Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/25035
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Desarrollo de nuevos materiales de carbono dopados con níquel para el almacenamiento de hidrógeno

AutorZubizarreta, Leire CSIC ORCID
DirectorPis Martínez, José Juan CSIC; Arenillas de la Puente, Ana CSIC ORCID
Palabras claveHidrógeno
Almacenamiento
xerogeles de carbono
spillover
materiales
dopaje con niquel
Fecha de publicación7-jun-2010
ResumenEl almacenamiento de hidrógeno es uno de los retos más importantes para la implantación de la economía del hidrógeno. En los últimos años se ha incrementado notablemente el estudio de materiales de carbono como sistemas de almacenamiento de hidrógeno, debido al bajo peso y excelentes cinéticas que presentan. Sin embargo, todavía es necesario aumentar las capacidades obtenidas para alcanzar los objetivos impuestos por el DOE y la UE. Una de las posibles opciones que se plantean es intentar aumentar la interacción entre el hidrógeno y la superficie de los materiales de carbono mediante el dopaje con Ni. Sin embargo, es un alternativa muy poco madura todavía, donde para potenciar al máximo la capacidad de almacenamiento es necesario por una parte controlar y ajustar la porosidad y la química superfícial de los materiales, y por otra parte estudiar un gran número de variables tales como la cantidad y dispersión del metal sobre el soporte carbonoso, las interacciones entre ambas fases, etc. En este trabajo se han desarrollado y caracterizado nuevos materiales de carbono dopados con níquel, para su aplicación como sistemas de almacenamiento de hidrógeno. Los materiales de carbono seleccionados han sido nanoesferas y geles de carbono. Estos materiales son muy adecuados para realizar este estudio, ya que se ha observado que es posible el control de su textura porosa mediante la variación de distintas condiciones de síntesis y son materiales de elevada pureza, sin presencia de otras especies metálicas que puedan interferir. En el caso de los geles de carbono, se ha observado que la utilización de microondas reduce enormemente el tiempo de obtención de este tipo de materiales sin producir un colapso de la estructura creada en la síntesis. Por otro parte, la activación química con hidróxidos alcalinos de estos materiales, permite aumentar y controlar la microporosidad, sin modificar la meso/macroporosidad desarrollada durante la síntesis, lo que aumenta enormemente la aplicabilidad de este tipo de materiales. A temperatura ambiente y presiones de 90 bar, la distribución del tamaño de poros es un parámetro de gran importancia en la capacidad de almacenamiento de hidrógeno de materiales de carbono, ya que son los poros de un tamaño inferior a 10-15 Å los que más contribuyen en el proceso de adsorción de hidrógeno, y los que dan lugar a una mayor densidad de empaquetamiento. La utilización de distintos métodos de síntesis, condiciones de operación, distinta carga de níquel y distinto soporte durante el dopaje influyen notablemente en las propiedades texturales, químicas y estructurales finales, y por tanto en la capacidad de almacenamiento de hidrógeno de los materiales estudiados. El aumento de la capacidad de almacenamiento a temperatura ambiente, está directamente relacionado con el grado de spillover que presentan las distintas muestras; el cual, a su vez, se encuentra favorecido por la presencia de níquel interaccionando con la superficie carbonosa.
URIhttp://hdl.handle.net/10261/25035
Aparece en las colecciones: (INCAR) Tesis

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Tesis Leire Zubizarreta.pdf.pdf16,93 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

640
checked on 23-abr-2024

Download(s)

1.739
checked on 23-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.