switch-based networks to IP router-based networks (Resende
& Andrade, 2009) is performed. Nodes are migrated, one at each time period, from the old to the new
network. All traffic originating or terminating at a given node in the old network is moved to a specific
node in the new network.

Let us consider this application in more detail as well as how it is related to the CMP. Suppose
that the traffic from/to a node vyq in the old network is migrated to a node vy, in the new network.
Let cqq be the capacity of the edge (vVoig, Vnew)- The traffic between node vq g and node vy, must use a
temporary link (voig, Vpew) connecting the two nodes with capacity cqq. When a node is migrated, one
or more temporary links may need to be added, since v,q may be adjacent to more than one node still

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

4 of 19

A.DUARTE ET AL.

(a) (b)
Old New Old New
Cut=0 g Cut=2
Max = 0 Max = 2
(c) (d)
Oid New Old New
Cut=4 j
Max =4 Max = 4
(e) ()
Old New Oid New
Cut=3 Cut=2
Max = 4 Max = 4
(9) (h)
Ooid New 5 4 3 3 5
Cut=0 ’ ’
Max =4 Cutwidth = 4

FiG. 1. (a)—(g) Node decommissioning process in a Network Migration Scheduling example and (h) the representation of the

whole process as a linear layout.

active in the old network. A temporary link remains active until both nodes connected by the links are

migrated to the new network.

The network is usually modelled as a graph G = (V, E), where V is the vertex set, with |V|=n,
and E is the edge set, with |E| =m. A solution to the Network Migration Scheduling Problem is an
ordering (labelling, permutation, layout, etc.) of the nodes that need to be migrated. The CMP tries

9T0Z ‘v 1snBny Uo eloUB e A 3P PepISieAIUN e /B10°'S[euInopiojxo Uewewl//:dny woiy papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 50f 19

to find the ordering that minimizes the maximum sum of capacities of the temporary links (edges).
Figure 1(a—g) iteratively show the migration of a network. In particular, in Fig. 1(a) all the vertices
are in the old network. Figure 1(b) shows the migration of the first vertex. In this case, we need to
consider the inclusion of two temporary edges. Figure 1(c) shows the migration of the second vertex,
which increases the maximum number of temporary edges to 4. Figure 1(g) shows the situation where
all vertices have been migrated. Finally, Fig. 1(h) shows a solution of the CMP where the cut between
each pair of edges represents the situation illustrated in Fig. 1(a—h). Note that the solution depicted in
Fig. 1(h) is just a possible solution, but not the optimum one, since it is possible to find a different
ordering (e.g. A, B, C, D, E, F) with a cutwidth value equal to 3.

In the scientific literature, the CMP has been addressed from both exact and heuristic approaches.
Most of the exact approaches present polynomial-time algorithms for particular graphs, such as hyper-
cubes (Harper, 1966), trees (Chung et al., 1982; Yannakakis, 1985; Thilikos et al., 2005) or grids (Rolim
et al., 1995). However, little work has been devoted to devise exact methods for general graphs. As far
as the authors know, there are an Integer Linear Programming formulation (Luttamaguzi et al., 1977)
and two Branch and Bound algorithms (Palubeckis & Rubliauskas, 2012; Marti et al., 2013) proposed
in the literature for the CMP. These approaches can only solve relatively small instances. Therefore,
different heuristic procedures have been proposed to address this problem. The work by Cohoon &
Sahni (1987) was the first one in proposing heuristic algorithms for the generalized version of the prob-
lem. These authors proposed several constructive and local search procedures and embedded them in
a Simulated Annealing MH. Twenty years later, Andrade & Resende (2007a,b) proposed a GRASP
procedure hybridized with a Path Relinking method. Pantrigo ez al. (2012) introduced a Scatter Search
algorithm for the problem which outperformed previous results. The most recent approach (Pardo et al.,
2013) presented a new variant of the VNS schema, called VES. This new algorithm is specially useful
to deal with min—-max (or max—min) problems, where it is usual that many solutions of the problem
have associated the same value of the objective function. VES makes use of alternative formulations
of the problem to determine which solution is more promising when they have the same value of the
objective function in the original formulation. The obtained results in the CMP show that the latter pro-
posal outperforms the state-of-the-art algorithms in terms of quality and computing time. We propose
in this paper six different strategies (three of them are adaptations of previous strategies to the CMP) to
parallelize the VFS. The next section details the strategies to be parallelized in this work.

3. Variable formulation search

VES is a new variant of the VNS MH proposed in Pardo er al. (2013). We refer the reader to this
reference for a comprehensive description of the method. VFES tries to avoid getting trapped in a local
optimum by considering different formulations of the optimization problem. This idea was originally
introduced in Mladenovic et al. (2005) in the context of the circle packing problem. The method changes
formulations sequentially within the shaking, local search and neighbourhood change steps of the basic
VNS. The aim is to determine whether a given solution is more promising than the other to continue
the search, beyond the value of the original objective function. VFS is especially helpful in tackling
problems which present a flat landscape where many solutions have associated the same value of the
objective function. See Resende ef al. (2010) and Duarte ef al. (2011) for examples of other problems
which present a flat landscape. The rest of this section is devoted to describing the method to construct
the initial solution, the shake, local search and neighbourhood change procedures.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

6 of 19 A. DUARTE ET AL.

3.1 Initial solution

The initial solution is constructed with a GRASP procedure. In particular, this method labels the vertices
sequentially (i.e. from 1 to n). To select the next vertex to be labelled, a candidate list (CL) is formed
with all the unlabelled vertices that are adjacent to one or more vertices already labelled. Note that, in
the first iteration, all vertices are candidates. For each vertex in the CL, an evaluation of its cutwidth is
performed, considering that it is labelled with the next available label. Then, a restricted CL (RCL) is
constructed with the vertices in the CL with a cutwidth value lower than a given threshold. Finally, a
vertex is selected at random from the RCL and assigned the corresponding label. We used this procedure
to construct a predefined number of solutions, selecting the best one as the initial solution for the VFS.

3.2 Shake

The shake strategy consists of performing perturbations in the current solution to diversify the search.
Therefore, the local search (within VES) starts the search from a new point with a different neigh-
bourhood. The shake procedure receives a solution s and a parameter k representing the size of the
perturbation. In particular, this procedure performs k interchange moves in s. Given a solution s and
two different vertices u,v € V, an interchange move produces a new solution s* where s'(u) = s(v),
s'(v) = s(u) and s'(w) = s(w) for all w € V not equal to u or v. Finally, the procedure finishes when k
moves are performed, returning the corresponding perturbed solution.

3.3 Local search

The local search procedure allows one to reach a local optimum from the current (perturbed) solution
at each iteration of the VFS. We designed a local search procedure based on insertion moves. Given a
solution s, a vertex v placed in the position s(v) and a position j such that s(v) &=/, an insertion move
consists of removing v from its current position s(v) and inserting it in position j. This operation results
in the ordering s, as follows:

e Let v; be the vertex in position j in the ordering s. Then, if s(v) =i is larger than j, then v is inserted
just before v; in position j. For example, considering the solution s

S= (o VG=1)s Vis V(i 1)s - - o> V(im1)> Vs V(it 1) - - -)>
we would obtain the solution s:
S = (e VG1)s Va Vi V(1) « - o s V(im1)s V(it1)s « - -)-
o If s(v) =i is smaller than j, v is inserted just after v; in position j. Therefore, from the solution s:
S= (oo Vi=1)s Vs V(it1)s « + - s V(i=1)5 Vjs V(i 1) - -)
we would obtain the solution s’
S = (e V1) V(i 1)+« s V(=115 Vis Vs V(ik1)s - - -)-

A naive idea using this kind of moves would be to try the insertion of any vertex in every position of
the ordering. Therefore, the associated neighbourhood of this kind of moves has a relatively large size.
However, taking into account the characteristics of the considered problem, it is possible to identify a set

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 7 of 19

of preferred positions for each vertex in the permutation. We refer the reader to Pardo ef al. (2013) for
an exhaustive description and formal derivation of these properties. As a consequence, the complexity
of the local search is reduced from O(n?) to O(n).

The resulting local search receives an initial solution, s, as an input parameter. Then, the procedure
identifies the list C of vertices able to produce improvements if they are inserted in a different position of
the ordering. The list C is then sorted according to the cutwidth of each vertex, in such a way that those
vertices with a higher cutwidth value are evaluated earlier. The evaluation for each vertex v in C is then
performed taking into account the aforementioned properties. If the move is accepted, the best solution
found will be updated. Finally, the local search procedure ends when none of the moves performed with
the vertices in the list C is able to produce an improvement, returning the best solution found.

3.4 Neighbourhood change

This procedure examines whether the solution obtained after the local search is better than any other
solution previously found, or not. If so, the best solution found is updated and & (the value that deter-
mines which neighbourhood is explored) is set again to its initial value. Otherwise, k is increased with
a constant value until the parameter k.« is reached, when a whole iteration of the VFES ends. As previ-
ously mentioned, the CMP presents a flat landscape and so, when two solutions have the same objective
function value, it is hard to determine which one is better to carry on the search. For that reason, the
VES schema uses alternative formulations to compare two solutions, when it is not possible to deter-
mine which is the most promising one. In particular, the method first considers the original formulation
of the problem. When two solutions present the same value of the objective function, the method uses
an alternative formulation. Note that two formulations are equivalent when an optimum solution in one
of them is also optimum in the other, although the value of the alternative objective function may have a
different value. This schema can be repeated as far as new formulations of the problem are available. We
refer the reader to Pardo er al. (2013) for a detailed description of the definition and use of alternative
formulations.

4. Parallel technologies

The traditional Flynn classification of parallel architectures is based on two criteria: the number of
instruction streams and the number of data streams that define four different classes: single instruction
stream, single data stream (SISD); single instruction stream, multiple data streams (SIMD); multiple
instruction streams, single data stream (MISD) and multiple instruction streams, multiple data streams
(MIMD). Among these four models, MIMD is considered the most general model of parallel architec-
tures (Alba & Nebro, 2005). Therefore, we consider MIMD architecture. This model has two kinds of
memory models: shared memory (the whole memory can be accessed by each process) and distributed
memory (each process has its own memory). Shared memory is considered the natural extension of
the sequential programming. In fact, its foundations were established in the late 1960s to early 1970s
(Alba & Nebro, 2005), so they are well known. In addition, common computers with several cores (pro-
cessors) use a shared-memory model. Consequently, the easiest way of dealing with parallelism is the
shared-memory model under the MIMD architecture. In this context, there are several technologies that
can be used to implement parallel algorithms: OpenMP and threads (Pthreads and Java threads).

4.1 OpenMP

OpenMP is a set of compiler directives and library routines that can be used to implement parallel algo-
rithms. The programmer then adds these compiler directives to a sequential program in order to inform

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

8 of 19 A. DUARTE ET AL.

the compiler which part of the code must be concurrently executed. It is also possible to establish (if
needed) synchronization points. The main advantage of this technology is the simplicity of its imple-
mentation. In other words, transforming a sequential algorithm to the parallel version can be performed
by including only one compiler directive, without modifying the original sequential code. Therefore,
OpenMP is adequate if the algorithm follows a data parallel model. However, it can be difficult to use
in task parallel applications (i.e. not all the processes execute the same code).

4.2 Threads

In programming languages, a thread is an independent flow of control inside a process. Although it has
always been possible to write parallel programs using processes and other resources provided by the
operating system, multi-threaded processes are themselves concurrent programs that bring a number of
advantages over multiple processes. In particular, they provide faster context switching among threads
and lower resource usage.

Inside this paradigm, Pthreads and Java threads are considered the most representative tools.
Pthreads (POSIX threads) was defined in the mid 1990s as an effort to provide a unified set of C library
routines in order to make multi-threaded programs portable. Java threads are a version of Pthreads for
Java programming language.

Java threads offer the advantages of portability inherent in Java programs. It also provides a multi-
threaded programming model adapted to the object-oriented features of Java. In addition, Java threads
can be easily used to tackle task parallel applications. Therefore, we select this technology to implement
our parallel algorithms.

5. Parallel VNS

The application of the parallelism to an MH can and must allow reducing the computational time
(obtaining similar results to the sequential version) or increasing the exploration in the search space
(obtaining better results than the sequential version). Notwithstanding, designing parallel MHs involves
a considerable complexity since doing it appropriately implies that the researches must have a solid
background in both fields. In general, these two fields are generally populated by distinct and very
specialized groups of people. However, the rapid development of technology in designing processors
(multi-core processors or dedicated architectures) has made use of parallel computing more and more
popular.

According to Crainic et al. (2004), parallel MH strategies may be classified into one of the three
following categories:

e Low-level parallelism: This strategy aims mainly at speeding up computations by executing in par-
allel one or several computing-intensive tasks (for instance, the local search) within one iteration
of the method. It is usually implemented following the master—slave computing model. In particu-
lar, the master process dispatches work to the other processors (the ‘slaves’), recuperates and fuses
the results, and then continues the sequential algorithm. Variants of this approach may be defined
according to the quantity of work assigned to slave processors.

e Domain decomposition: The partitioning reduces the size of the solution space, but the procedure
need to be repeated with different partitions to allow the exploration of the complete solution
space. A master—slave scheme is often chosen as the implementation mechanism. A master pro-
cess performs the decomposition and slave processors concurrently execute the MH on the resulting

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 90of 19

sub-problems. Then, the master collects the partial solutions and builds a complete one. Finally, it
decides on a new partition and the search is restarted.

e Multiple search: Parallelism is obtained from multiple concurrent explorations of the solution space.
Concurrent searches may or may not execute the same heuristic method, and may start from the same
or from different initial solutions. They may communicate during the search or only at the end to
identify the best overall solution. The latter strategies are known as independent search methods,
while the former are often called cooperative multi-search methods. Communications may be per-
formed synchronously or asynchronously and may be event-driven or executed at predetermined or
dynamically decided moments.

In this paper, we adapt three previously proposed VNS parallel strategies for the CMP. We addition-
ally propose three new parallel strategies for this optimization problem. In particular, the six parallel
VNS strategies fall in the ‘Multiple Search’ category. We do not propose low-level parallelism strate-
gies since the shake, neighbourhood change and local search strategies are extremely fast (Pardo et al.,
2013). In the same line, we do not propose a domain decomposition parallel strategy since the shake,
local search and neighbourhood change procedures needs to consider the whole solution (Pardo e al.,
2013). Therefore, the proposed methods are general parallelization strategies in the context of VNS,
since they do not consider either the optimization problem or the VNS variant.

5.1 Replicated parallel VNS

The RP-VNS strategy consists of executing several parallel VNS procedures. We present two different
strategies, RP-VNS1 and RP-VNS2. In particular, considering RP-VNSI1, Algorithms 1 and 2 show the
master and slave pseudo-code, respectively. The master process (Algorithm 1) starts by creating a pool
of different threads (step 2). Then, for each thread in the pool, the master process sends the start signal to
each thread (steps 3-5). When a thread finishes its execution, the master process compares the returned
solution with the best overall solution, updating it if necessary (step 6).

Algorithm 1 RP-VNSI1: master process
1: function RP-VNS1-Master (ks bnax)
P = CreateThreadPool(NTHREADS)
for all p € P do
sp < ExecuteThread (p, kyax, tmax)
end for
Spest = aAI'g lglel}}{f(sp)}
return sy,
8: end

AN

e

Each slave process (Algorithm 2) executes the same VNS variant. Parameters k., and .« are set
by the master process. The algorithm constructs an initial solution s in step 3 and sets & to the smallest
neighbourhood. The current solution, s, is then perturbed with the shake procedure (step 6) obtaining a
new solution s” in the kth neighbourhood. This solution is improved (step 7), resulting in a local optimum
s”. The neighbourhood change procedure (step 8) determines whether s” improves upon s (updating & to
1 and s to s”) or not (increasing the value of k). These steps are repeated until k reaches k.« Steps 2—11
are repeated until 7 reaches #;,,x. Finally, the procedure returns the best solution found during the search.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

10 of 19 A. DUARTE ET AL.

Algorithm 2 RP-VNSI: slave process
1: function RP-VNS1-Slave(p, kmax> tmax)

2: repeat

3: s < CreatelnitialSolution()
4: k<1

5: repeat

6: s' < Shake(s, k)

7 s" < LocalSearch(s’)
8: NeighborhoodChange(s, s” , k)
9: until k = &,
10: t < CpuTime()

11: until 7 > 7,4,
12: return s
13: end

Algorithm 3 RP-VNS2: master process
1: function RP-VNS2-Master(Kuxs tnax)
P = CreateThreadPool(NTHREADS)
Spest < CreatelnitialSolution()
repeat
for all p e P do
sp < ExecuteThread (p, Spests kmax)
end for
Shest = Arg Il?elil;l{f(sp)}
until 1 =1,
10: return sy,
11: end

b

The RP-VNS?2 considers the cooperation among threads. In particular, each thread receives the best
overall solution to start the corresponding VNS procedure. When a thread finishes, it notifies the master
process the best solution found. Then, the master sends the best overall solution.

Algorithm 3 shows the master process pseudo-code. In this case, the master process constructs
the initial solution (step 3) and controls the allowed execution time (steps 4-9). Additionally, it sends
the best solution to each slave process (step 6). Algorithm 4 shows the slave pseudo-code. Now, this
process does not construct a solution (which is received as an input argument), and it finishes when k
reaches kpax.

5.2 Replicated shake VNS

The RS-VNS strategy consists of parallelizing the shake and local search procedures. We consider two
different strategies, RS-VNS1 and RS-VNS2. Algorithm 5 reports the pseudo-code of the RS-VNS1
master process. The algorithm begins by creating the pool of threads and an initial solution (steps 2
and 3). As usual, the VNS search is started in the smallest neighbourhood (step 5). Then, the master
process delegates the execution of the shake and local search procedures to each thread. When a thread

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 11 of 19

Algorithm 4 RP-VNS2: slave process

1: function RP-VNS1-Slave(p,s, k)
s < CreatelnitialSolution()
k<1
repeat
s' < Shake(s, k)
s" < LocalSearch(s")
NeighborhoodChange(s, s”, k)
until k =%,
return s
end

D A A T ol 4

,_
e

Algorithm 5 RS-VNSI: master process
1: function RS-VNS1-Master(kuax Lnax)

2: P = CreateThreadPool(NTHREADS)

3: Spest < CreatelnitialSolution()

4: repeat

5: k<1

6: repeat

7: for all p € P do

8: sp < ExecuteThread (p, Spests kmax)

9: end for
10: Slocal = arg min{f(sp)}

peP

11: NeighborhoodChange(Spests Siocal> k)
12: until k£ =k,

13: until t =1,,,,
14: return sy,
15: end

finishes, it returns the best found solution (step 8). Once all threads have finished, the master process
gathers the best solution found by the threads (step 10). The neighbourhood change procedure (step 11)
determines whether s” improves upon s (updating k to 1 and s to s”) or not (increasing the value of
k). These steps are repeated until k reaches kp.x. Steps 4—13 are repeated until ¢ reaches #,,,x. Finally,
the master process returns the best solution found during the search. For the sake of brevity, we do not
include a pseudo-code of the slave process since it only consists of two instructions (shake and local
search functions).

This strategy is equivalent to a best improvement method in the sense that the search waits until
all threads finish, performing the best available move. RS-VNS2 considers an alternative strategy. In
particular, it performs the first move which improves the current best found solution (first improvement),
instead of waiting for all threads. Specifically, the pseudo-code of RS-VNS?2 is similar to RS-VNS1. For
that reason, we do not include the associated pseudo-code. The only difference between them is which
solution is used in the neighbourhood change procedure. In RS-VNS2, we compare the solution returned
by each thread with the best found solution so far. In case of improvement, we update the corresponding

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

12 of 19 A.DUARTE ET AL.

best solution and stop the execution of the remaining threads. Note that in RS-VNS2, step 10 must also
be removed, since it is not required to find the best solution among all the treads.

5.3 Cooperative neighbourhood VNS

The CN-VNS strategy considers the cooperative exploration of different neighbourhoods by different
threads. We present two different strategies: CN-VNS1 and CN-VNS2. In both, the master process is
responsible for maintaining, updating and communicating the current overall best solution. It also initi-
ates and terminates the algorithm executed in each thread. The logic of the master process is similar to
the one presented in Algorithm 5. The main difference resides in the management of the neighbourhood.
In particular, both strategies (CN-VNS1 and CN-VNS2) delegate this task to each thread. Therefore, the
pseudo-code of these two strategies are equivalent to RS-VNS, but removing the instruction in step 11
(neighbourhood change procedure) and the input argument k in step 8 (since this value is set in the slave
process).

In CN-VNSI, the slave process explores the k., available neighbourhoods at random, while in
CN-VNS2, the exploration is performed systematically. Pseudo-codes of CN-VNS1 and CN-VNS2 are
shown in Algorithms 6 and 7, respectively. In particular, the random exploration of neighbourhoods
starts by selecting at random a value of k, between 1 and kn.x (step 3). Considering the solution s,
the procedure performs the corresponding shake (step 5), obtaining a perturbed solution s’ in the kth
neighbourhood. This solution is then improved with the local search method (step 6), obtaining s”.
Then, it is decided whether the slave process performs another iteration or not. Specifically, the shake
and local search procedures are repeated while s” is better than s (see steps 7—11); otherwise, the thread
communicates the best solution found to the master process. Therefore, the corresponding thread waits
until the master process sends again the best overall solution.

In CN-VNS2, slave processes explore systematically the ky.x available neighbourhoods. In order
to do so, the thread p performs the search in the [kf . k}.] sub-ranges. For example, the first thread
explores neighbourhoods from 1 to |kmax/|P|], the second thread explores the neighbourhoods from
[kmax/|P]] + 1 to |2 * kmax/|P]] and so on. Then, starting from solution s, the algorithm perturbs it

(step 7), obtaining a new solution s” in the kth neighbourhood, with kﬁm <k < kﬁm. This solution is then

Algorithm 6 CN-VNSI: slave process
1. function CN-VNS1-Slave(p, s, kiax)
improved <— TRUE
k < Random(1, ky,ux)
while improved = TRUE do
s < Shake(s, k)
s" < LocalSearch(s")
if /(s”) > f(s) then
improved <— FALSE
else
§ <5
end if
: end while
. return s
. end

D A T

!

_ e
» RN = O

._
»

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 13 of 19

Algorithm 7 CN-VNS2: slave process

1: function CN-VNS2-Slave(p,s, k)
2: improved <— TRUE
3: kfirse = L(p — 1) * kynax /P] + 1
4: klast = |_P * kmax/|PH
5. k <« kﬁm
6
7
8
9

. repeat
s < Shake(s, k)
s" <= LocalSearch(s")
if £ (s”) < f(s) then

10: s <"

11: k < Kt
12: else

13: k<—k+1
14: end if

15: until k£ = k;,;

16: return s

17: end

improved with the local search method (step 8), obtaining s”. Then, it is decided whether s” improves
upon s (resetting k to kg and assigning s” to s) or not (increasing the value of k). The thread finishes
the search when k reaches ks, communicating the best solution found to the master process. Then, it
waits until the master process again sends it the best overall solution.

6. Computational experiments

This section reports and analyses the computational experiments that we have performed for testing
the efficiency of the six proposed parallel VNS variants for solving the CMP. All the algorithms were
implemented in Java SE 7 and the experiments were conducted on an Intel Core 17 2600 CPU (3.4 GHz)
and 4 GB RAM. We derived 101 instances from the Harwell-Boeing Sparse Matrix Collection. This
collection consists of a set of standard test matrices M = M,,, arising from problems in linear systems,
least squares and eigenvalue calculations from a wide variety of scientific and engineering disciplines.
The graphs are derived from these matrices by considering an edge (u,v) for every element M,, = 0.
From the original set, we have selected the 101 graphs with n < 3025. The number of vertices and edges
ranges from 30 to 3025 and from 103 to 8904, respectively.

We have divided our experimentation in two different parts: preliminary experimentation and final
experimentation. In the preliminary experimentation, we study the effect of the number of threads in
each algorithm. We consider a representative subset of 14 instances to conduct the preliminary exper-
imentation. Then, in the final experimentation, we compare the best variants with the state-of-the-art
algorithm.

According to Crainic & Toulouse (2003), the classical performance measure (i.e. speedup described
by Barr & Hickman, 1993) is not adequate to evaluate the performance of parallel MHs since
asynchronous interactions between threads generally induce significant differences in search behaviour,
not only for the global parallel method, but also for each search process participating in the coopera-
tion. Therefore, the sequential and parallel methods may then be viewed as different MHs, requiring
a redefinition of speedup and other performance measures. This situation is further aggravated by the

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

14 of 19 A.DUARTE ET AL.

TABLE 1 Performance of RP-VNS

RP-VNS1 RP-VNS2
Threads 2 4 8 16 2 4 8 16
Avg. 105.29 105.29 106.14 106.50 107.64 107.07 106.14 106.79
Dev (%) 2.03 2.03 3.48 4.41 7.77 6.93 7.11 7.44
#Best 9 9 8 8 7 7 8 7

randomness embedded in the VNS methods considered in this paper. However, it is important to remark
that a parallelization strategy should speed up the search or produce better results than the sequential
method. Consequently, we compare the quality of the solutions obtained by the sequential and parallel
VNS methods to evaluate the quality of the parallel design strategy.

To have an illustrative comparison, each parallel variant is executed for the same CPU time than the
best method identified in the literature, i.e. the VFS introduced by Pardo et al. (2013). In particular, we
execute VFS (considering the parameters suggested by the authors) over the set of 14 instances used
in the preliminary experimentation. The average CPU time of VFES is 840s. Therefore, we execute all
parallel VNS variants for this computing time.

In our first experiment, we compare the performance of RP-VNSI and RP-VNS2 (described in
Section 5.1) considering different number of threads: 2, 4, 8 and 16. Table 1 reports the average qual-
ity over all instances (Avg.), the average percent deviation with respect to the best known solutions
(Dev (%)) and number of times that each method matches the best known solutions (#Best). Let s
be a heuristic solution whose objective function value is f(s) and let s* be the best-known solution
(with objective function value f (s*)). The deviation is then computed as Dev = (f (s) — f(s*))/f (s*). We
consider these three performance metrics for the rest of the experiments since they complement each
other.

Table 1 shows that RP-VNS1 clearly outperforms RP-VNS2 in all the considered statistics. This
results can be partially explained by the fact that the diversification of RP-VNS1 is larger than PR-VNS2
(i.e. it explores a larger number of different regions of the search space), since the last method starts
the search from the best-known solution found so far. As it is well documented in the literature, the
CMP presents a flat landscape. As a consequence, most of the moves performed by the search proce-
dure have associated a null value. Therefore, it is more interesting to start the search from other point
of the solution space (RP-VNS1) rather than continuing the search from the same point (RP-VNS2).
We observe that better outcomes are obtained with a lower number of threads. As a result, RP-VNS1
with four threads is selected as the best variant of RP-VNS. We will use this algorithm in the final
experimentation.

In the second experiment, we compare the performance of RS-VNS1 and RS-VNS2 (described in
Section 5.2). As in the previous experiment, we consider that the number of threads ranges from 2 to
16. Table 2 reports that differences between both variants are smaller than in the first experiment. In
particular, RS-VNS1 with 4 threads presents an average percentage deviation of 1.38%, and it matches
11 times the best-known solutions (out of 14). The best RS-VNS2 method uses 16 threads and finds
the same number of best values. However, it presents a slightly larger deviation (1.45%). Therefore, we
select RS-VINS1 with four threads as RS-VNS variant for the final experimentation.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 15 0f 19

TABLE 2 Performance of RS-VNS

RS-VNS1 RS-VNS2
Threads 2 4 8 16 2 4 8 16
Avg. 106.50 105.14 105.43 105.36 105.79 105.36 105.07 105.07
Dev (%) 3.29 1.38 2.37 2.15 3.50 2.35 1.45 1.45
#Best 7 11 8 10 8 8 10 11

TABLE 3 Performance of CN-VNS

CN-VNS1 CN-VNS2
Threads 2 4 8 16 2 4 8 16
Avg. 110.29 108.64 108.64 108.50 107.64 108.43 107.57 107.50
Dev (%) 10.25 9.59 9.56 8.82 7.53 7.83 7.51 7.24
#Best 8 7 7 7 7 7 7 7
Iteration 1 sync Iteration 2 sync Iteration 3 sync Iteration 4

Th.#1 59 ms 68 ms Lo 33ms_ 77 ms o 23ms_ 36ms e eiaaa 46ms

Th.#2 59 ms S6ms e eaad 45ms 65 ms memwo3Sms | SSms . 27ms,

Th.#3 41 ms _18ms 101 ms 82 ms J8ms_ 65 ms 17ms,

Th.t4 36 ms . 23_T5_ exms . 3_9_m_5 e 100 ms 82ms

T I I I I I T Tms

Fi1G. 2. Performance of each thread in RS_VNSI on Ishp3025 instance.

In the next preliminary experiment, we compare the performance of two CN-VNS (i.e. CN-VNSI1
and CN-VNS?2, both described in Section 5.3). Table 3 reports the results obtained by both parallel algo-
rithms, considering the same number of threads than in the previous experiments. The performance of
all these variants seems to be really poor compared with the previous methods. In particular, CN-VNS2
with 16 threads is the best variant with a deviation of 7.24% and matches the best known solution 7
times (out of 14). It seems that the larger the number of threads, the better is the performance of the
method. Then this strategy could be more competitive if we would consider a larger number of threads.
However, due to our hardware limitation, we are not able to test this hypothesis. Specifically, if we
increase the number of threads, the required time to manage them deteriorates the performance of the
method. It is interesting to compare the best CN-VNS variant with the state-of-the-art method.

In the last two preliminary experiments, we study the time spent in the parallelization management
of the algorithms. First, in Fig. 2, we illustrate the behaviour of the different threads within an algorithm.
In order to do that, we have selected RS-VNS1 with four threads and we have depicted its behaviour over
a representative instance (/shp3025) during four iterations. For each iteration and thread, we depict the
time that the thread is working (straight lines) and the time that the thread is waiting for synchronization
(dashed lines). As shown in the figure, an iteration ends when all threads have finished working. After
that, the parallel algorithm synchronizes the information among the threads (represented in the figure as

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

16 of 19 A. DUARTE ET AL.

TABLE 4 Comparison of the synchronization time spent by each algorithm

RP-VNSI (4) (%) RS-VNSI (4) (%) CN-VNS2 (16) (%)

Avg. waiting time 9.43 1.44 0.04
Max. waiting time 11.25 4.13 0.07

vertical black lines at the end of each iteration). Obviously, there is at least one thread that is working
until the end of the iteration.

The total computing time of the previous example is 342 ms, which includes the working time, the
waiting time and the synchronization time of each thread. In all our experiments, the synchronization
time is negligible; therefore, we do not consider further analysis of this time in the performance of the
parallel strategies.

In the example shown in Fig. 2, we can observe that the thread that waits longer (Th.#2) spends
approximately 31% of the time waiting, while Th.#3 is the one with the minimum waiting time (approx-
imately 15% of the time). On average, the threads are waiting 23% of the time.

Once the behaviour of the threads has been described, we conduct an additional experiment over the
set of instances used in the preliminary experimentation. In Table 4, we present the best variants of the
three proposed parallel algorithms (where the number of threads are depicted in parenthesis). For each
method, we report the average CPU time spent by all threads waiting for synchronization (Avg. waiting
time) and also the maximum CPU time that a single thread within the method needs to wait (Max.
waiting time). Both results are presented in percentage over the total CPU time spent. As expected,
RP-VNSI presents the largest average and maximum waiting time, since each thread in this strategy
performs a completely independent iteration. In other words, if the constructed solution has a relatively
high quality, the VNS strategy will reach a local optimum faster. Therefore, the waiting time of that
thread will be longer, since it will need the other threads (starting from a worse solution) to finish. On
the other hand, the CN-VNS?2 strategy presents the shortest average and maximum waiting time. This
behaviour can be explained by considering that, in this strategy, all the threads start the search from
the same initial solution (the best one found in the iteration). Therefore, the iterations performed by
the parallel VNS are quite similar. Finally, the RS-VNSI1 strategy meets a balance among the strategies
of the other two methods. Particularly, at each iteration it starts from the best solution found (similar
to CN-VNS2) but it applies an independent shake and local search procedures to that solution in each
thread (similar to RP-VNS1).

Finally, we compare the previous best variants with the state-of-the-art method (VFES). In this exper-
iment, we consider the whole set of 101 instances. Table 5 clearly shows the superiority of the RS-VNS
strategy over the other competitors. In particular, it presents a deviation of 0.28% which compares
favourably to the RP-VNS (0.64%), the state-of-the-art method (0.89%) and the CN-VNS (1.52%).
Considering the number of best solutions found, the analysis is similar. It is important to remark that,
although CN-VNS2 (16) obtains the worst deviation, it only finds one less better solution than the state-
of-the-art method. Even more, when considering the average quality, the CN-VNS2 (16) ranks second
(284.87), improving the RP-VNSI1 (4) with an average quality of 285.01 and VFS (285.46).

To confirm these conclusions, we conduct the non-parametric Friedman test (Friedman, 1940) for
multiple correlated samples to the best solutions obtained by VFS, RP-VNS1, RS-VNS1 and CN-VNS2.
This test computes, for each instance, the rank value of each method according to the solution quality
(where rank 1 is assigned to the best method and rank 4 to the worst one). Then it calculates the average
rank values of each method across all the instances solved. If the averages differ greatly, the associated

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 17 of 19

TABLE 5 Comparison of the parallel VNS variants with the state of the art

VES RP-VNS1(4) RS-VNS1(4) CN-VNS2(16)
Avg. 285.46 285.01 284.64 284.87
Dev (%) 0.89 0.64 0.28 1.52
#Best 84 86 92 83

p-value or significance will be small. The resulting p-value of 0.028 (considering a level of significance
of 0.05) obtained in this experiment clearly indicates that there are statistically significant differences
among the four methods tested. Specifically, the rank values produced by this test are 2.20 (RS-VNS1),
2.45 (RP-VNS1), 2.47 (VES) and 2.88 (CN-VNS2). This experiment confirms again the superiority of
two parallel VNS procedures over the state of the art.

We conduct a test of Wilcoxon to further analyse the differences between our best method RS-
VNSI1 and the state-of-the-art algorithm (VES). In particular, this experiment has a p-value of 0.024.
Then, considering a level of significance of 0.05, this experiment indicates that there are statistically
significant differences between both methods, confirming again that the parallel version improves the
sequential one.

7. Conclusion

We proposed in this paper six different general parallel designs for the VNS schema. We group these
variants into three different templates. The first one is oriented to parallelize the whole VNS method
(RP-VNSI1 and RP-VNS2). The second one parallelizes the shake and the local search procedures (RS-
VNSI1 and RS-VNS?2). Finally, the third one explores in parallel the set of predefined neighbourhoods
(CN-VNSI and CN-VNS2). These general strategies are then applied to parallelize a recently intro-
duced VNS algorithm, called VFS. We conducted an experimental comparison among these variants
on the CMP. A preliminary experimentation allows us to identify the best variant from each template,
resulting in the selection of RP-VNS1, RS-VNS1 and CN-VNS2, respectively. Then we compared the
selected three methods with the sequential VFS, which is the best algorithm in the state of the art for
the CMP. Experimental results showed that two of the three proposed parallel methods (RS-VNS1 and
RP-VNS1) outperform previous best methods in the state of the art of the CMP in terms of quality.
We also conducted statistical tests to confirm the significance of the obtained results with RS-VNS1
emerging as the best algorithm.

Funding

This research was partially supported by the Spanish Ministry of ‘Economia y Competitividad’, grants
ref. TIN2009-07516, TIN2011-28151 and TIN2012-35632, and the Government of the Community of
Madrid, grant ref. S2009/TIC-1542.

REFERENCES

ADOLPHSON, D. & Hu, T. C. (1973) Optimal linear ordering. SIAM J. Appl. Math., 25, 403—423.

ALBA, E. & NEBRO, A. J. (2005) New technologies in parallelism. Parallel Metaheuristics. A New Class of
Algorithms, vol. 2. Wiley-Interscience.

ANDRADE, D. V. & RESENDE, M. G. C. (2007a) GRASP with path-relinking for Network Migration Scheduling.
Proceedings of International Network Optimization Conference (INOC).

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

18 of 19 A. DUARTE ET AL.

ANDRADE, D. V. & RESENDE, M. G. C. (2007b) GRASP with evolutionary path-relinking. Proceedings of Seventh
Metaheuristics International Conference (MIC).

BARg, R. S. & HickmaNn, B. L. (1993) Reporting computational experiments with parallel algorithms: issues,
measures, and experts opinions. ORSA J. Comput., 5, 2—18.

BoTAFOGO, R. A. (1993) Cluster analysis for hypertext systems. /6th Annual International ACM-SIGIR Conference
on Research and Development in Information Retrieval, pp. 116—125.

CHUNG, M. J., MAKEDON, F., SUDBOROUGH, I. H. & TURNER, J. (1982) Polynomial time algorithms for the MIN
CUT problem on degree restricted trees. SFCS '82: Proceedings of the 23rd Annual Symposium on Founda-
tions of Computer Science, pp. 262-271.

CRAINIC, T. G., GENDREAU, M., HANSEN, P. & MLADENOVIC, N. (2004) Cooperative parallel variable neighborhood
search for the p-median. J. Heuristics, 10, 293-314.

CrAINIC, T. G. & TouLOUSE, M. (2003) Parallel strategies for meta-heuristics. State-of-the-Art Handbook in Meta-
heuristics, pp. 475-513.

COHOON, J. & SAHNL, S. (1983) Exact algorithms for special cases of the Board Permutation Problem. Proceedings
of the Allerton Conference on Communication, Control and Computing, pp. 246-255.

COHOON, J. & SAHNI, S. (1987) Heuristics for backplane ordering. J. VLSI Comput. Syst., 2, 37-61.

Diaz, J., GiBBONS, A., PanTzZIOU, G. E., SERNA, M. J., SPIRAKIS, P. G. & ToraN, J. (1997) Parallel algo-
rithms for the minimum cut and the minimum length tree layout problems. Theor. Comput. Sci., 181,
267-287.

DUARTE, A., MARTI, R., RESENDE, M. G. C. & SiLva, R. M. A. (2011) GRASP with path relinking heuristics for
the antibandwidth problem. Networks, 58, 171-189.

FRIEDMAN, M. (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann. Math.
Statist., 11, 86-92.

GARCIA-LOPEZ, F., MELIAN-BATISTA, B., MORENO-PEREZ, J. A. & MORENO-VEGA, J. M. (2002) The parallel vari-
able neighborhood search for the p-median problem. J. Heuristics, 8, 375-388.

GAVRIL, F. (1977) Some NP-complete problems on graphs. Proceedings of the Eleventh Conference on Information
Sciences and Systems, pp. 91-95.

GENDREAU, M. & PorviN, J. Y. (1977) Handbook of Metaheuristics. Berlin: Springer Publishing Company, Incor-
porated.

HARPER, L. H. (1966) Optimal numberings and isoperimetric problems on graphs. J. Combin. Theory, 1, 385-393.

KARGER, D. R. (1999) A randomized fully Polynomial Time Approximation Scheme for the all-terminal network
reliability problem. SIAM J. Comput., 29, 492-514.

LurrtamaGuzl, J., PELSMAJER, M., SHEN, Z. & YANG, B. (2005) Integer programming solutions for several opti-
mization problems in graph theory. Technical Report, Center for Discrete Mathematics and Theoretical Com-
puter Science, DIMACS.

MAaKEDON, F. & SUDBOROUGH, 1. H. (1989) On minimizing width in linear layouts. Discrete Appl. Math., 23,
243-265.

MARTI, R., PANTRIGO, J. J., DUARTE A. & PARDO, E. G. (2013) Branch and bound for the cutwidth minimization
problem. Comput. Oper. Res., 40, 137-149.

MLADENOVIC, N. & HANSEN, P. (1997) Variable neighborhood search. Comput. Oper. Res., 24, 1097-1100.

MLADENOVIC, N., PLASTRIA, F. & UROSEVIC, D. (2005) Reformulation descent applied to circle packing problems.
Comput. Oper. Res., 32, 2419-2434.

MORENO, J. A., MORENO, J. M. & VERDEGAY, J. L. (2004) Parallel Variable neighborhood search. The p-median
problem: a survey of metaheuristic approaches. Les Cahiers du GERAD, 92, 1-22.

MurtzkL, P. (1995) A polyhedral approach to planar augmentation and related problems. ESA’95: Proceedings of
the Third Annual European Symposium on Algorithms, pp. 494-507.

PALUBECKIS, G. & RUBLIAUSKAS, D. (2012) A branch-and-bound algorithm for the minimum cut linear arrange-
ment problem. J. Combin. Optim., 24, 540-563.

PANTRIGO, J. J., MARTI, R., DUARTE, A. & PARrDO, E. G. (2012) Scatter search for the cutwidth minimization
problem. Ann. Oper. Res., 199, 285-304.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

PARALLEL VNS STRATEGIES FOR THE CMP 19 of 19

PArDO, E. G., MLADENOVIC, N., PANTRIGO, J. J. & DUARTE, A. (2013) Variable formulation search for the cutwidth
minimization problem. Appl. Soft Comput., 13, 2242-2252.

PETIT, J. (2003) Experiments on the minimum linear arrangement problem. ACM J. Exp. Algorithmics, 8,
1084-6654.

REINELT, G. (1991) TSPLIB—a traveling salesman problem library. INFORMS J. Comput., 3, 376-384.

RESENDE, M. G. C. & ANDRADE, D. V. (2009) Method and System for Network Migration Scheduling. Atlanta,
Georgia: United States Patent Application Publication, US2009/0168665.

RESENDE, M. G. C., MARTI, R., GALLEGO, M. & DUARTE, A. (2010) GRASP and path relinking for the max-min
diversity problem. Comput. Oper. Res., 37, 498-508.

RoLm, J., SKORA, O. & VRT’0, 1. (1995) Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes.
Graph-Theoretic Concepts in Computer Science, vol. 1017, pp. 252-264.

SHAHROKHI, F., SKORrA, O., SZKELY, L. A. & VRT 0, 1. (2001) On bipartite drawings and the linear arrangement
problem. SIAM J. Comput., 30, 1773-1789.

TakaGl, K. & TakAgr, N. (1999) Minimum Cut Linear Arrangement of p-q dags for VLSI layout of adder trees.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E82-A, 767-774.

THILIKOS, D. M., SERNA, M. J. & BODLAENDER, H. L. (2005) Cutwidth II: algorithms for partial w-trees of bounded
degree. J. Algorithms, 56, 25-49.

YANNAKAKIS, M. (1985) A polynomial algorithm for the Min-Cut linear arrangement of trees. J. ACM, 32, 950-988.

9T0Z ‘2 1ISNBNY Lo BIDUB [A 3P PepIS/oAlun Te /610°S [euIno p.o jxo uewew 1//:dny WwoJ) papeojumoq

Chapter 11. SS for the BP 119

Chapter 11

Scatter Search for the Bandpass
Problem

e J. Sanchez-Oro, M. Laguna, R. Marti, and A. Duarte. Scatter search for the
bandpass problem. Journal of Global Optimization, pages 1-22, 2016.

— DOI: https://doi.org/10.1007/s10898-016-0446-0
— Impact Factor (JCR 2015): 1.219

Subject Category Ranking Quartile
Mathematics, applied 63 / 254 Q1
Operations Research and Management Science 42 / 82 Q3

J Glob Optim @ CrossMark
DOI 10.1007/s10898-016-0446-0

Scatter search for the bandpass problem

Jestis Sanchez-Oro! - Manuel Laguna® -

Rafael Marti® - Abraham Duarte!

Received: 11 November 2015 / Accepted: 23 May 2016
© Springer Science+Business Media New York 2016

Abstract We tackle a combinatorial problem that consists of finding the optimal configura-
tion of a binary matrix. The configuration is determined by the ordering of the rows in the
matrix and the objective function value is associated with a value B, the so-called bandpass
number. In the basic version of the problem, the objective is to maximize the number of
non-overlapping blocks containing B consecutive cells with a value of one in each column
of the matrix. We explore variants of this basic problem and use them to test heuristic strate-
gies within the scatter search framework. An existing library of problem instances is used
to perform scientific testing of the proposed search procedures to gain insights that may be
valuable in other combinational optimization settings. We also conduct competitive testing
to compare outcomes with methods published in the literature and to improve upon previous
results.

Keywords Bandpass problem - Scatter search - Path relinking - Telecommunications -
Metaheuristics

B Abraham Duarte
abraham.duarte @urjc.es

Jesus Sanchez-Oro
rafael.marti @urjc.es

Manuel Laguna
laguna@colorado.edu

Rafael Marti
Rafael. Marti@uv.es

Departamento de Ciencias de la Computacién, Universidad Rey Juan Carlos, Madrid, Spain
2 Leeds School of Business, University of Colorado at Boulder, Boulder, CO, USA

Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Valencia, Spain

Published online: 09 June 2016 £\ Springer

J Glob Optim

1 Introduction

The bandpass problem is associated with early-generation DWDM (Dense Wavelength Divi-
sion Multiplexing) systems in fiber optic networks [8,16,27]. This technology used the band
concept to allow the transmission of several wavelengths in a single fiber-optic cable. Wave-
lengths enter or leave the fiber optic cables via a set of devices known as OADMs (Optical
Add/Drop Multiplexers), which are installed along the fiber optic cable at origin and destina-
tion points [16,18]. OADMs contain special cards that control the wavelengths and identify
which wavelengths should pass through the device and which should be dropped. Typically,
several wavelengths pass through the same OADM. The wavelengths may be handled as a
block when they are consecutive. A block of wavelengths is known as a bandpass. With-
out this assembling of wavelengths, a card is needed for each wavelength. However, when
a bandpass is created, a single card can handle the entire block of wavelengths. The num-
ber of wavelengths in the block is referred to as the bandpass number (B). Therefore, the
process of creating a wavelength block results in a reduction of cards from B to 1 and hence
a cost reduction in the design and maintenance of the fiber optic network. The optimization
opportunity is to assign wavelengths in order to maximize the number of bandpasses with a
bandpass number of B.

This bandpass problem was first described by Bell and Babayev in the Annual INFORMS
Meeting held in Denver Colorado in October 2004 and the first publication appeared in
2009 [1]. Since then, newer generations of DWDM systems have been developed to add
more flexibility. This newer equipment employs reconfigurable optical ADMs (ROADMs)
for which the band concept does not apply. The ROADM is a dynamic wavelength arrange-
ment scheme enabled by wavelength selective switching. These new systems, however, are
much more expensive and therefore the older systems still have a market in small DWDM
deployments.

The bandpass problem consists of creating blocks of wavelengths that need to be sent
from a set of origins to a set of destinations. The goal of the blocks is to reduce the number
of devices needed for the transmission of the wavelengths, resulting in a decrease of both
installation and maintenance costs. The telecommunication network is modeled as am x n
binary matrix A, where a;; is equal to 1 if wavelength i must be delivered to destination
j. In the basic version of the problem, the value of B (i.e., the bandpass number) is given.
A bandpass is formed by B consecutive 1s in the same column. Each value of 1 can only
be used for one bandpass and therefore two distinct bandpasses in the same column cannot
have a common element. Figure 1a shows a network with 6 wavelengths and 5 destinations.
The network shows that, for instance, wavelength 1 must be delivered to all but the third
destination. Assuming that B = 3, the matrix in Fig. 1a contains 3 bandpasses, as indicated
by the gray blocks, where O refers to the ordering of the wavelengths, that is, O (i) is the
index of the wavelength assigned to row i.

In Fig. 1a, the bandpass for column 1 is shown as rows 1, 2, and 3. However, the bandpass
for that column could also be formed by rows 2—4 or 3—5. Regardless of which one is chosen,
there can only be one bandpass in column 1. In order to increase the number of bandpasses,
the assignment of wavelengths to rows could be changed. This assignment could also be
thought of as a reordering of the rows in the matrix. For instance, Fig. 1b shows the matrix
that results by assigning wavelength 4 to row 5 and wavelength 5 to row 4. In other words,
wavelengths 4 and 5 have exchanged positions from the original lexicographical order shown
in Fig. 1a. The reassignment results in an increase of bandpasses from 3 to 4.

@ Springer

J Glob Optim

1 2 3 4 5 1 2 3 4 5
1 1 1 /0|1 1 1 1 1/0 1 1
2 1 /0 1|0|1 2 1|0 10 1
3 1 1 1|0} 1 3 1 1 10 1
4 |1 1 0|10 5 1 1 10 1
5 1 1 1/01|1 4 1 1|0 110
6 | 001 1 1 6 |00 1 1 1

(a) (b)

Fig. 1 Bandpasses for two possible assignments of wavelengths to rows

For a given bandpass number B, the bandpass problem consists of finding an ordering
O* of the rows that maximizes the number of bandpasses. The upper bound on the number
of bandpasses in column j is given by:

Therefore, if f (O) is the number of bandpasses in solution O, then the objective function
value of an optimal solution O* is bounded as follows:

£(0%) = X,

For B = 3, the upper bound for the example in Fig. 1 is 5 bandpasses. It can be easily verified
that this upper bound is achieved by the optimal solution O = (5,4, 1, 6, 3, 2).

Babayev, Bell, and Nuriyev [1] refer to the problem described above as BP1. They also
suggest an alternative version of the problem, denoted by BP2, which reflects some specific
network technologies. In this second version, a total of up to G + 1 groups of rows are created,
where the first G groups have B rows. That is, the first group consists of rows 1 to B, the
second group consist of rows B + 1 to 2B, and so on. If the remainder of the m/B quotient is
greater than zero, then an additional group with the last m — G B rows is created. The value
of G is determined by:

m
=%
B

A bandpass in BP2 is defined as a column within a group for which all its elements are
nonzero. If the group is one of the first G, then the bandpass contains B nonzero elements.
For group G + 1, if it exists, the bandpass contains m — G B elements with nonzero values.
As mentioned in [1], this model reflects some specific equipment constraints. In contrast
with BP1, the group of rows that can form bandpasses are all the same across columns.
Figure 2 shows an optimal solution to BP2 for the example matrix shown in Fig. 1. This
solution corresponds to the row ordering O = (2, 3,6, 1,4,5) . Note that because m = 6
and B = 3 then G = 2 and the remainder of m/B is zero. Therefore, there are only 2 groups,
one consisting of the first three rows in the matrix and the second one consisting of rows 4
to 6.

@ Springer

J Glob Optim

Fig. 2 Optimal solution to BP2 for matrix in Fig. 1

For BP2, the order of the rows within each group is not relevant and thus, for instance,
0 = (2,3,6,1,4,5) is the same solution as O = (6, 3, 2, 5,4, 1) or as any ordering where
the first three rows contain the wavelengths 2, 3, and 6. A permutation vector clearly is not an
effective solution representation for BP2 given that it creates a search space with m! solutions
while the number of unique solutions for a BP2 instance with G groups of size B is given
by:

m!
(BH® G!

In the example of Fig. 2, there are 720 permutations of the rows but only 10 unique ways of
creating two groups of 3 rows. A more direct representation is given by S for which S (i) is
the index of the group to which wavelength i is assigned.

Both BP1 and BP2 assume that the value of B is given. Kurt et al. [19] argue that fixing
the value of B may not be optimal and therefore they suggest an optimization model in which
B becomes a decision variable. However, since the range of relevant values for B is expected
to be somewhat limited, the optimization process to determine the best value for B can be
achieved by simply solving BP1 multiple times. We do not address this variant as a separate
version of the problem.

The third version that we include in our study is the one introduced by Nuriyev et al.
[25] and for which Giirsoy and Nnuriyev [17] developed a genetic algorithm. This is the
so-called multi bandpass problem (MBP). In this version, instead of a single B value across
the entire network, each destination j has its own B; value. The assumption is that ADMs
may be programmed independently from each other with different bandpass numbers. In
the MBP, the input data include the B; values for j = 1, ..., n. An extension of the MBP,
suggested by Kurt et al. [19], turns the B; values into variables. This extension is referred to
as the “Optimization of Lengths in the Multi-Bandpass Problem”. The optimization problem
involves not only finding the best ordering of the rows in the matrix but also the best bandpass
number for each destination. The literature does not include any experimentation on this
problem and it is not clear whether the extension corresponds to an actual technology for
which the B; values can be optimized within a given range. We do not address this variant
here.

The literature on the bandpass problem is limited to seven articles [1,2,17,19,21,22,25].
Mathematical models for BP1 and BP2 are presented in [1] along with a NP-hard proof of
BP1. Babayeyv, Bell, and Nuriyev [1] developed two solution procedures: an exact polynomial
algorithm for BP1 with n = 2 and a heuristic for the general case. The authors also report

@ Springer

J Glob Optim

optimal solutions for BP1 problem instances with m < 32 and n < &, found by solving
a mathematical programming model. A description of a generator of problem instances is
provided and used to produce 90 instances with m = 64 and 96 and n = 8, 12, 16, and 25.
These instances are divided into two groups of 45 instances each, one for which the optimal
solutions are known (OS instances) and one for which the optimal solutions are not known
(BKS instances). Collectively, these problems are referred to as the Library of Bandpass
Problems (BPLIB).! No experiments are performed for BP2 in [1]. Additional mathematical
proofs for special cases of BP1 are provided in [21,22].

Berberler and Giirsoy [2] developed four variants of a genetic algorithm and applied
them to the 45 OS instances in BPLIB. Optimality gaps are reported for all variants in all
problem instances. Several GA variants are also developed and tested in [19]. This article
introduces a new set of problems for the MBP. The data include both the B; values and the
binary A matrix.> Finally, some of the same authors in [1,19] are co-authors of [25] where
mathematical models for BP1, BP2, and MBP are presented. Some of these models already
appeared in [1,19] and some are new. No additional experimentation or results are included
in [25].

Our current investigation into this problem class includes BP1, BP2, and MBP. We use
these problems as a platform to test heuristic strategies within the scatter search (SS) frame-
work. An existing library of problem instances is used to perform scientific testing to identify
the contributions of several search strategies. In particular, we develop and test:

Two diversification generation methods.

Four improvement methods.

Two combination methods.

A scatter search method, SS1, for which solutions are represented by an ordering O of
the wavelengths and therefore equipped to tackle BP1 and MBP instances.

e A scatter search method, SS2, for which solutions are represented as an assignment S of
wavelengths to groups and that it is configured to solve BP2 instances.

We also conduct competitive testing to compare the solutions obtained with SS1 and SS2
with the best methods published in the literature for these problems (DSR [1], GAs [2,
17]). In addition, we compare performance against commercial optimizers, one based on
metaheuristic technology (LocalSolver) and the other built on exact procedures (Gurobi).

2 Standard scatter search methods

Scatter search (SS) [13,20] is a population-based metaheuristic framework that consists of
methods that generate, maintain, and transform a reference set of solutions (Ref Set). The
methods are organized as shown in Algorithm 1. Basic and advanced SS implementations
have been developed for a variety of problems (see, e.g., [5,10,23,26,29]). In this section,
we describe the implementation of the standard methods within the SS framework that we
developed for BP1, BP2, and MBP. Two solution representations are used: 1) O, the ordering
of the wavelengths (for BP1 and MBP); and 2) S, the group assignment (for BP2). Since the
search strategies are linked to the solution representation, the same SS procedure is used to
search for solution to BP1 and MBP.

I The Library of Bandpass Problems can be found here http://sci.ege.edu.tr/~math/BandssProblemsLibrary/.

2 Problem instances introduced in [19] are found here http://fen.ege.edu.tr/arifgursoy/mopt/.

@ Springer

J Glob Optim

Diversification generator
Improvement
Initial RefSet
do
Subset generator
Combination
Improvement
RefSet update
until termination is criteria satisfied

Algorithm 1 Scatter search template.

Following the template in Algorithm 1, we implemented standard methods for creating
the initial Ref Set, for generating solution subsets, and for updating the Ref Set. The diver-
sity generator and the improvement method (which will be described in Sections 3 and 4,
respectively) are applied first to produce a population P of feasible solutions to the problem.
Then, the initial Ref Set (of size B) is built by first selecting the 8/2 best (in terms of the
objective function value) solutions from P. The selected solutions are removed from P. Then,
the /2 most diverse solutions with respect to those currently in the Ref Set are selected
from it p. Because the selection of the most diverse group of elements out of a set is a hard
problem (see, e.g., [7]), the solutions are heuristically selected one at a time.

Any diversification strategy requires a measure of distance between any two solutions.
The distance for each solution representation is measured as follows.

p(0,0)=>10()— 0" ()]
i=1

c (S , S/) = m — number of common elements

P (0, O’) represents the so-called positional distance in permutation vectors (see Das and
Roberts [4]), where O (i) is the wavelength in row i. To calculate ¢ (S , S) we count the
number of common assignments between both solutions by matching the groups in § with
the groups in S’. For each group and its match, we identify the wavelengths that are assigned
to both (i.e., the common elements). The matching problem has the following form:

Maximize Zk Gl XKl
Subject to lekl =1 Vk
xr€{0, 1} Vk,l€[l,...m]

In this problem, x;; = 1 when group k in solution S is matched with group / in solution S’. The
cx; value indicates the number of common elements in groups k and /. The total number of
common elements is given by cx*, where x* is an optimal solution to the matching problem.
Then, ¢ (S, S/) =m — cx*.

For the sequential selection of the 8/2 diverse solutions to be included in the reference set,
a maxmin criterion is used. The goal at each step is to find the solution that has the maximum
distance between itself and the solutions currently in the reference set. The distance between
a solution in P and the solutions in the reference set depends on the solution representation,
as follows:

@ Springer

J Glob Optim

d (O, Ref Set) = i 0,0’
(0. RefSet) = min p(0.0)

d (S, RefSet) = min ¢ (S,5)
S’eRef set
Then, at each step of the process, the solution R from P that has the maximum distance
between itself and the solutions currently in Ref Set is selected to be added to the reference
set. Mathematically, R is identified as follows:

R = argmaxd (X, Ref Set)
XeP

where X is either O or §, depending on the solution representation. Solution R is added to
Ref Set and deleted from P. This is repeated /2 times in order to complete the Ref Set with
B solutions. As shown in Algorithm 1, the iterative process begins after the initial Ref Set
has been created. This process consists of selecting subsets of reference solutions to perform
combinations that will result in new trial solutions. These solutions are then considered for
inclusion in the reference set once they have been subjected to the improvement method.
As recommended in [20], we employ a standard subset generation method that consists of
selecting all pairs of reference solutions that contain at least one new solution. A new solution
is one that has been added in the previous iteration of the do-loop in Algorithm 1. In the first
iterations, all the solutions are new and therefore the number of subsets generated the first
B
2

The updating of Ref Set occurs at the end of each iteration. This is where the new solutions
that were generated by the combination method and potentially improved by the improve-
ment method are considered for membership in the reference set. The goal of the updating
procedures is to maintain both quality and diversity in the reference set. Therefore, a solution
is admitted to the reference set if its objective function value is better than the objective
function value of the worst solution in the current reference set. For the sake of diversity,
a solution that passes the above quality test replaces the reference solution that is closest
to it according to the distance measures described above. This means that a solution that is
included in the reference set does not necessarily replace the worst reference solution, unless
the worst solution in the current Ref Set happens to be the closest to this new reference
solution.

time around equals

3 Diversification generation method

The diversification generator is one of three scatter search methods that are problem-specific.
That is, this method along with the combination and improvement methods take advantage
of the problem context to create a customized solution procedure within the scatter search
framework. Like it is often done to induce diversification, our method relies on a controlled
randomization process. Controlled randomization refers to a strategy that makes reference to
the objective function value while constructing solutions. This is in contrast to full random-
ization where solutions are constructed without any support or direction from the objective
function.

Algorithm 2 summarizes the steps performed by the diversification generation method
for solutions represented as an ordering of the wavelengths. The set U consists of all the
wavelengths that have not been assigned to a row. Initially, U contains all m wavelengths
in the problem and the solution O being constructed is empty. The iterative process assigns

@ Springer

J Glob Optim

one wavelength at a time and ends when no more unassigned wavelengths are left (i.e., when
U is empty). In each step, a wavelength k is randomly selected from U by the Random ()
function. The Best Row () function then searches for the best row i * where to assign & in the
partial solution O. In the first iteration, the selected wavelength is assigned to the first row,
that is i* = 1. In the ith iteration, there are i — 1 wavelengths in the partial solution and the
search for the best row i* consists of inserting wavelength k in the i — 1 available positions,
starting in row 1. The row that produces the largest increase in the objective function value
(i.e., that increases the number of bandpasses the most) is chosen as i *. If no row assignment
from 1 to i — 1 is able to improve upon the current objective function value then i* = i,
meaning that wavelength k is assigned to the last row.

U<{1,..,m}
0«0
while U = @ do

k < Random(U)
i* « BestRow(0, k)

o(i*) =k
U < U\{k}
end while

Algorithm 2 Diversification generation method for solutions represented by O.

The controlled randomization aspect of the method is evident in Algorithm 2 by a random
selection of a wavelength that is followed by a purposeful search for the best row. The random
nature of the procedure enables it to generate the population of solutions needed to initiate
the scatter search.

Algorithm 3 shows the procedure for solutions represented by S that like Algorithm
2 is also semi-greedy [8] but that follows the tenets of GRASP [9]. For each candidate
wavelength, the method calculates a greedy function 4 (i, g) that consists of the number of
the potential bandpasses that result from adding wavelength i to group g. A potential bandpass
is a column within the group that contains all 1s after wavelength i has been added to the
group. The function counts potential bandpasses because the final existence of a bandpass is
not confirmed until B wavelengths are assigned to a group.

For instance, consider a problem with n = 5 and B = 4 and the two partial groups with
two wavelengths each shown in Fig. 3. Wavelengths 4 and 8 are already assigned to group
1. Wavelengths 3 and 6 are assigned to group 2. The construction procedure is considering
wavelength number 7 to be added to either group 1 or group 2. Each group in the example
has two potential bandpasses, destinations 1 and 4 for group 1 and destinations 2 and 4 for
group 2. Adding row 7 to group 1 preserves the potential of two bandpasses for that group
(see blocks with bold lines in Fig. 3). Adding wavelength 7 to group 2 reduces the potential
bandpasses to 1. Therefore, the greedy function evaluations for adding wavelength 7 to each
group are:

hy(7,1) =2

hy(7,2) =1
To initiate the diversification generation procedure for solutions represented by S, the
first wavelength is randomly chosen and is arbitrarily assigned to group 1 (see the first three
lines in Algorithm 3). In the iterative loop, the greedy function is calculated for each pair of

wavelength-group for all wavelengths in U and all groups with fewer than B wavelengths. The
wavelength-group combination (i*, g*) is chosen among those pairs for which A (i, g) >

@ Springer

J Glob Optim

Destination
Group | Wavelength
1 2 3 4 5

4 1 1 0 1 0

. 8 1 0 1 1 0
7 1 0 0 1 1
2
3 1 1 0
6 1 0

2
7 1 0 0 1
?

Fig. 3 Example of greedy group assignment

hin + o + (Wpax — hmin), where hy,;, and hyy,,, are the minimum and maximum values of
h1 among all the candidate wavelength-group combinations. As is customary in GRASP, «
is a tunable parameter that varies between zero (random selection) and one (deterministic
selection).

U<{1,..,m}

i « Random(U)

S@) <1

U« U\i

while U # @ do
(i*,g") « SemiGreedy(U,S,a)
S« g
U« U\{i*}

end while

Algorithm 3 Diversification generation method for solutions represented by S

A slight variant of this method is also tested in which the greedy function, /> (i, g),
includes the number of bandpasses “eliminated” by adding a wavelength i to group g. That
is, hy (i, g) is the difference between potential bandpasses and eliminated bandpasses. A
wavelength eliminates a bandpass in a group if it adds a zero to a column that previously
contained all 1s within the group. Under this variant, the 4, values for the example in Fig. 3
are hy (7,1) = 2 and hy (7, 2) = 0 because adding wavelength 7 to group 2 eliminates the
potential bandpass at destination 2.

4 Improvement method

In scatter search, solutions that are either constructed by the diversification generator or
created by the combination method are subjected to an improvement process that is typically
based on neighborhood searches. The search in an improvement method is local, meaning
that it stops as soon as no improved solution is found in the neighborhood of the current
solution. Four improvement methods were developed and tested for solutions represented by
an ordering O of the wavelengths:

@ Springer

J Glob Optim

IM1 Best insertion

IM2 Best swap

IM3 Block merging

IM4 Variable neighborhood descent

All these improvement methods treat the bandpass problem as a search for the best ordering of
a set of elements. The search neighborhood in IM1 is built via insertions of each wavelength
in each row. Let O be the solution before the insertion of wavelength O (i) in row k, and O’
the solution after the insertion:

O0=00),...,0(—1,0G0,0G+1),...,0k=1),0(),0k~+1),...,0m)
0 =00),...,0—-1),0G+1),....,0(—=1),0%), 0,0 k+1),...,0 (m))

All insertions are attempted and the best is chosen. The procedure stops when no insertion
results in an increase of the number of bandpasses in the current solution. The same best-move
strategy is used by IM2 with the difference that swaps define the neighborhood instead of
insertions. A swap between the wavelengths in rows i and k transforms O into O as follows:

O0=00),..,0(-1,00,0G(+1),....,0k—=1),0k),0k~+1),...,0m)
0 =00),...,0G-1),0k),0G(+1),...,0(k—1),0(G),0k+1),...,0 (m))

IM3 is significantly different from IM1 and IM2. This improvement method analyzes the
binary matrix associated with the current solution to identify higher-order exchanges. In
particular, for each column in the matrix of the current solution it searches for two blocks
of non-zero elements, one primary block with B — 2 wavelengths and one secondary block
with 2 wavelengths, where a block has non-zero elements in consecutive rows. Once these
two blocks have been identified, the secondary block is merged ““at the end” of the primary
block by rearranging the row assignments of the wavelengths in the secondary block. This
merger forms a new bandpass, however, the row reassignment of the two wavelengths in
the secondary block could have eliminated one or more bandpasses in other columns. In an
attempt to reestablish those bandpasses or finding new ones, an exhaustive search is performed
among the rows corresponding to the new bandpass. This means that all permutations of the
rows are explored in order to identify the best. The process is repeated for primary blocks
with B — 3 wavelengths, then B — 4 wavelengths, and so on until the number of wavelengths
in the primary block reaches 2. This local search procedure terminates when no improvement
is possible after exploring all destinations.

Figure 4 shows a simple example of one move in IM3. As in previous examples, the
gray blocks indicate the bandpasses. Figure 4a shows the current solution with an objective
function value of 3. In this figure, the primary block identified by IM3 is the one with the
black background, which corresponds to wavelengths (rows) 5 and 6 in destination (column)
3. The secondary block is shown as a solid bold outline, corresponding to wavelengths (rows)
2 and 3 in destination (column) 3. As prescribed by the IM3 logic, the secondary block is
inserted at the end of the primary block. This means that rows in the secondary block are
removed and inserted right below the rows in the primary block, and then all rows (except
the first one) are shifted up. The result of this exchange is an increase in the number of
bandpasses, as shown in Fig. 4b. It can be shown that no permutation of the last four rows
(i.e., the ones that participated in the exchange) results in a better solution.

@ Springer

J Glob Optim

1 2 3 4 5 1 2 3 4 5
11|10 |1 1 1 /1101 1
2|1 0)p1]}10 |1 411 1,010
3,1 ,111}10)1 S| 1)1 1/ 0|1
4 |1 1 /0|10 6| 0|01 1 1
5|1 1 e 0 1 2 (10|10} 1
6 | 0 0 g 1 1 311 1 1]0|1

(a) (b)

Fig. 4 Example of a move in IM3

IM4 combines IM2 and IM3 in the framework of a variable neighborhood descent (VND).
VND employs multiple neighborhoods that are typically ordered in increasing level of com-
plexity [24]. The first neighborhood is applied until no improvement is possible. At that time,
the second neighborhood is explored until an improved solution is found at which point the
search reverts back to the first neighborhood and the process starts again. If no improved
solution is identified, then the search moves to the next neighborhood. The entire VND ends
when the last (and often the most complex) neighborhood is not able to identify an improved
solution. In our case, we only use two neighborhoods: IM2 and IM3. The VND starts with
IM2 and it identifies the first local optimum. Then, IM3 is applied and as soon as an improved
solution is found it goes back to IM2. The search keeps alternating between IM2 and IM3
until IM3 fails to find an improved solution. The selection of IM2 followed by IM3 was
supported by a full-factorial experimental design where all orderings of two neighborhoods
and also all orderings of the three neighborhoods were considered. The experiment yielded
IM2 followed by IM3 as the best combination in terms of solution quality and exploration
time.

A single improvement method was developed for solutions represented by S. This method,
like IM2, is based on swaps, which preserve the feasibility of a solution. The neighborhood
search is organized in such a way that the groups are ordered by increasing number of
bandpasses, and hence the first group is the one with the least number of bandpasses and the
last group is the one with the largest number of bandpasses. The exploration is such that it
starts by attempting swaps of wavelengths from the first group with wavelengths in group
2 to G. Then, wavelengths in group 2 are exchanged with wavelengths in groups 3 to G,
and so on until wavelengths from group G — 1 are exchanged with wavelengths in group G.
If a trial swap results in an increase in the number of bandpasses, the swap is executed. In
other words, a first-improving strategy is used in this neighborhood exploration. The process
terminates when no more improving swaps can be identified.

5 Combination method

The combination method is a procedure that generates new solutions from a given subset
of solutions. As mentioned above, our implementation considers only subsets of size 2 (i.e.,

@ Springer

J Glob Optim

pairs of reference solutions). Path relinking (PR) is used as the method to create new solutions
from the subsets created by the subset generation method. PR was originally proposed in [12]
and formalized in [13]. The main idea behind PR consists of creating a path (i.e., a sequence
of solutions) between two or more solutions. It is called relinking because the process was
conceived in the context of a solution method that performs neighborhood searches to move
from one solution to the next. In such a search, solutions are connected by the paths that
the procedure created to reach them. The relinking in that context refers to creating a new
path to connect solutions that are typically selected due to their elite status. In scatter search,
solutions in the reference set may not have historical paths that connect them. Hence, in most
cases, the application of PR to two reference solutions builds the first path between them.
The PR principles have been successfully applied to multiple problem classes and in a variety
of methodological frameworks, including tabu search [15], scatter search [29], and GRASP
[3].

Our first combination method based on PR (referred to as CM1) operates on solutions
represented by an ordering O. Given a pair of reference solutions, one is denominated the
initiating solution O’ and the other the guiding solution O%. PR consists of transforming the
initiating solution into the guiding solution by a sequence of moves. Consider for example
the initiating solution 0" = (5,2,3,4,6, 1) and the guiding solution 0% = (5,3,2,1,4,6)
shownin Fig. 5. The gray cells represent wavelengths in positions that do not coincide with the
positions that they occupy in the guiding solution. Swaps are used to make the transformation
from the initiating solution to the guiding solution, which is achieved in three moves. The
most-improving swap is chosen at each step as prescribed by a greedy path relinking process
[28]. The moves are represented by arrows that are labeled with the pair of wavelengths that
are swapping positions.

Initially, there are four swaps that transform the initiating solution into intermediate solu-
tions that move toward to the guiding solutions. The (6,1) swap results in an intermediate
solution with an improved objective function value. For this particular example, the relink-
ing process could stop at this point because the objective function value of the intermediate
solution matches the upper bound value of 5. However, for completeness, the figure shows
that, at each step, the relinking process continues from the best intermediate solution. In this
case, the solution resulting from the (4,1) swap is chosen and then the (2,3) swap completes
the process.

We developed a second combination method (referred to as CM2) based on a PR strategy
that has been recently suggested and that has been labeled Exterior Path Relinking (EPR)
[6,14]. EPR is a diversification strategy because, instead of moving the initiating solution
toward the guiding solution, it searches for intermediate solutions that move away from

5 3‘2‘4 6‘1

~a

/ f(o)=4
@3) |

/ 5 2 ‘ 3 ‘ 6 4 ‘ 1
/ 4 5 ‘ 3 2 ‘ a4 J 1 6 ‘
//(4,6) fo)y=4 y]| |

K Ee.l) (2'3’,-"‘/ f0)=4 (ZV JEIE 1 ’ a ’ 6 |

5 ‘ 2 ‘ 3] a ‘ 6| 1
£(0) =4 \'\.\ . 2‘3‘4 I‘Tz{a/lv)sp 3‘1‘& 6 | f(o)=4
(4,1)\\ £(0) =5 ' fe)=5

\
1s 2‘3‘1 6‘4

\
£(0) -4

Fig. 5 Path relinking example

@ Springer

J Glob Optim

(S,V ey =4 (5,3)

fo)=4 |6 |2|3|4a|5]1 3l2|s|a|le|[2]| fo)=4
(3,4) (3,2)

f(0)=3 (e l2]als]s]a >l3|s|ale|2]| fo=s
(2,3) (4,6)

flo)=2 |6 |3 |4|2|5]|1 213|564 1| fo)=4
(5,1)ly (5,1)

, i i 7) v)
f(0)=3 |6 |3|4|1]|5]2 213 |1|6]|4|5]| fo)=3

Fig. 6 Exterior path relinking example

the guiding solution. Figure 6 shows an EPR example applied to a 0! = (5,2,3,4,6,1)
and the guiding solution Of = (5,2, 6,4, 3, 1). The process starts by randomly select-
ing one of the elements in O’ that occupies the same position in O¢, these are the cells
with a gray background (i.e., 5, 2, 4, and 1 in the initiating solution). Assume that the
random selection is 5. Then another random selection is made among those elements
that, if swapped with 5, do not produce an increase in the number of wavelengths that
the resulting intermediate solution will have in the same position as in the guiding solu-
tion.

In Fig. 6, two possible paths are shows, where the left path is created by first swapping
5 and 6, while the right path is initiated by the swap of 5 and 3. Clearly, this process relies
heavily on randomization to create a diverse set of solutions that move away from the guiding
solution. A large number of paths could be created from any O’ and O¥¢ pair. As done in
[14], we generate additional solutions by reversing the roles of the initiating and guiding
solutions.

The path relinking for solutions represented by a group assignment S starts with the
solution of the matching problem described in Section 2. Recall that, given two solutions,
the problem matches the groups in one solution with the groups in the other solution
in order to maximize the total number of wavelengths assigned to the same group (also
referred to as the common elements). The optimal matching identifies the common elements
between an initiating solution S’ and a guiding solution S¢. Then, swaps are performed
to move S’ toward S4. As done in CMI, the swap with the largest improvement of
the objective function is chosen. The process terminates when the guiding solution is
reached.

Table 1 shows the group assignments for two reference solutions for a BP2 instance with
m = 18 and B = 6, and therefore G = 3.

The matching problem associated with the solutions in Table 1 is:

Maximize x11 + 3x12 + 3x13 +4x21 + x020 + x23 + x31 + 2x30 + 3x33
Subjectto xy; +x12 +x13 =1

x21 +x22 +x23 =1

x31 +x32 +x33 = 1

@ Springer

J Glob Optim

Table 1 Two reference solutions for a BP2 instances withm = 18 and B = 6

Solution Group 1 Group 2 Group 3
1,3,6,9,12,17 2,5,8,10,11, 18 4,7,13, 14,15, 16
2 1,4,5,10,11, 18 2,3,6,12,13,15 7,8,9,14,16, 17

An optimal solution to this problem is x};, = x5, = x3; = 1, resulting in the following
common elements:

Groupl : 3,6, 12
Group2 : 5,10, 11, 18
Group3 : 7, 14, 16

The PR process then starts by switching the labels of the first two groups in solution 2 (i.e.,
the original group 1 becomes group 2 and the original group 2 becomes group 1). Since
x3; = 1, the original label for group 3 remains unchanged. Then, a sequence of swaps must
be performed to move the wavelengths 1, 2, 4, 8,9, 13, 15, and 17 from their current group
in solution 1 to their group in solution 2. For instance wavelength 1 must be moved to group
2 and wavelength 2 must be moved to group 1. Therefore, a swap between wavelength 1 and
2 is considered since it moves solution 1 closer to solution 2.

6 Computational experiments

Before engaging in competitive testing, we performed a series of scientific tests to determine
the contribution of the various elements that we have designed for the two problem classes
defined by the solution representations. These experiments are also used to determine the best
SS configuration for each problem class. Henceforth, SS1 refers to the implementation for
which solutions are presented by an ordering O of the wavelengths and therefore equipped
to tackle BP1 and MBP instances. The SS2 procedure refers to the scatter search for which
solutions are represented as an assignment S of wavelengths to groups and thatitis configured
to solve BP2 instances. Table 2 summarizes the SS components for each SS implementation.

Our scientific testing focuses on determining the best combination of components for
each SS. All components were programmed in Java 8 and the experiments were executed
on an Intel Core 17 2600 (3.4 GHz) processor with 4 GB of RAM. We use the Library of
Bandpass Problems (BPLIB)? for BP1 and BP2 and the MBP library (MBPLIB)* for the
MBP. The BPLIB contains 90 instances, 45 referred to as OS and 45 referred to as BKS.
The OS instances were constructed in such a way that the optimal solutions are known for
BP1 but not for BP2. The BKS problems were randomly generated and optimal solutions
are not known for either BP1 or BP2. There are 45 instances with known optimal solutions
in the MBP library. We use the BKS instances for the scientific experimentation and reserve
the OS and the MBP instances for the competitive testing. This means that the experiments
used to configure SS1 include only BP1 instances and that the configuration is expected to
generalize to the MBP instances.

3 http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/.
4 http://fen.ege.edu.tr/arifgursoy/mbpopt/.

@ Springer

J Glob Optim

Table 2 Summary of SS components for the two bandpass problem classes

Component

SS1 (BP1 and MBP)

SS2 (BP2)

Solution representation
Distance measure
Subset generation method

Initial reference set

Reference set update

Diversification generation

Improvement method

Ordering of wavelengths (O)
Positional distance

All pairs of reference
solutions

Half of the reference
solutions chosen by quality
and half by diversity

Eligible new trial solution
replaces the reference
solution closest to it

Semi-greedy (random
selection of a wavelength
followed by best insertion)

Four variants (IM1 to IM4)
based on exchanges of
positions

Assignment of wavelengths
to groups (S)

Number of wavelengths
assigned to different groups

All pairs of reference
solutions

Half of the reference
solutions chosen by quality
and half by diversity

Eligible new trial solution
replaces the reference
solution closest to it

GRASP construction with
two greedy functional
forms (k1 and hp)

First-improvement swap of
group assignments

Combination method PR (CM1) and EPR (CM2) PR based on swapping group
based on swapping assignments
positions

A two-factor factorial design is employed to configure SS1 by fixing the population size
| P| to 100 and the reference set size B to 10, the default values suggested in the literature.
Also, the stopping criterion (see last line of Algorithm 1) is set as the iteration when no
trial solution is admitted to the reference set. Since there are four improvement methods
and two combination methods, the factorial design consists of 8 treatment combinations
with 45 replications each. For this experiment, the deviation from the best-known solution

f*

objective function value of the best-known solution and f is the objective function value
of the solution obtained by the treatment combination. The ANOVA associated with the
experiment revealed that both main effects are significant, with p values smaller than 10~°.
However, the experiment did not detect a significant interaction effect between CM and IM,
as indicated by a p value of 0.881. Figure 7, a plot of the average deviation values (y-axis)
for each improvement method (x-axis), confirms this finding, where it can be observed that
the CMI1 line (solid) does not cross the CM2 line (dotted).

Figure 7 shows that CM2 is more effective than CM1 regardless of the IM. It also shows
that the response obtained by the IM alternatives does not change with the choice of CM.
This means that the selection of the CM and the IM could have been done independently. The
experiment indicates that the best treatment combination and therefore the SS1 configuration
that is expected to yield the best results is CM2 with IM4.

In the process of conducting this experiment, 39 solutions were found that improved
upon the best-known solution currently published in the BPLIB website. We point out that
the website does not indicate how those solutions were found given that neither [1] nor
[2] reports results on these instances. The objective function values of the new best-known
solutions, which improve upon the current best-known solutions by an average of 16.2%, are
shown in “Appendix 17.

is used as the response variable. The deviation is calculated as (H), where f* is the

@ Springer

J Glob Optim

0.1800
0.1600
0.1400
0.1200
0.1000
0.0800
0.0600
0.0400
0.0200
0.0000

AVERAGE DEVIATION

IM1 IM2 IM3 IM4
—e—CM1 0.1295 0.1046 0.1622 0.0782
---4---- CM2 0.0496 0.0352 0.0797 0.0115
IMPROVEMENT METHOD

Fig. 7 Plot of average response for all (CM, IM) treatment combinations

To configure SS2 we also fix | P| and B to their default values and execute the procedure
(Algorithm 1) a total of 10 times on each instance. Recall that the standard SS stopping
criterion (which we also use for SS1) terminates the search when the reference set does
not change, that is, when in a given iteration, no trial solution is admitted to the reference
set. In SS2, the procedure is allowed to rebuild the reference set by seeding it with the
incumbent solution. That is, the incumbent solution is placed in the new reference set first
and the remaining b — 1 solutions are added following the construction processes within
SS2. A two-factor factorial design is employed to study the effects of various « values and
the greedy functions /1 and /7. The « values included in the experiment are 0, 0.25, 0.5,
and 0.75. We also include a variant where the value of « is selected at random during the
search. This factorial design has a total of 10 treatment combinations and 45 replications. We
again use the average deviation—calculated as described above—as the response variable.
The ANOVA yielded p values of 0.03 and 0.00015 for the main effects associated with
the greedy functions and the « values, respectively. Hence, we consider both main effect
significant. The interaction effect between the two factors has a p value of 0.366. Therefore,
we conclude that there is no significant interaction between the choice of 4 and «. Figure 8 is
a graphical representation of the average deviations obtained by each treatment combination.

It can be concluded from Fig. 8 that /5 is generally more effective than 11, except when o =
0. Also in general, increasing the value of «—thus making the construction less random—
improves performance (except for #; and o« = 0.5). Allowing « to change randomly during
the search seems to be better than using small « values. Given these results, the combination
hy and @ = 0.75 is selected.

We now turn our attention to the competitive testing for which we use the OS and the MBP
instances. The competitors for BP1 are the DSR (Different Start Rows) method of Babayev,
Bell, and Nuriyev [1] and the four variants of a genetic algorithm (GA1 to GA4) proposed
by Berbeler and Giirsoy [2]. Results of the OS instances associated with DSR and the GA
variants were obtained from [1,2] respectively. The articles do not report computational time.
For future reference, we report that the SS1 results shown in Table 3 were obtained in an
average of 875 seconds. In Table 3, OF Value refers to the average objective function value
and #Opt indicates the number of optimal solutions that each competitor is able to find out
of the 45 in the set. The column labeled GAP contains the average relative optimality gap

@ Springer

J Glob Optim

0.1200

0.1000

0.0800

0.0600

0.0400

AVERAGE DEVIATION

0.0200

0.0000
0 0.25 0.5 0.75 Rand

—e—nhl 0.0943 0.0736 0.0814 0.0533 0.0588
---#---- h2 0.0997 0.0565 0.0398 0.0327 0.0513

Fig. 8 Plot of average response for all (%,) treatment combinations

Table 3 Summary of

competitive testing for BP1 Procedure OF value GAP #Opt
DSR 37.00 0.3407 0
GAl 40.53 0.2516 3
GA2 40.53 0.2550 3
GA3 40.24 0.2613 2
GA4 40.29 0.2575 3
SS1 46.07 0.1027 16

Table 4 Friedman test ranking Procedure Ranking
SS1 1.12
GA2 3.33
GAl 3.34
GA4 3.61
GA3 3.73
DSR 5.86

(i.e., the absolute gap divided by the optimal objective function value and averaged over all
instances).

The results in Table 3 indicate that there is little difference in performance among the GA
variants. DSR produces results that are inferior to those produced by all other methods while
SS1 dominate all competitors. In order to support this conclusion, we performed a Friedman
test. This test assigns, for each instance in the test set, the value of 1 to the procedure that
obtains the best result, the value 2 to the second best, and so forth. The average ranking is
then calculated for each procedure and a p value is calculated to assess the strength of the
ranking. The rankings shown in Table 4 result in a p value of less than 0.001.

The next competitive test compares the performance of SS1 with four variants of a genetic
algorithm (GAT1 to GA4) proposed by Giirsoy and Nuriyev [17] for MBP. The 45 MBPLIB

@ Springer

J Glob Optim

Table 5 Summary of

competitive testing for MBP Procedure OF value GAP

instances GAl 2038 0.5153
GA2 19.49 0.5326
GA3 19.69 0.5324
GA4 18.76 0.5458
SS1 30.09 0.2349

instances are employed for this comparison and the summary of the results is presented in
Table 5. Giirsoy and Nuriyev [17] do not report solution times but for future reference we note
that the SS1 solutions summarized in Table 5 were obtained in an average of 267 seconds.
Table 5 does not include the #Opt column because none of the procedures is capable of
finding a single optimal solution. This is in agreement with the large optimality gap shown
in Table 5. Nonetheless, the average objective function value of the SS1 solutions is at least
47.6% better than the average objective function values of all the GA variants, resulting
in optimality gap that is less than half of those corresponding to the GAs. Although this
is a significant improvement over the existing GA procedures, it is clear that the strategies
designed for BP1 and embedded in SS1 lose some of their effectiveness when applied to
MBP instances. Additional strategies that directly exploit the structure of the MBP instances
are necessary to produce improved outcomes.

Our third and last competitive testing compares the performance of SS2 to LocalSolver,
a commercial metaheuristic optimizer, and Gurobi, a commercial MIP solver. To the best
of our knowledge, there is no specialized procedure for BP2 in the literature. The Gurobi
solutions were found with the IP formulation presented in [1], and the solver was run with its
default optimization settings. This means that the search took advantage of the 8 processors
on the machine that was used for testing. The LocalSolver model that we used is included in
“Appendix 2”. The model is a simplified version of the IP formulation of BP2 presented in
[1]. The LocalSolver model is simpler because it requires of only one set of binary variables,
namely, the x[1] [g] variables that indicate whether or not wavelength i is assigned to
group g. We perform two experiments, one with a relatively short search time limit of 600
seconds per instance and one with a longer search horizon of 3000 seconds. As described
above, SS2 is set up to rebuild the reference set every time the stopping criterion is satisfied
and therefore is capable of continuing the search until any specified time limit. The results
of this experiments are summarized in Table 6.

The GAP column in Table 6 is calculated against the best-known solution for each instance,
19 of which are optimal, as confirmed by the 3000-s Gurobi runs. The #Opt is the number
of optimal solutions, out of the 19 that are known, that each procedure is able to match. The
#Best column contains the number of best-known solutions matched by each procedure. The
#Best values are divided into two groups, the number of outright best solutions (#Outright)
and the number of ties with at least one of the competing procedures (#Ties). The #Worst
column indicates the number of times that the solution procedure yielded the worst solution

The following observations can be made from the analysis of the results in
Table 6:

e SS2 exhibits the most robust behavior of the three competing procedures. Its #Best values
are at the top in both the short and the long runs. At the same time, its #Worst values are
the lowest in both runs.

@ Springer

J Glob Optim

Table 6 Summary of results for the competitive testing on BP2 instances

Procedure OF value GAP #Opt #Best #Outright #Ties #Worst
Time limit of 600 s

Gurobi 31.044 0.0434 19 25 1 24 18
LocalSolver 32.577 0.0644 11 31 7 24 12

SS2 32.711 0.0119 17 33 1 32 2
Time limit of 3000 s

Gurobi 31.733 0.0291 19 27 0 27 17
LocalSolver 32.778 0.0516 12 37 8 29

SS2 32.956 0.0050 19 37 1 36

e The GAP values of 0.0119 and 0.005 for SS2 supports the robustness argument. That is,
SS2 produces high-quality solutions in most runs and avoids arbitrarily inferior solutions.
SS2’s worst deviation from the best-known solutions is 0.067 in both, short and long runs.

e LocalSolver is highly competitive and a viable option for finding high-quality solutions
to BP2 instances. This solution alternative is particularly attractive when one takes into
consideration the development effort of creating a customized solution methods such as
SS2. The only caveat is the variability of the solution quality produced by Local Solver.
Note that for the long runs LocalSolver has the same number of outright best solutions (8)
as the number of worst solutions. This variability causes LocalSolver to have the worst
average deviation.

e Gurobi’s GAP values are reasonably low because, even though it has the highest #Worst
counts in both runs, its deviations from the best-known solutions are never more than 0.2

Additional search strategies could widen the gap between the performance of a specialized
procedure like SS2 for the BP2 and a commercial software LocalSolver. For instance, strategic
oscillation proved critical in boosting performance in a tabu search for a grouping problem
[11].

7 Conclusions

The bandpass problem is somewhat new to the OR literature in the sense that, although it
was originally introduced at a conference more than 10 years ago, the first publication did
not appear until 2009. Several versions of the problem have been introduced in subsequent
publications along with additional test data. One of our goals in this project was to gain
understanding of the current state of knowledge associated with the bandpass problem and
to identify avenues for advancing this area. Through our investigation, we identified two
problem classes and a total of three problem variants within those classes. We then designed
a common SS solution framework and developed the individual strategies for each problem
class.

We performed meticulous scientific testing that provided some interesting insights on
the behavior and interaction of the search components. These experiments produced new
benchmarks that will help future researchers test solution methods that could prove even
more effective than those described here. We were also able to show that although BP1 and
MBP belong to the same problem class, the effectiveness of the search strategies designed for

@ Springer

J Glob Optim

BP1 diminish when applied to MBP instances. Nonetheless, competitive testing showed that
the proposed SS1 method applied (without customization) to both BP1 and MBP instances
produces results that are significantly better than those produced by the existing procedures.
Finally, our experiments show that the adaptation of the SS to BP2 exhibits a robust behavior
when compared to commercial software.

Acknowledgments This research was partially supported by the Ministerio de Economia y Competitividad
of Spain (Project Number TIN2015-65460-C2-P) and the Comunidad de Madrid (Project Number S2013/ICE-
2894).

Appendix 1
Table 7 shows the objective function values of the new best-known solutions for the BKS

instances. A dash indicates that no solution better than the current best known was found in
our experimentation.

Table 7 New best solutions found during the scientific experimentation for SS1

Instance Previous New Y% Improve Instance Previous New YoImprove
PO1-A1B8 10 11 10.00 P24-A10B16 10 12 20.00
P02-A1B16 3 - - P25-A11B5 54 59 9.26
P03-A2B8 14 16 14.29 P26-A11B8 23 29 26.09
P04-A2B16 5 6 20.00 P27-A11B16 6 9 50.00
P05-A3B8 20 23 15.00 P28-A12B5 78 83 6.41
P06-A3B16 8 - - P29-A12B8 37 40 8.11
P07-A4B5 27 30 11.11 P30-A12B16 9 13 44.44
P08-A4B8 12 15 25.00 P31-A13B5 71 - -
P09-A4B16 4 - - P32-A14B5 83 87 4.82
P10-A5BS 40 41 2.50 P33-A15B8 53 56 5.66
P11-A5B8 18 21 16.67 P34-A16B16 29 35 20.69
P12-A5B16 5 7 40.00 P35-A17B5 104 106 1.92
P13-A6B5 62 67 8.06 P36-A18B5 215 223 3.72
P14-A6B8 31 34 9.68 P37-A19B16 71 - -
P15-A6B16 9 11 22.22 P38-A20B5 132 134 1.52
P16-A7B8 17 20 17.65 P39-A22B8 74 78 541
P17-A8B8 25 27 8.00 P40-A22B25 17 22 29.41
P18-A8B16 9 10 11.11 P41-A23B5 161 - -
P19-A9B5 44 47 6.82 P42-A24B8 93 95 2.15
P20-A9B8 18 23 27.78 P43-A25B16 51 53 3.92
P21-A9B16 5 8 60.00 P44-A26B5 245 248 1.22
P22-A10B5 62 68 9.68 P45-A27B5 28 41 46.43
P23-A10B8 33 35 6.06

@ Springer

J Glob Optim

Appendix 2

LocalSolver input and model functions for the experiments with BP2.

function input ()

{

}

usage = "\nUsage: localsolver BP2.lsp "

+ "B=BandpassNumber fileName=dataFile "

+ "[lsTimeLimit=timeLimit] [lsVerbosity=0 or 1]\n";
if (fileName == nil) error (usage);

dataFile = openRead(fileName + ".txt");

m = readInt (dataFile);

n = readInt (dataFile);

ali in 1..m]J[J in 1..n] = readInt(dataFile);
close (dataFile);

G = floor (m/B);

b = m-G*B;

GP = (b > 0) ? G+1 : G;

function model ()

{

// x[1]1[g] equal to 1 if wavelength i is assigned to group g
x[1..m][1l..GP] <= bool();

// each group from 1 to G has exactly B rows
for [g in 1..G] constraint sum[i in 1..m] (x[1][g]) == B;

// group G+1 if it exists has b rows
if (GP > G) constraint sum[i in 1..m] (x[1i][GP]) == Db;

// each row is included in exactly one group
for [i1 in 1..m] constraint sum[g in 1..GP](x[i][g]) == 1;

// y[jllg]l is equal to 1 if there is a bandpass in destination j of group g
y[j in 1..n]J[g in 1..G] <- sum[i in 1..m] (ali][j]*x[1i][g]) == B;
if (GP > G) y[j in 1..n][GP] <- sum[i in 1..m] (al[il[J]1*x[1][GP]) == Db;

// objective function is the sum of bandpasses
obj <= sum[g in 1..GP][J in 1..n] (y[31lgl);
maximize obj;

References

. Babayev, V., Bell, G.I., Nuriyev, U.G.: The bandpass problem: combinatorial optimization and library of

problems. J. Combin. Optim. 18(2), 151-172 (2009)

. Berberler, M.E., Giirsoy, A.: Genetic algorithm approach for bandpass problem. In: Kasimbeyli R., Dincer

C., Ozpeynirci S., Sakalauskas L., (eds.) 24th Mini EURO Conference on Continuous Optimization and
Information-Based Technologies in the Financial Sector (MEC EurOPT 2010), pp. 201-206. Vilnius
Gediminas Technical University Publishing House Technika, Izmir (2010)

Campos, V., Marti, R., Sdnchez-Oro, J., Duarte, A.: GRASP with path relinking for the orienteering
problem. J. Oper Res. Soc. 65(2), 1800-1813 (2014)

. Das, A., Roberts, M.: Metric distances of permutations. www.cra.org/Activities/craw_archive/dmp/

awards/2004/Das/paper.ps. (2004)

Duarte, A., Marti, R., Glover, F., Gortazar, F.: Hybrid scatter tabu search for unconstrained global opti-
mization. Ann. Oper. Res. 183(1), 95-123 (2009)

Duarte, A., Sanchez-Oro, J., Resende, M.G.C., Glover, F., Marti, R.: GRASP with exterior path relinking
for differential dispersion minimization. Inf. Sci. 296(1), 46-60 (2015)

@ Springer

J Glob Optim

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.

22.
23.

24.
25.

26.

27.

28.

29.

Duarte, A., Marti, R.: Tabu search and grasp for the maximum diversity problem. Eur. J. Oper. Res. 178(1),
71-84 (2007)

. Feo, T.A.,Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem.

Oper. Res. Lett. 8, 67-71 (1989)

. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109—133

(1995)

Gallego, M., Duarte, A., Laguna, M., Marti, R.: Hybrid heuristics for the maximum diversity problem.
Comput. Optim. Appl. 44(3), 411-426 (2009)

Gallego, M., Laguna, M., Marti, R., Duarte, A.: Tabu search with strategic oscillation for the maximally
diverse grouping problem. J. Oper. Res. Soc. 64(5), 724-734 (2013)

Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156—166
(1977)

Glover, F.: A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363,
1-51 (1998)

Glover, F.: Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheur. Comput. 5(3), 1-8
Glover, F.,, Laguna, M.: Tabu Search. Springer, New York (1997)

Goralski, W.J.: SONET, a Guide to Synchronous Optical Networks. McGraw-Hill, New York (1997)
Giirsoy, A., Nuriyev, U.G.: Genetic algorithm for multi bandpass problem and library of problems. In:
Proceedings of the IV International Conference on Problems of Cybernetics and Informatics (PCI), Section
I, Information and Communication Technologies, Baku, Azerbaijan, Sept 12—14, 134138 (2012)
Kaminow, I.P., Saleh, A.A.M., Thomas, R.E., Chan, V.W.S., Stevens, M.L.: A wideband all-optical WDM
network. IEEE J. Sel. Areas Commun. 14(5), 780-799 (1996)

Kurt, M., Kutucu, H., Giirsoy, A., Nuriyev, U.: The optimization of the bandpass lengths in the multi-
bandpass problem. In: Proceedings of the Seventh International Conference on Management Science and
Engineering Management: Focused on Electrical and Information Technology, Xu, J., Fry, J. A, Lev, B.,
Hajiyev, A. (eds.) (1): 115-123. Springer, Berlin (2014)

Laguna, M., Marti, R.: Scatter Search: Methodology and Implementations in C. Kluwer, Boston (2003)
Li, Z., Lin, G.: The three column bandpass problem is solvable in linear time. Theor. Comput. Sci.
412(4-5), 281-299 (2011)

Lin, G.: On the bandpass problem. J. Combin. Optim. 22(1), 71-77 (2011)

Marti, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS 1J.
Comput. 21(1), 26-38 (2009)

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097-1100 (1997)
Nuriyev, U.G., Kutucu, H., Kurt, M.: Mathematical models of the bandpass problem and OrderMatic
computer game. Math. Comput. Model. 53, 1282-1288 (2011)

Pantrigo, J.J., Marti, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem.
Ann. Oper. Res. 199(1), 285-304 (2011)

Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective. Morgan Kaufmann,
San Francisco (1998)

Resende, M., Marti, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max—min diversity
problem. Comput. Oper. Res. 37, 498-508 (2010)

Sanchez-Oro, J., Laguna, M., Duarte, A., Marti, R.: Scatter search for the profile minimization problem.
Networks. 65(1), 10-21 (2015)

@ Springer

142 Graph layout problems: a metaheuristic approach

Chapter 11. Journal articles indexed in the JCR 143

Additional publications derived

from this research

The research in the problems and metaheuristics described in this dissertation
has resulted in additional publications related to them, with respect to the
methodology used, the problem considered or the adaptation of previously
proposed ideas. For the sake of completeness, this chapter is intended to present
the additional articles that have been published as a results of the research. The
articles are sorted in ascending order with respect to the publication date.

Journal articles indexed in the Journal of Citation

Reports

1. A. Duarte, L. F. Escudero, R. Marti, N. Mladenovic, J. J. Pantrigo, and J.
Sanchez-Oro, Variable neighborhood search for the Vertex Separation
Problem, Computers & Operations Research, vol. 39, pp. 3247-3255, 2012
(Chapter 7).

e DOI: https://doi.org/10.1016/j.cor.2012.04.017
e Impact Factor: 1.909
e Categories:

— Operations Research and Management Science, 10 / 79 (Q1)
— Engineering, industrial, 6 / 44 (Q1)
— Computer Science, interdisciplinary applications, 33 / 102 (Q2)

144

Graph layout problems: a metaheuristic approach

2. J. Sanchez-Oro, D. Fernandez-Lépez, R. Cabido, A. S. Montemayor, and

J. J. Pantrigo, Radar-based road-traffic monitoring in urban environments,
Digital Signal Processing, vol. 23, issue 1, pp. 364 - 374, 2013.

e DOIL: https://doi.org/10.1016/j.dsp.2012.09.012

e Impact Factor: 1.495

e Categories:

— Engineering, electrical and electronic, 111 / 255 (Q2)

. A. Duarte, M. Laguna, R. Marti, and J. Sanchez-Oro, Optimization

Procedures for the Bipartite Unconstrained 0-1 Quadratic Programming
Problem, Computers & Operations Research, vol. 51, pp. 123-129, 2014.

e DOLI: https://doi.org/10.1016/j.cor.2014.05.019

e Impact Factor: 1.861

e Categories:

— Operations Research and Management Science, 19 / 81 (Q1)
— Engineering, industrial, 9 / 43 (Q1)
— Computer Science, interdisciplinary applications, 29 / 102 (Q2)

. V. Campos, R. Marti, J. Sanchez-Oro, and A. Duarte, GRASP with Path

Relinking for the Orienteering Problem, Journal of the Operational Research
Society, vol. 65, issue 12, pp. 1800-1813, 2014.

e DOLI: https://doi.org/10.1057/jors.2013.156

e Impact Factor: 0.953

e Categories:

— Operations Research and Management Science, 50 / 81 (Q3)

J. Sanchez-Oro, J. J. Pantrigo, and A. Duarte, Combining intensification and
diversification strategies in VNS. An application to the Vertex Separation
Problem, Computers & Operations Research, vol. 52, issue B, pp. 209-219,
2014 (Chapter 9).

e DOLI: https://doi.org/10.1016/j.cor.2013.11.008

e Impact Factor: 1.861

e Categories:

— Operations Research and Management Science, 19 / 81 (Q1)
— Engineering, industrial, 9 / 43 (Q1)

Chapter 11. Journal articles indexed in the JCR 145

— Computer Science, interdisciplinary applications, 29 / 102 (Q2)

6. J.Sanchez-Oro, M. Laguna, A. Duarte, and R. Marti, Scatter search for
the profile minimization problem, Networks, vol. 65, issue 1, pp. 21, 2015
(Chapter 8).

e DOI: https://doi.org/10.1002/net.21571
e Impact Factor: 0.943
e Categories:

— Computer Science, hardware & architecture, 29 / 51 (Q3)
— Operations Research & management science, 54 / 82 (Q3)

7. A. Duarte, J. Sanchez-Oro, M. G. C. Resende, F. Glover, and R. Marti,
GRASP with Exterior path relinking for differential dispersion minimization,
Information Sciences, vol. 296, pp. 46-60, 2015.

e DOL: https://doi.org/10.1016/j.ins.2014.10.010
e Impact Factor: 3.364
e (Categories:
— Computer Science, Information Systems, 8 / 143 (Q1)

8. A. Duarte, J. J. Pantrigo, J. Sanchez-Oro, and E. G. Pardo, Parallel VNS
strategies for the Cutwidth Minimization Problem, IMA Journal of
Management Mathematics, vol. 27, issue 1, pp. 55-73, 2016 (Chapter 10).

e DOLI: https://doi.org/10.1093/imaman/dpt026
e Impact Factor: 0.878
e Categories:

— Operations Research & management science, 59 / 82 (Q3)
— Mathematics, interdisciplinary applications, 65 / 101 (Q3)

9. J. Sanchez-Oro, A. Duarte, S. Salcedo-Sanz, Robust total energy demand
estimation with a hybrid Variable Neighborhood Search — Extreme Learning
Machine algorithm, Energy Conversion and Management, vol. 123, pp. 445-
452, 2016.

e DOLI: https://doi.org/10.1016/j.enconman.2016.06.050
e Impact Factor: 4.801

e Categories:

146 Graph layout problems: a metaheuristic approach
— Thermodynamics, 2 / 58 (Q1)
— Energy & Fuels, 12 / 88 (Q1)
— Mechanics, 3 / 135 (Q1)
— Physics, nuclear, 3 / 21 (Q1)

10. J. Sanchez-Oro, N. Mladenovi¢, and A. Duarte, General Variable
Neighborhood Search for computing graph separators, Optimization Letters,
In press, 2016.

e DOI: https://doi.org/10.1007/s11590-014-0793~-z

e Impact Factor: 1.019

e Categories:
— Operations Research & management science, 51 / 82 (Q3)
— Mathematics, applied, 87 / 254 (Q2)

11. J. Sanchez-Oro, M. Laguna, R. Marti, A. Duarte, Scatter search for the
bandpass problem, Journal of Global Optimization, In press, 2016 (Chapter
11).

e DOI: https://doi.org/10.1007/s10898-016-0446-0

e Impact Factor: 1.219

e Categories:
— Operations Research & management science, 42 / 82 (Q3)
— Mathematics, applied, 63 / 254 (Q1)

12. B. Menéndez, E.G. Pardo, J. Sanchez-Oro, A. Duarte, Parallel variable
neighborhood search for the min—max order batching problem, International
Transactions in Operational Research, In press, 2016.

e DOI: https://doi.org/10.1111/itor.12309
e Impact Factor: 1.255
e (Categories:
— Operations Research & management science, 39 / 82 (Q2)
13. J.D. Quintana, J. Sanchez-Oro, and A. Duarte, Efficient Greedy

Randomized Adaptive Search Procedure for the Generalized Regenerator
Location Problem, International Journal of Computational Intelligence
Systems, In press, 2016.

e DOI: Not available

Chapter 11. Conference works 147

e Impact factor: 0.391
e (Categories:

— Computer Science, artificial intelligence, 125 / 130 (Q4)
— Computer Science, interdisciplinary applications, 101 / 104 (Q4)

Journal articles not indexed in the Journal of

Citation Reports and book chapters

1. J. Sanchez-Oro, M. Sevaux, A. Rossi, R. Marti, and A. Duarte, Solving
dynamic memory allocation problems in embedded systems with parallel
variable neighborhood search strategies, FElectronic Notes in Discrete
Mathematics, vol 47, pp. 85-92, 2015.

2. J. Sanchez-Oro and A. Duarte, Beyond Unfeasibility: Strategic Oscillation
for the Maximum Leaf Spanning Tree Problem, Lecture Notes in Computer
Science, vol. 9422, pp. 322-331, 2015.

3. J. Sanchez-Oro, D. Fernandez-Loépez, R. Cabido, A. S. Montemayor, and J.
J. Pantrigo, Urban Traffic Surveillance in Smart Cities Using Radar Images,
Lecture Notes in Computer Science, vol. 7931, pp. 296-305, 2015.

4. J. Sanchez-Oro and A. Duarte, An experimental comparison of Variable
Neighborhood Search wvariants for the minimization of the vertex-cut in
layout problems, Electronic Notes in Discrete Mathematics, vol. 39, pp.
59-66, 2012.

5. J. Sanchez-Oro and A. Duarte, GRASP with Path Relinking for the SumCut
Problem, International Journal of Combinatorial Optimization Problems and
Informatics, vol. 3, issue 1, pp. 3-11, 2012.

Works presented in national and international

conferences

1. J. Sanchez-Oro and A. Duarte, Beyond Unfeasibility: Strategic Oscillation
for the Mazimum Leaf Spanning Tree Problem, Conferencia de la Asociacion

148

Graph layout problems: a metaheuristic approach

10.

Espanola para la Inteligencia Artificial (CAEPIA), Albacete (Spain), 2015.

J. Sénchez-Oro, M. Sevaux, A. Rossi, R. Marti, and A. Duarte, Efficient
memory use in embedded systems: a Variable Neighborhood Search approach,
15th EU/ME Workshop, Madrid (Spain), 2015.

J. Sanchez-Oro, M. Sevaux, A. Rossi, R. Marti, and A. Duarte, Solving
dynamic memory allocation problems in embedded systems with parallel

variable metghborhood search strategies, 3rd International Conference on
Variable Neighborhood Search, Djerba (Tunisia), 2014.

D. Concha, D. Fernandez-Lépez, J. Sanchez-Oro, A. S. Montemayor, J. J.
Pantrigo, and A. Duarte, Biusqueda de Vecindad Variable secuencial 1y
paralela: una aplicacion al problema de la maximizacion del corte, 1X

Congreso Espanol de Metaheuristicas, Algoritmos Evolutivos y
Bioinspirados (MAEB), Madrid (Spain), 2013.

D. Fernandez-Lépez, J. Sanchez-Oro, and A. Duarte, Cdlculo de
separadores de grafos utilizando busqueda de vecindad variable reducida, IX
Congreso Espanol sobre Metaheuristicas, Algoritmos Evolutivos y

Bioinspirados (MAEB), Madrid (Spain), 2013.

. J. Sénchez-Oro, A. Duarte, M. Laguna, and R. Marti Scatter Search

aplicado al problema de la minimizacion del profile de matrices y grafos, IX
Congreso Espanol sobre Metaheuristicas, Algoritmos Evolutivos y
Bioinspirados (MAEB), Madrid (Spain), 2013.

J. Sanchez-Oro and A. Duarte, Comparison of different Variable
Neighborhood Search strategies for solving the Bipartite unconstrained 0-1

Quadratic programming Problem, XI Balkan Conference On Operational
Research - BALCOR, Belgrade (Serbia), 2013.

D. Fernandez-Lépez, J. Sanchez-Oro and A. Duarte, Computing Graph
Separators with Variable Neighborhood Search, XI Balkan Conference On
Operational Research - BALCOR, Belgrade (Serbia), 2013.

J. Sanchez-Oro, D. Fernandez-Lépez, R. Cabido, A. S. Montemayor, and J. J.
Pantrigo, Urban Traffic Surveillance in Smart Cities Using Radar Images,

5th. International work-conference on the interplay between natural and
artificial computation - IWINAC, Mallorca (Spain), 2013.

J. Sanchez-Oro, M. Laguna, A. Duarte, R. Marti, Scatter Search for the
Profile Minimization Problem, INFORMS Computing Society Conference,
Santa Fe (USA), 2013.

Chapter 11. Conference works 149

11

12.

13.

14.

15.

J. Sanchez-Oro, S. Montalvo, A. S. Montemayor, J. J. Pantrigo, A. Duarte,
V. Fresno, and R. Martinez, URJC & UNED at ImageCLEF 2013 Photo
Annotation task, Valencia (Spain), 2013.

J. Sanchez-Oro and A. Duarte, An experimental comparison of Variable
Neighborhood Search wvariants for the minimization of the wvertex-cut in
layout problems, EURO Mini Conference XXVIII on Variable
Neighbourhood Search, Herceg Novi (Montenegro), 2012.

J. Sanchez-Oro and A. Duarte, GRASP con Path Relinking para el
problema del SumCut, VIII Congreso Espanol sobre Metaheuristicas,
Algoritmos Evolutivos y Bioinspirados - MAEB, Albacete (Spain), 2012.

J. Sanchez-Oro, S. Montalvo, A. S. Montemayor, J. J. Pantrigo, A. Duarte,
V. Fresno, and R. Martinez, URJC & UNED at ImageCLEF 2012 Photo
Annotation task, Rome (Italy), 2012.

J. Sanchez-Oro and A. Duarte, GRASP for the SumCut Problem, XVII
International Congress on Computer Science Research, Morelia (Mexico),
2011.

150 Graph layout problems: a metaheuristic approach

151

Part 111

Resumen y conclusiones

153

La optimizacién es una disciplina que trata de encontrar solucién a problemas
de la vida cotidiana. Numerosos problemas de interés en diferentes areas cientificas
y tecnoldgicas pueden ser enunciados como problemas de optimizacion. Aquellos
problemas en los que, existiendo un gran numero de soluciones posibles y una
clara forma de comparacion entre ellas, se pretende encontrar la solucién 6ptima
(la mejor de todas) se consideran problemas de optimizacion.

Esta tesis se centra en un conjunto de problemas de optimizacién
combinatoria, los cuales son un tipo de problemas de optimizacién cuyas
soluciones estan formadas por numeros enteros. Para la mayoria de los
problemas con interés practico no se conoce ningun algoritmo capaz de resolverlo
en tiempo polinémico. Sin embargo, debido a su interés, es necesario disponer de
técnicas eficientes que sean capaces de abordarlos. Existen técnicas exactas que
encuentran la solucion 6ptima dado un problema, pero necesitan un tiempo de
computo demasiado elevado para ser viable cuando el tamano del problema
aumenta. Por otra parte, las técnicas aproximadas no garantizan la obtencién de
la solucién 6ptima, pero proporcionan soluciones de presumible alta calidad en
un tiempo de cémputo razonable. Entre las técnicas aproximadas destacan los
algoritmos heuristicos y los metaheuristicos, los cuales son el centro de atencion
de la presente tesis.

El conjunto de problemas tratado en esta tesis se compone de problemas de
ordenaciones lineales, los cuales han cobrado gran importancia en los iltimos anos
debido a sus numerosas aplicaciones précticas. Estos problemas, originalmente
propuestos para el diseno de circuitos integrados, consisten en la proyeccion de un
grafo original sobre un grafo destino, de forma que los vértices del grafo original se
asocia los del grafo destino, creando un camino en el grafo destino por cada arista
del original. La calidad de la proyeccién reside en la expansién, la congestion y la
carga del grafo destino.

Los problemas considerados se centran en el caso en el cual un grafo de n
vértices se debe proyectar sobre un grafo camino que presente una carga igual a
uno. Desde un punto de vista practico, este grafo camino se representa alineando
sus veértices sobre una linea horizontal, donde cada vértice v se localiza en la
posicién ¢(v), siendo ¢ una posible ordenacion lineal del grafo original.

Gran parte de los problemas sobre ordenaciones lineales con aplicaciones
practicas en diferentes areas son dificiles de resolver. En esta tesis se han
considerado cuatro problemas de ordenaciones lineales, en concreto: Vertex
Separation Problem, Profile Minimization Problem, Cutwidth Minimization
Problem, y Bandpass Problem.

Los algoritmos propuestos para cada uno de los problemas han obtenido los
mejores resultados encontrados en el estado del arte para cada uno de ellos,
convirtiéndose en referencia para el estudio de los mismos.

154 Graph layout problems: a metaheuristic approach

El problema de Vertex Separation se ha afrontado siguiendo la metodologia
de busqueda de vecindad variable, la cual ha obtenido buenos resultados en
numerosos trabajos recientes. En concreto, se ha publicado un primer trabajo en
el que se propone un algoritmo basado en la busqueda de vecindad variable
bésica, ademas de dos métodos constructivos y un procedimiento de busqueda
local. Ademads, se propone un conjunto de instancias para realizar una
comparativa entre diferentes métodos obtenido de la coleccion de grafos
Harwell-Boeing. Los resultados obtenidos prueban la eficiencia y eficacia del
método propuesto, convirtiéndose en el primer heuristico para el problema en
cuestion.

Posteriormente se publica un segundo trabajo cuyo objetivo es estudiar como
afecta la diversificacién y la intensificacién al procedimiento de busqueda. Para
ello se proponen tres métodos diferentes: uno de ellos centrado en la
diversificacién (Reduced VNS), otro centrado en la intensificacién (VND) y un
ultimo método que combina ambos aspectos (General VNS). Ademds, se
proponen cuatro nuevos métodos de perturbacion de soluciones que varian la
importancia de la diversificacion y la intensificacion, asi como dos nuevas
estructuras de vecindad. Los resultados obtenidos demuestran que el balance
entre diversificacion e intensificacion proporciona mejores resultados, emergiendo
GVNS como el mejor algoritmo para el Vertex Separation Problem.

El Profile Minimization Problem es un problema con aplicaciones en diversos
campos como la arqueologia o la reduccion del espacio requerido para almacenar
sistemas de ecuaciones. Para resolver este problema se propone un algoritmo
basado en la metodologia de bisqueda dispersa.

Los resultados obtenidos por dicho algoritmo lo convierten en el estado del
arte para el problema, como lo confirma la extensa experimentacién llevada a
cabo. Ademas, las conclusiones derivadas pueden ser aplicadas a problemas
relacionados. Por ejemplo, la evaluaciéon eficiente de los movimientos propuesta
puede ser adaptada a un gran nimero de problemas de ordenaciones lineales.

Por tltimo, el diseno factorial llevado a cabo muestra que un disenio secuencial
puede obtener resultados similares, lo que resulta interesante para aquellos casos en
los que no es posible disenar un experimento factorial por problemas de requisitos
o tiempo de computo.

La paralelizacion de metaheuristicas se ha estudiado utilizando el Cutwidth
Minimization Problem. Se han disenado seis estrategias paralelas basadas en la
busqueda de vecindad variable que pueden ser clasificadas en tres grandes clases.
La primera de ellas se centra en la paralelizacién del método completo, mientras
la segunda esta orientada a simultanear los procedimientos de perturbacion y
busqueda local. Una tultima clase tiene como objetivo la exploracion paralela de
diferentes estructuras de vecindad.

155

Las estrategias propuestas se han utilizado para paralelizar una variante de
busqueda de vecindad variable recientemente introducida, denominada Variable
Formulation Search, que hasta el momento era considerada el estado del arte para
el problema. La experimentacion preliminar selecciona la mejor variante para
cada clase, mientras que en la experimentacién final se compara cada una de las
variantes con la versién secuencial del algoritmo.

Los resultados obtenidos muestran la superioridad de dos de las versiones
paralelas. En concreto, Replicated Shaking VNS y Replicated Parallel VNS
superan al método previo. Estos resultados son respaldados con test estadisticos,
estableciendo a Replicated Shaking VNS como el método de referencia para el
Cutwidth Minimization Problem.

Por 1ltimo, se ha propuesto un algoritmo basado en la metodologia de biisqueda
dispersa combinado con el reencadenamiento de trayectorias para solucionar el
problema del Bandpass. Dicho problema surge en una conferencia hace més de diez
anos, pero la primera publicacién relacionada no aparece hasta 2009. Ademas, ha
derivado en diferentes variantes, cada una de ellas con sus propias instancias de
test para evaluar la calidad de los algoritmos propuestos.

Uno de los objetivos del estudio del problema del Bandpass es establecer una
revision del estado actual del problema y de sus variantes, habiendo identificado
dos tipos de problemas y un total de tres variantes. Ademas, se ha disenado un
algoritmo basado en busqueda dispersa que puede ser aplicado a cualquiera de las
variantes sin llevar a cabo modificaciones.

Los resultados obtenidos revelan interesantes conclusiones acerca de la
interaccién de los elementos que conforman el algoritmo de bisqueda dispersa.
Ademads, se ha comprobado que aunque dos de las variantes pertenecen a la
misma clase, un algoritmo especificamente disenado para la primera variante
disminuye su calidad cuando se aplica a la segunda, aunque sigue siendo
claramente superior a los algoritmos previamente publicados. Finalmente, los
experimentos llevados a cabo prueban que el algoritmo propuesto muestra una
mayor robustez que los programas comerciales.

Los resultados obtenidos muestran como se ha cumplido el objetivo inicial de la
tesis. Ademas, la investigacién realizada en esta tesis ha resultado en la publicacion
de 13 articulos indexados en el Journal of Citation Reports (JCR), de los cuales
6 estan publicados en revistas del primer cuartil, 3 en el segundo cuartil, 3 en el
tercer cuartil y, por dltimo, 1 en el cuarto cuartil. Finalmente, se han publicado 5
articulos en revistas no indexadas y capitulos de libro y los resultados obtenidos
en la investigacion se han presentado en un total de 15 conferencias nacionales e
internacionales.

156 Graph layout problems: a metaheuristic approach

Bibliography 157

Bibliography

1]

D. Adolphson and T.C. Hu. Optimal Linear Ordering. SIAM Journal on
Applied Mathematics, 25(3):403-423, 1973.

E. Alba. Parallel metaheuristics: a new class of algorithms. Wiley-
Interscience, 2005.

E. Alba and A.J. Nebro. New Technologies in Parallelism, pages 63-78. John
Wiley & Sons, Inc., 2005.

S. Amaran, N. V. Sahinidis, B. Sharda, and S.J. Bury. Simulation
optimization: a review of algorithms and applications. Annals of Operations
Research, 240(1):351-380, 2016.

D.V. Andrade and Resende. GRASP with evolutionary path-relinking. In
Seventh Metaheuristics International Conference (MIC), 2007.

D.V. Andrade and M. G. C Resende. GRASP with path-relinking for network
migration scheduling. In Proceedings of International Network Optimization
Conference (INOC), 2007.

G. Ausiello, M. Protasi, A. Marchetti Spaccamela, G. Gambosi, P. Crescenzi,
and V. Kann. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1st edition, 1999.

D.A. Babayev, G.I. Bell, and U.G. Nuriyev. The bandpass problem:
combinatorial optimization and library of problems. Journal of
Combinatorial Optimization, 18(2):151-172, 20009.

R. S. Barr and B. L. Hickman. Feature Article—Reporting Computational
Experiments with Parallel Algorithms: Issues, Measures, and Experts’
Opinions. ORSA Journal on Computing, 5(1):2-18, 1993.

158

Graph layout problems: a metaheuristic approach

[10]

[11]

[12]

[13]

[14]

[15]

R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87-90, 1958.

T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua. LocalSolver
1.x: a black-box local-search solver for 0-1 programming. /OR, 9(3):299-316,
2011. www.localsolver.com.

M.E. Berberler and A. Gursoy. Genetic algorithm approach for bandpass
problem. In 24th Mini EURO Conference on Continuous Optimization
and Information-Based Technologies in the Financial Sector (MEC EurOPT
2010), pages 201-206, Izmir, 2010.

G. Blin, G. Fertin, D. Hermelin, and Vialette. Fixed-parameter algorithms
for protein similarity search under mRNA structure constraints. Journal
of Discrete Algorithms, 6(4):618 — 626, 2008. Selected papers from the
Ist Algorithms and Complexity in Durham Workshop (ACiD 2005)1st
Algorithms and Complexity in Durham Workshop (ACiD 2005).

H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and Pathwidth of
Permutation Graphs. SIAM Journal on Discrete Mathematics, 8(4):606-616,
1995.

Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time Register
Allocation for a Fixed Number of Registers. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 98, pages
574-583, Philadelphia, PA, USA, 1998. Society for Industrial and Applied
Mathematics.

H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and Kloks. Approximating
Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. Journal
of Algorithms, 18(2):238 — 255, 1995.

H.L. Bodlaender and R.H. Mohring. The pathwidth and treewidth of cographs,
pages 301-309. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.

B. Bollobds and I. Leader. Edge-isoperimetric inequalities in the grid.
Combinatorica, 11(4):299-314, 1991.

R. A. Botafogo. Cluster Analysis for Hypertext Systems. In Proceedings
of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 93, pages 116-125, New York,
NY, USA, 1993. ACM.

Bibliography 159

[20]

[21]

[24]

[25]

[26]

[27]

28]

[29]

[31]

J. Brimberg, P. Hansen, N. Mladenovi¢, and Taillard. Improvements and
Comparison of Heuristics for Solving the Uncapacitated Multisource Weber
Problem. Operations Research, 48(3):444-460, 2000.

V. Campos, R. Marti, J. Sdnchez-Oro, and A. Duarte. GRASP with path
relinking for the orienteering problem. Journal of the Operational Research
Society, 65(12):1800-1813, 2014.

V. Campos, E. Pinana, and R. Marti. Adaptive memory programming for
matrix bandwidth minimization. Annals of Operations Research, 183(1):7—
23, 2011.

P. Z. Chinn, J. Chvatalova, A. K. Dewdney, and N. E. Gibbs. The bandwidth
problem for graphs and matrices—a survey. Journal of Graph Theory,
6(3):223-254, 1982.

M.J. Chung, F. Makedon, I.H. Sudborough, and J. Turner. Polynomial Time
Algorithms for the Min Cut Problem on Degree Restricted Trees. SIAM J.
Comput., 14(1):158-177, 1985.

J. Cohoon and S. Sahni. Exact algorithms for special cases of the Board
Permutation Problem. In Proc. 21st Ann. Allerton Conf. on Communication,
Control, and Computing, pages 246-255, 1983.

J.P. Cohoon and S. Sahni. Heuristics for Backplane Ordering. Adv. VLSI
Comput. Syst., 2(1-2):37-60, 1987.

T. G. Crainic and M. Toulouse. Parallel Strategies for Meta-Heuristics,
pages 475-513. Springer US, Boston, MA, 2003.

T.G. Crainic, M. Gendreau, P. Hansen, and N. Mladenovi¢. Cooperative
Parallel Variable Neighborhood Search for the p-Median. Journal of
Heuristics, 10(3):293-314, 2004.

E. Cuthill and J. McKee. Reducing the Bandwidth of Sparse Symmetric
Matrices. In Proceedings of the 1969 24th National Conference, ACM 69,
pages 157-172, New York, NY, USA, 1969. ACM.

J. Diaz, A. Gibbons, G. E. Pantziou, M. J. Serna, P. G. Spirakis, and J.
Toran. Computing and Combinatorics Parallel algorithms for the minimum

cut and the minimum length tree layout problems. Theoretical Computer
Science, 181(2):267 — 287, 1997.

J. Diaz, A. M. Gibbons, M. S. Paterson, and J. Toran. The MINSUMCUT
problem, pages 65—79. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

160

Graph layout problems: a metaheuristic approach

[32]

33]

[34]

[35]

[41]

[42]

[43]

J. Diaz, M. D. Penrose, J: Petit, and M. Serna. Convergence Theorems for
Some Layout Measures on Random Lattice and Random Geometric Graphs.
Comb. Probab. Comput., 9(6):489-511, 2000.

J. Diaz, J. Petit, and M. Serna. A Survey of Graph Layout Problems. ACM
Comput. Surv., 34(3):313-356, 2002.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269-271, 1959.

Duarte, J. Sanchez Oro, M.G.C. Resende, F. Glover, and R. Marti. Greedy
randomized adaptive search procedure with exterior path relinking for
differential dispersion minimization. Information Sciences, 296:46 — 60, 2015.

A. Duarte, L. F. Escudero, R. Marti, N. Mladenovi¢, J. J. Pantrigo, and
J. Sénchez-Oro. Variable neighborhood search for the Vertex Separation
Problem. Computers & Operations Research, 39(12):3247 — 3255, 2012.

A. Duarte, M. Laguna, R. Marti, and J. Sanchez-Oro. Optimization
procedures for the bipartite unconstrained 0-1 quadratic programming
problem. Computers & Operations Research, 51:123 — 129, 2014.

A. Duarte, J.J. Pantrigo, and M. Gallego. Metaheuristicas. Dykinson, 2007.

A. Duarte, J.J. Pantrigo, E.G. Pardo, and J. Sanchez-Oro. Parallel variable
neighbourhood search strategies for the cutwidth minimization problem.
IMA Journal of Management Mathematics, 27(1):55-73, 2016.

A. Duarte, J. Sanchez Oro, M.G.C. Resende, F. Glover, and R. Marti.
Greedy randomized adaptive search procedure with exterior path relinking

for differential dispersion minimization. Information Sciences, 296:46 — 60,
2015.

V. Dujmovi¢, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N.
Nishimura, P. Ragde, F. Rosamond, S. Whitesides, and D. R. Wood. On
the Parameterized Complexity of Layered Graph Drawing. Algorithmica,
52(2):267-292, 2008.

J. Ellis and M. Markov. Computing the vertex separation of unicyclic graphs.
Information and Computation, 192(2):123 — 161, 2004.

J.A. Ellis, I.LH. Sudborough, and J.S. Turner. The Vertex Separation and
Search Number of a Graph. Information and Computation, 113(1):50 — 79,
1994.

Bibliography 161

[44]

[45]

[53]

[54]

Faria, S. Binato, M.G.C. Resende, and D. M. Falcao. Power transmission
network design by greedy randomized adaptive path relinking. I[FEFE
Transactions on Power Systems, 20(1):43-49, 2005.

T. A Feo and M. G. C Resende. A Probabilistic Heuristic for a
Computationally Difficult Set Covering Problem. Oper. Res. Lett., 8(2):67—
71, 1989.

T.A. Feo and M. G. C. Resende. Greedy Randomized Adaptive Search
Procedures. Journal of Global Optimization, 6(2):109-133, 1995.

M. Flynn. Flynn’s Tazonomy, pages 689-697. Springer US, Boston, MA,
2011.

F. V. Fomin and K. Hgie. Pathwidth of cubic graphs and exact algorithms.
Information Processing Letters, 97(5):191 — 196, 2006.

L.R Ford and D.R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399-404, 1956.

F. Garcia Lépez, B. Melidan Batista, J.A. Moreno Pérez, and J. M. Moreno
Vega. The Parallel Variable Neighborhood Search for the p-Median Problem.
Journal of Heuristics, 8(3):375-388, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

F. Gavril. Some simplified NP-complete graph problems. In Proceedings of
the Eleventh Conference on Information Sciences and Systems, pages 91 —
95, Baltimore, MD, 1977.

N.E. Gibbs. Algorithm 509: A Hybrid Profile Reduction Algorithm [F1].
ACM Trans. Math. Softw., 2(4):378-387, 1976.

N.E. Gibbs, W.G. Poole, and P. K. Stockmeyer. An Algorithm for Reducing
the Bandwidth and Profile of a Sparse Matrix. SIAM Journal on Numerical
Analysis, 13(2):236-250, 1976.

F. Glover. ONR Research Memorandum, chapter Probabilistic and
Parametric Learning Combinations of Local Job Shop Scheduling Rules.
Carnegie Mellon University, 1963.

162

Graph layout problems: a metaheuristic approach

[56]

[57]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

F. Glover. Applications of Integer Programming Future paths for integer
programming and links to artificial intelligence. Computers € Operations
Research, 13(5):533 — 549, 1986.

F. Glover. Tabu Search and Adaptive Memory Programming — Advances,
Applications and Challenges, pages 1-75. Springer US, Boston, MA, 1997.

F. Glover. A template for scatter search and path relinking, pages 1-51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

F. Glover. Multi-Start and Strategic Oscillation Methods — Principles to
FExploit Adaptive Memory, pages 1-23. Springer US, Boston, MA, 2000.

F. Glover. Exterior path relinking for zero-one optimization. Int. J. Appl.
Metaheur. Comput., 5(3), 2014.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and
path relinking. Control and cybernetics, 29(3):653-684, 2000.

F. Glover, M. Laguna, and R. Marti. Scatter Search and Path Relinking:
Advances and Applications, pages 1-35. Springer US, Boston, MA, 2003.

F. Glover, M. Laguna, and R. Marti. New Ideas and Applications of Scatter
Search and Path Relinking, pages 367-383. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

F. Glover, M. Laguna, and R. Marti. Scatter Search and Path Relinking:
Foundations and Advanced Designs, pages 87-99. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

Fred Glover. Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1):156-166, 1977.

Fred Glover and Gary A. Kochenberger. An Introduction to Tabu Search,
pages 37-54. Springer US, Boston, MA, 2003.

W.J. Goralski. SONET, a guide to synchronous optical networks. McGraw-
Hill Higher Education, 1997.

Y. Guan and K. L. Williams. Profile minimization on triangulated triangles.
Discrete Mathematics, 260(1):69 — 76, 2003.

Bibliography 163

[70]

[71]

[72]

[77]

78]

[79]

A. Gursoy and Nuriyev. Genetic Algorithm for Multi Bandpass Problem
and library of problems. In Problems of Cybernetics and Informatics (PCI),
2012 1V International Conference, pages 1-5, 2012.

P. Hansen and N. Mladenovi¢. J-Means: a new local search heuristic for
minimum sum of squares clustering. Pattern Recognition, 34(2):405 — 413,
2001.

P. Hansen, N. Mladenovi¢, J. Brimberg, and J.A. Moreno Pérez. Handbook
of Metaheuristics, volume 146, chapter Variable Neighborhood Search, pages
61 — 86. Springer US, 2010.

P. Hansen, N. Mladenovi¢, and J.A. Moreno Pérez. Variable Neighborhood
Search: methods and applications. Annals of Operations Research,
175(1):367-407, 2010.

P. Hansen, N. Mladenovi¢, and D. Perez Britos. Variable Neighborhood
Decomposition Search. Journal of Heuristics, 7(4):335-350, 2001.

L.H. Harper. Optimal numberings and isoperimetric problems on graphs.
Journal of Combinatorial Theory, 1(3):385 — 393, 1966.

L. M. Hvattum, A. Duarte, F. Glover, and R. Marti. Designing effective
improvement methods for scatter search: an experimental study on global
optimization. Soft Computing, 17(1):49-62, 2013.

T. Jones. One operator, one landscape. Technical report, Santa Fe Institute,
Santa Fe, USA, 1995.

M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs.
Discrete Applied Mathematics, 36(2):153 — 168, 1992.

I. P. Kaminow, C. R. Doerr, C. Dragone, T. Koch, U. Koren, A. A. M.
Saleh, A. J. Kirby, C. M. Ozveren, B. Schofield, R. E. Thomas, R. A. Barry,
D. M. Castagnozzi, V. W. S. Chan, B. R. Hemenway, D. Marquis, S. A.
Parikh, M. L. Stevens, E. A. Swanson, S. G. Finn, and R. G. Gallager. A
wideband all-optical WDM network. [FEEE Journal on Selected Areas in
Commaunications, 14(5):780-799, Jun 1996.

D.R. Karger. A Randomized Fully Polynomial Time Approximation Scheme
for the All Terminal Network Reliability Problem. In Proceedings of the
Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC
'95, pages 11-17, New York, NY, USA, 1995. ACM.

164

Graph layout problems: a metaheuristic approach

[31]

[91]

[92]

R. M. Karp. Mapping the Genome: Some Combinatorial Problems Arising
in Molecular Biology. In Proceedings of the Twenty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’93, pages 278285, New York,
NY, USA, 1993. ACM.

D. G. Kendall. Incidence matrices, interval graphs and seriation in
archeology. Pacific J. Math., 28(3):565-570, 1969.

J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proceedings of the American Mathematical
Society, 7(1):48-50, 1956.

M. Kurt, H. Kutucu, A. Gursoy, and U. Nuriyev. The Optimization of the
Bandpass Lengths in the Multi-Bandpass Problem, pages 115-123. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

M. Laguna. Optimization of complex systems with OptQuest. A White
Paper from OptTek Systems, Inc, 1997.

M. Laguna, F. Gortazar, M. Gallego, A. Duarte, and R. Marti. A black-box
scatter search for optimization problems with integer variables. Journal of
Global Optimization, 58(3):497-516, 2014.

M. Laguna and R. Marti. GRASP and Path Relinking for 2-Layer Straight
Line Crossing Minimization. INFORMS Journal on Computing, 11(1):44-52,
1999.

M. Laguna and R. Marti. Scatter Search: Methodology and Implementations
in C. Kluwer, Boston, 2003.

Leiserson. Area-efficient graph layouts. In Foundations of Computer Science,
1980., 21st Annual Symposium on, pages 270281, 1980.

J. G. Lewis. Algorithm 582: The Gibbs-Poole-Stockmeyer and Gibbs-King
Algorithms for Reordering Sparse Matrices. ACM Trans. Math. Softw.,
8(2):190-194, 1982.

R.R. Lewis. Simulated annealing for profile and fill reduction of sparse
matrices. International Journal for Numerical Methods in Engineering,

37(6):905-925, 1994.

7. Li and G. Lin. The three column Bandpass problem is solvable in linear
time. Theoretical Computer Science, 412(4):281 — 299, 2011.

Bibliography 165

[93]

[94]

[95]

[96]

[97]

[102]

[103]

[104]

[105]

G. Lin. On the Bandpass problem. Journal of Combinatorial Optimization,
22(1):71-77, 2011.

Y. Lin and J. Yuan. Profile minimization problem for matrices and graphs.
Acta Mathematicae Applicatae Sinica, 10(1):107-112, 1994.

R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs.
SIAM Journal on Applied Mathematics, 36(2):177-189, 1979.

H. R. Lourenco, O. C. Martin, and T. Stiitzle. Iterated Local Search, pages
320-353. Springer US, Boston, MA, 2003.

J. Luttamaguzi, M. Pelsmajer, Z. Shen, and B. Yang. Integer programming
solutions for several optimization problems in graph theory,. Technical
report, DIMACS, 2005.

F. Makedon and [.LH. Sudborough. On minimizing width in linear layouts.
Discrete Applied Mathematics, 23(3):243 — 265, 1989.

R. Marti and M. Laguna. Inteligencia Artificial. Revista Iberoamericana de
Inteligencia Artificial. 19, 7:123-130, 2003.

R. Marti, J.J. Pantrigo, A. Duarte, and E. G. Pardo. Branch and bound
for the cutwidth minimization problem. Computers & Operations Research,
40(1):137 — 149, 2013.

B. Menéndez, E. G. Pardo, J. Sanchez-Oro, and A. Duarte. Parallel variable
neighborhood search for the min—max order batching problem. International
Transactions in Operational Research, In press, 2016.

N. Mladenovi¢. A variable neighborhood algorithm-a new metaheuristic for
combinatorial optimization. In papers presented at Optimization Days, page
112, 1995.

N. Mladenovi¢ and P. Hansen. Variable Neighborhood Search. Comput.
Oper. Res., 24(11):1097-1100, 1997.

N. Mladenovi¢, J. Petrovi¢, V. Kovacevié-Vujci¢, and M. Cangalovié. Solving
spread spectrum radar polyphase code design problem by tabu search and
variable neighbourhood search. Furopean Journal of Operational Research,
151(2):389 — 399, 2003. Meta-heuristics in combinatorial optimization.

P. Mutzel. A polyhedral approach to planar augmentation and related
problems, pages 494-507. Springer Berlin Heidelberg, Berlin, Heidelberg,
1995.

166

Graph layout problems: a metaheuristic approach

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, New York, NY, USA, 1988.

U.G. Nuriyev, H. Kutucu, and M. Kurt. Mathematical models of the
Bandpass problem and OrderMatic computer game. Mathematical and
Computer Modelling, 53(5-6):1282 — 1288, 2011.

J. J. Pantrigo, R. Marti, A. Duarte, and E. G. Pardo. Scatter search for the
cutwidth minimization problem. Annals of Operations Research, 199(1):285—
304, 2012.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complezity. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1982.

E. G. Pardo, N. Mladenovi¢, J.J. Pantrigo, and A. Duarte. Variable
Formulation Search for the Cutwidth Minimization Problem. Applied Soft
Computing, 13(5):2242 — 2252, 2013.

E. G. Pardo, M. Soto, and C. Thraves. Embedding signed graphs in the line.
Journal of Combinatorial Optimization, 29(2):451-471, 2015.

S. Peng, C. Ho, T. Hsu, M. Ko, and C.Y. Tang. A Linear-Time Algorithm
for Constructing an Optimal Node-Search Strategy of a Tree, pages 279-289.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

J. Petit. Experiments on the Minimum Linear Arrangement Problem. J.
FExp. Algorithmics, 8, 2003.

D. C. Porumbel, J.-K. Hao, and F. Glover. A simple and effective
algorithm for the MaxMin diversity problem. Annals of Operations Research,
186(1):275, 2011.

R. C. Prim. Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389-1401, 1957.

J.D. Quintana, J. Sdnchez Oro, and A. Duarte. Efficient Greedy Randomized
Adaptive Search Procedure for the Generalized Regenerator Location

Problem. International Journal of Computational Intelligence, In press,
2016.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki. Optical Networs: a
practical perspective. Morgan Kaufmann, 2010.

Bibliography 167

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

R. Ravi, A. Agrawal, and P. Klein. Ordering problems approzimated: single-
processor scheduling and interval graph completion, pages 751-762. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1991.

M. G. C Resende and D.V. Andrade. Method and system for Network
Migration Scheduling, 2009.

M.G.C. Resende, R. Marti, M. Gallego, and A. Duarte. {GRASP} and
path relinking for the max—min diversity problem. Computers € Operations
Research, 37(3):498 — 508, 2010. Hybrid Metaheuristics.

C. C. Ribeiro and M. C. Souza. Variable neighborhood search for the degree-
constrained minimum spanning tree problem. Discrete Applied Mathematics,
118(1-2):43 — 54, 2002. Special Issue devoted to the ALIO-EURO Workshop
on Applied Combinatorial Optimization.

C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A Hybrid GRASP with
Perturbations for the Steiner Problem in Graphs. INFORMS Journal on
Computing, 14(3):228-246, 2002.

C.C. Ribeiro and I. Rosseti. A Parallel GRASP Heuristic for the 2-Path
Network Design Problem, pages 922-926. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

J. Rolim, O. Sykora, and 1. Vrt’o. Optimal cutwidths and bisection widths

of 2- and 3-dimensional meshes, pages 252-264. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1995.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, second edition, 2003.

J. Sanchez-Oro, A. Duarte, and S. Salcedo-Sanz. Robust total energy
demand estimation with a hybrid Variable Neighborhood Search — Extreme
Learning Machine algorithm. Energy Conversion and Management, 123:445
— 452, 2016.

J. Sanchez-Oro, D. Fernandez Lépez, R. Cabido, A. S. Montemayor, and
J. J. Pantrigo. Radar-based road-traffic monitoring in urban environments.
Digital Signal Processing, 23(1):364-374, 2013.

J. Sanchez-Oro, M. Laguna, A. Duarte, and R. Marti. Scatter search for the
profile minimization problem. Networks, 65(1):10-21, 2015.

J. Sanchez-Oro, M. Laguna, R. Marti, and A. Duarte. Scatter search for the
bandpass problem. Journal of Global Optimization, page In press, 2016.

168

Graph layout problems: a metaheuristic approach

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]
138]

[139]

[140]

J. Sénchez-Oro, N. Mladenovi¢, and A. Duarte. General Variable
Neighborhood Search for computing graph separators. Optimization Letters,
pages 1-21, 2014.

J. Sanchez-Oro, J.J. Pantrigo, and A. Duarte. Combining intensification and
diversification strategies in VNS. An application to the Vertex Separation
problem. Computers & Operations Research, 52, Part B:209 — 219, 2014.
Recent advances in Variable neighborhood search.

J. Sanchez-Oro, M. Sevaux, A. Rossi, R. Marti, and A. Duarte. The
3rd International Conference on Variable Neighborhood Search (VNS’14)
Solving dynamic memory allocation problems in embedded systems with
parallel variable neighborhood search strategies. Electronic Notes in Discrete
Mathematics, 47:85 — 92, 2015.

F. Shahrokhi, O. Sykora, L.A. Székely, and I. Vrto. On Bipartite Drawings
and the Linear Arrangement Problem. SIAM J. Comput., 30(6):1773-1789,
2001.

Y. Shiloach. A Minimum Linear Arrangement Algorithm for Undirected
Trees. SIAM Journal on Computing, 8(1):15-32, 1979.

K. Skodinis. Computing Optimal Linear Layouts of Trees in Linear Time,
pages 403-414. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

K. Takagi and N. Takagi. Minimum Cut Linear Arrangement of p-q dags
for VLSI layout of adder trees. In IEICE Transactions on Fundamentals of
Electronics, Com- munications and Computer Sciences E82-A, pages 767—

774, 1999.
R. Tewarson. Sparse Matrices. Academic Press, NY (USA), 1973.

D.M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth II: Algorithms
for Partial W-trees of Bounded Degree. J. Algorithms, 56(1):25-49, 2005.

P.J. van Laarhoven and E.H. Aarts. Simulated Annealing: Theory and
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

M. Yannakakis. A Polynomial Algorithm for the Min-cut Linear
Arrangement of Trees. J. ACM, 32(4):950-988, 1985.

