Ayuda
Ir al contenido

Dialnet


Localización a largo plazo de vehículos aéreos no tripulados basada en la percepción tridimensional del entorno

  • Autores: Francisco Javier Pérez Grau
  • Directores de la Tesis: Aníbal Ollero Baturone (dir. tes.), Fernando Caballero (dir. tes.)
  • Lectura: En la Universidad de Sevilla ( España ) en 2017
  • Idioma: español
  • Número de páginas: 112
  • Títulos paralelos:
    • Long-term localization of unmanned aerial vehicles based on 3D environment perception
  • Tribunal Calificador de la Tesis: Begoña C. Arrue Ullés (presid.), Joaquín Ferruz Melero (secret.), Luis Merino (voc.), Pedro Lima (voc.), Luis Antidio Viguria Jiménez (voc.)
  • Enlaces
    • Tesis en acceso abierto en: Idus
  • Resumen
    • español

      Los vehículos aéreos no tripulados (UAVs por sus siglas en inglés, Unmanned Aerial Vehicles) se utilizan actualmente en innumerables aplicaciones civiles y comerciales, y la tendencia va en aumento. Su operación en espacios exteriores libres de obstáculos basada en GPS (del inglés Global Positioning System) puede ser considerada resuelta debido a la disponibilidad de productos comerciales con cierto grado de madurez. Sin embargo, algunas aplicaciones requieren su uso en espacios confinados o en interiores, donde las señales del GPS no están disponibles. Para permitir la introducción de robots aéreos de manera segura en zonas sin cobertura GPS, es necesario mejorar la fiabilidad en determinadas tecnologías clave para conseguir una operación robusta del sistema, tales como la localización, la evitación de obstáculos y la planificación de trayectorias.

      Actualmente, las técnicas existentes para la navegación autónoma de robots móviles en zonas sin GPS no son suficientemente fiables cuando se trata de robots aéreos, o no son robustas en el largo plazo. Esta tesis aborda el problema de la localización, proponiendo una metodología adecuada para robots aéreos que se mueven en un entorno tridimensional, utilizando para ello una combinación de medidas obtenidas a partir de varios sensores a bordo. Nos hemos centrado en la fusión de datos procedentes de tres tipos de sensores: imágenes y nubes de puntos adquiridas a partir de cámaras estéreo o de luz estructurada (RGB-D), medidas inerciales de una IMU (del inglés Inertial Measurement Unit) y distancias entre radiobalizas de tecnología UWB (del inglés Ultra Wide-Band) instaladas en el entorno y en la propia aeronave. La localización utiliza un mapa 3D del entorno, para el cual se presenta también un algoritmo de mapeado que explora las sinergias entre nubes de puntos y radiobalizas, con el fin de poder utilizar la metodología al completo en cualquier escenario dado.

      Las principales contribuciones de esta tesis doctoral se centran en una cuidadosa combinación de tecnologías para lograr una localización de UAVs en interiores válida para operaciones a largo plazo, de manera que sea robusta, fiable y eficiente computacionalmente. Este trabajo ha sido validado y demostrado durante los últimos cuatro años en el contexto de diferentes proyectos de investigación relacionados con la localización y estimación del estado de robots aéreos en zonas sin cobertura GPS. En particular en el proyecto European Robotics Challenges (EuRoC), en el que el autor participa en la competición entre las principales instituciones de investigación de Europa.

      Los resultados experimentales demuestran la viabilidad de la metodología completa, tanto en términos de precisión como en eficiencia computacional, probados a través de vuelos reales en interiores y siendo éstos validados con datos de un sistema de captura de movimiento.

    • English

      Unmanned Aerial Vehicles (UAVs) are currently used in countless civil and commercial applications, and the trend is rising. Outdoor obstacle-free operation based on Global Positioning System (GPS) can be generally assumed thanks to the availability of mature commercial products. However, some applications require their use in confined spaces or indoors, where GPS signals are not available. In order to allow for the safe introduction of autonomous aerial robots in GPS-denied areas, there is still a need for reliability in several key technologies to procure a robust operation, such as localization, obstacle avoidance and planning.

      Existing approaches for autonomous navigation in GPS-denied areas are not robust enough when it comes to aerial robots, or fail in long-term operation. This dissertation handles the localization problem, proposing a methodology suitable for aerial robots moving in a Three Dimensional (3D) environment using a combination of measurements from a variety of on-board sensors. We have focused on fusing three types of sensor data: images and 3D point clouds acquired from stereo or structured light cameras, inertial information from an on-board Inertial Measurement Unit (IMU), and distance measurements to several Ultra Wide-Band (UWB) radio beacons installed in the environment. The overall approach makes use of a 3D map of the environment, for which a mapping method that exploits the synergies between point clouds and radio-based sensing is also presented, in order to be able to use the whole methodology in any given scenario.

      The main contributions of this dissertation focus on a thoughtful combination of technologies in order to achieve robust, reliable and computationally efficient long-term localization of UAVs in indoor environments. This work has been validated and demonstrated for the past four years in the context of different research projects related to the localization and state estimation of aerial robots in GPS-denied areas. In particular the European Robotics Challenges (EuRoC) project, in which the author is participating in the competition among top research institutions in Europe.

      Experimental results demonstrate the feasibility of our full approach, both in accuracy and computational efficiency, which is tested through real indoor flights and validated with data from a motion capture system.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno